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Abstract 

This paper introduces a panel GMM framework for identifying and estimating demand elasticities via 

heteroscedasticity. While existing panel estimators address the simultaneity problem, the state-of-

the-art Feenstra/Soderbery (F/S) estimator suffers from inconsistency, inefficiency, and lacks a valid 

framework for inference. We develop a constrained GMM (C-GMM) estimator that is consistent and 

derive a uniform formula of its asymptotic standard error that is valid even at the boundary of the 

parameter space. A Monte Carlo study demonstrates the consistency of the C-GMM estimator and 

shows that it substantially reduces bias and root mean squared error compared to the F/S 

estimator. Unlike the F/S estimator, the C-GMM estimator maintains high coverage of confidence 

intervals across a wide range of sample sizes and parameter values, enabling more reliable 

inference. 
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Sammendrag 

I denne artikkelen utvikles en ny estimator (C-GMM) for å estimere etterspørselselastisiteter. C-GMM 

er en videreutvikling av Feenstra/Soderbery estimatoren (F/S), som har vært mye brukt i økonomisk 

forskning. En styrke med F/S er at den greier å kontrollere for simultanitet uten bruk av eksterne 

instrumentvariabler. Identifikasjon oppnås i stedet ved bruk av heteroskedastisitet i restleddene. F/S 

er imidlertid inkonsistent, ineffektiv, og den kan kun i begrenset grad brukes til statistisk inferens. 

Disse problemene oppstår blant annet på grunn av hvordan F/S transformerer data og hvordan den 

håndterer grensetilfeller, for eksempel når tilbudet er perfekt elastisk eller perfekt uelastisk. At 

estimeringsprosedyren ikke håndterer grensetilfeller fører til at den ofte ikke konvergerer og 

dermed ikke gir et valid estimat.  

C-GMM håndterer grensetilfeller og transformerer data slik at den ikke blir avhengig av et vilkårlig 

valg av referansegode, slik F/S er. I artikkelen sammenlignes C-GMM med F/S i en Monte-Carlo 

analyse, med hensyn på skjevhet (bias), RMSE (root mean squared error) og dekning av 

konfidensintervaller. Analysen gjennomføres i hele det aktuelle parameterrommet, og resultatene 

viser at C-GMM er bedre enn F/S langs alle disse dimensjonene. I tillegg er C-GMM konsistent, som 

betyr at skjevheten til estimatoren reduseres når antall tidsperioder øker.  

 



1 Introduction

The question of how to identify structural parameters has been a core focus in econometrics since the begin-
ning of the discipline. Simultaneity in a system of equations, which causes the explanatory variable to be
correlated with the error term, represents a fundamental problem for identification, as noted already by, e.g.,
Working (1927) and Wright (1928). A key approach to handling simultaneity involves the use of instrumen-
tal variables, see, e.g., Imbens (2014). Based on the results in Leamer (1981), Feenstra (1994) developed
a GMM approach to overcome the simultaneity problem by assuming that the idiosyncratic error terms in
the structural supply and demand equation are uncorrelated and heteroscedastic. Soderbery (2010) analyzed
the properties of the Feenstra estimator and found substantial biases in estimated demand elasticities due
to “weak instruments”.1 To incorporate parameter restrictions, Broda and Weinstein (2006) extended the
framework of Feenstra (1994) using a grid search for admissible values if the initial estimator gives inad-
missible estimates, e.g., elasticities of the wrong sign. Adding to this literature, Soderbery (2015) created a
hybrid estimator by combining 2SLS estimation with a restricted nonlinear LIML routine, which was shown
to be more robust to data outliers when the number of time periods is small or moderate, henceforth referred
to as the Feenstra/Soderbery (F/S) estimator. Further, Galstyan (2018) analyses the complications generated
by potential inadmissible parameter estimates and suggests a three-dimensional panel to overcome these
problems. Recently, Grant and Soderbery (2024) show that the assumptions needed to yield unbiased esti-
mates with these types of estimators are stronger than previously understood and that, in practice, estimates
are subject to bias and violations of the exclusion restrictions. They refine the estimator developed in Soder-
bery (2015) by inter alia providing standard errors when parameter constraints are binding and implement
tests for weak identification.

The F/S estimator, or some version of it, has been widely applied. For example, the framework has been
used extensively in the literature on international trade, see Broda et al. (2008), Imbs and Mejean (2015),
Broda et al. (2017), Feenstra et al. (2018), Arkolakis et al. (2018), Grant (2020) and Ferguson and Smith
(2022). It has also been used to study firm heterogeneity, productivity and price indices, see Broda and
Weinstein (2010), Blonigen and Soderbery (2010), Feenstra and Romalis (2014), Hottman et al. (2016),
Redding and Weinstein (2020), Diewert and Feenstra (2022) and Brasch and Raknerud (2022). Moreover,
some of the elasticities found in the aforementioned articles are used as inputs by other researchers, see
e.g. Arkolakis et al. (2008), Aleksynska and Peri (2014), Aichele and Heiland (2018), Melser and Webster
(2020), McAusland (2021) and Cavallo et al. (2023).

Despite its widespread application in international trade and other areas, the F/S estimator exhibits signif-
icant deficiencies: it is inconsistent, inefficient and provides limited scope for conducting statistical infer-
ence. Inconsistency arises because the error terms are both heteroscedastic and dependent across time and
varieties.2 The first condition is a key identifying assumption and the second holds because of the current
practice of double-differencing to eliminate time and fixed effects. This procedure includes taking pairwise
differences between any variety and a reference variety for the given variable, which makes the estimator

1Feenstra (1994)’s 2SLS method is not an instrumental variable estimator in the traditional sense of invoking external instruments.
However, as pointed out by Soderbery (2015), the concept of weak instruments is key for understanding its biases.

2See e.g. Hausman et al. (2011): “ . . . both Fuller and LIML are inconsistent with heteroscedasticity as the number of instruments
becomes large . . . Hausman, Newey, Woutersen, Chao and Swanson (2007) . . . solved this problem by proposing jackknife LIML
(HLIML) and jackknife Fuller (HFull) estimators that are consistent in the presence of heteroscedasticity. . . . A problem is that if
serial correlation or clustering exists, neither HLIML, nor HFull . . . are consistent” (p. 45).
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dependent on the ad hoc choice of reference variety. For example, Mohler (2009) showed that the estimator
is sensitive to the choice of reference variety when using trade data for the U.S. Furthermore, the F/S esti-
mator does not address the implications for statistical inference when parameter constraints may be binding,
in which case the F/S estimator is effectively a mixture of an unconstrained and a constrained estimator.
Binding parameter constraints occur frequently in applications. For example, Broda and Weinstein (2006,
p. 566) find that Feenstra’s methodology could only be applied in 65 per cent of the cases and Soderbery
(2015, p. 8) finds in a Monte Carlo study that for T = 15, the constrained estimator is triggered around 20
percent of the time. Moreover, using trade data for a range of euro-zone countries, Galstyan (2018) finds
that in most cases, the theoretical restrictions of Feenstra (1994) are violated in the first stage, triggering the
constrained estimator that often does not converge.

To address these deficiencies, we introduce a constrained GMM estimator, hereafter referred to as the C-
GMM estimator. This estimator is computationally simple and yields consistent estimates under broad
conditions. Consistency stems from utilizing moment conditions that exploit heteroscedastic error terms in
the structural supply and demand equations. To this end, we apply a two-way difference operator adapted
from Wooldridge (2021). Rather than choosing an arbitrary variety as a reference, we consider a “pooled
reference variety” defined as the average over a balanced sub-sample of all possible reference varieties. C-
GMM has an asymptotic mixture distribution when the (true) structural parameter vector is at the boundary
of the parameter space, with closed-form expressions for the asymptotic standard error of the estimator. In
those cases where the unconstrained GMM estimator of the structural parameter vector is inadmissible, we
switch to a closed-form constrained GMM estimator that minimizes the GMM loss function at the bound-
ary of the parameter space. Recognizing the bootstrap method’s limitations in consistently estimating the
distribution of an estimator at the boundary, we apply bagging to enhance the precision of standard errors
estimation, following Hastie et al. (2009, p. 282).

We evaluate the C-GMM estimator through a Monte Carlo study. This study extends the work of Soderbery
(2015) and Grant and Soderbery (2024) by also examining the F/S estimator across the entire parameter
space, not merely at a single point. The analysis includes a broad spectrum of demand and supply elasticities,
ranging from perfectly elastic to perfectly inelastic supply. We assess the performance of the two estimators
by examining normalized bias, normalized root mean squared error (RMSE), and coverage across the whole
parameter space. Our analysis demonstrates that the C-GMM estimator outperforms the F/S estimator in
all three metrics. Both the bias and RMSE of the C-GMM estimator are typically reduced by more than
50 percent compared to the F/S estimator. The coverage rates, which measures the proportion of the 95
percent confidence intervals that covers the true demand elasticity, are notably high for C-GMM, generally
between 85 and 95 percent. In contrast, the coverage rate of the F/S estimator is substantially lower, and for
most parameter values, it falls below 50 percent. The results further demonstrate the consistency of the C-
GMM estimator. As the number of time periods increases, the bias for the C-GMM estimator is significantly
reduced, unlike that of the F/S estimator.

The rest of the paper proceeds as follows. Section 2 discusses the related literature and how the C-GMM
estimator extends time-series based methodologies. Section 3 outlines the econometric framework of the C-
GMM estimator and compares it with the F/S estimator. Section 4 provides the Monte Carlo study, showing
the efficiency gains of the proposed estimator. Section 5 provides a conclusion.
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2 Related Literature

A related, but distinctly different line of literature is based on the same principles for identification as we
outline in this paper. Rigobon (2003) presented this alternative approach, which utilizes heteroscedasticity in
time-series data for identification, specifically focusing on cases where heteroscedasticity can be described
as reflecting regime-switches. Identification thus relies on prior knowledge about economic events that shift
the relative variances between regimes, such as crises, policy shifts, or other characteristics. This estimator
was later extended by Lewbel (2012) and Lewis (2022). We refer to this framework as the R/L/L estimator.3

The R/L/L estimator has been applied in numerous papers within several economic fields, such as monetary
policy (Brunnermeier et al., 2021), price transmission (Pozo et al., 2021), trade policy and financial mar-
kets (Boer et al., 2023), labor market dynamics (Jahn and Weber, 2016), government spending multipliers
(Fritsche et al., 2021), oil prices and the macroeconomy (Känzig, 2021), education and mobility (Sharma
and Dubey, 2022), environmental economics (Gong et al., 2017), energy poverty (Chaudhry and Shafiullah,
2021), fertility studies (Mönkediek and Bras, 2016), and political science (Arif and Dutta, 2024).

This part of the literature is distinctly different from the literature using the F/S estimator for three reasons.
First, the R/L/L estimator is made for time series data, while the F/S estimator is constructed for panel
data. Second, there are very few cross-references between these two strands of the literature. For example,
Rigobon (2003) does not refer to Feenstra (1994), and Soderbery (2015) does not mention Rigobon (2003).4

Third, the motivation to employ heteroskedasticity as a means of identification appears to originate from two
distinct historical trajectories within the early literature on the identification of supply and demand. These
two courses have had differing focuses on boundary cases.

Rigobon (2003) and Lewbel (2012) refer to Wright (1928) as the first to use heteroscedasticity for identi-
fication. In the appendix of his book, Wright sets forth an example of supply and demand and discusses
the conditions for which it would be possible to identify either curve: “If it can be shown that during a
period of time covered by two or more observations either curve remains fixed while the other moves to
right or left, price-output data will reveal points on the curve that remains fixed” (p. 295). Rigobon (2003)
and Lewbel (2012) formalized Wright’s intuition and provided a framework for identification when at the
parameter space’s interior and amid shifts in the relative variance of demand and supply shocks.

Feenstra (1994), on the other hand, drew upon the work of Leamer (1981), who in turn had been influenced
by the discourse now known as the “Pitfalls debate”. The starting point of this debate was the seminal paper
by Leontief (1929), who suggested that a hyperbola could represent the set of demand and supply elasticities.
Under certain conditions, the corresponding polynomial roots would be the demand and supply elasticities.
In his book Pitfalls in the Statistical Construction of Demand and Supply Curves (1933), Frisch critically
assessed the method suggested by Leontief. In particular, Frisch studied borderline cases and outlined a set
of conditions for which the roots of the quadratic equation “have meaning” in the sense that they can be used
for identification (1933, Table 1, p. 30). It should be noted that Frisch harbored considerable doubts about

3There is another related time-series-based literature using non-parametric time-varying volatility to identify shocks, such as non-
Gaussian properties, e.g. Lewis (2021).

4Grant and Soderbery (2024) refer to Rigobon (2003) and Lewbel (2012) refer to Feenstra (1994).
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the practical fulfillment of the necessary conditions for identification.5,6,7 As shown in the introduction, and
following the lines of Frisch (1933), prior research leading up to the F/S estimator has extensively focused
on boundary conditions and constraints on parameters.

The discussion thus far underscores significant differences between the literature on the time-series based
R/L/L estimator and panel based estimators, such as F/S and C-GMM. Although the R/L/L estimator could,
in principle, be adapted for panel data if one interprets each regime as a “variety”, it fails to address bor-
derline cases. Moreover, if applied to panel data, the R/L/L estimator would only control for variety-fixed
effects, but not time-fixed effects.

3 The Constrained GMM (C-GMM) Estimator

In this section, we describe the structural econometric framework and the theory underlying the C-GMM
estimator in detail. This includes defining the admissible parameter space and demonstrating the procedure
of pooling reference varieties. An expression for the asymptotic variance of the C-GMM estimator that is
valid even at the boundary of the parameter space is derived in the last part of the section.

3.1 Structural Econometric Framework and Identification through Heteroscedasticity

Our point of departure is a panel system of supply and demand equations. The demand, xD
f t , of variety f in

period t is assumed to be given by:

lnxD
f t =−σ ln p f t + |β |(λ D

t +uD
f + eD

f t) (1)

where p f t is the price of variety f , σ > 1 is the elasticity of substitution, λ D
t and uD

f represent fixed time and
variety effects, and eD

f t is an error term (with mean zero and finite variance). For theoretical underpinning of
Equation (1), see Feenstra (1994). The scaling factor |β |, where β = 1−σ < 0, ensures a well-defined limit
when σ → ∞ (perfectly elastic demand). The inverse supply equation is assumed to be given by:

ln p f t = ω lnxS
f t +

1
ω +1

(λ S
t +uS

f + eS
f t) (2)

where ω ≥ 0 is the inverse elasticity of supply. In equilibrium, supply equals demand (xS
f t = xD

f t = x f t) and
expenditure equals s f t = p f tx f t . It follows from Equations (1)–(2) that

lns f t = β ln p f t + |β |(λ D
t +uD

f + eD
f t)

ln p f t = α lns f t +λ
S
t +uS

f + eS
f t (3)

where α = ω/(1+ω).8 Thus 0 ≤ α ≤ 1.
5Frisch (1933) commented: “Is there a great likelihood that we shall meet such a situation in practice? I think it is safe to say that
it would be a veritable miracle if we should ever find a material satisfying all these conditions and having nevertheless the same
demand and supply elasticities” (p. 37).

