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1 Introduction
Tropical agriculture is a risky activity. Fragile soils and the high potential capacity of rainfall and wind

to cause erosion are special problems. These two factors are important contributors to resource

degradation in the Third World. Climatic variability and the occurrence of pests and plagues are in

general unpredictable and result in fluctuating incomes. Extreme rainfall variability and other changes in

climate tend to be severe in their impact on crop yields and may also lead to natural hazards as droughts

and floods.

Another reason for the uncertainty being more pervasive and serious for tropical farmers than for

farmers in temperate zones is the lack of well-developed markets. Governmental and private

organisations have generally failed to provide insurance markets but also credit markets which may be

an important substitute (Binswanger, 1986). In the absence of such markets farmers adopt to risks in

various other ways. Household-level strategies as scattering of plots, crop diversification and

intercropping are common. These risk management strategies however are seldom able to cope fully

with uncertainty.

How farmers are affected by climatic variations may vary widely. Most severe is probably the situation

for farmers for whom subsistence is at risk. For this group the outcome of uncertain events can make the

difference between survival and starvation. For others, where subsistence is assured because of less

climatic variation, more productive soils or larger holdings, costs tend to be less.

The presence of climatic uncertainty raises interesting questions about the behaviour of farmers. In this

paper the focus is on how the incentives to arrest land degradation are affected when faced with a

stochastic environment and when no formal insurance markets exist. We wish to investigate the

relationship between poverty and environmental degradation and in particular, whether farmers whose

subsistence is at risk have incentives to deplete their resource base.

Soil conservation issues in uncertain environments have been considered in earlier works. In papers by

Pindyck (1984) and Larson (1992) continuous-time control models are applied to analyse optimal

decision rules for situations where the state variable changes over time in a stochastic manner. Larson

(1992) considers a model where the quality of soil evolves stochastically over time. Pindyck (1984)

studies in a similar model the implications of a competitive market equilibrium for renewable resources.

Ardila and Innes (1993) analyse for risk averse farmers how production and soil depletion choices are

affected when there is uncertainty both in production revenues and end-of-period land price.
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The issue of possible links between poverty and resource degradation has increasingly gained attention

over the last decade. Many studies mention poverty as an important cause of excessive soil and fertility

loss rates observed in the Third World. This is assumed to occur either because poor families lack

adequate resources and technology, or because poverty forces them to meet urgent short-term needs,

which induce them to "mine" natural capital as soils and forests (see World Bank, 1992; WCED, 1987;

Pinstrup-Anderson et al.,1994). More formal studies on such links are Perrings (1989) and Larson and

Bromley (1990), who in deterministic dynamic models identify factors creating a situation where

resources are degraded. Perrings (1989) develops a model of the open-agrarian economy that operates at

a minimum level of subsistence, where resource degradation due to intensified agricultural production is

an optimal response to adverse changes. Larson and Bromley (1990) presents a model where the

household is assumed to produce under a fallow-rotation system. Their study examines and compares

incentives for resource use under private and common property, but also analyses how environmental

endowments, a fragile ecosystem and poverty may affect a household's production and degradation

incentives. Both studies fmd that poverty tends to drive up the rate at which soils are deteriorating.

The current study applies a different model to help us understand such mechanisms, where the

degradation of land depends not only on the intensity with which land is cultivated, but also on resources

devoted to soil conservation measures. It is assumed that peasants have well-defined property rights on a

given area of land with an infinite horizon, facing only one source of uncertainty, production risk. I also

assume that soil stock at any time can be predicted exactly from current stock level and input use. I then

rule out the case where the evolution of the soil stock is stochastic. Furthermore, to limit the number of

assets, I follow Larson and Bromley (1990) by assuming no savings market and that households spend

all of their income on consumption in every period. This assumption simplifies the analysis substantially

and enables us to perform the analysis in a multiperiod setting (infinite horizon) without introducing the

analytical complexity of general dynamic stochastic models.

The paper is organised as follows. In the next section a deterministic model of land degradation is

presented. In section 3 climatic uncertainty is introduced into the model and it is assumed that if

production in any period takes on a value less than a threshold value, the agrarian producers will

experience costs in closing the food gap. In section 4, when investigating the relationship between

poverty and the incentives for soil conservation, each of the decision variables which affects the

evolution of the soil base in the general model is studied in more detail. The last section summarises the

findings.



2. An economic model of land degradation and soil conservation
Barbier (1990), LaFrance (1992) and Barrett (1996) all consider a decision-maker who has two direct

means at his disposal to control fertility loss and/or soil loss'. Here we present a model where the land

manager has three instruments to influence the soil evolution over time; cultivation intensity, z(t),

conservation intensity, c(t), and overlapping technologies, w(t).

Productive inputs may contribute to land degradation in the long run. Fertiliser can accelerate the natural

process of soil acidification as nitrates and phosphates leach into the soil profile, while irrigation can

raise the table water and lead to soil salinization (see LaFrance, 1992 and the references therein).

Cultivation practices and farming techniques are also important for long term soil fertility. The

application of more intensive tillage techniques will break up the soil and allow it to be more easily

washed away. Repeated tillage and the ploughing up and down the slope instead of along the contour are

other examples. Furthermore, extending the crop season and increasing the farm area under cultivation

may accelerate the processes of land degradation. Cultivation of land with greater slope and the

ploughing of all grassways to increase short-term output will also imply a higher soil loss rate, thus

reducing the future productivity of land (McConnel, 1983) 2 . All such actions and inputs are here

collapsed into the decision variable, z(t), where a higher value (more intensive cultivation) is assumed to

increase immediate production, but decrease long-term soil fertility.

