399705
/en/bank-og-finansmarked/statistikker/kredind/maaned
399705
statistikk
2020-10-30T08:00:00.000Z
Banking and financial markets
en
kredind, Credit indicatorFinancial indicators, Banking and financial markets
true

Credit indicator

Updated

Next update

Key figures

4.6 %

twelve-month growth in the general public’s domestic loan debt C2 September 2020

The general public's debt. 12-month growth. Per cent
Domestic loan debt (C2)
General publicHouseholds etc.Non-financial corporationsMunicipal government
March 20204.74.74.06.9
April 20204.64.63.77.7
May 20204.64.44.27.5
June 20204.54.43.58.1
July 20204.54.63.38.4
August 20204.74.63.98.1
September 20204.64.73.18.6
Total loan debt (C3)
General publicMainland NorwayMainland Norway, non-financial corporationsPetroleum activity and ocean transport
1st quarter 20205.25.14.95.8
2nd quarter 20205.04.33.211.9

See selected tables from this statistics

Table 1 
C2, domestic debt to the general public

C2, domestic debt to the general public1
Unadjusted figuresSeasonally adjusted figures
NOK millionPer centNOK millionPer cent
StocksTransactions over past 12 months12-month growthStocksTransactions over past month1-month growth2
1All growth calculations based on stocks that include foreign currency loans are adjusted for exchange rate fluctuations in order to eliminate changes not related to transactions. The growth calculations are also adjusted for statistical breaks that are not attributable to transactions or revaluation. This can cause deviation between stock changes and transactions.
2Converted to annual rate.
September 20195 967 766326 9715.85 966 35826 3455.5
October 20196 003 889316 0495.66 000 08228 0025.8
November 20196 030 306318 0625.66 023 96027 1835.6
December 20196 021 667293 8845.16 029 67013 5872.7
January 20206 052 596286 4985.06 059 15820 3704.1
February 20206 081 935280 3784.86 090 42425 9055.3
March 20206 130 193271 8804.76 135 67917 8643.6
April 20206 150 685268 4644.66 152 57222 3784.5
May 20206 171 626272 7304.66 165 00724 4544.9
June 20206 201 325264 3764.56 182 76615 7753.1
July 20206 196 102268 9014.56 196 68823 7114.7
August 20206 217 869278 2514.76 223 29733 2966.6
September 20206 258 918271 7224.66 257 67219 3613.8

Table 2 
C2 by debtor sector

C2 by debtor sector1
Stocks. NOK millionTransactions over past 12 months. NOK million12-month growth. Per cent
Municipal governmentNon-financial corporationsHouseholds etc.Municipal governmentNon-financial corporationsHouseholds etc.Municipal governmentNon-financial corporationsHouseholds etc.
1All growth calculations based on stocks that include foreign currency loans are adjusted for exchange rate fluctuations in order to eliminate changes not related to transactions. The growth calculations are also adjusted for statistical breaks that are not attributable to transactions or revaluation. This can cause deviation between stock changes and transactions.
September 2019533 6001 841 1953 592 97134 797118 626173 5487.06.95.1
October 2019538 6721 854 7983 610 41938 056105 908172 0857.66.15.0
November 2019544 3721 857 7903 628 14439 26499 938178 8597.85.75.2
December 2019550 4641 842 7923 628 41136 39185 763171 7307.14.95.0
January 2020555 5411 856 3213 640 73438 45279 447168 5997.44.54.9
February 2020561 2151 871 6993 649 02238 87473 447168 0587.44.14.8
March 2020562 1271 903 5663 664 50136 17971 139164 5636.94.04.7
April 2020568 1511 906 3343 676 20140 76166 628161 0767.73.74.6
May 2020569 4081 910 0013 692 21739 92676 743156 0607.54.24.4
June 2020573 1231 912 3693 715 83343 05564 114157 2078.13.54.4
July 2020576 6801 893 7693 725 65344 75760 771163 3738.43.34.6
August 2020576 1541 900 0083 741 70743 11871 023164 1098.13.94.6
September 2020579 4041 913 7323 765 78245 80456 477169 4418.63.14.7