6Feenstra (2006) commented upon the assumption of a constant elasticity of substitution: “We continue to assume that the elasticity
of substitution between the goods from each country is constant over time, and also the same across countries. In other words, the
variety supplied by one country is different from that supplied by any other country, but a German variety is just as different from
a French variety as it is from an American variety. This assumption of a constant elasticity of substitution over time and across
countries is a simplification, of course, but it allows us to make great progress on the identification problem” (p. 629).

7See Lewbel (2019, Section 2) for a survey of the early literature on identification.
8Equation (3) can similarly be formulated in terms of expenditure share, defining instead s f t = p f tx f t/Et , where Et is the sum of
expenditures on all varieties, since Et is captured by the fixed time effect.
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The system of equations in Equation (3) on reduced form is:[
lns f t −λst −us f

ln p f t −λpt −up f

]
︸ ︷︷ ︸

η f t

=

[
− β

1−αβ

β

1−αβ

−αβ

1−αβ

1
1−αβ

]
︸ ︷︷ ︸

H

[
eD

f t

eS
f t

]
︸ ︷︷ ︸

e f t

(4)

where (λst ,λpt) and (us f ,up f ) are appropriately defined fixed time- and variety-effects, respectively. Equa-
tion (4) corresponds to Equation (1) in Lewis (2022) and illustrates the identification problem involved.
From the variance-covariance matrix of the reduced form residuals, E(η f tη

′
f t) = H var(e f t)H ′, we cannot

identify H even if we impose the structural time series assumption eD
f t and eS

f t are uncorrelated, which would
leave us with four unknown parameters and three identified parameters, i.e., the parameters of E(η f tη

′
f t).

Similar to Feenstra (1994), to obtain identification we start by eliminating the fixed time- and variety-effects
by means of two-way differencing. However, instead of choosing a specific variety as a reference variety, we
pool all possible reference varieties by averaging over the varieties that are included in the sample in every
year, ordering them from 1 to n (n ≤ N). Formally, we apply the two-way difference operator proposed by
Wooldridge (2021), defined as

∆̈z f t = ∆z f t −∆z.t

for any variable z f t , where ∆ is the ordinary time-difference operator (for example, ∆z f t = z f t − z f ,t−1) and

z.t =
1
n

n

∑
f=1

z f t .

Clearly, applying the operator ∆̈ to a regression equation with z f t as dependent variable, will remove all
(additive) fixed variety- and time-effects.9

It follows from Equation (3) that

∆̈ lns f t = β∆̈ ln p f t + |β |∆̈eD
f t

∆̈ ln p f t = α∆̈ lns f t + ∆̈eS
f t . (5)

Next, define the following variables:
Yf t = (∆̈ ln p f t)

2

X1 f t = (∆̈ lns f t)
2

X2 f t = ∆̈ ln p f t ∆̈ lns f t

(6)

Our identifying assumption is stated in Assumption 1 below, where we use the generic notation Ak f · =

T−1
f ∑

Tf
f=1 Ak f t to denote the average over time for any variable Ak f t . In the following, probability limits

refer to sequences of Tf (≤ T ) such that liminfT→∞ Tf /T > 0, i.e., every Tf increases to infinity at the rate
of T .

Assumption 1 (Identifying Assumptions). (1) The error terms eD
f t and eS

f t are assumed to be independent for

any t, (2) the matrix [X1 f ·,X2 f ·]N×2
p→ Π , where Π has full column rank, and (3) the vector [Y 1 f ·]N×1

p→ µ .

Assumption 1 has three parts. The first part is the key identifying assumption of Feenstra (1994) meaning
that eD

f t and eS
f t are “structural” error terms in the sense of, for example, Rigobon (2003) and Lewis (2022).

9Note that double-differencing with a fixed reference variety, as in the F/S estimator, is a special case with n = 1.
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The second part is the assumption of heteroscedasticity across different varieties; see Equation (12) in
Feenstra (1994, p. 164). This part can be seen as a panel version of the rank condition described in Rigobon
(2003, Proposition 1) or Assumption 2 in Lewis (2022). The third part ensures that asymptotically µ =

Πθ where θ = [−α/β ,1/β +α]′. The full-rank condition on Π ensures that θ is identified with N − 2
overidentifying restrictions.

Figure 1, which is inspired by Rigobon (2003, Figure 1), illustrates how the conditions of Assumption 1
lead to the identification of the demand and supply elasticities. The three panels of the figure represent
outcomes of price and quantity for three different varieties: f ∈ {1,2,3}, each drawn from different statis-
tical populations. For variety 1, it is assumed that the realization of demand and supply shocks are equally
volatile. This case can be viewed as illustrating the standard identification problem, since the equilibrium
points belong to both curves. Without further information, it is impossible to determine the slopes of supply
and demand from the observed realizations of variety 1. The second and third panels illustrate that dif-
ferences in the variance of demand and supply shocks across varieties can be used for identification. For
variety 2, demand shocks are assumed to be more volatile than supply shocks. The realizations are thus
scattered mostly along the supply curve, facilitating identification of the supply elasticity. In contrast, it is
assumed that supply shocks are more volatile than demand shocks for variety 3. In this case, the realizations
are scattered mostly along the demand curve, facilitating identification of the demand elasticity. The three
panels illustrate that identification rests on the differences in the relative variances of the demand and supply
curves across varieties, analytically represented by the full column rank of the matrix Π in Assumption 1.

Proposition 1 provides the primary result regarding identification.

Proposition 1 (Moment Equations for Identification). Consider the econometric framework in Equation (5)
and the definitions in Equation (6). Given that Assumption 1 holds, we obtain the following equation:

Yf t = θ1X1 f t +θ2X2 f t +U f t (7)

where
θ1 =−α

β
, θ2 =

1
β
+α , U f t = ∆̈eD

f t ∆̈eS
f t ,

and θ can be identified from the following N moment conditions:

E[
Tf

∑
t=1

U f t ] = 0 for f = 1, . . . ,N. (8)

Proof: See Appendix A.

In general, Equation (7) is not a valid regression equation for estimating θ , because the regressors X1 f t and
X2 f t are correlated with U f t . Instead, θ may be estimated using GMM applied to the moment conditions in
Equation (8). Two special cases are worth noting. First, when supply is perfectly elastic (α = 0), the mo-
ment conditions in Equation (8) are equivalent to the OLS orthogonality condition applied to each demand
equation in the system in Equation (5) (i.e. price is exogenous in the demand equation). Second, when sup-
ply is perfectly inelastic (α = 1), the moment conditions in Equation (8) are equivalent to the orthogonality
condition for ∆̈ lnx f t being an instrument of ∆̈ ln p f t (i.e. quantity is exogenous in the demand equation).

To investigate the sources of bias and the conditions required for the consistency of GMM, we conduct a
detailed analysis of the special case where α is assumed known. We can then rewrite Equation (7) as:

∆̈ ln p f t ∆̈ lnx f t(α) = β
−1

∆̈ lns f t ∆̈ lnx f t(α)+U f t

10
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Figure 1: Identification through Heteroscedasticity

where lnx f t(α) = ln p f t −α lns f t is a valid “instrument” for ln p f t in the structural demand equation – this
is how Equation (7) was derived in the first place (see Appendix A) – with the two special cases lnx f t(0) =
ln p f t and lnx f t(1) =− lnx f t discussed above. Following Feenstra (1994), we consider applying 2SLS with
variety dummies as instruments to estimate this equation. From Equation (5) in Stock et al. (2002a), 2SLS
implies:

β̂
−1 −β

−1 =
N−1

∑
N
i=1
[
TiπiU i·+TiV i·U i·

]
N−1 ∑

N
i=1

[
Tiπ

2
i +2TiπiV i·+TiV

2
i·

] (9)

where
X = Zπ +V

is the first-stage regression equation, with endogenous covariate vector X = [∆̈ lns f t ∆̈ lnx f t(α)]
∑

N
i=1 Ti×1 and

Z is the ∑
N
i=1 Ti×N instrument matrix of variety dummies: the ith column of Z has a 1 in all rows correspond-

ing to variety i and 0 elsewhere. Moreover, π = [π1, . . . ,πN ]
′ is the first-stage vector of regression coefficients

and V = [Vf t ]∑N
i=1 Ti×1 is the corresponding first-stage vector of error terms. 2SLS is equivalent to applying

one-step GMM to the moment conditions of Proposition 1 with weight matrix (Z′Z)−1 (see Brasch et al.
2024 for a related application of this result). It is easily seen that π̂ = [T−1

f ∑
Tf
t=1 ∆̈ lns f t ∆̈ lnx f t(α)]N×1 =

[X2 f ·]N×1 −α[X1 f ·]N×1. Under Assumption 1, π̂
P→ π ̸= 0.
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It is easy to verify that E[V f ·U f ·] ̸= 0, therefore β̂−1 is biased (Appendix B provides a specific example).
Under standard regularity conditions, the nominator in Equation (9) is of order Op(T 1/2), whereas, in the
denominator, the term µ2 = ∑

N
i=1 Tiπ

2
i = π ′Z′Zπ increases to infinity at order T (see the discussion in Stock

et al. (2002b), who refer to a scaled version of µ2 as the concentration parameter, which is closely related
to the popular F-test of weak instruments). Thus, while increasing T will cause the bias to vanish asymp-
totically and allow us to invoke a CLT for dependent data, increasing N will not do so – but may reduce the
variance of the estimator as both the nominator and denominator in Equation (9) are averages over N terms.

The structural econometric framework outlined above can further be employed to demonstrate the inconsis-
tency of the F/S estimator. This estimator, which is a version of the Fuller (1977) estimator (FULL) and
implemented as a Stata code by Soderbery (2015), and refined by Grant and Soderbery (2024), is also based
on the moment conditions in Equation (8).10 While FULL is robust to heteroscedasticity (Hausman et al.,
2012), consistency depends on the assumption that E(Xk f tUis) = 0 for k = 1,2 and ( f , t) ̸= (i,s) (see the
derivation in Chao et al. (2012)). However, two-way (or double) differencing will cause Xk f t to be generally
correlated with Uis. For example, assuming a fixed reference variety (i.e., the case n = 1) and eX

f t being white
noise with variance κ2

X f for X ∈ {D,S}, E(∆̈eX
f t ∆̈eX

f ,t+1) =−(κ2
X f +κ2

X1) and E(∆̈eX
f t ∆̈eX

it ) = 2κ2
X1 for f ̸= i,

which implies E(Xk f tUis) ̸= 0 for all f ̸= i and s = t, t +1 using Equations (4) and (6).

3.2 Identification of Structural Parameters from θ

So far we have ignored the restrictions on the structural parameters α and β : 0 ≤ α ≤ 1 and β < 0, which
imply restrictions on θ . Since θ1 =−α/β , it follows that θ1 ≥ 0. First, assume that θ1 > 0. Then α ≤ 1 is
equivalent to: θ1 +θ2 ≤ 1 and α−1 and β are (real) solutions to θ1s2 +θ2s−1 = 0.11 That is

α
−1 =

−θ2 +
√

θ 2
2 +4θ1

2θ1
> 0 (10)

β =
−θ2 −

√
θ 2

2 +4θ1

2θ1
< 0.

Note that the sign restrictions on β and α are automatically fulfilled since
√

θ 2
2 +4θ1 > |θ2|. Next, assume

θ1 = 0. Then α = 0 or β =−∞ (σ = ∞). If α = 0 and |β |< ∞, σ = 1−1/θ2, which further implies θ2 < 0.
If β = −∞, α = θ2 ≥ 0. Figure 2 illustrates the θ -parameter space and its boundaries. The relationship
between θ and the parameters α and σ is summed up in Table 1.

Now define

σ(θ) = 1+
θ2 +

√
θ 2

2 +4θ1

2θ1
for θ1 > 0,

and

σ(0,θ2) = lim
θ1→0+

σ(θ1,θ2) =

{
1− 1

θ2
if θ2 < 0

∞ if θ2 = 0
. (11)

10From the code of accompanying replication package, the main refinement of Grant and Soderbery (2024) compared to Soder-
bery (2015) is related to the constrained estimator, which, among other things, is being equipped with standard error formulas.
However, these do not incorporate the mixing property of the estimator (see Section 3.4 for discussions).

11To see this: α ≤ 1 ⇔
(
−θ2 +

√
θ 2

2 +4θ1

)
/2θ1 ≥ 1 ⇔

√
θ 2

2 +4θ1 ≥ 2θ1 +θ2 ⇔ θ 2
2 + 4θ1 ≥ 4θ 2

1 +θ 2
2 + 4θ1θ2 ⇔ θ1 −θ 2

1 −
θ1θ2 ≥ 0 ⇔ 1−θ1 −θ2 ≥ 0 ⇔ θ1 +θ2 ≤ 1.
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Table 1: Parameter Mappings

Parameter space of θ Mapping of θ to the parameters α and σ

Interior solution θ1 > 0 and θ1 +θ2 < 1 α−1 =
−θ2+

√
θ 2

2 +4θ1
2θ1

σ = 1+ θ2+
√

θ 2
2 +4θ1

2θ1

Inelastic supply θ1 > 0 and θ1 +θ2 = 1 α = 1 σ = 1+ 1
θ1

Elastic supply θ1 = 0 and θ2 < 0 α = 0 σ = 1− 1
θ2

Elastic demand θ1 = 0 and 0 ≤ θ2 ≤ 1 α = θ2 σ = ∞

Elastic demand

Elastic supply

Inelastic supply

Interior solution

1

1

θ1

θ2

Figure 2: The Admissible Parameter Space
Note: The boundary {θ : θ1 > 0∩θ1 +θ2 = 1} corresponds to inelastic supply (α = 1),
{θ : θ1 = 0∩θ2 < 1} to elastic supply (α = 0) and {θ : θ1 = 0∩0 ≤ θ2 ≤ 1} to elastic de-
mand (σ = ∞).

Thus σ(θ) expresses σ as a function of θ in accordance with Table 1. We see that σ(θ) is a continuous
function of θ for all θ ∈ Θ , but not differentiable at θ1 = 0. Given an estimator (θ̂ ) of θ that satisfies all
the above parameter constraints, σ can be readily estimated by σ(θ̂). Below we propose a consistent and
computationally simple estimator of σ , σ̂ , that investigates all boundary points in Figure 2 and provide
closed form expressions of standard errors of σ̂ for any finite σ – including at the boundary.

3.3 Constrained Estimation of θ

First, we follow Brasch et al. (2024) and consider 2-step GMM with optimal feasible weight matrix used
in the second step. The 2-step unconstrained GMM estimator, θ̂ (u), is formally defined in Appendix C
(Equation C.1). Next, we impose the constraints θ1 ≥ 0 and θ1 + θ2 ≤ 1 on the estimator, which turns
the estimation into an optimization problem with linear inequality constraints. If the unconstrained 2-step
GMM estimator satisfies θ̂1

(u)
≥ 0 and θ̂1

(u)
+ θ̂2

(u)
≤ 1, all structural restrictions on α̂ and β̂ are fulfilled

and θ̂ = θ̂ (u). However, if one or both constraints are violated, we need to identify possible solutions at the
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boundary of the parameter space. To do so, we utilize that the GMM criterion function, Q(θ), is quadratic
in θ and can be expanded about (its stationary point) θ̂ (u) as follows:

Q(θ) = Q(θ̂ (u))+(θ − θ̂
(u))′HT (θ − θ̂

(u)), (12)

where HT is the inverse of the conventional (“unrestricted”) covariance matrix estimate of θ̂ (u) in the second
step of the 2-step GMM procedure.