Land degradation can be slowed by a wide range of options, including soil conservation measures such

as terraces, drainage ditches, bunds, cut-off drains, and hedgerows. Such structural conservation

measures are here represented by the decision variable c(t), and is denoted the intensity of conservation.

However, most soil conservation measures are costly in terms of foregone production. Physical

structures are found to reduce the effective area by more than 10 percent (Lal, 1987). In addition their

construction often moves unproductive soil to the surface, hence affecting immediate output (Lutz,

Pagiola and Reiche, 1994). Hence, a higher value of c(t) is assumed to reduce short run output.

A third group of activities considered, is inputs and/or farming practices which when implemented

increase both immediate output and long-term soil fertility. Such win-win strategies, w(t), or overlapping

technologies in the terminology of Reardon and Vosti (1992), have been ignored in many studies on land

degradation and soil conservation. The last years, however, we have witnessed an increasing awareness

Barbier (1990) and Barrett (1996) focus on the problem of soil erosion. Barbier (1990) considers a productive input package
(productive inputs, labour, crop varieties and cropping practices) and a soil conservation package (e.g. bench terraces), while in
Barrett (1996) soil depth evolution is a function of cultivation intensity (agricultural practices) and conservation inputs.
LaFrance (1992) focuses on the problem of land degradation and considers crop increasing/land degrading inputs (fertilizer,
irrigation, ploughing) and soil conserving/crop reducing inputs. Our model is an extension of the model of LaFrance.
2 A fallow-rotation system can also be interpreted within this framework. More intensive cultivation by leaving less productive
land fallow will increase both immediate production and cultivation costs and decrease the future productivity of land.
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of such technologies in the literature. Several studies on Africa stress the importance of chemical ferti-

lisers in both arresting soil erosion and increasing short run output (see Brekke et al., 1995; Grepperud,

1996; Alfsen et al., 1995; Aune et al., 1994; Aune and Lal, 1995). The application of fertilisers will

provide land with a denser vegetation providing a better protection of soils, thereby preventing water

run-off and soil erosion (see Roose, 1977; Logan and Lal, 1990). Reardon and Vosti (1992) mention tied

ridges as one important example of an overlapping technology. Another important example is crop

residue management including mulching which gives land greater cover and adds nutrients to the soil. A

higher value of w(t) is here assumed to increase immediate output and arrest land degradation.

The soil dynamics is described by the following equation

= m — n(zt ,	 (1)

where m is a constant representing the natural rate of soil regeneration and n(zt , ct, w) is the fertility loss

function3 . More intensive cultivation degrades soil fertility, s(t), while more intensive conservation and an

increased use of overlapping technologies reduces soil fertility losses 4 .

In addition to the three agricultural activities, z(t), c(t), and w(t), the stock of soil fertility, s(t), is also

introduced as an argument in the crop production function. Whatever form, land degradation is usually

reflected in lower yields. Output for a given crop or crop-mix is then given by the following production

function, f(st,zt,ct,wt). The production function is twice differentiable and concave in s(t). Higher values

of z(t) and w(t) are assumed to increase immediate production, while c(t) is assumed to decrease

immediate production since soil conservation measures take up productive land. Furthermore, we

assume that the production function is strictly concave in z(t), c(t), and w(t), respectively.

The most important input in third world agriculture, labour, is not explicitly modelled, but is very much

connected to the values of z(t), c(t), and w(t). Cropland expansion, seedbed preparation, the adoption of soil

conservation measures and mulching are all very labour-intensive activities. As a consequence, the cost

function, h(zect,w), represents not only input unit costs, but also shadow values of non-marketed inputs and

the opportunity cost of labour. The cost function is assumed to increase monotonically with each of its

arguments, implying that more intensive cultivation, more intensive conservation, and additional use of

overlapping technologies all increase a households' costs.

'Examples on soil fertility regeneration are nitrogen that enters into the soil organic matter from the decomposition of roots and
residues (Ladd and Amato, 1985) and soil formation. Here we follow McConnel (1983), Ardila and Innes (1993) and Barrett
(1996) by assuming an autonomous growth in stock.
4 S(t) is here an index of soil quality or productivity over all the households land depending on factors such as soil depth,
nutrient and mineral content, soil structure and permeability. The single index s(t) limits the number of state variables in our
analysis.
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The assumptions on technology may be summarised as follows;

hz >O, > 0, h., > 0, n, > 0, n c < 0, nw <

> 0, f,„ 0, fz > 0, f„ <0, fc <Of <0, f„ > 0, f <0;	
(P1)

The objective of the farm household is to maximise the discounted value of an income stream over an

infinite horizon, given the equation governing the stock of the soil resource. The households' problem

then becomes (time references will in the following be omitted whenever it creates no confusion)

Max 2- 0 5
o

[Pf(s,z,c,w)— h(z,c,w)le' dt
Z , C,w

(2)

subject to (1), the initial restrictions s(0)=s0 , and the control restrictions z(t).?..0, c(t).?..0 and w(t)?_0,

where P is the fixed price of the farm output and r the discount factor.

All models of this kind are and must be simplifications of the complex processes determining soil

evolution. However, the model captures two essential features of the relationship between land

degradation and household behaviour. First, that the choices made by a household have consequences

for the resource base. Second, that a farm household faces a series of options lying within their

technological horizon, thus there is a continuum of possible actions available to them. The land manager

is not necessarily bounded to certain set of activities or practices, but can choose among several

strategies or seek a combination of them. In the next section the above model will be analysed within a

framework where the outcome of production is uncertain due to climatic variability.