Table 3 
C3, total debt by selected industries. Foreign debt

C3, total debt by selected industries. Foreign debt1
Stocks. NOK millionTransactions over past 12 months. NOK million12-month growth. Per cent
Total loan debt (C3)Mainland NorwayPetroleum activity and ocean transportForeign loan debtTotal loan debt (C3)Mainland NorwayPetroleum activity and ocean transportForeign loan debtTotal loan debt (C3)Mainland NorwayPetroleum activity and ocean transportForeign loan debt
1All growth calculations based on stocks that include foreign currency loans are adjusted for exchange rate fluctuations in order to eliminate changes not related to transactions. The growth calculations are also adjusted for statistical breaks that are not attributable to transactions or revaluation. This can cause deviation between stock changes and transactions.
2nd quarter 20197 260 4366 605 404655 0321 354 055343 024356 850-13 82722 2045.05.7-2.11.7
3rd quarter 20197 361 0986 684 592676 5071 393 332398 578392 2896 29271 6075.86.31.05.8
4th quarter 20197 432 5486 755 261677 2871 410 884410 558366 83143 727116 6775.95.86.99.1
1st quarter 20207 675 2586 921 563753 6941 545 065366 705330 87935 82694 8255.25.15.87.3
2nd quarter 20207 775 4006 975 151800 2501 574 075364 585286 55778 030100 2455.04.311.97.4

About the statistics

The credit indicator measures the general public’s debt. The indicators differentiate between domestic debt C2 and total debt C3. C3 is equal to C2 plus foreign debt. Transaction and growth estimations are corrected for changes in stocks that are not due to new borrowings or repayments of loans.

Definitions

Definitions of the main concepts and variables

C1 shows the development in the general public’s loan debt to Norwegian lenders in NOK.

C2 shows the development in the general public’s loan debt to Norwegian lenders in NOK and foreign currency.

C3 shows the development in the general public’s loan debt to domestic and foreign lenders in NOK and foreign currency.

The general public comprises the institutional sectors general government, non-financial corporations and households etc. Non-profit institutions serving households is included in the household sector in C2. In the credit indicator statistics, we measure the development in debt for these borrowing sectors.

The loan debt in C1 and C2 comprises loans from banks and other financial institutions as well as debt securities issued in Norway with a Norwegian lender. The external loan debt in C3 comprises the general public’s remaining debt securities and other loans with a foreign lender, including intercompany loans.

Standard classifications

The credit indicator statistics apply different combinations of borrowing sectors, lenders, industry classification and currency.

Borrowing sectors: the sector aggregate general public comprise of the institutional sectors general government (sector code 6500), non-financial corporations (sector code 1110-2500) and households etc. (sector code 7000-8500, as well as 0800 unspecified sector).

Industry classification: mainland Norway and oil activities and ocean transport are the industry aggregates we apply in the credit indicator statistics. This follows the definitions of the National accounts.

Oil activities comprise all enterprises in industry 22 (Services linked to extraction of crude petroleum and natural gas) and industry 23 (Extraction of crude petroleum and natural gas). The industry codes referr to the codes that are used for reporting in ORBOF and are based on the European classification of industries, NACE.

Ocean transport comprises all enterprises classified in industry 49 (Sea transport abroad and transport via pipelines).

Currency: NOK and sum foreign currency.

Administrative information

Name and topic

Name: Credit indicator
Topic: Banking and financial markets

Next release

Responsible division

Division for Financial Markets Statistics

Regional level

Only at national level.

Frequency and timeliness

C1 and C2: Monthly. Released approximately 30 days after the reference period.

C3: Quarterly. Preliminary release of credit to non-financial corporations with the industry classification mainland Norway approximately 55 days after the reference period. The complete and final C3 statistics are released approximately 60 days after the reference period.

International reporting

C2 is included in IMF’s Special Data Dissemination Standard (SDDS). Data are posted on Statistics Norway’s website under “Economic Indicators".

Microdata

Collected and published data is stored in SSB's data base.

Background

Background and purpose

The credit indicator measures the debt of selected sectors in Norway. The indicator is one of the sources of information the authorities use when they formulate the monetary policy of Norway. The statistics provide an overview of the development of credit at an early stage and is an important indicator of economic activity.

The central bank of Norway (Norges Bank) introduced the credit indicator statistics in the mid-1980s, and such data are available dating back to December 1985. After Statistics Norway took over most of the work involved in collecting and publishing financial statistics from Norges Bank in 2007, the credit indicator statistics, was also transferred to Statistics Norway.