Next, consider the constrained optimum:

θ̂ = argmin
θ∈Θ

Q(θ),

where Θ = {θ : θ1 ≥ 0∩θ1 +θ2 ≤ 1}. Candidates for possible solutions at the boundary are:

Q(r1) = min
θ

Q(θ) s.t. θ1 +θ2 = 1 and θ1 ≥ 0 (13)

or
Q(r2) = min

θ
Q(θ) s.t. θ1 = 0 and θ2 ≤ 1. (14)

Let the corresponding argmin be denoted θ̂ (r1) and θ̂ (r2), respectively. Standard calculations yield:

θ̂
(r1)
1 = max

(
0,

h22 −h12

h11 −2h12 +h22
(1− θ̂2

(u)
)+

h11 −h12

h11 −2h12 +h22
θ̂1

(u))
)

(15)

where HT = [hi j]2×2, whereas

θ̂
(r2)
2 = min(θ̂2

(u)
,1). (16)

Let Θint denote the interior of Θ . Combining all the above cases, we arrive at the following C-GMM
estimators:

θ̂ =


θ̂ (u) if θ̂ u ∈Θint

(θ̂
(r1)
1 ,1− θ̂

(r1)
1 ) if θ̂ u /∈Θint and Q(r1) < Q(r2)

(0,min(θ̂2
(u)
,1)) otherwise

(17)

and

σ̂ =



σ(θ̂ (u)) if θ̂ = θ̂ (u)

1+ 1
θ̂
(r1)
1

if θ̂ = θ̂ (r1) and θ̂
(r1)
1 > 0

1− 1
θ̂
(r2)
2

if θ̂ = θ̂ (r2) and θ̂
(r2)
2 < 0

∞ otherwise

.

3.4 Asymptotic Distribution of the C-GMM Estimator

We now derive expressions for the asymptotic distribution of the C-GMM estimator, σ̂ . All results in the
remainder of this section rely on the applicability of a CLT for dependent data such that:

√
T (θ̂ (u)−θ

0)
D⇒ N(0,Σ), (18)

for given values of θ 0, n and N, where

Σ =

 σ11 σ12

σ12 σ22


14



Elastic demand:
σ(θ̂) = ∞

Elastic supply:
σ(θ̂) = 1− 1

θ̂
(r2)
2

Inelastic supply:
σ(θ̂) = 1+ 1

θ̂
(r1)
1

Interior solution:
σ(θ̂) = σ(θ̂ (u))

1

1

θ̂1, θ̂
(u)
1

θ̂2, θ̂
(u)
2

Figure 3: C-GMM Estimators for σ

Note: The estimators θ̂
(r1)
2 and θ̂

(r2)
2 are defined in Equation (15) and Equation (16), respec-

tively.

(cf. the discussion of 2SLS in Section 3.1). A robust estimator of Σ based on Windmeijer (2005) is consid-
ered in Appendix C (a non-robust estimator would be Σ̂ = (HT/T )−1). If θ 0

1 > 0 and θ 0
1 +θ 0

2 < 1, var(σ̂)

follows from a Taylor expansion of σ(θ) about θ 0:

σ(θ̂ (u))−σ(θ 0)
D≃ h(θ 0)′(θ̂ u −θ

0),

where
D≃ means that the approximation error is of the order op(T−1/2).

h(θ) = [a(θ)+b(θ),b(θ)]′ ,

with

a(θ)+b(θ) =

[
θ 2

2 +4θ1
]− 1

2

θ1
−

(
θ2 +

[
θ 2

2 +4θ1
] 1

2
)

2θ 2
1

b(θ) =
1+θ2

[
θ 2

2 +4θ1
]− 1

2

2θ1
.

Hence, in the interior of the parameter space (i.e. for θ 0
1 > 0 and θ 0

1 +θ 0
2 < 1):

var(σ(θ̂ (u)))≃ A(θ̂ (u))

where

A(θ̂ (u)) =
1
T
(σ11(a((θ̂ (u))+b((θ̂ (u)))2 +2σ12b((θ̂ (u))(a((θ̂ (u))+b(θ 0))+σ22b(θ 0)2)

and ≃ means that the approximation error is of the order op(T−1). The formula for the variance of σ̂ when
θ 0 is at the boundary of the parameter space is more complicated. If θ 0

1 = 0 and 0 ≤ θ 0
2 ≤ 1, σ0 = ∞ and
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the variance is infinite. The results for all possible cases where 1 < σ0 < ∞ are presented in Proposition 2
below. For related results, see Andrews (2002).

Proposition 2. For any admissible θ 0 with 1 < σ0 < ∞, θ̂ is a consistent estimator of θ 0 and σ̂ = σ(θ̂)

is a consistent estimator of σ0. Assume θ 0 is an interior point of the parameter space, then almost surely
θ̂ = θ̂ (u) and

σ̂ −σ
0 D≃ N(0,A(θ̂ (u))). (19)

Assume henceforth that θ 0 is at the boundary of the parameter space with σ0 < ∞ and let 1(A) denote the
indicator function which is one if the statement A is true and zero otherwise.

First, if α0 = 1 (inelastic supply), σ̂ has the asymptotic mixture distribution

σ̂ −σ
0 D≃ 1(∆̂ < 0)(σ(θ̂ u)−σ

0)+1(∆̂ ≥ 0)

(
1

θ̂
(r1)
1

− 1
θ 0

1

)
(20)

with ∆̂ = θ̂
(u)
1 + θ̂

(u)
2 −1 and var(σ̂)≃B(θ̂ (r1)), where

B(θ̂ (r1))=
1

2T

(
a(θ̂ (r1))2 +

1

(θ̂
(r1)
1 )4

)[
σ11 −

(σ11 +σ12)
2

σ2
∆

]
+

[
a(θ̂ (r1))

σ11 +σ12

σ2
∆

+b(θ̂ (r1))

]2

σ
2
∆

(
1− 1

π

)
with σ2

∆
= σ11 +σ22 +2σ12.

Next, if α0 = 0 (elastic supply), then σ̂ has the asymptotic mixture distribution:

σ̂ −σ
0 D≃ 1(θ̂ (u)

1 > 0)(σ(θ̂ (u))−σ
0)+1(θ̂ (u)

1 ≤ 0)

(
1

θ 0
2
− 1

min(θ̂ (r2)
2 ,0)

)
(21)

where var(σ̂)≃C(θ̂ (r2)) with

C(θ̂ (r2)) =
1

2T

{
b(θ ∗)2

[
σ22 −

σ2
12

σ11

]
+

[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]2

σ11(1−
1
π
)

+
1

min(0, θ̂ (r2)
2 )4

[
σ22 −

σ2
12

πσ11

]
+

2σ12

π min(0, θ̂ (r2)
2 )2

[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]}

and

θ
∗ = (0, θ̂ (r2)

2 )′+T−1/2

√
2σ11

π
(1,

σ12

σ11
)′.

Proof: See Appendix D.

Proposition 2 shows that at the boundary of the parameter space, σ̂ −σ0 has an asymptotic mixture distribu-
tion with mean zero. Since this mixture distribution is unimodular (centered at 0), it may be approximated
well by a normal distribution. Thus the variance formulas are of key importance for statistical inference.

Asymptotically, in the case of (i) inelastic supply: PB = Pr(∆̂ ≥ 0)→ 1/2 (see Equation (D.5) in Appendix
D.1.3) and PC = Pr(θ̂ (u)

1 ≤ 0)→ 0; (ii) elastic supply: PB → 0 and PC → 1/2 (see Equation (D.8) in Appendix
D.2.3); and (iii) θ 0 an interior point: PB → 0 and PC → 0 (the conventional case).

Corollary 1. For any admissible θ 0 with 1 < σ0 < ∞:

var(σ̂)≃(1−2(PB +PC))A(θ̂ (u))+2PBB(θ̂ (r1))+2PCC(θ̂ (r2)).
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Elastic demand:
var(σ̂) = undefined

Elastic supply:
var(σ̂) =C(θ̂ (r2))

Inelastic supply:
var(σ̂) = B(θ̂ (r1))

Interior solution:
var(σ̂) = A(θ̂)

1

1

(
θ1, θ̂1

)

(
θ2, θ̂2

)

Figure 4: Asymptotic Variance Estimators for σ̂

Note: The estimators A(θ̂), B(θ̂ (r1)) and C(θ̂ (r2)) are defined below Equation (18), Equa-
tion (20) and Equation (21), respectively. The asymptotic formulas are conditional on the
constraint PB +PC ≤ 1/2.

The proof follows directly from Proposition 2 by considering the cases (i) PB → 0 and PC → 0, which are
equivalent to Equation (19), (ii) PB → 1/2 and PC → 0, which are equivalent to Equation (20), and (iii)
PB → 0 and PC → 1/2, which are equivalent to Equation (21). Note that the formula of Corollary 1 is
meaningful (with non-negative weights that sum to one) only under the constraint PB +PC ≤ 1/2.

3.5 Bagging the Variance Estimator

A natural estimator of var(σ̂) is A(θ̂ (u)) if θ̂ = θ̂ (u), B(θ̂ (r1)) if θ̂ = θ̂ (r1) and C(θ̂ (r2)) if θ̂ = θ̂ (r2). Unfor-
tunately, this estimator is inconsistent at the boundary of the parameter space. If, for example, PB = 1/2, the
estimate of var(σ̂) would alternate randomly between A(θ̂ (u)) and B(θ̂ (r1)).

If independent GMM estimates θ̂ could be generated from the true sample probability distribution, say Pr(·),
the relation

var(σ̂)≃ E
[
(1−2(1(θ̂ (u)

1 ≤ 0)+1(∆̂ ≥ 0)))A(θ̂ (u))+21(θ̂ (u) ≤ 0)B(θ̂ (r1))+21(∆̂ ≤ 0)C(θ̂ (r2))
]

= (1−2(PB +PC))E(A(θ̂ (u))|θ̂ (u) ∈Θint)+2PBE(B(θ̂ (r1))|∆̂ ≥ 0)+2PCE(C(θ̂ (r2))|θ̂ (u)
1 ≤ 0)

(22)
would give an estimate of var(σ̂) by averaging across θ̂ (u) realizations. A feasible alternative is bagging.
Bagging is used to reduce the variance of unstable predictors – like regression trees – by averaging the
predictor across a collection of bootstrap samples (Hastie et al., 2009, p. 282). The bagging estimator of
E(g(θ̂ (u))|θ̂ (u) ∈ A ) for an arbitrary function g(·) and arbitrary set A is defined as:

Ê(g(θ̂ (u)b)|θ̂ (u)b ∈ A ) = lim
M→∞

1

∑
M
b=1 1(θ̂ (u)b ∈ A )

M

∑
b=1

1(θ̂ (u)b ∈ A )g(θ̂ (u)b)
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where θ̂ (u)b is the unconstrained GMM estimate of θ in the b′th block bootstrap sample, for b = 1, . . . ,M,
and, in general, the superscript b refers to a bootstrap sample realization of the given variable.

Let P̂r(·) denote the probability distribution induced by the block bootstrap procedure: N varieties, f , are
sampled with replacement from the data. By definition: P̂r(∆̂ b ≥ 0) = Ê(1(∆̂ b ≥ 0)) and P̂r(θ̂ (u)b

1 ≤ 0) =
Ê(1(θ̂ (u)b

1 ≤ 0). This suggests the following constrained minimum (binomial) deviance estimators of PB and
PC:

(P̂B, P̂C) = arg min
PB,PC

{P̂r(∆̂ b ≥ 0) lnPB + P̂r(θ̂ (u)b
1 ≤ 0) lnPC} s.t. PB +PC ≤ 1/2

The solution is:
P̂B = kP̂r(∆̂ b ≥ 0) and P̂C = kP̂r(θ̂ (u)b

1 ≤ 0)

where k = 1 if P̂B+ P̂C < 1/2 and k = 1/[2(P̂r(∆̂ b ≥ 0)+ P̂r(θ̂ (u)b
1 ≤ 0))] if P̂B+ P̂C = 1/2. Without bagging,

i.e. setting θ̂ (u)b = θ̂ (u) in the above formulas, the estimators would be: P̂B = I(∆̂ ≥ 0)/2 and P̂C = I(θ̂ (u)
1 ≤

0)/2.

It may well happen that the C-GMM estimate σ̂ is finite, but that the bagging procedure draws bootstrap
samples such that θ̂ b = θ̂ (r1)b with θ̂

(r1)b
1 = 0, implying B(θ̂ (r1)b) = ∞. Similarly, we may get θ̂ b = θ̂ (r2)b

with min(θ̂ (r2)b
2 ,0) = 0, implying C(θ̂ (r2)b) = ∞. If any of these cases occur, the implied variance estimate

will be infinite even if σ̂ is finite. This is exactly the kind of instability bagging is useful for discovering,
but will be hidden by conventional “plug-in” variance estimators.

In general, the bootstrap does not consistently estimate the distribution of an estimator when the true param-
eter is a boundary point (Horowitz, 2002, p. 3169). Fortunately, the statistics A(θ̂ (u)), B(θ̂ (r1)) and C(θ̂ (r2))

in Equation (22) are smooth functions of θ̂ (u) conditional on, respectively: θ̂ (u) ∈Θint , ∆̂ ≥ 0, and θ̂
(u)
1 ≤ 0

(provided σ̂ < ∞, which is ruled out asymptotically if σ < ∞). Thus the evaluation of the conditional means
of these statistics is valid under standard regularity conditions for the bootstrap, as shown in Horowitz (2002,
Section 3) for the case of bootstrapping with dependent data. Proposition 3 addresses the more challenging
task of estimating two other key parameters of Equation (22): PB and PC.

Proposition 3. Let T → ∞ and let Φ(·) denote the c.d.f of a standard normally distributed variable, Z. We
have the following limiting cases:
(1) If θ ∈Θint , the bagging estimators P̂B

P→ 0 and P̂C
P→ 0.

(2) If θ 0
1 +θ 0

2 is “local to one” in the sense of θ 0
1 +θ 0

2 = 1−τ/
√

T and θ 0
1 > 0, then P̂B

D⇒ min(Φ(−τ/σ∆ +

Z),1/2) and P̂C
P→ 0.

(3) If θ 0
1 is “local to zero” in the sense of θ 0

1 = τ/
√

T and θ 0
1 +θ 0

2 < 1, then P̂B
P→ 0 and P̂C

D⇒min(Φ(−τ
√

σ11+

Z),1/2).

Proof: See Appendix E.

While Part (1) of Proposition 3 is a standard result, Parts (2) and (3) are reminiscent of weak instruments
asymptotics, analyzed e.g. by Staiger and Stock (1997), where the IV estimator is not consistent under a “lo-
cal to zero”-assumption about the first-stage regression coefficients, but converges towards a non-standard
distribution. The implication is that, for any T , there will be a neighborhood about zero, where it is impos-
sible to distinguish between a boundary and an interior point. When θ 0

1 = 0, a simple calculation shows
that RMSE of P̂C is 1/

√
24 ≃ 0.20, using that Φ(Z) D

= U(0,1), compared to 1
√

8 ≃ 0.35 for the indicator
variable estimator (1/2)1(θ̂ (u)

1 ≤ 0). Thus, although there are likely to be size distortions of standard tests
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close to the boundary, bagging is able to improve the precision of the estimator of var(σ̂) compared to just
picking the “most likely” region of the parameter space from observing the sign of θ̂

(u)
1 and ∆̂ .