3. Soil conservation and farmers for whom subsistence is at risk
Subsistence farmers, for which actual consumption of crops is determined by production, often face a

probability of food shortage due to unstable weather. When production is below a level necessary for

meeting certain minimal requirements, they experience costs beyond the production loss itself. In the

most extreme circumstances these costs are in terms of starvation and malnutrition. For many farmers

the consequences may be of less dramatic character. The deficit which arises when their production of

crops falls short of the subsistence level can be made up by various resource-demanding activities. The

food gap can be closed through collecting, hunting and job search. However, such activities impose large

costs in terms of time and neglect of family and farm. Since jobs in the local area are usually seasonal

and limited or both, it may be necessary to migrate for a period of time or travel large distances daily'.

5 
The costs associated with output shortfalls may also be of a different kind. The farmer will during the crop season observe

malign climatic conditions and may try to partly compensate for expected production loss by engaging into labour-intensive
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In spite of missing insurance markets, some farmers have access to a more informal type of insurance. In

the introduction we mentioned self-insurance mechanisms at the household level, but risk management

may also be carried out within a wider social group. The existence of solidarity networks in rural areas

of the third world, or other informal mechanisms outside of markets, is well documented and provides

protection against many sources of risk and minimises the risk of starvation (see Platteau, 1991 and

Fafchamps, 1992). However, such institutions are expected to be more effective in a situation with

idiosyncratic risk rather than risks of collective nature. This is especially true for areas of homogeneous

agroclimates where crop failure due to bad weather tends to affect all adjoining areas, and there are not

sufficient resources to prevent all members from sinking below the subsistence level. Mechanisms such

as remittances from migrants and food aid may be more effective under these circumstances to alleviate

the costs associated with shortfalls6 .

In the following, the above model will be analysed within a framework where subsistence is at risk. In

case of shortfalls, farmers are expected to make every possible effort to close the gap and the deficit is

made up by cost demanding activities. The following expression represents production net of the costs

associated with shortfall

- 'qv - Y)
	

(3)

where Y* is the threshold value assumed constant over time. The critical level may vary across

households depending on cultural norms, physiological requirements and family size. If there is a

production shortfall (Y<Y*), farmers are assumed to engage in other activities to provideY,* generating

costs depending on the gap, K(Y* - Y). Here the cost function is assumed linear. This assumption can be

relaxed, but affects nothing in the analysis. Expression (3) also enables us to analyse a situation in which

a farmer in case of shortfalls has access to an external source of income without any future

commitments, K = O. Under this assumption the farmer is fully "insured" in the sense that he at least gets

Y* at no costs regardless of outcome of weather. One example could be remittances from migrated

household members.

From (3) it is seen that the minimum subsistence level is related to production (Y) only, and not to net

production (Y- h). Such an approach seems reasonable in the context of poor subsistence farmers

participating to a lesser extent in market transactions. Most of their production is consumed within the

household, and their input use is limited - consisting of seeds from previous crops, simple tools and the

farming practices aimed at reducing the adverse effects from climatic changes such as water drainage and water retention
activities.

6 Ellsworth and Shapiro (1989) found remittances from migrants to increase during bad times.
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households' labour. Input costs in terms of cash expenditures are of relatively minor importance for this

group of farmers.

The farm household faces production uncertainty due to climatic variations. The timing and actions in

each period are as follows. The farmer makes decisions about farming practices and input use before

knowing the outcome of weather. At the end of each period the value of the exogenous shock is realised

which again determines the actual net income in that period. It is assumed that production risk is

multiplicative, thus the outcome of crop production becomes f(s,z,c,w)0, where {0} is a sequence of

independent and identically distributed non-negative random variables and Eel = 1. Let g(9) be the

probability density function of O,  and 0(0) be the cumulative distribution function for O and O E (Obeh).

The maximisation problem for the household is as follows (for brevity we set P=1 7),

f f Y g(6 )c10 + J( le - K[T* - Y] ) g(0 )ch9 - h(z,c,wle -rt dt
z, c, w

s. t. (1), s(0) = so> O and z(t) .?_.' 0, c(t)?.. 0, w(t) ..>. 0
Y* 

where AEs---- 	and Y = f(s,z,c,w)0
f(s,z,c,w)

The current value Hamiltonian for this problem is

Oh	 A	 A	 A

H = 2, 0 [f (s,z,c,w) eg(0)de + Y * g(60)de —KY * if g(0)(10 + Kf (s, z, c, w)j, Og(0)c10
A

— h(z,w, c)] + A. [m — n(z,w, c)]

Using integration by parts, the current value Hamiltonian may be written as

eh
	H = A, 0 [ f(s, z, c, w )09 h — G(9)de — K5 G(9)(10) — h( z, c, w)] +	 — n( z, c, w)]

A

Given our assumptions (P1), Ä.0=1, and assuming interior solutions, the sufficient conditions for an optimum

are (Seierstad and Sydsæter,1987)

Due to the assumption of multiplicative uncertainty, the forthcoming analysis also coincides with analysing otitput price
uncertainty.

	Max Ao s

a . [8h	 A

o	 A	 ei

(4)

(5)

(6)
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• = fz (s,z,c,w)Q— hz (z,c,w) — An z (z,c,w) = 0

• = fc (s, z,c,w)Q— hc (z,c,w) — Änc (z,c,w) = 0

II„ = ( s, z, c,w)Q — hm,(z,c,w) — Anw (z,c,w) -= 0
	

(7)

Hs = rA — = f (s, z, c, w)Q ,	 lim s(t)?.. 0,	 lim e'Mt) = 0
t -4e0

Oh 	 A

where Q	 Og(0)de + K f Og(0)c161
	

(8)
A

The first three conditions of (7) describe the optimal paths of the control variables, z, c, and w,

respectively. In optimum, the marginal change in production from an increase in each of the agricultural

activities multiplied by the term Q, subtracting the marginal change in costs associated with the same

increase, is to equal the shadow value of the fertility that is lost (or gained) as a consequence of that

increase. The last condition in (7) describes the optimal path of this shadow value.