Users and applications

Monetary authorities, i.e. Norges Bank and the Ministry of Finance. Other important users are the Financial Supervisory Authority of Norway, the financial markets, research institutions, international organisations, the media as well as students.

Equal treatment of users

No external users have access to the statistics and analyses before they are published and accessible simultaneously for all users on ssb.no at 8 am.  The release date is given with a minimum of three months’ notice in the Statistics Release Calendar. For more information, see Principles for equal treatment of users in releasing statistics and analyses.

Coherence with other statistics

The statistics are based on the guidelines in the System of National Accounts (SNA 2008), the European System of Accounts (ESA 2010), the Monetary and Financial Statistics Manual and Compilation Guide (IMF 2016) and the Manual on MFI Balance Sheet Statistics (ECB 2019).

The source data for loans from banks, mortgage companies, state lending institutions and finance companies is the same as in the statistics Finance companies, balance sheet. Loans from life and non-life insurance companies is the same as found in the statistics Life and non-life insurance companies, accounts. Loans from pension funds comes from the statistics Pension funds. Finally, debt securities are obtained from the same source that is used in the statistics for Securities registered with VPS.  

Legal authority

Not relevant.

EEA reference

The statistics is derived without direct Council Directives or Council Regulations from the EU.

Production

Population

Sources included in C2 are loans in NOK and foreign currency to the general public by banks, state lending institutions, finance companies, life and non-life insurance companies, mortgage companies, pension funds, the Norwegian Public Service Pension Fund, Export Credit Norway and Norges Bank. C2 also includes the general public's debt securities with domestic lenders. The owner of a debt security is the lender, while the issuer is the borrower.

C3 is comprised of the sum of C2 and the general public’s external loan debt. The external part of C3 comprises external debt statistics for the main institutional sectors general government, non-financial corporations and households etc. The debt figures comprise external long-term debt such as bond loans, loans from credit institutions, loans from companies within the same group, subordinated loans and short-term debt such as certificates, overdraft facilities, short-term debt to companies within the same group of companies, owners, employees etc. Foreign shareholders in Norwegian companies are not included.

Data sources and sampling

The C2 statistics are derived from the accounting information in ORBOF (Reporting of banks, mortgage companies, state lending institutions and finance companies accounts to the public authorities), FORT (Reporting of life and non-life insurance companies accounts for the public authorities) and PORT (Reporting of pension funds account to the public authorities). The data for the general public's debt securities are derived from statistics for securities registered in the Norwegian CSD (VPS). The Norwegian Public Service Pension Fund and Export Credit Norway also report data for these statistics.

To calculate revaluations due to exchange rate fluctuations we use information on credit volume in different currencies from a quarterly survey of banks in ORBOF. Exchange rates are from the central bank of Norway.

The data on the external loan debt are based on the Balance of Payments Statistics. A new system for collecting and producing data for the balance of payments was established in 2005 after the Norges Bank Foreign Exchange Statistics were discontinued. The most significant change in the data collection process is that Statistics Norway has established new sampling surveys for non-financial and private quasi-corporated public enterprises. The shareholdings of foreign shareholders in Norwegian enterprises, as mentioned above, and “other liabilities” are not included in the general public’s external debt. This is in accordance with the definitions of C1 and C2, neither of which include these financial objects.

Non-financial corporations external loan debt is derived from their reporting of balance of payments to Statistics Norway. Information on securities from the Norwegian CSD is also used to collect data on external debt.

A sample of non-financial enterprises is used for quarterly and annual surveys to derive their external debt. Enterprises of some size report data on their foreign debt. The samples cover about 90 per cent of total foreign assets and liabilities on a quarterly basis, and approximately 95 per cent of the annual surveys on average. For the non-financial corporations, the samples comprise approximately 650 enterprises on a quarterly basis and 2 700 enterprises annually.

Collection of data, editing and estimations

Statistics Norway is responsible for collecting accounting data for banks, mortgage companies, financial corporations, insurance companies and pensions funds in collaboration with the Financial Supervisory Authority of Norway and Norges Bank. In addition, Statistics Norway obtains data from the Norwegian Public Service Pension Fund, Export Credit Norway and the Norwegian CSD.