4 Monte Carlo Simulations

To calibrate an empirically realistic simulation model, we use real data to estimate parameters of a stochastic
variance model. This model is described in detail in Appendix F. When presenting the results of the Monte
Carlo simulations below, we focus on the performance of the C-GMM estimators measured in terms of both
normalized bias and normalized root mean squared error (RMSE) over the whole parameter space and how
these vary across panel configurations (N and T ). We also consider the coverage of confidence intervals
based on the formulas derived in Sections 3.4–3.5. Lastly, we contrast our C-GMM estimator with the
F/S estimator in terms of normalized bias, normalized RMSE and coverage of confidence intervals using
the computer code embedded in Grant and Soderbery (2024). We only consider estimates where the given
estimator produced a finite point estimate and a finite standard error (“points of convergence”).

4.1 Simulation Results

We use simulated data from the algorithm described in Appendix F, where we vary the sample across
panel configurations: N ∈ {50,100} and T ∈ {5,10,25,50,100}, and vary parameter values across α ∈
{0,0.1, . . . ,1.0} and σ ∈ {1.1,2.0,3.0, . . . ,10.0}. For each possible combination {N,T,α,σ}, we estimate
Equation (7) using C-GMM on each of 100 Monte Carlo simulated data sets.

4.1.1 Normalized Bias

Figure 5 illustrates the normalized bias, defined as E (σ̂ −σ)/σ , for the C-GMM estimator, with a full set
of results shown in Table H.1 in Appendix H. From Panel A we see that the normalized bias is generally
positive and increasing in both σ and α . Furthermore, it is close to zero when σ is close to one or α is close
to zero. To understand this pattern the decomposition of Equation (9) is useful, showing that the leading term
for the bias when α is assumed known is E(TfV f ·U f ·)/µ2. Furthermore assuming, as in the simulations,
that Tf = T and eX

f t are independent white noise for X ∈ {S,D}, we obtain (see Appendix B for a detailed
derivation):

E(β̂−1 −β
−1)≃ T ∑

N
i=1 E(V i·U i·)

Nµ2 =
−(1−αβ )

2T β

E[κ2
D f κ

2
S f ]

E[κ4
S f ]

.

By the delta method β̂−1 −β−1 ≃ β−2(σ̂ −σ). Therefore, after some manipulations, we obtain:

E (σ̂ −σ)/σ ≃ (2T )−1(1−1/σ)(1+α(σ −1))E
[
κ

2
D f κ

2
S f
]
/E
[
κ

4
S f
]

This expansion shows why the (normalized) bias is increasing in σ and α and why it vanishes as σ decreases
towards one. The other panels in Figure 5 illustrate that while increasing N for given T does not affect the
normalized bias much, increasing T for a given N yields a substantial drop in normalized bias, as we would
expect from the discussion in Section 3.1. For example, going from Panel C to D in Figure 5, decreases the
mean (median) normalized bias across α and σ from 0.11 (0.06) to 0.01 (0.01) as a result of increasing T
from 10 to 100, keeping N fixed at 100 (see Table H.1 for additional results).

19



Figure 5: Normalized Bias of the C-GMM Estimator

(A) Normalized Bias, N = 50, T = 10 (B) Normalized Bias, N = 50, T = 100

(C) Normalized Bias, N = 100, T = 10 (D) Normalized Bias, N = 100, T = 100

Note: Panel A–D shows the normalized bias, defined as E (σ̂ −σ)/σ , for different combinations of N and T . The estimates are
from simulated panel data with 100 simulations for each combination of α and σ .

4.1.2 Normalized RMSE

Figure 6 illustrates the results for normalized RMSE, defined as RMSE divided by σ , with a full set of
results shown in Table H.2 in Appendix H. From Panel A we see that normalized RMSE increases with both
α and σ , similar to the results for normalized bias. The other panels in Figure 6 show that the normalized
RMSE is generally decreasing in both N and T . This is also as expected: increasing T decreases bias while
increasing N reduces variability (cf. the discussion of bias of GMM in Section 3.1). As an example, going
from Panel A to B in Figure 6, the mean (median) normalized RMSE across α and σ decreases from 0.27
(0.17) to 0.06 (0.03) as a result of increasing T from 10 to 100, keeping N fixed at 50. Going from Panel
C to D, i.e., increasing T from 10 to 100, keeping N fixed at 100, decreases the mean (median) normalized
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Figure 6: Normalized RMSE of the C-GMM Estimator

(A) Normalized RMSE, N = 50, T = 10 (B) Normalized RMSE, N = 50, T = 100

(C) Normalized RMSE, N = 100, T = 10 (D) Normalized RMSE, N = 100, T = 100

Note: Panel A–D shows the normalized RMSE, defined as the RMSE divided by σ , for different combinations of N and T . The
estimates are from simulated panel data with 100 simulations for each combination of α and σ .

RMSE across α and σ from 0.11 (0.06) to 0.01 (0.01) (see Table H.2).

4.1.3 Coverage of Confidence Intervals

To evaluate the performance of our method of obtaining standard errors of σ̂ , we simulate 95 percent nominal
confidence intervals using the bagging estimator of var(σ̂) proposed in Section 3.5, and calculate the share
of simulations that includes the true σ (referred to as “coverage”). Thus, we do not assume that we know
the true parameter vector (θ 0), or whether it is a boundary point or not, when estimating var(σ̂) on a given
simulated data set. The bagging procedure involves the block bootstrap with replacement.
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Table 2: Normalized Bias, Normalized RMSE and Coverage of Confidence Intervals for
the C-GMM and F/S Estimator

T = 5 T = 10 T = 25 T = 50

Bias

C-GMM 0.12 0.10 0.04 0.02

F/S 0.42 0.25 0.35 0.18

RMSE

C-GMM 0.38 0.27 0.15 0.09

F/S 0.75 0.62 0.66 0.45

Coverage

C-GMM 0.93 0.91 0.96 0.87

F/S 0.69 0.48 0.30 0.23

Note: All values are means across the parameter space α ∈ {0,0.1, . . . ,1.0} and σ ∈ {1.1,2.0,3.0, . . . ,10.0}, based
on 100 Monte Carlo simulations for N = 50 varieties. Bias and RMSE are normalized, and defined respectively as
E (σ̂ −σ)/σ and RMSE divided by σ . Coverage represents the share of simulations where σ lies in the 95 percent
confidence interval σ̂ ± t-dist(T−1,0.975)SE(σ̂), with standard errors obtained from var(σ̂)HAR in the case of
C-GMM (see Equation (23)) and from the code embedded in Grant and Soderbery (2024) in the case of F/S.

The method of Windmeijer (2005) is used to correct the two-step GMM estimator of Σ (which enters the
formula of var(σ̂) in Corollary 1 for well-known biases, resulting in the variance estimator var(σ̂)W derived
in Appendix C. The Windmeijer-estimator of Σ does not take into account that the error terms generated from
the simulation algorithm described in Appendix F are autocorrelated (due to differencing). Therefore, we
create a heteroscedasticity- and autocorrelation robust (HAR) estimate of the standard errors using Equation
(C.2) in Appendix C. In particular, when Ti = T , we obtain the simple formula:

var(σ̂)HAR = corr(T )×var(σ̂)W (23)

where corr(T ) is a statistic correcting for autocorrelated errors defined in Appendix C. Finally we simulate
95 percent confidence intervals σ̂ ± t-dist(T−1,0.975)

√
var(σ̂)HAR.

Figure 7 shows that the nominal and actual coverages of the confidence intervals are fairly close across
different combinations of different parameters (α and σ ), even for small T . In Figure 7, the mean (median)
coverage across α and σ is 0.84 (0.84) when N = 100 and T = 10, compared to 0.88 (0.89) when N =

100 and T = 100. These results show that the accuracy of inference is quite high even in small samples
(T = 10), and increasing with larger T . Table H.3 in Appendix H reports coverage across α and σ for
more combinations of N and T . In particular, we do not observe any particular size distortions (e.g., lower
coverage) at, or close to, the boundary of the parameter space (i.e., when α = 0, α = 1 or σ is very high).
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Figure 7: Coverage of the C-GMM Estimator

(A) Coverage, N = 50, T = 10 (B) Coverage, N = 50, T = 100

(C) Coverage, N = 100, T = 10 (D) Coverage, N = 100, T = 100

Note: Panel A–D shows the coverage, defined as the share of simulations where σ lies in the 95 percent confidence interval
σ̂ ± t-dist(T−1,0.975)SE(σ̂) constructed from var(σ̂)HAR (see Equation (23)), for different combinations of T for a given N. The
estimates are from simulated panel data with 100 simulations for each combination of α and σ , and 50 block bootstraps for each
simulation to estimate var(σ̂) by means of bagging (see Section 3.5).

4.1.4 Comparison with the F/S Estimator

Table 2 shows the normalized bias, the normalized RMSE and coverage for the C-GMM and F/S estima-
tors.12 C-GMM consistently outperforms F/S across all three metrics. Notably, unlike the C-GMM estima-
tor, increasing T does not significantly reduce the mean normalized bias of the F/S estimator. For instance,
when N is fixed at 50, increasing T from 10 to 50 only slightly decreases the mean normalized bias of the

12A direct comparison of the results from the F/S estimator and the C-GMM estimator warrants some caution due to how the F/S
estimation procedure is implemented in Grant and Soderbery (2024), see Appendix G for details.
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F/S estimator across α and σ from 0.25 to 0.18, while the mean normalized RMSE decreases from 0.62
to 0.45. In contrast, for the C-GMM estimator, increasing T from 10 to 50 with N = 50 reduces the mean
normalized bias from 0.10 to 0.02 and the mean normalized RMSE from 0.27 to 0.09.

Table 2 also highlights a significant divergence between the nominal and actual coverage of the confidence
intervals produced by the F/S estimator. As expected from an inconsistent estimator, coverage worsens with
increasing T . For instance, when N = 50, coverage decreases sharply from 0.69 at T = 5 to 0.23 at T = 50.
Consequently, the coverage of the F/S estimator is substantially lower than that of the C-GMM estimator,
where the mean coverage ranges from 0.87 to 0.96. Further results on normalized bias, normalized RMSE,
and coverage for different combinations of parameters (α and σ ), as well as the number of time periods (T )
and varieties (N), are provided in Appendix I and Appendix H.

5 Conclusion

This paper has presented a constrained Generalized Method of Moments (C-GMM) estimator designed to
identify demand elasticities through heteroscedasticity using panel data. The C-GMM estimator addresses
the limitations of existing panel estimators, such as the widely used F/S estimator, by providing a solu-
tion that is consistent under general conditions, efficiently handles parameter restrictions, and offers high
coverage, enabling more reliable inference.

We have conducted a comprehensive evaluation of the C-GMM estimator using a Monte Carlo study, com-
paring its performance to the F/S estimator by examining normalized bias, normalized RMSE, and coverage
rates. The C-GMM estimator consistently outperformed the F/S estimator across all three metrics. Notably,
the C-GMM estimator’s reduced bias and RMSE, particularly within the interior of the parameter space, can
be attributed to its application of a two-way difference operator, as outlined by Wooldridge (2021), rather
than arbitrarily selecting one reference variety. Furthermore, the superior performance of the C-GMM esti-
mator compared to the F/S estimator near or at the boundary of the parameter space, demonstrates its ability
to handle cases of inelasticity or elastic supply. In situations where the unconstrained GMM estimator is
inadmissible, we implemented a constrained GMM estimator specifically adapted to the active boundary
conditions. The findings also highlighted the consistency of the C-GMM estimator and the inconsistency of
the F/S estimator. As the number of time periods increased, the bias of the C-GMM estimator significantly
decreased, in contrast to the persistent bias in the F/S estimator. Additionally, when assessing the accuracy
of standard error formulas, the C-GMM estimator consistently achieved high and stable coverage rates of
85–95 percent for confidence intervals, while the F/S estimator’s coverage rate was significantly lower, often
falling below 50 percent.

While C-GMM-based inference demonstrates coverage rates of confidence intervals close to the desired 95
percent level, it is important to note that C-GMM exhibits a mixture distribution when the true parameter
vector is at or close to the boundary of the parameter space. In that case, the variance estimator based
on one set of estimated parameters does not correctly incorporate the mixing properties of the C-GMM
estimator even in large samples. To enhance the precision of standard error estimates, we apply bagging.
This technique involves averaging the variance estimator across a collection of bootstrap samples to emulate
the mixing properties of the C-GMM estimator. We leave it to future research to explore methods other than
bagging to further increase the accuracy of standard error formulas.
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A Proof of Proposition 1

It follows from Equation (5) that:

|β |∆̈eD
f t ∆̈eS

f t = [∆̈ lns f t −β∆̈ ln p f t ](∆̈ ln p f t −α∆̈ lns f t)

which can be reformulated, using the definitions of Equation (6), as:

Yf t = θ1X1 f t +θ2X2 f t +U f t

where
θ1 =−α

β
, θ2 =

1
β
+α and U f t = ∆̈eD

f t ∆̈eS
f t

Furthermore, from Assumption 1:

µ = Π [θ1,θ2]
′

The full-rank condition on Π (see Assumption 1), ensures that θ1 and θ2 are identified and that there are
N −2 overidentifying restrictions.

B An Expression for the Bias of C-GMM when α is Assumed Known in the
Estimation

From Equation (4), ignoring uninteresting fixed effects, we obtain:

ln p f t =
1

1−αβ
[eS

f t −αβeD
f t ]

lns f t =
β

1−αβ
[eS

f t − eD
f t ]

lnx f t(α) = ln p f t −α lns f t = eS
f t

Under the assumptions of the simulations (see Appendix F):

E(∆ lns f t∆ lnx f t(α)|κ2
X f ) =

β

1−αβ
[∆eS

f t −∆eD
f t ]∆eS

f t =
2β

1−αβ
κ

2
S f = π f

µ
2 = T E(π2

f ) = T
(

2β

1−αβ

)2

E[κ4
S f ]

where var(eX
f t) = κ2

X f for X ∈ {S,D}. Moreover

T E(V f ·U f ·|κ2
X f ) =

β

1−αβ
E([(∆eS

f t −∆eD
f t)∆eS

f t ]∆eS
f t∆eD

f t |κ2
X f ) =

−2β

1−αβ
κ

2
S f κ

2
D f

Thus

E(β̂−1 −β
−1)≃

E(TV f ·U f ·)

µ2 =

−2β

1−αβ
E[κ2

S f κ
2
D f ]

T
(

2β

1−αβ

)2
E[κ4

S f ]
=

−(1−αβ )

2T β

E[κ2
S f κ

2
D f ]

E[κ4
S f ]
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C Heteroscedasticity- and Autocorrelation Robust Standard Errors of the
Two-Step (Unconstrained) GMM Estimator

Define the sum of residuals for variety i as a function of θ as: mi(θ) = ∑
Ti
t=1Uit(θ) (by definition Uit(θ

0) =

Uit) and

m(θ) =
N

∑
i=1

mi(θ)⊗di

where di is the N ×1 vector with a 1 in the i′th row and 0 otherwise. The N GMM moment conditions used
are:

E(m(θ 0)) = 0

and the GMM criterion function is

J(β ,φ) = m(θ)′Λ(φ)−1m(θ)

where Λ(φ) is an estimate of var(m(θ 0)) based on the current estimate, φ , of θ 0. The unconstrained two-
step GMM estimator is:

θ̂
(u) = argmin

θ
J(θ , θ̂ (1)) (C.1)

where θ̂ (1) is the conventional (default) one-step GMM estimator in statistical packages obtained using
Λ(φ) = Z′Z.