It should be noted that all optimality conditions depend on the term Q which may be interpreted as a

correction term. It is through Q that farmers pay attention to the risk they face. The integrals in (8) are

the sum of all outcomes multiplied by their associated probabilities, which matter for a non-shortfall and

a shortfall situation, respectively. After substitution Q can be expressed as

Q 1 — (1— K)G(A)E[010 A]
	

(9)

From (9) it follows that Q is a function of both the probability of shortfalls, the costs that goes with this

state of nature, and the conditional expectation of 13 given a shortfall situation. These are relevant factors

for the decision-maker when evaluating the future threat and costs associated with reducing the

productivity from land. A marginal increase in the fertility loss rate will imply a lower stock of soil

fertility in the future, which again increases the probability of future shortfalls, but also affects the

conditional expectation. It also follows from (9) that a marginal reduction in the stock of soil fertility

(higher A) will always have an unique effect on Q. The value of Q increases if K>l, while in a situation

where a minimum future income is guaranteed, K = 0, Q decreases for a lower stock of soil fertility.

Imposing the stationarity condition (A, = š = 0) and letting tildes denote steady-state values, implies that the

optimality conditions in (7) and (1) must satisfy the follwing four conditions:
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h (Z,E,Vv) 	 (Z , fi") f, (3' , Z, r, IV)
fz(Y 	 = z Q

nc (Z, e,o)f,(Y,z,e,o) =  (z iv) f 	 Z, IT))
(10)

f, 	 Z, 0) n w (Z °Vs (3. , 	_ h.,(z,e,o)

m = n (Z 0)

The left-hand side of each condition is now the marginal benefit associated with increasing an activity,

while the right-hand sides of each condition reflects all marginal costs associated with the same increase.

Our rewriting of the dynamic system, has allowed for the correction term, Q, to occur in one term only,

the input cost term.

If the farmer operates at a level where the minimum subsistence level is never threatened, in the model

interpreted as a situation where the probability of shortfalls in the steady state, G(A)=0, Q will equal

one. Under this assumption it is seen from (10) that the optimal fertility loss decision is unaffected by

climatic uncertainty. If however the fanner faces a positive probability of shortfalls, independent of

whether some kind of assistance is provided or not, the correction term Q will be different from 1. As a

consequence the optimal path of fertility losses will be affected by the presence of climatic uncertainty,

in spite of the risk neutral preferences assumed in this model.

It follows from (10 ) that the effect on the optimal stock of soil fertility, for Q different from 1, can be

analysed as a shift in the cost function in a deterministic version of our model. However, to derive the

saddle path condition for a dynamic system consisting of three decision variables is a tedious and

analytically complex task. In the following we choose to study each decision variable at a time (three

partial models) rather than the general model, when analysing the effect from poverty on the optimal stock

of soil fertility. This approach simplifies the analysis substantially, derives key points more rapidly, and

illuminates key differences between the three agricultural activities, thus creating a better understanding of

the various forces at play. However, the saddle path condition and comparative statics for the general model

is presented in Appendix A and B, respectively.
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4. The role of each agricultural activity
By keeping conservation intensity, ct=c, and overlapping technologies,w t= w, fixed at some level through-

out the planning horizon a unique functional relationship between fertility loss (Xe) and cultivation

intensity ( zt) is obtained. By inverting Xt = n(ze, c, v_y) w.r.t. zt, cultivation intensity becomes a function

of the fertility loss rate;

z, =	 (X„ ça42.) = Z(X)	 (11)

By inserting (11) into both the production function and the cost function presented in the above section,

the following partial model is derived, hereafter denoted the Cultivation model

-

Max [F(St ,	 - C(X,)] e -rt dt
xi 	

o

(12)

s. t. = M - X,	 (13)

where S now denotes the stock of soil fertility, and M the soil regeneration rate. The technological

properties that follow from P 1 for this model are,

F>0, F<0, F>0, C>0.	 (P2)

Similar procedures as above, now keeping zt and wt, and zt and ct, fixed at some level, yield two

additional partial models which will be denoted the Conservation model and the Win-win model,

respectively. As was the case for the Cultivation model, these two models may also be represented by

maximisation problem (12)-(13) 8 . The technology properties which follow from P i for the Conservation

model (P3) and for the Win-win model (P4,) are as follows,

F>0, Fs5<0, Fx>0,Cx<0.	 (P3)

F5>0, Fs5<0, F<0, C<0.	 (P4)

We thus have three different models, each focusing on one side of a farmers' input and farming practice

decisions. In all models, inputs and farming practices are suppressed so that fertility loss (Xe) has be-

come the decision variable. By comparing P2, P3 and P4 it is noted that the assumptions on the cost

function vary across the models. In the Cultivation model the costs increase with Xt, since higher ferti-

lity loss rates imply that more resources are devoted to cultivation activities. In the Conservation model

8 
For notational convenience, the notation is kept similar for the three models throughout the paper.
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and the Win-win model on the other hand, costs decrease with a higher fertility loss rate. Here, a higher

fertility loss rate means less resources devoted to soil conservation and overlapping technologies,

respectively.

The assumptions on the production function also vary across the three partial models. For the

Cultivation model, a higher fertility loss rate increases immediate production due to more intensive

cultivation. For the Conservation model, the same relationship apply but for a different reason; a higher

fertility loss rate now means less resources devoted to soil conservation, so that less productive land is

set aside for conservation practices. In the Win-win model, output decreases with higher fertility losses

since less fertility enhancing inputs are applied.