For the external part of C3, data from a sample of non-financial corporations’ debt are collected quarterly from their reporting of balance of payments data. Information about the households’ external debt is collected from their tax return.  

The figures for the external loan debt of the non-financial companies are quarterly data scaled up by using annual data. This is done by adding annual data from companies that do not report on a quarterly basis to the quarterly data. When scaling up quarterly data we use the latest completed yearly data. This year is called the base year. When publishing data for the fourth quarter, we change the base year. The base year is valid as of the fourth quarter corresponding to the base year. Companies who report annually and not quarterly is a group of residual companies that we use to scale up the quarterly external loan debt. Changing base year results in revisions in previously published data. If the change in base year causes the group of residual companies to have considerably larger or smaller external loan debt than before, growth and transaction series are adjusted, meaning that they are not affected by this change.

The editing of the financial corporations’ accounting statements is undertaken by Statistics Norway and the Financial Supervisory Authority of Norway. The data from the Norwegian Public Service Pension Fund, Export Credit Norway and the Norwegian CSD are controlled by Statistics Norway. Manual controls are undertaken when the data on the general public’s external loan debt are received, and the database contains automatic control routines for content and logical coherence.

The policy is to disseminate changes of the previous month’s data together with the current month’s data. With every C2-release, the latest 25 periods of stock data and 13 periods of transaction and growth data are usually updated. Stocks are updated 10 periods with every C3-release. Similarly, transaction and growth series are usually updated 6 periods. Statistics Norway is fully prepared to edit in a timely manner, with appropriate notification to users and the media, should it be deemed necessary by the magnitude of a past error, or owing to other exceptional circumstances. Some of the reported data may contain preliminary data that are subsequently corrected. Different data sources have different reporting frequencies. The most recent data are used until there is new data available. Data from previous periods are revised when new data are included. Example: Pension funds rapport yearly. Last year’s data is used until new data is provided, usually in June the following year.

The credit indicators focus on transactions, and transaction and growth estimates are corrected for changes in stocks that are not due to new borrowings or repayments of loans. All growth rate calculations based on holdings that include foreign currency loans are corrected for exchange rate fluctuations to eliminate all changes not related to transactions. The growth rate calculations are also corrected for structural breaks that are not attributable to transactions or valuation changes. Examples of this kind of break could be that a financial corporation moves from one sector to another or an introduction of a new financial source.  From 2019/01 growth rates are corrected for confirmed losses. Changes in accounting principles may also cause breaks in time series. This calculation method means that there will not be full accord between the transaction figures and the changes in volume figures.

Seasonal adjustment

The seasonal adjustment of the credit indicator C2 is carried out using the method X12-Arima. Seasonal components are calculated for each release of data, meaning that seasonal adjusted stocks as well as monthly transactions and growth rates are updated.  The seasonal adjusted series for domestic debt in NOK, C1, is indirectly adjusted. This imply that the seasonal adjusted C1 is calculated as the sum of the three seasonal adjusted series C1-households, C1-non-financial corporations and C1-general government. The seasonal adjusted series for domestic debt in NOK and foreign currency, C2, is calculated as the sum of the unadjusted series for C2-foreign currency and the seasonally adjusted series for C1. For more information, see the bullet point “About seasonal adjustment”, further down on this page.  

Confidentiality

Normally, the debt data will not be published if there is a risk of identification, i.e. that the figures can be traced back to the reporting unit. Exceptions here are Norges Bank and the Norwegian Public Service Pension Fund, who do not object to such identification.

Comparability over time and space

The revision of international standards, major changes in accountancy laws and change of sectors may result in a gap in the time series data. We try as far as possible to correct for structural breaks in our calculations of transactions (break corrections).

The external loan debt statistics in their present form were collected by Statistics Norway for the first time in March 2005 (figures for January 2005).

 

Change in the statistics on banks and mortgage companies in 2018

The adjustment of ORBOF to IFRS (international Financial Reporting Standards) has led to a change in the statistics on banks and mortgage companies from January 2018. For the credit indicator statistics this implied that accrued interests and changes in value are now included with the underlying financial object. In addition to this, gross loans have replaced loans deducted for loan loss provisions. Net debt securities have replaced gross debt securities, meaning that own holdings of debt securities are deducted from gross debt securities. Finally, the method for adjusting transactions for fluctuations in exchange rates is changed in accordance with IMF’s standard. As of January 2018, the stock time series are not comparable with previous periods. Transaction and growth series are corrected for this break. Further details are given in this article.