Windmeijer (2005) shows that the extra variation due to the presence of the estimated parameters in the
weight matrix accounts for much of the difference between the finite sample and the usual asymptotic
variance of the two-step GMM estimator. This difference can be estimated, resulting in a finite sample
corrected estimate of the variance. The Windmeijer-estimator does, however, not account for the extra
variance due to autocorrelated errors when estimating var(m(θ 0)) (which is a key parameter in the GMM
variance formula). We now propose applying a simple correction factor to this estimator.

The standard heteroscedasticity-robust estimator of var(m(θ 0)) is the inverse GMM weight matrix, Λ(φ),
evaluated at φ = θ (u). Moreover

Λ(θ) =
N

∑
i=1

Λi(θ)⊗Di

where Λi(θ) = ∑
Ti
t=1Uit(θ)

2 and Di = diag(di) is the I × I diagonal matrix with diagonal vector di. Define
the autocovariance function γi(s) = E(Uit ,Ui,t+s) and assume a common autocorrelation function ρ(s) =
γi(s)/γi(0) across varieties, i. Then

var(mi(θ
0)) =

Ti

∑
s=1

γi(0)+2
Ti

∑
t=2

t−1

∑
s=1

γi(s) = E[Λi(θ
0)]

[
1+2

Ti−1

∑
s=1

(1− s/Ti)ρ(s)

]
= E[Λi(θ

0)]× corr(Ti)

where

corr(Ti) = 1+2
Ti−1

∑
s=1

(1− s/Ti)ρ(s) (C.2)

This formula represents a simple correction factor that we use to modify the Windmeijer variance estimator.
In particular, when Ti = T (i.e., a balanced design), our heteroscedasticity- and autocorrelation-robust (HAR)
estimate of var(θ (u)) equals the Windmeijer-estimator multiplied by corr(T ).
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D Proof of Proposition 2

In the following we will expand σ(θ̂ (u)) around σ(θ ∗) for different θ ∗ satisfying:

σ(θ̂ (u))−σ(θ ∗)
D≃ (a(θ ∗)+b(θ ∗))(θ̂

(u)
1 −θ

∗
1 )+b(θ ∗)(θ̂

(u)
2 −θ

∗
2 )

See Section 3.3 for explanation of notation.

D.1 Inelastic Supply: θ 0
1 > 0 and θ 0

1 +θ 0
2 = 1

Here σ0 = 1+(θ 0
1 )

−1 and we define ∆̂ = θ̂1
(u)

+ θ̂2
(u)

−1. Asymptotically, with probability 1, either ∆̂ ≥ 0
and θ̂ = θ̂ (r1), or ∆̂ < 0 and θ̂ = θ̂ (u).

D.1.1 ∆̂ < 0

To examine the behavior of θ̂ (u) given ∆̂ < 0, we note that:

∆̂
D≃ T−1/2

σ∆ Z, where σ∆ =
√

σ11 +σ22 +2σ12 and Z ∼ N(0,1)

Furthermore
θ̂2

(u)
−θ

0
2 = ∆̂ − (θ̂1

(u)
−θ

0
1 ) (D.3)

where
θ̂1

(u)
−θ

0
1

D≃ χ∆̂ + ε

with

χ =
cov(∆̂ , θ̂1

(u)
)

var(∆̂)
≃ σ11 +σ12

σ2
∆

and
ε

D
= N(0,σ2

ε )

where ε is conditionally independent of ∆̂ with

σ
2
ε = T−1

[
σ11 −

(σ11 +σ12)
2

σ2
∆

]
.

A Taylor expansion of σ(θ̂ (u)) around θ 0 gives:

σ(θ̂ (u))−σ(θ 0)
D≃
(
a(θ 0)+b(θ 0)

)
(θ̂

(u)
1 −θ

0
1 )+b(θ 0)(θ̂

(u)
2 −θ

0
2 )

= a(θ 0)ε +
[
a(θ 0)χ +b(θ 0)

]
∆̂

It follows that

E(σ(θ̂ (u))|∆̂ < 0) = σ(θ 0)+
[
a(θ 0)χ +b(θ 0)

]
E(∆̂ |∆̂ < 0)+op(T−1/2)

var(σ(θ̂ (u))|∆̂ < 0)≃ a(θ 0)2
σ

2
ε +
[
a(θ 0)χ +b(θ 0)

]2
var(∆̂ |∆̂ < 0).

The well-known expressions for E(Z|Z > 0) and var(Z|Z > 0) are:

E(Z|Z > 0) = m(0)
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and
var(Z|Z > 0) = 1−m(0)2

where m(·) is the inverse Mills ratio:

m(0) = φ(0)/Φ(0) = 2φ(0) =
2√
2π

=

√
2
π

Since ∆̂
D≃ T−1/2σ∆ Z:

E(∆̂ |∆̂ < 0) =−E(−∆̂ |− ∆̂ > 0) =−T−1/2
σ∆ E(Z|Z > 0)+op(T−1/2)

D≃−T−1/2
σ∆ m(0)

var(∆̂ |∆̂ < 0)≃ T−1
σ

2
∆ var(Z|Z > 0) = T−1

σ
2
∆ (1−m(0)2).

Hence

E(σ(θ̂ (u))|∆̂ < 0) = σ(θ 0)−
[
a(θ 0)χ +b(θ 0)

]
T−1/2

σ∆ m(0)+op(T−1/2)

var(σ(θ̂ (u))|∆̂ < 0)≃ a(θ 0)2
σ

2
ε +
[
a(θ 0)χ +b(θ 0)

]2
T−1

σ
2
∆ (1−m(0)2)

D.1.2 ∆̂ ≥ 0

In this case
σ̂ = 1+

1

θ̂
(r1)
1

and
σ̂ −σ

0 =
1

θ̂
(r1)
1

− 1
θ 0

1

D≃− 1
(θ 0

1 )
2
(θ̂

(r1)
1 −θ

0
1 ) (D.4)

where, from Equation (15),
θ̂
(r1)
1 = α

∗(1− θ̂
(u)
2 )+(1−α

∗)θ̂
(u)
1

with
α
∗ =

h22 −h12

h11 −2h12 +h22

Then, using Equation (D.3),

θ̂
(r1)
1 −θ

0
1 = α

∗(θ 0
2 − θ̂

(u)
2 )+(1−α

∗)(θ̂
(u)
1 −θ

0
1 )

= α
∗(−∆̂ +(θ̂1

(u)
−θ

0
1 ))+(1−α

∗)(θ̂
(u)
1 −θ

0
1 )

= −α
∗
∆̂ +(θ̂

(u)
1 −θ

0
1 )

D≃ (χ −α
∗)∆̂ + ε

D≃ ε

where we used that Σ−1 = lim(HT/T ) with

lim(HT/T ) = Σ
−1 =

1
|Σ |

 σ22 −σ12

−σ12 σ11


and therefore α∗ = (σ11 +σ12)/(σ22 +σ11 +2σ12) = χ asymptotically. We conclude that

E(σ̂ |∆̂ > 0) = σ
0 +op(T−1/2)

var(σ̂ |∆̂ > 0) ≃ σ
2
ε
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D.1.3 Combining D.1.1 and D.1.2

Combining the cases in Section D.1.1 and Section D.1.2 shows that σ̂ has the asymptotic mixture distribu-
tion:

σ̂ −σ
0 D≃ 1(∆̂ < 0)(σ(θ̂ (u))−σ

0)+1(∆̂ ≥ 0)
ε

(θ 0
1 )

2

where
Pr(∆̂ < 0) = Pr(T−1/2

σ∆ Z < 0)+op(T−1/2) =
1
2
+op(T−1/2) (D.5)

Let d be a binary variable with Pr(d = 1) = P and Y = dY1 +(1−d)Y0. By the rules of double expectation
and total variance:

E(Y ) = PE(Y1|d = 1)+(1−P)E(Y0|d = 0)

and

var(Y ) = Pvar(Y1|d = 1)+(1−P)var(Y0|d = 0)

+P(1−P) [E(Y1|d = 1)−E(Y0|d = 0)]2

Hence

E(σ̂) = σ
0 +

1
2
(E(σ(θ̂ (u))|∆̂ < 0)−σ

0)+op(T−1/2)

var(σ̂)≃ 1
2

var(σ(θ̂ (u))|∆̂ < 0)+
1
2

σ2
ε

(θ 0
1 )

4

+
1
4

(
E(σ(θ̂ (u))|∆̂ < 0)−σ

0
)2

That is:

E(σ̂) = σ
0 − 1

2
[
a(θ 0)χ +b(θ 0)

]
T−1/2

σ∆ m(0)+op(T−1/2)

= σ
0 − 1√

2πT

[
a(θ 0)

σ11 +σ12

σ11 +σ22 +2σ12
+b(θ 0)

]√
σ11 +σ22 +2σ12 +op(T−1/2)

and

var(σ̂)≃ 1
2

{
a(θ 0)2

σ
2
ε +
[
a(θ 0)χ +b(θ 0)

]2
T−1

σ
2
∆ (1−m(0)2)

}
+

1
2

σ2
ε

(θ 0
1 )

4

+
1
4

[(
a(θ 0)χ +b(θ 0)

)
T−1/2

σ∆ m(0)
]2

=

{
1
2

(
a(θ 0)2 +

1
(θ 0

1 )
4

)
σ

2
ε +

1
2
[
a(θ 0)χ +b(θ 0)

]2
T−1

σ
2
∆ (1−m(0)2)

+
1
4

T−1 [a(θ 0)χ +b(θ 0)
]2

σ
2
∆ m(0)2

}
=

1
2T

((
a(θ 0)2 +

1
(θ 0

1 )
4

)[
σ11 −

(σ11 +σ12)
2

σ11 +σ22+2σ12

]

+

[
a(θ 0)

σ11 +σ12

σ11 +σ22 +2σ12
+b(θ 0)

]2

(σ11 +σ22 +2σ12)

(
1− 1

π

))

This shows that var(σ̂)≃ B(θ 0).
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D.2 Elastic Supply: θ 0
1 = 0 and θ 0

2 < 0

Here σ0 = 1−1/θ 0
2 . Asymptotically, with probability 1, either i) θ̂ = θ̂ (r2) = (0, θ̂ (u)

2 ) with σ̂ = 1−1/θ̂
(u)
2

or ii) θ̂ = θ̂ (u) and σ̂ = σ(θ̂ (u)). We can write

θ̂2
(u)

−θ
0
2

D≃ Πθ̂
(u)
1 +η (D.6)

with

Π =
cov(θ̂2

(u)
, θ̂1

(u)
)

var(θ̂1
(u)
)

≃ σ12

σ11

and
η

D
= N(0,σ2

η)

where η is conditionally independent of θ̂
(u)
1 with

σ
2
η = T−1

[
σ22 −

σ2
12

σ11

]

D.2.1 θ̂
(u)
1 > 0

Define

θ
∗
1 = E(θ̂ (u)

1 |θ̂ (u)
1 > 0)

θ
∗
2 = E(θ̂ (u)

2 |θ̂ (u)
1 > 0)

If follows that

θ
∗
1 = E(θ̂ (u)

1 |θ̂ (u)
1 > 0) = T−1/2

√
2σ11

π
+op(T−1/2)

θ
∗
2 = θ

0
2 +Πθ

∗
1 = θ

0
2 +T−1/2

σ12

√
2

πσ11
+op(T−1/2)

and
θ̂
(u)
2 −θ

∗
2

D≃ Π(θ̂
(u)
1 −θ

∗
1 )+η

where we used that
θ̂
∗
2 −θ

0
2 = T−1/2

Πθ
∗
1 +op(T−1/2)

Note that, from Equation (11) and a Taylor expansion, we get:

σ
0 −σ(θ ∗) = σ(0,θ 0

2 )−σ(θ ∗) =

√
2σ11

π

[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]
+op(T−1/2)

From the same expansion and Equation (D.6), we get

σ(θ̂ (u))−σ(θ ∗)
D≃ (a(θ ∗)+b(θ ∗))(θ̂

(u)
1 −θ

∗
1 )+b(θ ∗)(θ̂

(u)
2 −θ

∗
2 )

= (a(θ ∗)+b(θ ∗))(θ̂
(u)
1 −θ

∗
1 )+b(θ ∗)(Π(θ̂

(u)
1 −θ

∗
1 )+η)

= b(θ ∗)η +[a(θ ∗)+b(θ ∗)(1+Π)] (θ̂
(u)
1 −θ

∗
1 )
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Hence

E(σ(θ̂ (u))|θ̂ (u)
1 > 0) = σ(θ ∗)+op(T−1/2)

var(σ(θ̂ (u))|θ̂ (u)
1 > 0)≃ b(θ ∗)2

σ
2
η +[a(θ ∗)+b(θ ∗)(1+Π)]2 T−1

σ11(1−m(0)2)

=
1
T

{
b(θ ∗)2

[
σ22 −

σ2
12

σ11

]
+

[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]2

σ11(1−
2
π
)

}

where we used that θ̂
(u)
1 − θ̂ ∗

1
D≃ T−1/2√σ11Z, to obtain

var(θ̂ (u)
1 |θ̂ (u)

1 > 0)≃ T−1
σ11(1−m(0)2) = T−1

σ11(1−
2
π
)

D.2.2 θ̂
(u)
1 ≤ 0

In this case
σ̂ = 1− 1

θ̂
(u)
2

and
σ̂ −σ

0 =
1

θ 0
2
− 1

θ̂
(u)
2

D≃ 1
(θ 0

2 )
2
(θ̂

(u)
2 −θ

0
2 ) (D.7)

Now, from Equation (D.6):

E(θ̂ (u)
2 |θ̂ (u)

1 ≤ 0)
D≃θ

0
2 +ΠE(θ̂ (u)

1 |θ̂ (u)
1 ≤ 0) = θ

0
2 −ΠT−1/2√

σ11m(0)+op(T−1/2)

E(σ̂ |θ̂1
(u)

< 0) = σ
0 − 1

(θ 0
2 )

2 T−1/2
σ12

√
2

πσ11
+op(T−1/2)

var(σ̂ |θ̂1
(u)

< 0)≃ T−1

(θ 0
2 )

4

[(
σ12

σ22

)2

(1− 2
π
)+σ22 −

σ2
12

σ11

]

D.2.3 Combining D.2.1 and D.2.2

Combining the two outcomes in Section D.2.1 and Section D.2.2, σ̂ is asymptotically distributed as

σ̂ −σ
0 D≃ 1(θ̂ (u)

1 > 0)(σ(θ̂ (u))−σ
0)+1(θ̂ (u)

1 < 0)
1

(θ 0
2 )

2
(θ̂

(u)
2 −θ

0
2 )

where
Pr(θ̂ (u)

1 > 0) = Pr(T−1/2√
σ11Z > 0)+op(T−1/2) =

1
2
+op(T−1/2) (D.8)

Hence

E(σ̂) = σ
0 +

1
2

[
σ(θ ∗)−σ

0 − 1
(θ 0

2 )
2

T−1/2
σ12

√
2

πσ11

]
+op(T−1/2)
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and

var(σ̂)≃ 1
2

var(σ(θ̂ (u))|θ̂ (u)
1 > 0)+

1
2

var(σ̂ |θ̂1
(u)

≤ 0)

+
1
4

[
E(σ(θ̂ (u))|θ̂ (u)

1 > 0)−E(σ(θ̂ (u))|θ̂ (u)
1 ≤ 0)

]2

=
1

2T

{
b(θ ∗)2

[
σ22 −

σ2
12

σ11

]
+

[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]2

σ11(1−
2
π
)

+
1

(θ 0
2 )

4

[
σ22 −

2σ2
12

πσ11

]
+

σ11

π

[[
a(θ ∗)+b(θ ∗)(1+

σ12

σ11
)

]
+

1
(θ 0

2 )
2

σ12

σ11

]2
}

Collecting the terms shows that var(σ̂)≃C(θ 0).