Applying the same procedures as in the previous section, assuming that the current value Hamiltonian

(V) for problem (12)-(13) is strictly concave in X, and concave in S, , A.0=1, and assuming interior

solutions, the sufficient conditions for optimum are (Seierstad and Sydsæter, 1987) (time references are

in the following omitted)

= Fx(S,X)W - C(X) - 2t, = 0,	 limS(t) 0

vs 	= Fs (S, X)W,	 lim ert 2-(t) = 0

where W	 1 - (1 - K)G(A)E[010 A], and A = 
F(S, X)

If we turn to the steady-state analysis (see App.0 for saddle path equilibrium conditions), letting bars

denote the steady state equilibrium values, the optimality conditions ((14) and (15)) may be expressed in

the following way;

/ —
Fx (S,	

Cx (M)-	 = —Fs (S , M)	 (17)

The reference case where G(A)=0 implying that W equals one, will in the following be denoted -§-1 . This

situation, where the optimal soil conservation decision is unaffected by climatic uncertainty, is already

discussed in the section 3. The following expression may be derived from changes in the cost function

(P)9

9 Where the constant 13 is multiplied to the cost function (and W set equal to one) in order to analyse the effect from poverty on
the optimal soil conservation decision.
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dS 	 Cx(M) 	f> 0 if Cx (M) < 01
-	 D2	 < O f Cx (Ai) >

(18)

where D2 > O is shown to be required for a saddle path equilibrium (see App.C).

Let us first consider the Cultivation model where Cx>0 for the group of farmers facing the most severe

burden of poverty. Here, subsistence is at risk, G(A)>O, and no guaranteed future minimum income is
•■••■■■

assured, K>1. Under these assumptions W is always larger than 1. The marginal cost associated with

more intensive cultivation is now lower than is the situation for the reference case. As a consequence the

incentives for soil conservation have weakened. The optimal steady state stock of soil fertility under this

assumption, S = S2 , will now be lower than -§1 . A farmer operating at the minimum subsistence level

tends to exploit the soil more than a farmer for which subsistence is never threatened. The farmer finds it

optimal to harvest more soil in spite of the future decrease in expected production that arise from such a

behaviour.

Increasing levels of poverty can be interpreted as an increasing probability of shortfall, higher costs

associated with shortfalls, a relatively higher threshold level and higher discount factor. All these factors

describe an environment where the variability in climate is severe, where there are few opportunities of

alternative sources of income in case of shortfalls, and where the household size is relatively large

compared to endowments. The incentives for soil-depletion increase with a higher level of these factors

(see App.C.4-6). Poverty forces the farmer to pay less attention to future benefits that arise from soil

conservation. Farmers are securing their short-term needs at the expense of long-term needs. The

strategy for survival imply resource degradation in this model.

Consider now the same model for farmers which are better off. Now the farmer is assumed to be fully

"insured" in the sense that there are no costs associated with closing the food gap, K = O. The farmer is

guaranteed a future minimum income equal to the threshold value. Under this assumption, the correction

term Tv equals 1-G(A)E(0113<A). As long as the probability of shortfalls is positive, W is less than 1. As

a consequence, the cost term in (17) is now inflated compared to the reference case. Hence, the results

are opposite of the ones arrived at for the "uninsured" farmer. The optimal stock of steady state soil

fertility S = -§3 will be higher than S . The incentives for soil conservation have improved, not because

the farmer has become more aware of the land degradation problem, but because the guarantee of a

future minimum income reduces the incentives to work hard, to apply more effort and inputs into crop

production, and as a by-product fertility loss rates are lower over time. Access to reliable future

assistance in terms of food aid or remittances from migrating household members tends to improve the
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incentives for soil conservation in this model. The results for the Cultivation model may be summarised

as follows; S3 > S1 > S2 .

Let us now turn to the Conservation model to study the consequences of poverty. Since the first

derivative of the cost function with respect to the fertility loss rate is negative rather than positive as was

the case for the Cultivation model, all conclusions will be opposite; "-§2 > S > . The optimal stock of

soil fertility in steady state for a "uninsured" farmer where subsistence is at risk, -§2 , is higher than the

optimal steady state soil fertility for a farmer not operating close to the minimum subsistence level, S.

Both increases in the costs associated with shortfalls and in the threshold value, now improve the

incentives for soil conservation. The only course of action whose effect remains unchanged compared to

the Cultivation model is the one from higher discount rates'''. The threat and costs of shortfalls in this

model induce the farmer to increase his effort into soil conservation activities. The need to avoid

starvation acts here as an incentive to improved soil conservation. The strategy for survival now does not

imply resource degradation, but a improved long-term resource management.

A fully "insured" farmer will also behave opposite of what was the situation in the Cultivation model.

The optimal stock of soil fertility in steady state, S3 , is lower than the fertility stock for the reference

case, -§1 . The incentives for soil conservation have worsened since the decision maker no longer

experiences all future costs associated with soil depletion. The harvesting of soil in a given time period

will only yield a production loss in those future periods where production exceeds the threshold value.

In case of shortfall the farmer will receive Y=Y* independent of his past resource management

decisions. As for the Cultivation model, an "insurance" provides less incentives to apply inputs, which in

this model means less resources devoted to conservation measures. Hence, the fertility loss rate will be

higher over time.

The conclusions from the Win-win model are equal to the ones for the Conservation model since the

first derivative of the cost function is negative for both models. Poor farmers will increase the use of

overlapping technologies compared to the reference case, while an «insured» farmer will reduce the

amount of resources devoted to this activity ( > "-§1 > -§3 ).