 

Changed frequency for the C3 statistics in 2017

As of the reference period June 2017, the C3 statistics changed frequency from monthly to quarterly. The change in procedures imply a more automated approach to estimation of transactions in the external debt. This can cause some deviations in estimated changes in exchange rates compared to the transactions in the closed table nr. 07477 in the StatBank. Before, quarterly volume figures where used and these where reported by currency. As of the reference period June 2017, yearly data are utilised to estimate exchange rate revaluations that are incorporated into the transactions.

 

New institutional sector classification in 2012

As from January 2012, the Norwegian institutional sector classification has been revised in line with the international classification. This change implies a break in stock time series between February and March 2012.

Accuracy and reliability

Sources of error and uncertainty

The C2 statistics are mainly derived from the financial markets statistics. Errors and inconsistencies in these statistics will also affect C2. We refer to the sections on sources of error and uncertainty from these statistics. The sources of inconsistencies for data from the Norwegian Public Service Pension Fund and Export Credit Norway will also be of the same type as the statistics mentioned above.

For the non-financial corporations used in the sample for C3, the quarterly surveys on external loan debt are based on a sample of companies. Furthermore, for these companies the surveys comprise parts of the companies' balance sheet according to the SIF, i.e. the items that provide information on the foreign debt. The interpretation of what constitutes a liability between a Norwegian company and a foreign counterpart, and how the debt should be distributed into the various debt items can lead to errors in the statistics.

The response rate:

The response rate for the C2 statistics are 100 per cent. If reports are delayed or considered to be of low quality, we copy the data from the last period until data of enough quality are provided.

The response rate for the external loan debt in C3 usually amounts to 95-96 per cent for the part of the survey covering the non-financial corporations, which is relevant for C3. Hence, the non-response figure is relatively low. There are, however, some non-response errors on some of the debt items in the forms. Non-response errors are corrected through contact with the respondents and estimation of data for some units in the sample based on information from earlier periods and yearly reports. The published data probably do not contain any notable errors regarding the total level of debt or distributed by debt objects.

Sampling:

For the external loan debt in C3 that is based on a selection of entities and not the total population, there can occur sampling errors. The sampling methods in C3 presuppose that the population covers the vast majority of all companies with foreign assets and liabilities. There is, however, no overview of companies with such balance sheet items, and hence it may be difficult to detect all relevant units that should be included in the surveys. The collection procedures are, however, modeled in such a way that it is unlikely that important units are not included.

Other errors:

There may be errors or omissions in the reporting that the credit indicator is based on. The most common mistakes are due to the fact that the interpretation of individual posts may differ from what is correct by definition.

For the external part of C3, the distinction between Norwegian and foreign entities may be unclear. In addition, the reporting of balance of payments can sometimes be insufficiently completed.

Revision

The statistics show preliminary figures. Data may be edited and included in the first possible future publication. With every C2-release, the latest 25 periods of stock data and 13 periods of transaction and growth data are updated. Stocks are updated with 10 periods with every C3-release. Similarly, transaction and growth series are updated with 6 periods.

About seasonal adjustment

General information on seasonal adjustment

Monthly time series are often characterised by considerable seasonal variations, which might complicate their interpretation. Such time series are therefore subjected to a process of seasonal adjustment in order to remove the effects of these seasonal fluctuations. Once data have been adjusted for seasonal effects by X12-ARIMA or some other seasonal adjustment tool, a clearer picture of the time series emerges.

For more information on seasonal adjustment see metadata on methods: seasonal adjustment

Why seasonally adjust these statistics?

On the basis of public holidays and holiday period in July and December the intensity of the supply and demand of credit fluctuates through the year. This complicates a direct comparison of debt figures from one month to the next. To adjust for these relations the debt is seasonally adjusted for the actual levels, so that one can analyse the underlying credit indicator development.