E Proof of Proposition 3

We focus on Part (3) of Proposition 3, as the proof for Part (1) and Part (2) follows by similar arguments.
By Definition 2.1 and the assumptions of Theorem 2.1 in Horowitz (2002):

lim
T→∞

Pr
[

sup
τ

|Pr(
√

T (θ̂ (u)
1 −θ

0
1 )≤ τ)− P̂r(

√
T (θ̂ (u)b

1 − θ̂
u
1 )≤ τ)|> ε

]
→ 0

This result allows us to replace
√

T (θ̂ (u)
1 − θ 0

1 ) by
√

T (θ̂ (u)b
1 − θ̂

(u)
1 ) to calculate the asymptotic distribu-

tion of the former by means of the bootstrap. If θ 0
1 > 0: limT→∞ Pr(

√
T (θ̂ (u)

1 − θ 0
1 ) ≤ −

√
T θ̂

(u)
1 ) = 0

since
√

T θ̂
(u)
1 → ∞ almost surely. Therefore, limT→∞ P̂r(

√
T (θ̂ (u)b

1 ≤ 0)) = limT→∞ P̂r(
√

T (θ̂ (u)b
1 − θ̂

(u)
1 )≤

−
√

T θ̂
(u)
1 ) = limT→∞ Pr(

√
T (θ̂ (u)

1 −θ 0
1 )≤−

√
T θ̂

(u)
1 ) = 0, implying P̂C → 0. Assume next that θ 0

1 is local to
zero in the sense that θ 0

1 = τ/
√

T . Then P̂r(θ̂ (u)b
1 ≤ 0) = P̂r(

√
T (θ̂ (u)b

1 − θ̂
(u)
1 )

√
σ11)≤−

√
T θ̂

(u)
1 /

√
σ11) =

Pr(
√

T (θ̂ (u)b
1 − θ̂

(u)
1 )

√
σ11 ≤−τ/

√
σ11 −

√
T (θ̂ (u)

1 −θ 0
1 )/

√
σ11)

D⇒ Φ(−τ/
√

σ11 +Z). Setting τ = 0, PC
D⇒

min(Φ(Z),1/2), since P̂B
P→ 0.

F Simulation Algorithm

By definition:

∆̈eX
f t = eX

f t − eX
f ,t−1 −

1
n

n

∑
k=1

(eX
kt − eX

k,t−1) for X ∈ (D,S) (F.9)

Moreover, we define var(eX
f t) = κ2

X f and assume, like Soderbery (2015), that eX
f t ,e

X
f s,e

X
kt and eX

ks are uncor-
related if f ̸= i or t ̸= s. Then, assuming a balanced design, i.e. n = N and Tf = T :

var(∆̈eX
f t) = 2(1−1/N)2

κ
2
X f +

2
N2 ∑

k ̸= f
κ

2
Xk (F.10)

Next, assume
κ

2
X f ∼ Gamma(νX ,aX) for X ∈ (D,S)

which is the “workhorse” model of marginal variance in the stochastic volatility literature (this is partly
because of its computational tractability and partly because it has been found to fit price data well; see
Roberts et al. (2004). It follows that E(κ2

X f ) = νX/aX and var(κ2
X f ) = νX/a2

X .
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We make some observations regarding the Monte Carlo setup. First, all the estimators we examine are
invariant to any proportional shift in the (inverse) scale parameters aS and aD such that aS/aD = ϑ for
a constant ϑ . Hence, without loss of generality we may assume that κ2

D f ∼ Gamma(νD,1) and κ2
S f ∼

ϑ Gamma(νS,1). Second, the estimators are invariant to the realized fixed effects. Hence, when we simulate
data we assume without loss of generality that λ X

t = uX
f = 0 for all f , t (of course, we do not make such

assumptions when estimating the model on the simulated data).

We use the following algorithm for Monte Carlo simulations:

For every f = 1, . . . ,N and t = 1, . . . ,T (given θ ,νS, νD and ϑ ):

1. Draw κ̃2
D f from Γ (νD,1) and κ̃2

S f from Γ (νS,1)

2. Draw ẽD
f t and ẽS

f t from N(0,1)

3. Set eD
f t =

√
ϑκ̃D f ẽD

f t and eS
f t = κ̃S f ẽS

f t

4. Simulate lns f t and ln p f t using Equation (4) with λ X
t = uX

f = 0

To calibrate the parameters for the simulation, we use the residuals eX
f t obtained from estimating Equation

(3). For given X ∈ (D,S), we use the generic notation:

X f t =
(
∆̈eX

f t
)2

, X f · = ∑
t

X f t

T
and X ·· =

1
N ∑

f
X f ·

From Equation (F.9)–(F.10):

E(X f ·|{κ
2
Xk}k) = 2(1−1/N)2

κ
2
X f +

2
N2 ∑

k ̸= f
κ

2
Xk

var(X f ·|{κ
2
Xk}k) =

1
(T )2 E

(
∑

t
(X f t −E(X f ·|{κ

2
Xk}k))

2 +2(X f t −E(X f ·|{κ
2
Xk}k))X f ,t−1)

)
where the latter equation follows from cov(X f t ,X f s|{κ2

Xk}k) = 0 if |t − s| > 1. Furthermore, by the rule of
double expectation:

E(X f ·) = 2(1− 1
N
)νX/aX

var(X f ·) = 4((1− 1
N
)4 +

N −1
N4 )νX/a2

X +E(var(X f ·|{κ
2
Xk}k))

Replacing theoretical moments with sample analogues yields:

Ê(X f ·) = X ··, v̂ar(X f ·) =
1
N ∑

f
(X f ·−X ··)

2

Ê(var(X f ·|{κ
2
Xk}k)) =

1
N

N

∑
f=1

1
(T )2 ∑

t

(
(X f t −X f ·)

2 +2(X f t −X f ·)X f ,t−1
)

Next, define:
X1 = X ·· and X2 = v̂ar(X f ·)− Ê(var(X f ·|{κ

2
Xk}k))

To obtain moment estimators of νX and aX , we then solve:

X1 = 2(1− 1
N
)ν̂X/âX

X2 = 4((1− 1
N
)4 +

N −1
N4 )ν̂X/â2

X
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which results in the calibrations ν̂S = 0.4, ν̂D = 0.4 and ϑ̂ = âS/âD = 1.4 using the data documented in
Brasch and Raknerud (2022).

G Details on F/S Estimation Procedure

When comparing the C-GMM estimator with the F/S estimator in Section 4.1.4, using the code embedded
in Grant and Soderbery (2024), we allow for 10 iterations in the LIML procedure (when applicable) of
the F/S estimator. This choice is done for the sake of computational time, since the LIML procedure, as
implemented, is numerically inefficient, with each iteration lasting more than one hour in our simulated
samples when N ×T ≥ 5,000. For the same reason, we do not switch to using a mixture of the steepest
descent approach and Newton algorithm when the Hessian is singular, as in Grant and Soderbery (2024).
While Figure I.1 in Appendix I indicates that the normalized bias of the F/S estimator is actually smaller
than for the C-GMM estimator when both σ and α are high, this mainly reflects the (arbitrary) constraint
σ̂ ≤ 10 enforced in the code embedded in Grant and Soderbery (2024).
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H Monte Carlo Simulations: Tables

Table H.1: Normalized Bias of the C-GMM Estimator. Results from Monte Carlo Simulations for
Combinations of the Number of Varieties (N) and Time Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50 100,50 50,100 100,100

0.0 1.1 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.0 2.0 0.15 0.08 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.01
0.0 3.0 0.07 0.10 0.02 0.02 0.03 0.05 0.01 0.02 0.02 0.02
0.0 4.0 0.03 0.09 0.03 0.02 0.01 -0.00 0.00 0.02 -0.01 0.02
0.0 5.0 0.01 0.05 0.02 0.01 0.01 -0.01 -0.00 0.01 -0.01 0.02
0.0 6.0 0.01 0.00 0.03 0.01 -0.01 -0.01 -0.00 0.02 -0.01 0.02
0.0 8.0 -0.01 0.00 0.03 0.01 -0.01 -0.01 -0.00 0.02 -0.01 0.02
0.0 10.0 -0.02 -0.01 0.02 0.01 -0.01 -0.01 -0.00 0.02 -0.01 0.02
0.2 1.1 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.2 2.0 0.02 0.03 0.02 0.02 0.01 0.01 0.00 0.01 0.00 0.00
0.2 3.0 0.03 0.04 0.03 0.03 0.01 0.02 0.01 0.01 0.00 0.00
0.2 4.0 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0.01 0.00 0.00
0.2 5.0 0.05 0.07 0.04 0.05 0.02 0.03 0.01 0.02 0.01 0.01
0.2 6.0 0.07 0.09 0.05 0.06 0.02 0.03 0.01 0.02 0.01 0.01
0.2 8.0 0.09 0.12 0.07 0.08 0.03 0.04 0.02 0.02 0.01 0.01
0.2 10.0 0.13 0.15 0.09 0.10 0.04 0.05 0.02 0.03 0.01 0.01
0.4 1.1 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.4 2.0 0.02 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00
0.4 3.0 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0.01 0.00 0.00
0.4 4.0 0.07 0.09 0.05 0.06 0.02 0.03 0.01 0.02 0.01 0.01
0.4 5.0 0.10 0.12 0.07 0.08 0.03 0.04 0.02 0.02 0.01 0.01
0.4 6.0 0.14 0.15 0.09 0.10 0.04 0.05 0.02 0.03 0.01 0.01
0.4 8.0 0.21 0.25 0.15 0.15 0.06 0.07 0.03 0.04 0.01 0.01
0.4 10.0 0.35 0.31 0.18 0.21 0.08 0.09 0.05 0.05 0.02 0.02
0.6 1.1 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 2.0 0.03 0.04 0.02 0.03 0.01 0.01 0.01 0.01 0.00 0.00
0.6 3.0 0.06 0.08 0.05 0.05 0.02 0.03 0.01 0.02 0.01 0.01
0.6 4.0 0.11 0.12 0.07 0.08 0.03 0.04 0.02 0.02 0.01 0.01
0.6 5.0 0.19 0.18 0.11 0.11 0.05 0.06 0.03 0.03 0.01 0.01
0.6 6.0 0.23 0.28 0.16 0.15 0.06 0.07 0.03 0.04 0.01 0.01
0.6 8.0 0.27 0.32 0.24 0.26 0.10 0.11 0.05 0.06 0.02 0.02
0.6 10.0 0.27 0.51 0.30 0.41 0.13 0.17 0.07 0.09 0.03 0.03
0.8 1.1 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.8 2.0 0.03 0.04 0.03 0.03 0.01 0.02 0.01 0.01 0.00 0.00
0.8 3.0 0.08 0.10 0.06 0.07 0.03 0.03 0.02 0.02 0.01 0.01
0.8 4.0 0.17 0.17 0.10 0.11 0.04 0.05 0.03 0.03 0.01 0.01
0.8 5.0 0.26 0.31 0.17 0.16 0.06 0.07 0.04 0.04 0.02 0.01
0.8 6.0 0.31 0.28 0.20 0.23 0.09 0.10 0.05 0.06 0.02 0.02
0.8 8.0 0.30 0.47 0.27 0.45 0.13 0.17 0.08 0.09 0.03 0.03
0.8 10.0 0.31 0.83 0.42 0.38 0.18 0.24 0.12 0.14 0.04 0.04
1.0 1.1 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.0 2.0 0.04 0.05 0.03 0.04 0.01 0.02 0.00 0.01 0.00 0.00
1.0 3.0 0.12 0.12 0.06 0.08 0.02 0.04 0.00 0.02 0.01 0.00
1.0 4.0 0.22 0.23 0.13 0.14 0.04 0.06 0.01 0.03 0.01 0.01
1.0 5.0 0.27 0.26 0.17 0.23 0.07 0.09 0.02 0.04 0.02 0.01
1.0 6.0 0.21 0.37 0.24 0.33 0.11 0.13 0.03 0.06 0.03 0.01
1.0 8.0 0.35 0.74 0.32 0.38 0.11 0.21 0.07 0.10 0.06 0.02
1.0 10.0 0.27 0.79 0.40 0.60 0.18 0.26 0.14 0.14 0.04 0.03
Median 0.08 0.09 0.05 0.06 0.02 0.03 0.01 0.02 0.01 0.01
Mean 0.12 0.17 0.10 0.11 0.04 0.05 0.02 0.03 0.01 0.01
N ×T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000 10 000

Note: Normalized bias is defined as (σ̂ −σ)/σ . C-GMM estimates are based on 100 Monte Carlo simulations.
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Table H.2: Normalized RMSE of the C-GMM Estimator. Results from Monte Carlo Simulations for
Combinations of the Number of Varieties (N) and Time Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50 100,50 50,100 100,100