In the Cultivation model the fanner faces a trade-off between expected immediate production and

expected future production. As a consequence, the farmer gives priority to short-term benefits at the

1 0 The effect on the stock of soil fertility from an increase in the discount rate within a general framework (two or more control
variables) is analysed by LaFrance (1992), Barrett (1996) and Grepperud (1996). Although the effect in principle can go either
way, smooth functional forms will in general yield a lower steady state fertility stock (Grepperud, 1996). It may be shown that
the same conclusion will apply for the general model presented in this paper.
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expense of long-term benefits when "insurance" is absent. In this model it will always be preferable for

the farmer to delay the costs associated with shortfalls, by conducting intensive cultivation today. Here,

resource degradation is an optimal response to an adverse environment.

When soil conservation inputs and overlapping technologies are considered, the same adverse

environment becomes an incentive for improved resource management. The trade-off between expected

immediate production and expected future production are absent in these models. In fact, the farmer can

increase the expected long-term production without any decrease in expected short-term production, if

overlapping technologies are considered. The option of using such measures means that the farmer has

access to a long term self-insurance device, which enable him to «maximise» the number of periods in

which minimum subsistence needs are fulfilled. For the Cultivation model however, this device is not

present. It is the lack of opportunities which forces the farmer to behave myopically in this model.

If all activities are analysed simultaneously it is not possible to arrive at unique conclusions (see App.

B). There are two main reasons for this conclusion. First, because in a general model several indirect

effects via both the production function, the cost function and the soil loss function, are introduced,

represented by cross partial derivatives of the same functions. To my knowledge the empirical literature

on soils do not provide complete information on such relationships. Even if reasonable assumptions are

made there are still effects which will work in opposition to each other, and the restrictive assumption of

all cross partial derivatives being equal to zero, does not either help us to sign the optimal soil

conservation decision. This brings us to the second reason. The partial direct effect from poverty (via

cultivation intensity) on optimal stock of soil fertility opposes the same effect on the optimal stock of

soil fertility when conservation intensity and overlapping technologies are considered. In order to

determine the sign of the total effect additional assumptions on technology are needed. Thus it remains

unclear whether poverty in this model induces farmers to manage their resources poorly in the long run.

The theoretical analysis suggests that poverty may affect soil conservation decisions in various ways, but

the total effect is indeterminate.

Perrings (1989) and Larson and Bromley (1990) find that poverty leads to land degradation. The reason

for their finding is that their models, similar to the Cultivation model, assume resource depletion to be

production-driven. Perrings assumes that higher activity levels means greater intensity of labour and

more resource depletion. Larson and Bromley study a fallow-rotation system where higher agricultural

production means less area under fallow, hence giving soil less time to regenerate. The only option for

the resource manager seeking to conserve soil is to abstain from some production. Neither analysis

considers the possibility of controlling erosion by planting trees as windshields, constructing terraces,

building waterways, drainage systems and by overlapping technologies. The existence of such measures
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means that there are several and often opposite forces at play both in connection with poverty-related

factors.

Perrings (1989) shows how economies under certain conditions may evolve along an optimal path of

extinction. Such results could well arise in this analysis too. The partial models are for simplistic reasons

analysed in steady state. As a consequence the optimal fertility loss rate will equal the natural rate of soil

fertility regeneration. However, it is easy to identify conditions under which a steady state equilibrium is

no longer attainable for the farmer, meaning the stock of soil fertility is declining over time. All factors

which reduce the optimal stock of soil fertility in a steady state may under certain conditions induce a

rational farmer to mine the soil. For the Cultivation model, such factors are poverty-related; where

subsistence is highly at risk, and shortfalls are associated with high costs. For the Conservation model

and the Win-win model, factors which contribute to high costs in arresting the degradation of land (high

input costs), make an optimal path towards extinction more likely. Fragile soil is one obvious candidate.

Soils which posses different physical and chemical properties that make them less resistant to soil

erosion means more resources are needed to keep the soil loss rate low. Both access to technology and

each farmer's ability to practice effective soil conservation is also crucial. To conclude, a continuing

degradation process of the resource base may very well be part of an optimal strategy for farmers due to

unfavourable climatic conditions, erosion-prone soils or limited access to soil conservation technology,

however some of these factors could induce the farmer to reduce the speed at which land is exploited.

The analysis is done under the assumption of no market for savings. This assumption may be empirically

plausible in view of the fact that such markets are generally missing or incomplete in the poor rural areas

of the Third World, limiting the role of financial assets. However, savings in real assets are more

common, and individual wealth accumulation can take various forms such as food-storage, livestock and

jewellery. In addition both inputs (bullocks and land) and consumption itself (durable consumption

goods) may also act as sources of insurance against risk since such assets can be depleted in case of crop

failure, hence enabling the fanner to better cope with climatic and production fluctuations.

However, extensive stock piling in order to eliminate the possibility of future shortfalls is not realistic

since there are often costs (storage costs and depreciation costs) associated with such activity. In many

cases the stock itself is also vulnerable to climatic changes. Examples here are food-storage and

livestock. There is also a positive probability for a sequence of bad outcomes, which if it occurs, forces

the farmer to rapidly deplete his stock of real assets. As long as stock piling remains an expensive

activity, the farmer is not able to cope fully with the problem of climatic uncertainty, and his optimal

soil conservation decision will be affected. However, the option of stock piling is likely to dampen the

impact on land degradation from poverty identified in each of the partial models.
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5. Conclusion
This paper studies farmers who operate in a risky environment and how poverty influences their soil

conservation decisions in the absence of formal insurance markets. In particular, the analysis considers

farmers which operate close to or at a minimum level of subsistence. Here, farmers are assumed to

experience costs in order to close the food gap in case of shortfalls. These costs are internalised into

their net benefit function from engaging in agricultural production activities. A situation in which the

farmer is assured a minimum future income in case of shortfalls is also considered.