Series that are seasonally adjusted

The following seasonally adjusted series are produced for the credit indicator statistics; C1 households, C1 non-financial corporations and C1 municipal government. The seasonally adjusted total C1 and the seasonally adjusted series for C2 by sector are given by the seasonally adjusted lower aggregates for C1. Seasonally adjusted C1 equals the sum of the seasonally adjusted stocks of loans in NOK by sector. The seasonally adjusted series for C2 are given by the sum of the seasonally adjusted C1 and loans in foreign currency for each sector. Note that there is no seasonal pattern for loans in foreign currency, implying that this series is not seasonally adjusted.

Pre-treatment

Pre-treatment is an adjustment for variations caused by calendar effects and outliers.

No pre-treatment.

Calendar adjustment

Calendar adjustment involves adjusting for the effects of working days/trading days and for moving holidays. Working days/trading days are adjustment for both the number of working days/trading days and for that the composition of days can vary from one month to another.

No calendar adjustment of any kind is performed.

Methods for trading/working day adjustment

No correction.

Correction for moving holidays

No correction.

National and EU/euro area calendars

Definition of series not requiring calendar adjustment.

Treatment of outliers

Outliers, or extreme values, are abnormal values of the series.

Outliers are detected automatically by the seasonal adjustment tool. The outliers are removed before seasonal adjustment is carried out, and then reintroduced into the seasonally adjusted data.

Model selection

Pre-treatment requires choosing an ARIMA model, as well as deciding whether the data should be log-transformed or not.

Manual model selection after running statistical tests. The choice of ARIMA-model is assessed once a year at the time of release of data for January. The model is constant for at least one year.

Decomposition scheme

The decomposition scheme specifies how the various components – basically trend-cycle, seasonal and irregular – combine to form the original series. The most frequently used decomposition schemes are the multiplicative, additive or log additive.

Multiplicative decomposition is applied.

Seasonal adjustment

Choice of seasonal adjustment approach

X-12-ARIMA

Consistency between raw and seasonally adjusted data

In some series, consistency between raw and seasonally adjusted series is imposed.

Do not apply any constraint.

Consistency between aggregate/definition of seasonally adjusted data

In some series, consistency between seasonally adjusted totals and the aggregate is imposed. For some series, there is also a special relationship between the different series, e.g. GDP which equals production minus intermediate consumption.

Definitions and relationships also apply for seasonally adjusted figures.

Direct versus indirect approach

Direct seasonal adjustment is performed if all time series, including aggregates, are seasonally adjusted on an individual basis. Indirect seasonal adjustment is performed if the seasonally adjusted estimate for a time series is derived by combining the estimates for two or more directly adjusted series.

Indirect approach where the seasonal adjustment of components occurs using the same approach and software, and then totals are derived by aggregation of the seasonally adjusted components.

Horizon for estimating the model and the correction factors

When performing seasonal adjustment of a time series, it is possible to choose the period to be used in estimating the model and the correction factors. Correction factors are the factors used in the pre-treatment and seasonal adjustment of the series.

Only part of the time series is used to estimate the correction factors and the model.

Audit procedures

General revision policy

Seasonally adjusted data may change due to a revision of the unadjusted (raw) data or the addition of new data. Such changes are called revisions, and there are several ways to deal with the problem of revisions when publishing the seasonally adjusted statistics.

Seasonally adjusted data are revised in accordance with a well-defined and publicly available revision policy and release calendar. Revised seasonal adjusted data are released with every publication. Stocks are updated with possible revisions for the latest 25 periods.

Concurrent versus current adjustment

Seasonal factors are estimated with every release. The model, filters and outliers are assessed once a year and are constant for at least one year.

Horizon for published revisions

With every release of data, seasonally adjusted figures are updated for the latest 25 periods. More periods are updated if necessary due to larger revisions.

Quality of seasonal adjustment

Evaluation of seasonally adjustment data

Continuous/periodical evaluation using standard measures proposed by different seasonal adjustment tools.

Quality measures for seasonal adjustment

For most of the series, a selected set of diagnostics and graphical facilities for bulk treatment of data is used.

Special cases

Seasonal adjustment of short time series

All series are sufficiently long to perform an optimal seasonal adjustment.

Treatment of problematic series

Νο series are treated in a special way, irrespective of their characteristics.

Posting procedures

Data availability

Raw and seasonally adjusted data are available.

Press releases

In addition to raw data, at least one of the following series is released: pre-treated, seasonally adjusted, seasonally plus working day adjusted, trend-cycle series.

Relevant documentation