0.0 1.1 0.06 0.05 0.01 0.02 0.04 0.03 0.01 0.02 0.01 0.01
0.0 2.0 0.66 0.41 0.11 0.11 0.13 0.30 0.17 0.10 0.14 0.07
0.0 3.0 0.38 0.60 0.14 0.13 0.19 0.44 0.08 0.16 0.20 0.12
0.0 4.0 0.26 0.66 0.16 0.13 0.15 0.04 0.06 0.17 0.02 0.15
0.0 5.0 0.25 0.54 0.18 0.15 0.17 0.03 0.06 0.18 0.02 0.17
0.0 6.0 0.27 0.30 0.19 0.16 0.10 0.04 0.06 0.19 0.02 0.18
0.0 8.0 0.26 0.32 0.20 0.17 0.10 0.04 0.07 0.21 0.03 0.20
0.0 10.0 0.23 0.32 0.19 0.18 0.11 0.04 0.07 0.22 0.03 0.21
0.2 1.1 0.06 0.05 0.01 0.01 0.03 0.02 0.01 0.01 0.00 0.00
0.2 2.0 0.06 0.05 0.07 0.03 0.02 0.02 0.02 0.02 0.01 0.01
0.2 3.0 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.01
0.2 4.0 0.12 0.10 0.08 0.07 0.05 0.04 0.03 0.03 0.02 0.02
0.2 5.0 0.15 0.12 0.10 0.09 0.06 0.05 0.04 0.04 0.02 0.02
0.2 6.0 0.18 0.15 0.12 0.10 0.07 0.06 0.04 0.04 0.03 0.02
0.2 8.0 0.26 0.21 0.16 0.14 0.09 0.08 0.06 0.06 0.04 0.03
0.2 10.0 0.35 0.27 0.21 0.17 0.11 0.10 0.07 0.07 0.04 0.04
0.4 1.1 0.04 0.05 0.01 0.01 0.03 0.02 0.00 0.00 0.00 0.00
0.4 2.0 0.07 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01
0.4 3.0 0.13 0.10 0.08 0.07 0.05 0.04 0.03 0.03 0.02 0.02
0.4 4.0 0.19 0.15 0.12 0.11 0.07 0.06 0.04 0.04 0.03 0.02
0.4 5.0 0.27 0.21 0.17 0.14 0.09 0.08 0.06 0.06 0.04 0.03
0.4 6.0 0.38 0.29 0.22 0.18 0.11 0.10 0.07 0.07 0.04 0.04
0.4 8.0 0.55 0.55 0.39 0.27 0.17 0.15 0.10 0.10 0.06 0.05
0.4 10.0 0.95 0.70 0.44 0.41 0.24 0.20 0.13 0.13 0.08 0.07
0.6 1.1 0.04 0.05 0.01 0.01 0.03 0.02 0.00 0.00 0.00 0.00
0.6 2.0 0.08 0.07 0.05 0.05 0.03 0.03 0.02 0.02 0.01 0.01
0.6 3.0 0.17 0.14 0.11 0.09 0.06 0.06 0.04 0.04 0.03 0.02
0.6 4.0 0.29 0.23 0.18 0.15 0.09 0.08 0.06 0.06 0.04 0.03
0.6 5.0 0.53 0.36 0.27 0.21 0.13 0.12 0.08 0.08 0.05 0.04
0.6 6.0 0.60 0.63 0.44 0.29 0.18 0.15 0.10 0.10 0.06 0.05
0.6 8.0 0.84 0.59 0.63 0.56 0.31 0.25 0.15 0.15 0.08 0.07
0.6 10.0 0.77 1.04 0.76 0.96 0.35 0.40 0.21 0.22 0.11 0.10
0.8 1.1 0.03 0.05 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.8 2.0 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.01
0.8 3.0 0.23 0.18 0.14 0.12 0.08 0.07 0.05 0.05 0.03 0.03
0.8 4.0 0.50 0.34 0.25 0.19 0.12 0.11 0.07 0.07 0.05 0.04
0.8 5.0 0.68 0.77 0.52 0.30 0.18 0.16 0.10 0.10 0.06 0.05
0.8 6.0 0.91 0.50 0.51 0.47 0.27 0.22 0.13 0.14 0.08 0.07
0.8 8.0 0.83 0.87 0.61 1.11 0.37 0.43 0.21 0.22 0.11 0.10
0.8 10.0 0.98 1.68 1.02 0.68 0.52 0.60 0.34 0.37 0.15 0.13
1.0 1.1 0.03 0.06 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
1.0 2.0 0.11 0.09 0.07 0.06 0.04 0.04 0.04 0.03 0.02 0.01
1.0 3.0 0.31 0.22 0.17 0.15 0.09 0.09 0.07 0.06 0.05 0.03
1.0 4.0 0.59 0.54 0.39 0.27 0.15 0.14 0.10 0.09 0.08 0.05
1.0 5.0 0.84 0.47 0.47 0.47 0.24 0.21 0.14 0.13 0.11 0.06
1.0 6.0 0.60 0.70 0.66 0.72 0.41 0.32 0.18 0.18 0.16 0.08
1.0 8.0 1.03 1.49 0.86 0.74 0.37 0.53 0.32 0.34 0.39 0.12
1.0 10.0 0.91 1.59 1.14 1.17 0.62 0.61 0.67 0.47 0.20 0.17
Median 0.26 0.28 0.17 0.14 0.10 0.08 0.06 0.07 0.03 0.04
Mean 0.38 0.40 0.27 0.25 0.15 0.14 0.09 0.10 0.06 0.06
N ×T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000 10 000

Note: Normalized RMSE is defined as the RMSE divided by σ . C-GMM estimates are based on 100 Monte Carlo simulations.
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Table H.3: Coverage of 95 Percent Nominal Confidence Intervals for σ using the C-GMM Estimator.
Results from Monte Carlo Simulations for Combinations of the Number of Varieties (N) and Time
Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50 100,50 50,100 100,100

0.0 1.1 0.87 0.79 0.84 0.79 0.86 0.83 0.86 0.84 0.87 0.87
0.0 2.0 0.85 0.87 0.85 0.82 0.90 0.86 0.88 0.88 0.87 0.88
0.0 3.0 0.88 0.87 0.86 0.83 0.92 0.87 0.89 0.89 0.89 0.88
0.0 4.0 0.91 0.87 0.86 0.82 0.94 0.89 0.89 0.90 0.91 0.89
0.0 5.0 0.92 0.87 0.87 0.84 0.95 0.90 0.89 0.92 0.91 0.90
0.0 6.0 0.92 0.88 0.86 0.84 0.96 0.90 0.90 0.91 0.90 0.91
0.0 8.0 0.91 0.88 0.87 0.84 0.96 0.91 0.90 0.92 0.90 0.91
0.0 10.0 0.92 0.89 0.88 0.84 0.96 0.91 0.90 0.92 0.90 0.91
0.2 1.1 0.87 0.84 0.87 0.82 0.92 0.86 0.87 0.86 0.90 0.94
0.2 2.0 0.96 0.93 0.91 0.84 0.95 0.88 0.87 0.89 0.90 0.89
0.2 3.0 0.97 0.87 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.2 4.0 0.93 0.87 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.2 5.0 0.93 0.88 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.2 6.0 0.92 0.89 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.2 8.0 0.93 0.89 0.92 0.84 0.97 0.88 0.87 0.89 0.90 0.89
0.2 10.0 0.93 0.89 0.92 0.84 0.97 0.87 0.87 0.89 0.90 0.88
0.4 1.1 0.89 0.86 0.90 0.83 0.92 0.90 0.90 0.88 0.93 0.91
0.4 2.0 0.97 0.87 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.4 3.0 0.93 0.88 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.4 4.0 0.93 0.89 0.92 0.84 0.97 0.88 0.87 0.89 0.90 0.89
0.4 5.0 0.93 0.89 0.92 0.84 0.97 0.88 0.87 0.89 0.90 0.89
0.4 6.0 0.93 0.90 0.92 0.84 0.97 0.87 0.87 0.89 0.90 0.88
0.4 8.0 0.94 0.90 0.92 0.84 0.97 0.87 0.88 0.90 0.90 0.88
0.4 10.0 0.94 0.92 0.93 0.84 0.97 0.88 0.88 0.90 0.90 0.87
0.6 1.1 0.92 0.88 0.90 0.85 0.96 0.91 0.90 0.89 0.92 0.89
0.6 2.0 0.93 0.87 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.6 3.0 0.93 0.89 0.92 0.84 0.97 0.88 0.87 0.89 0.90 0.89
0.6 4.0 0.93 0.89 0.92 0.84 0.97 0.87 0.87 0.89 0.90 0.88
0.6 5.0 0.93 0.90 0.92 0.84 0.97 0.87 0.88 0.89 0.90 0.88
0.6 6.0 0.94 0.91 0.92 0.84 0.97 0.87 0.88 0.90 0.90 0.88
0.6 8.0 0.95 0.93 0.94 0.85 0.98 0.88 0.88 0.90 0.90 0.87
0.6 10.0 0.94 0.94 0.94 0.86 0.98 0.88 0.89 0.90 0.89 0.87
0.8 1.1 0.94 0.90 0.91 0.88 0.95 0.89 0.89 0.87 0.91 0.89
0.8 2.0 0.92 0.88 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.89
0.8 3.0 0.93 0.89 0.92 0.84 0.97 0.88 0.87 0.89 0.90 0.89
0.8 4.0 0.93 0.90 0.92 0.84 0.97 0.87 0.88 0.89 0.90 0.88
0.8 5.0 0.94 0.92 0.92 0.84 0.97 0.87 0.88 0.90 0.90 0.88
0.8 6.0 0.95 0.92 0.94 0.85 0.98 0.88 0.88 0.90 0.90 0.87
0.8 8.0 0.94 0.94 0.94 0.87 0.98 0.88 0.89 0.90 0.89 0.87
0.8 10.0 0.94 0.94 0.95 0.87 0.98 0.88 0.89 0.89 0.89 0.87
1.0 1.1 0.95 0.91 0.92 0.87 0.93 0.87 0.84 0.87 0.84 0.89
1.0 2.0 0.91 0.88 0.91 0.82 0.94 0.85 0.83 0.87 0.84 0.88
1.0 3.0 0.92 0.91 0.91 0.83 0.95 0.83 0.83 0.87 0.85 0.87
1.0 4.0 0.93 0.92 0.92 0.82 0.95 0.86 0.83 0.87 0.85 0.87
1.0 5.0 0.93 0.92 0.93 0.82 0.95 0.86 0.83 0.87 0.85 0.87
1.0 6.0 0.94 0.94 0.94 0.85 0.95 0.87 0.83 0.87 0.85 0.87
1.0 8.0 0.94 0.94 0.94 0.85 0.96 0.87 0.83 0.87 0.85 0.87
1.0 10.0 0.94 0.94 0.94 0.86 0.96 0.87 0.83 0.86 0.85 0.87
Median 0.93 0.89 0.92 0.84 0.96 0.88 0.87 0.89 0.90 0.88
Mean 0.93 0.89 0.91 0.84 0.96 0.88 0.87 0.89 0.89 0.89
N ×T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000 10 000

Note: Coverage represents the share of simulations where σ lies in the 95 percent confidence interval σ̂ ± t-dist(T−t,0.975)SE(σ̂)HAR constructed
from the standard error formula in Section 4.1.3. C-GMM estimates are based on 100 Monte Carlo simulations and 50 block bootstraps for each
simulation to estimate var(σ̂) by means of bagging.
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Table H.4: Normalized Bias of the F/S Estimator. Results from Monte Carlo Simulations for Combi-
nations of the Number of Varieties (N) and Time Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50

0.0 1.1 0.04 0.02 0.11 0.01 0.03 0.02 0.01
0.0 2.0 0.16 0.11 0.13 0.04 0.15 0.08 0.05
0.0 3.0 0.21 0.14 0.16 0.06 0.24 0.11 0.09
0.0 4.0 0.25 0.16 0.11 0.06 0.29 0.11 0.11
0.0 5.0 0.26 0.16 0.16 0.07 0.23 0.12 0.10
0.0 6.0 0.27 0.16 0.13 0.06 0.26 0.10 0.10
0.0 8.0 0.24 0.15 0.18 0.05 0.22 0.15 0.10
0.0 10.0 0.21 0.10 0.08 0.03 0.19 0.07 0.05
0.2 1.1 0.03 0.02 0.13 0.01 0.04 0.01 0.01
0.2 2.0 0.27 0.16 0.12 0.09 0.19 0.09 0.13
0.2 3.0 0.29 0.21 0.12 0.09 0.19 0.19 0.07
0.2 4.0 0.42 0.22 0.12 0.12 0.27 0.19 0.13
0.2 5.0 0.56 0.30 0.15 0.15 0.33 0.19 0.22
0.2 6.0 0.52 0.33 0.23 0.14 0.44 0.27 0.19
0.2 8.0 0.52 0.38 0.22 0.25 0.45 0.34 0.20
0.2 10.0 0.61 0.44 0.24 0.20 0.54 0.35 0.27
0.4 1.1 0.03 0.02 0.09 0.01 0.05 0.01 0.02
0.4 2.0 0.26 0.17 0.07 0.05 0.19 0.13 0.10
0.4 3.0 0.43 0.25 0.17 0.16 0.30 0.21 0.14
0.4 4.0 0.53 0.31 0.24 0.14 0.35 0.27 0.14
0.4 5.0 0.67 0.40 0.28 0.10 0.42 0.28 0.21
0.4 6.0 0.54 0.47 0.36 0.15 0.48 0.30 0.18
0.4 8.0 0.47 0.44 0.34 0.21 0.58 0.45 0.24
0.4 10.0 0.66 0.67 0.39 0.25 0.58 0.56 0.29
0.6 1.1 0.06 0.02 0.09 0.01 0.04 0.01 0.01
0.6 2.0 0.38 0.16 0.12 0.07 0.21 0.17 0.06
0.6 3.0 0.56 0.28 0.19 0.20 0.30 0.33 0.11
0.6 4.0 0.57 0.39 0.27 0.11 0.47 0.37 0.20
0.6 5.0 0.46 0.52 0.31 0.17 0.54 0.39 0.19
0.6 6.0 0.59 0.42 0.30 0.22 0.47 0.39 0.20
0.6 8.0 0.68 0.61 0.45 0.31 0.56 0.42 0.33
0.6 10.0 0.58 0.65 0.50 0.38 0.57 0.48 0.31
0.8 1.1 0.04 0.02 0.09 0.01 0.05 0.01 0.09
0.8 2.0 0.37 0.21 0.12 0.11 0.37 0.18 0.16
0.8 3.0 0.44 0.30 0.21 0.08 0.38 0.26 0.20
0.8 4.0 0.42 0.56 0.28 0.19 0.43 0.39 0.18
0.8 5.0 0.54 0.52 0.29 0.20 0.45 0.42 0.30
0.8 6.0 0.77 0.49 0.36 0.28 0.60 0.43 0.25
0.8 8.0 0.53 0.60 0.55 0.31 0.44 0.43 0.32
0.8 10.0 0.79 0.71 0.49 0.37 0.47 0.54 0.39
1.0 1.1 0.06 0.02 0.09 0.01 0.06 0.02 0.06
1.0 2.0 0.50 0.29 0.22 0.15 0.26 0.14 0.28
1.0 3.0 0.45 0.53 0.30 0.23 0.48 0.26 0.22
1.0 4.0 0.48 0.48 0.33 0.29 0.71 0.41 0.30
1.0 5.0 0.67 0.50 0.43 0.39 0.56 0.45 0.31
1.0 6.0 0.60 0.56 0.53 0.40 0.49 0.39 0.37
1.0 8.0 0.53 0.58 0.62 0.41 0.47 0.57 0.47
1.0 10.0 0.76 0.59 0.57 0.42 0.55 0.44 0.44
Median 0.46 0.31 0.22 0.15 0.37 0.26 0.18
Mean 0.42 0.33 0.25 0.16 0.35 0.26 0.18
N ×T 250 500 500 1 000 1 250 2 500 2 500

Note: Normalized bias is defined as (σ̂ −σ)/σ . F/S estimates are based on 100 Monte Carlo simulations.
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Table H.5: Normalized RMSE of the F/S Estimator. Results from Monte Carlo Simulations for Com-
binations of the Number of Varieties (N) and Time Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50