Socially excessive soil depletion has been blamed on external effects from soil erosion, on short

planning horizons, and on high farmer discount rates. This analysis fmds that both poverty and the

existence of informal insurance schemes for farmers operating close to their subsistence requirements

may have the same effect. As long as farmers are exposed to a positive probability of shortfalls

deviations from the social optimal fertility loss path is observed, because of the costs that go with

shortfalls. This matter despite the assumption of risk neutral preferences applied in this analysis.

Three partial models are introduced, each describing one important side of the production behaviour of

third world farmers. One important result is the identification of contradicting effects across the partial

models. The role of the costs associated with soil conservation is the fundamental reason for the

diverging conclusions arrived at in the three partial models. In the Cultivation model, a farmer operating

at or close to the subsistence minimum will deplete the soil more than a farmer for whom subsistence is

never threatened. This model has similarities with Ardila and Innes (1993), Perrings (1989) and Larson

and Bromley (1990) in that soil depletion is output-induced. For the Conservation model the effect on

the soil conservation incentives is exactly the opposite. The threat of shortfalls induces the farmer in this

model to invest more resources in soil conservation. The same conclusion matter for overlapping

technologies.

The results show that the role of poverty in relation to land degradation is complex and that there are

forces at play which work in different directions. Poverty is not necessarily a unidirectional causal factor

to environmental degradation. To be able to predict the effect of poverty on resource management

decisions, substantial empirical evidence is needed, particular on farming practices and input-use and

how their application affects the productivity of the soil asset. The analysis further stresses the

importance of knowledge and the access to effective soil conservation inputs. The knowledge and

presence of such devices can offset malign consequences of poverty and risk in tropical agriculture and

serve as an instrument for long-term self-insurance behaviour. Soil conservation inputs and overlapping

technologies, in contrast to productive inputs, allow farmers to take action to secure both immediate and

future consumption needs.
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Barbier (1990), LaFrance (1992) and Barrett (1996) as well as this study assume soil conservation

efforts to be effective only in the time period in which they are implemented. Grepperud (1996), in

contrast, presents a model where soil conservation measures have lasting effects on the soil base. Such

an approach seems to cover central features of many important conservation measures like terraces,

bunds, ditches and windbreaks. However, Grepperud (1996) finds that the main properties remain

unchanged independent of whether soil conservation measures are analysed as time-limited inputs or as

conservation capital. What is important, and separates them from productive inputs, is that additional

resources are needed to combat soil degradation processes. As a consequence all conclusions arrived at

in this analysis will prevail if analysing conservation measures as the build-up of conservation capital

rather than conservation inputs.

Another conclusion is that if effective insurance markets are not available, and farmers therefore have to

self-insure, one means by which they can do this is through soil conservation measures and overlapping

technologies. However, insurance and social security reforms could not be expected neither to increase

or decrease soil conservation.

For many regions of the Third World, soil conservation activities such as terracing have been a

traditional part of farming practice. For other regions, fallow-cultivation systems are practised. In such

traditional farming systems, soil fertility is maintained by returning cropland to fallowland for a shorter

or longer period of time. More intensive cultivation under this system means less land under fallow (less

soil conservation) and consequently higher fertility losses. The Cultivation model seems to capture the

essential features by which such indigenous farming systems can be characterised. The theoretical

analysis suggests that for fallow-cultivation systems poverty-associated factors tend to strengthen the

incentives for soil-depletion. As a consequence the role of governments may be important in such areas

in informing and encouraging the application of other soil conservation measures, in order to prevent

poor resource management.
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Appendix A:

Necessary and sufficient conditions for a local saddle path equilibrium for problem (4).

In section 3 we showed that the effect from poverty and «insurance» (Q different from 1) on the soil

conservation incentives can be interpreted as a shift in the cost function of a deterministic version of the

model presented in (4). We multilpy the cost function in the deterministic version of the model with a

constant 13, thus the maximisation problem for the household becomes;

Max A. 0 f (s, z, c, w) — fih(z, c, w)]e -rt dt
z,c,w o

s. t.	š = m — n(z, c, w)

A.1

The current value Hamiltonian for this problem is

H = f(s, z, c, w) )612(z, c,w)+ m n(z, c,w)1	 A.2

The optimality conditions for problem A.1 given that the current value Hamiltonian is strictly concave in

z,c, and w, respectively, concave in s, 2t.0 =1, and given the tranversality conditions presented in (7), are

as follows:

Hz = fz (s, z, c, w) — 13h z (z,c,w)— An z (z,c,w)= 0	 A.3

F1c = fc (s, z, e, w) — Pic ( z, c, w) — Anc (z, c,w)= 0	 A.4

Hw = fw (s, z, c,w) — )612w ( z, c,w) — An w (z,c,w)= 0	 A.5

H s = fs (s, z,c,w)= rA,	 A.6

= m — n(z, c, w)	 A.7

One way to derive the saddle path condition for the dynamical system A.3-7 is to solve the system A.3-5

for z, c, and w, simultanously. Hence we arrive at the following three equations

z =	 )3)	 A.8

C = B(s, 2, ß)	 A.9

w = E(s, P)	 A.10

By inserting A.8, A.9 and A.10 into A.6 and A.7, respectively, we arrive at a dynamic system for which

the saddle path condition may be derived. We find that the eigen values that correspond to this system

(evaluated in equilibrium) are real and opposite, if
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—[nzAs +nc l3s +nwEx ] —[nzAx +nc l3a +n

J = <0
	

A.11

—[4,+ fszAs + fscB, + fswEs ] — fszAl — fscBx ]— fs.,D1

Hence the equilibrium is a saddle path if

J =—nz [A,(r— fsc .81 — fs.,Ex )+ (f. + fscB, + fs.,E„)]

—nc [Bs (r— fszAa — fE1 )+131 (fss + fszA, + fsw Es )]

—nw [E,(r— fszAx — fscB1 )+El (fss + fsz As + fscB,)]

Where

=-
1

[—fzs(H„11..
F

= 3-jnz (HccHww

1
Afi =—F-ihz (liccHw.,

= —
1

[H.(ncHww +
F

.13=-
1

[H.(hcilw.,
F
1

Bß =—F-[H.(12cliww +hwlicw )+hz (liczkvw —licwHwz )

1
=— wslicc + fc,H.,c )+H„(fc„Hwz — fwslicz )+ fz,(11czki,c —liccil,vz )]

1
= --F-[H.(nwHcc —ncHwc )— H„(nwilcz —ncilw.z )+nz (1-411.,c Hwz

1
E0 =—F-[H.(11.,1-1cc —hcliwc )—H„(hwlicz —hcliwz )+hz (HczHwc -11)V 11cc )]

and F = H.(1-1ccliww — IlcwHwc )—H„(11„1-1w.,— licwHwz )+Hzw (licz Hwc — liccHwz )

After extensive manipulation A.12 may be rewritten as follows

J =	 <0

— Ilc.,H,vc )+H„(fcs Hww — licwfw,)—H,(fcs Hwc — liccf.,)]

—lic.,H,vc )+H„(n.,Hcw —ncHww )-11„(nwlicc —ncilwc )]

—IlcwH,vc )+12c (hwilcw —hcilw.,)+H,(hcHwc wHcc )]

n,v 1-1cw )+nz (licz H„w — 1-1cwHwz )+ H„(n.,Hcz —nc Hwz )]

+hwlicw )+hz (HczlIww —Hc.,11., ) +Hzw (h.,Hcz —hc H.,z )]

Hz.,(hw Hcz —hcHwz )]

C)]

A.12

A.13
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where

D=nz [Rzs (R„R — Rcw Rwc )— Rzc (Rcs Rww — Rcw Rws )+ R,(Rcs Rwc — R„Rws )1 	 A.14

—nc ERzs (kR„,,„ — Rcw Rwz )— Rzz (Rcs R — Rcw Rws )+ R,(Rcs Rwz — Rcz Rws )1
+ nw [Rzs (kRwz — RR) — Rzz (Rcsk — R„Rws )+ Rzc (Rcs Rwz — Rcz Rws )]

R =. Hz, nz fss 

n f
R, = H 	

R 	cs
ncfss 

Rcz = cz ncfsz 

n f
Rws = Hw., '

nRzc= H zc 	 zfsc 

n fsw:C- kw = II,

Rwc = Hwc

Rwz =

W f1C

nwfsz 

If the Hamiltonian is assumed to be strictly concave in (z,c,w) then F <O. For the saddle path condition

to be fulfilled this imply that D >0.
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Appendix B:

Comparative statics. The effect of poverty on steady state soil fertility.

We want to investigate how a Q different from 1 affects the optimal soil conservation decision.

Imposing the stationary conditions on the problem presented in Appendix A and differentiating the

dynamic system w.r.t s, z, c,w, and p, yields, after some tedious algebra, the following expression for the

impact on steady state soil fertility for a change in 0;

dY 1

dfi
= —

D 
1 [12,(kR., – 	 k(12R – 	 Rzw(h.,Rcc –

– tic [12,(kk, 	 hwkw) + R(hR –hwk)] 	 B.1

+ n if,[11,(1?c,Rw, – R,,Rwz )– R (kR., – 	 )+ R,c (	 –12,,,k)])

All R - terms are defined in Appendix A and we know from the saddle path condition that D >0 (see

App.A).

Applying P1 does not enable us to sign any of R-terms present in the numerator of B.1. If further

assumptions are made, particularly on the cross partial derivatives of the production function, some of

the R-terms become determinate. However, signing all R-terms is not a sufficient condition for reaching

a determinant conclusion w.r.t the effect of poverty on steady state soil fertility. We are still left with

opposing effects in the numerator of B.1. A simplifying assumption is to set all indirect effects equal to

zero (all partial cross derivatives of the production function, the cost function and the fertility loss

function are negligible). Under these assumptions all R-terms with the exception of three, become zero.

The numerator of B.1 can now be written as follows

+ nc hc R.R., + nw hw kl?c,	 B.2

It follows from B.2 that, under the assumptions made, the first term is positive while the next two terms

are negative, since Rcc=Hcc<0 Rww=Hww<0 and R2z=Hzz<0. Thus we have identified three direct effects

which oppose each other in determining the sign of the effect from poverty on the optimal soil

conservation decision. For an explanation of each of these direct effects see section 4.
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Differentiating (17) with respect to 3- , r, K and Y*

_ Fs (g, M)W 
ar	 r2 D2

as -Cx (M)G(A) f> 0 if c < 01

aK	 W D2 	1<0 if Cx >01

< o 	C.4

C.5

Appendix C
Necessary and sufficient conditions for a local saddle path equilibrium for problem (12-13)

By differentiating (14) w.r.t time and inserting (15), yields an expression for dX/dt which together with

(13) define a dynamic system. Under the assumption of all third derivatives being zero, the eigen values

that correspond to this system (evaluated in equilibrium) are real and opposite, if

<o 	C.1

rV. —	
— 1

V.
—Vss 

0
V.

Hence the equilibrium is a saddle point if

rVsx Vss 
< o 	C.2

Vxx

Since the current value Hamiltonian is assumed strictly concave in X, and concave in S, the following

condition must be fulfilled

D27---= Vsx - (//r)Vss > 0	 C.3

1{as cx(m)(i- K)g(A) > 0 if Cx > 0 and K = 0, or Cx < 0 and K > 1
Y*
	 wD2	 <Oif Cx >0andK> 1, or Cx <OandK=0

C.6
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