0.0 1.1 0.13 0.03 0.83 0.02 0.11 0.06 0.02
0.0 2.0 0.28 0.18 0.45 0.14 0.36 0.21 0.17
0.0 3.0 0.37 0.25 0.56 0.23 0.62 0.29 0.33
0.0 4.0 0.43 0.28 0.35 0.20 0.82 0.29 0.40
0.0 5.0 0.46 0.26 0.51 0.21 0.47 0.27 0.40
0.0 6.0 0.47 0.24 0.38 0.16 0.58 0.18 0.36
0.0 8.0 0.44 0.22 0.58 0.10 0.42 0.40 0.30
0.0 10.0 0.43 0.18 0.20 0.05 0.45 0.12 0.09
0.2 1.1 0.05 0.03 0.88 0.02 0.14 0.03 0.02
0.2 2.0 0.62 0.41 0.43 0.51 0.53 0.20 0.51
0.2 3.0 0.51 0.47 0.38 0.33 0.31 0.54 0.16
0.2 4.0 0.69 0.38 0.26 0.39 0.46 0.45 0.37
0.2 5.0 1.09 0.55 0.34 0.46 0.59 0.36 0.77
0.2 6.0 0.98 0.68 0.69 0.44 0.89 0.57 0.62
0.2 8.0 1.01 0.59 0.57 0.79 0.81 0.67 0.48
0.2 10.0 1.16 0.73 0.47 0.54 1.00 0.70 0.73
0.4 1.1 0.05 0.03 0.78 0.02 0.23 0.02 0.14
0.4 2.0 0.61 0.42 0.17 0.14 0.48 0.31 0.47
0.4 3.0 0.82 0.56 0.45 0.56 0.62 0.50 0.50
0.4 4.0 1.00 0.57 0.75 0.42 0.69 0.53 0.36
0.4 5.0 1.26 0.76 0.66 0.15 0.68 0.58 0.61
0.4 6.0 1.02 0.89 0.89 0.36 0.85 0.50 0.43
0.4 8.0 0.71 0.79 0.64 0.43 1.00 0.85 0.53
0.4 10.0 1.13 1.20 0.76 0.50 1.04 1.05 0.57
0.6 1.1 0.27 0.04 0.76 0.03 0.12 0.02 0.02
0.6 2.0 0.77 0.32 0.44 0.30 0.40 0.57 0.14
0.6 3.0 1.05 0.49 0.48 0.74 0.49 0.89 0.23
0.6 4.0 1.08 0.77 0.62 0.23 0.97 0.82 0.55
0.6 5.0 0.82 0.96 0.78 0.38 0.94 0.79 0.37
0.6 6.0 1.00 0.62 0.58 0.50 0.78 0.67 0.40
0.6 8.0 1.13 1.08 0.91 0.65 1.03 0.72 0.70
0.6 10.0 0.87 1.03 0.91 0.77 0.92 0.80 0.52
0.8 1.1 0.09 0.04 0.74 0.03 0.15 0.03 0.66
0.8 2.0 0.78 0.50 0.31 0.48 0.93 0.52 0.68
0.8 3.0 0.87 0.49 0.58 0.12 0.67 0.57 0.65
0.8 4.0 0.77 1.16 0.54 0.56 0.71 0.80 0.32
0.8 5.0 0.85 0.82 0.49 0.41 0.71 0.73 0.63
0.8 6.0 1.37 0.75 0.68 0.57 1.04 0.72 0.40
0.8 8.0 0.77 0.97 1.06 0.64 0.67 0.68 0.48
0.8 10.0 1.23 1.24 0.81 0.68 0.68 0.97 0.66
1.0 1.1 0.21 0.04 0.73 0.02 0.22 0.05 0.34
1.0 2.0 1.10 0.64 0.66 0.59 0.58 0.31 0.86
1.0 3.0 0.75 1.00 0.73 0.65 0.89 0.48 0.65
1.0 4.0 0.72 0.74 0.52 0.65 1.33 0.76 0.67
1.0 5.0 1.07 0.73 0.67 0.73 0.96 0.67 0.43
1.0 6.0 0.99 0.86 0.86 0.73 0.74 0.52 0.55
1.0 8.0 0.69 0.93 1.12 0.75 0.61 0.96 0.75
1.0 10.0 1.15 0.96 0.87 0.68 0.94 0.56 0.66
Median 0.77 0.58 0.63 0.42 0.68 0.54 0.47
Mean 0.75 0.58 0.62 0.40 0.66 0.51 0.45
N ×T 250 500 500 1 000 1 250 2 500 2 500

Note: Normalized RMSE is defined as the RMSE divided by σ . F/S estimates are based on 100 Monte Carlo simulations.

39



Table H.6: Coverage of 95 Percent Nominal Confidence Intervals for σ using the F/S Estimator. Re-
sults from Monte Carlo Simulations for Combinations of the Number of Varieties (N) and Time Peri-
ods (T)

α σ N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50

0.0 1.1 0.57 0.43 0.54 0.47 0.53 0.54 0.56
0.0 2.0 0.67 0.52 0.58 0.47 0.42 0.47 0.44
0.0 3.0 0.80 0.57 0.62 0.54 0.51 0.49 0.46
0.0 4.0 0.86 0.68 0.63 0.55 0.54 0.53 0.56
0.0 5.0 0.91 0.77 0.68 0.59 0.56 0.57 0.55
0.0 6.0 0.90 0.83 0.73 0.63 0.66 0.61 0.57
0.0 8.0 0.96 0.87 0.80 0.72 0.70 0.65 0.59
0.0 10.0 0.99 0.94 0.91 0.81 0.74 0.70 0.64
0.2 1.1 0.55 0.42 0.53 0.47 0.47 0.45 0.50
0.2 2.0 0.63 0.45 0.38 0.28 0.17 0.12 0.06
0.2 3.0 0.70 0.45 0.41 0.33 0.19 0.14 0.11
0.2 4.0 0.79 0.51 0.47 0.36 0.22 0.13 0.14
0.2 5.0 0.84 0.56 0.50 0.39 0.26 0.19 0.19
0.2 6.0 0.86 0.61 0.53 0.43 0.34 0.22 0.21
0.2 8.0 0.87 0.67 0.57 0.44 0.39 0.23 0.20
0.2 10.0 0.87 0.70 0.59 0.46 0.38 0.24 0.21
0.4 1.1 0.54 0.43 0.52 0.44 0.45 0.33 0.46
0.4 2.0 0.53 0.39 0.30 0.24 0.12 0.10 0.08
0.4 3.0 0.67 0.42 0.30 0.27 0.18 0.12 0.09
0.4 4.0 0.71 0.46 0.42 0.31 0.25 0.13 0.12
0.4 5.0 0.72 0.50 0.45 0.35 0.21 0.17 0.15
0.4 6.0 0.77 0.55 0.50 0.39 0.25 0.14 0.17
0.4 8.0 0.82 0.59 0.54 0.39 0.28 0.19 0.19
0.4 10.0 0.81 0.66 0.59 0.40 0.31 0.16 0.20
0.6 1.1 0.53 0.44 0.54 0.40 0.43 0.30 0.46
0.6 2.0 0.52 0.37 0.30 0.25 0.09 0.10 0.07
0.6 3.0 0.61 0.39 0.30 0.27 0.17 0.11 0.10
0.6 4.0 0.66 0.46 0.34 0.28 0.21 0.12 0.11
0.6 5.0 0.72 0.47 0.44 0.31 0.23 0.11 0.11
0.6 6.0 0.70 0.49 0.48 0.34 0.24 0.14 0.12
0.6 8.0 0.73 0.54 0.50 0.36 0.24 0.15 0.12
0.6 10.0 0.73 0.52 0.46 0.37 0.26 0.19 0.14
0.8 1.1 0.53 0.45 0.51 0.38 0.41 0.26 0.35
0.8 2.0 0.51 0.34 0.27 0.22 0.11 0.10 0.10
0.8 3.0 0.57 0.38 0.34 0.27 0.16 0.12 0.12
0.8 4.0 0.62 0.44 0.34 0.31 0.19 0.11 0.09
0.8 5.0 0.66 0.46 0.37 0.29 0.23 0.14 0.12
0.8 6.0 0.65 0.50 0.47 0.31 0.21 0.15 0.10
0.8 8.0 0.70 0.55 0.48 0.32 0.22 0.16 0.13
0.8 10.0 0.69 0.57 0.52 0.36 0.27 0.19 0.19
1.0 1.1 0.53 0.42 0.50 0.39 0.40 0.26 0.34
1.0 2.0 0.51 0.33 0.23 0.23 0.14 0.10 0.07
1.0 3.0 0.52 0.39 0.26 0.27 0.15 0.13 0.09
1.0 4.0 0.61 0.41 0.37 0.31 0.17 0.10 0.07
1.0 5.0 0.61 0.44 0.41 0.29 0.19 0.13 0.09
1.0 6.0 0.64 0.47 0.37 0.33 0.16 0.16 0.07
1.0 8.0 0.68 0.56 0.46 0.36 0.23 0.20 0.14
1.0 10.0 0.68 0.59 0.52 0.34 0.25 0.22 0.18
Median 0.68 0.48 0.48 0.36 0.25 0.16 0.14
Mean 0.69 0.52 0.48 0.38 0.30 0.24 0.23
N ×T 250 500 500 1 000 1 250 2 500 2 500

Note: Coverage represents the share of simulations where σ lies in the 95 percent confidence interval σ̂ ± t-dist(T−t,0.975)SE(σ̂) in 100 Monte
Carlo simulations. F/S estimates of σ and SE(σ̂) are obtained by running the computer code embedded in Grant and Soderbery (2024).
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Table H.7: Convergence Rate of the F/S Estimator. Results from Monte Carlo Simulations for Combi-
nations of the Number of Varieties (N) and Time Periods (T)

α σ N,T N,T N,T N,T N,T N,T N,T
50,5 100,5 50,10 100,10 50,25 100,25 50,50

0.0 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.0 2.0 0.90 0.95 0.98 0.99 0.93 0.95 0.97
0.0 3.0 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.0 4.0 0.90 0.95 0.97 0.99 0.94 0.95 0.97
0.0 5.0 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.0 6.0 0.90 0.95 0.98 0.99 0.94 0.94 0.97
0.0 8.0 0.90 0.94 0.98 0.99 0.94 0.95 0.97
0.0 10.0 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.2 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.2 2.0 0.90 0.95 0.97 0.99 0.92 0.94 0.98
0.2 3.0 0.86 0.93 0.95 0.99 0.90 0.93 0.95
0.2 4.0 0.87 0.92 0.94 1.00 0.89 0.92 0.96
0.2 5.0 0.87 0.93 0.94 1.00 0.90 0.90 0.96
0.2 6.0 0.85 0.91 0.95 0.99 0.89 0.91 0.96
0.2 8.0 0.79 0.91 0.94 1.00 0.88 0.93 0.96
0.2 10.0 0.78 0.93 0.95 0.99 0.87 0.92 0.98
0.4 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.4 2.0 0.87 0.93 0.95 0.98 0.91 0.94 0.96
0.4 3.0 0.85 0.91 0.96 1.00 0.88 0.93 0.95
0.4 4.0 0.83 0.89 0.96 0.98 0.86 0.92 0.94
0.4 5.0 0.86 0.91 0.95 0.96 0.84 0.88 0.95
0.4 6.0 0.77 0.89 0.97 0.98 0.83 0.90 0.93
0.4 8.0 0.74 0.87 0.97 0.98 0.84 0.90 0.93
0.4 10.0 0.75 0.85 0.96 0.98 0.78 0.90 0.95
0.6 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.97
0.6 2.0 0.86 0.92 0.96 0.98 0.89 0.92 0.95
0.6 3.0 0.81 0.90 0.95 0.99 0.87 0.92 0.94
0.6 4.0 0.79 0.91 0.95 0.97 0.83 0.90 0.96
0.6 5.0 0.76 0.90 0.94 0.98 0.83 0.91 0.94
0.6 6.0 0.80 0.85 0.94 0.99 0.78 0.88 0.92
0.6 8.0 0.76 0.85 0.93 0.98 0.79 0.89 0.97
0.6 10.0 0.71 0.85 0.98 1.00 0.80 0.85 0.96
0.8 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.98
0.8 2.0 0.84 0.92 0.96 0.99 0.90 0.92 0.95
0.8 3.0 0.80 0.90 0.93 0.96 0.85 0.90 0.95
0.8 4.0 0.77 0.90 0.96 0.98 0.81 0.90 0.92
0.8 5.0 0.76 0.88 0.94 0.98 0.81 0.93 0.96
0.8 6.0 0.81 0.83 0.95 0.99 0.80 0.90 0.94
0.8 8.0 0.72 0.85 0.98 0.98 0.76 0.89 0.96
0.8 10.0 0.72 0.80 0.96 0.96 0.80 0.92 0.96
1.0 1.1 0.90 0.95 0.98 0.99 0.94 0.95 0.98
1.0 2.0 0.84 0.92 0.96 0.99 0.86 0.91 0.99
1.0 3.0 0.80 0.88 0.94 0.96 0.82 0.88 0.95
1.0 4.0 0.78 0.84 0.98 0.97 0.82 0.91 0.95
1.0 5.0 0.79 0.84 0.97 0.98 0.79 0.92 0.95
1.0 6.0 0.76 0.85 0.97 0.99 0.80 0.87 0.97
1.0 8.0 0.72 0.87 0.96 0.98 0.79 0.90 0.94
1.0 10.0 0.77 0.85 0.94 0.96 0.80 0.88 0.95
Median 0.83 0.91 0.96 0.99 0.87 0.92 0.96
Mean 0.83 0.90 0.96 0.98 0.87 0.92 0.96
N ×T 250 500 500 1 000 1 250 2 500 2 500

Note: F/S estimates are based on 100 Monte Carlo simulations.
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I Monte Carlo Simulations: Figures

Figure I.1: Normalized Bias of C-GMM and F/S Estimators

(A) N = 50, T = 10 (B) N = 50, T = 50

(C) N = 100, T = 10 (D) N = 100, T = 25

Note: Panel A–D shows the normalized bias of the C-GMM estimator and the normalized bias of the F/S estimator (grid lines), for
different N and T . The normalized bias is defined as (σ̂ −σ)/σ . The estimates are from simulated data with 100 simulations for
each combination of α and σ .
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Figure I.2: Normalized RMSE of C-GMM and F/S Estimators

(A) N = 50, T = 10 (B) N = 50, T = 50

(C) N = 100, T = 10 (D) N = 100, T = 25

Note: Panel A–D shows the normalized RMSE of the C-GMM estimator and the normalized RMSE of the F/S estimator, for
different N and T . The estimates are from simulated data with 100 simulations for each combination of α and σ .
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Figure I.3: Coverage of the F/S Estimator

(A) Coverage, N = 100, T = 10 (B) Coverage, N = 100, T = 25

Note: Panel A and B shows the coverage, defined as the share of simulations where σ lies in the 95 percent confidence interval
σ̂ ± t-dist(T−t,0.975)SE(σ̂), for different T and N, with 100 simulations for each combination of α and σ . The estimates of σ and
SE(σ̂) are obtained by running the code embedded in Grant and Soderbery (2024).
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