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Abstract

This paper illustrates an application of Exploratory Data Analysis methods
to inspect, fit and project a time series of age-specific mortality rates. The anal-
ysis centers on Norwegian age-specific mortality rates covering the period 1846-
1988  The main emphasis lies on selecting a simple empirical model facilitating
to extrapolate the time dimension in order to obtain mortality projections. As
three dimensions may underlie the data —age, period and cohort factors--some
attention is devoted to disentangle the relative magnitude of these three sources
of variation. To circumvent the well known identification problem caused by the
trivial relationship period = age + cohort the estimation method used is based
on a weighted iterative procedure along stepwise robust estimation methods.
The analysis shows that, other than the effects of the Spanish influenza in 1918
and the Second World War—which produced cohort traces in the form of selec-
tion and debilitation effects, but subsided by the sixties—no need is apparent to
model cohort effects in the projection. A relatively simple age and period model
is adequate to perform the projection.



1 Introduction

When carrying out population projections distinction is usually made whether the
exercise is meant as a projection or a forecast, the latter implying an element of
prediction while the former simply represents a numerical scenario derived from a
particular set of assumptions. In the analysis undertaken here--restricted to one
population component, mortality—the most simplistic projection perspective is sub-
scribed, crude extrapolation. Although most of the emphasis is focused on how to
facilitate producing a sound extrapolation, no claim is made on the likelihood that the
projected rates would materialize on time. Extrapolation has been—and still is—a
.preferred method for mortality projection, even in models that incorporate covariates
to guide the projection or models based on mortality laws, in a sense encompassing
disease and attrition processes (Manton and Stallard, 1984 and 1988).

A crucial initial question is what to project. Keyfitz (1982) holds the view that ef-
fective mortality forecasting depends on a minimum parameter representation. That
is, the simpler the (parametric) model assumed to represent mortality variation the
easier and the more effective the task. Two extreme cases set limits to the problem:
at one end every single age-specific rate is treated as an independent item subject to
projection, at the other end projecting a single parameter or summary index—say,
life expectancy at birth—assures the projection. No model bounds the age-specific
mortality rates in the former, while a perfect one-parameter model is presumed to
hold in the latter.

Considerable literature exists on assessing the minimum dimensionality of mor-
tality variation. Keyfitz (1982) and Pollard (1987) give detailed reviews of mortality
models with emphasis on their use for population projections. It is generally admit-
ted that no less than eight parameters are required to model effectively the whole
age range of mortality variation by mathematical formula. 1 Heligman and Pollard
(1980), for instance, propose the following eight-parameter model of the probability
of dying at age z:

q/(1 — q.) = A(x+BY D exp{—E[ln(x F)) 2} + GH
 ,

where the first term parametrizes early childhood mortality, the second term takes
account of accident mortality in adolescence, and the last term models senescent
mortality à la Gompertz.

Along the same rationale but modifying slightly the Heligman-Pollard formula,
Rogers (1986) proposes the following eight-parameter model of the death rate:

Az) =	 + 14,4(x) + (x)

1 Since the seminal work of Gomperts in 1825 subsequent attempts to model mortality have been
pursued by Makeham, Thiele, Perks and Barnett, among others. These models fit with varied degree
of success the medium and older segments of observed mortality, but they have proved unsatisfactory
to fit the whole age range.



where
_1 Q1 ; for x 0-

Qr for x > 1

ihit(z) = QA exp{ — [(ln x — ln xA)la] 2}fora 0

tis(x) = Qs exPEz/xs1/{1 + Qs exPEx/xs1).

The three terms represent the effects of infant and childhood (w), early adult
(AA) and senescent (As) mortality risk factors embodied in these ages. The param-
eters Qo and Q of the first term are approximately equal to the infant and child
mortality rates, respectively, and is the speed of decline in the death rate through-
out childhood. The parameters QA, ZA and c of the second term are indicators of the
level, location and spread of mid-life mortality, respectively. Finally, Qs indicates
the level of senescent mortality measured at age zero, and xs is inversely related to
the rate of increase of senescent mortality with age. Compared with the Gompertz
term in the Heligman-Pollard formula, Roger's version uses a model of latent frail
heterogeneity, which 'brings the model closer to the theoretical arguments in favor
of explicitly modelling unobserved heterogeneity in hazard models (Manton, Stallard
and Vaupel, 1986).

At any rate, to project eight parameters is hardly a major improvement over
projecting the eighteen or so classical age groups of an abridged life table. 2 As
an alternative, relational models, although empirically based, are considerably more
parsirbonious. Brass' logit-logit model, for instance, is a linear two-parameter system
(Brass, 1971):

= +
where

Y. logit(1.) = ln [1./(1 — 1.)1

and 1. is the probability survivor function of a life table. 11') is the logit transfor-
mation of a standard life table survivor function 1?). In order to project mortality
(the survivor function in this case), one simply takes 119) al3 the logit of a current
life table and projects a and fi into future time, most likely as an extrapolation of
observed past trends in these two parameters. Projected 1. values are obtained by
inverting the logit. The parameter dimensionality of the projection is thus reduced
to an age-specific standard Irls) and two time series, at and A.

Unfortunately, the above level of simplicity is not good enough in many instances.
Given a standard 1., the two parameters a and /3 in Brass' system determine the
level and the steepness of the 1. curve, but are ineffective to accommodate some
sources of additional variation in the youngest and oldest ages of the life table age

2A clear advantage, however, would be that the parametrized projection would presumably hold
the death rates 'disciplined' by the model. A risk often encountered while extrapolating individual
age-specific rates is to run into unlikely or aberrant age schedules.



range. To overcome this limitation, Zaba (1979) expanded Brass' model to a four-
parameter logit-logit system by making the standard itself a function of two additional
parameters that reflect common patterns of deviation from the basic standard.

In an even more flexible model, Ewbank etal. (1983) propose an alternative
four-parameter model—called adaptive—in which a two-parameter transformation
replaces the logit of the standard:

Y. = a -I- fi T(114 ),

where

T(P;K,Ä) 1 ((221cA)1) 1 1 11P –1(1–[4 121;1PP f} fIrPP -?<°0:55.

When re and A approach zero, T(.) becomes the logit transformation and the
model collapses to Brass' logit-logit system. When either K or )5 are zero the model
becomes a three-parameter system. Thus, for a particular fit the number of parame-
ters required (from two to &Air) remains an empirical question. Extensive fitting with
the adaptive model shows that a wide range of mortality variation can be adequately
fitted with two to three parameters and a suitable standard (Gómez de León, 1982) .

In this contribution we substantiate the view that relational models of dimension-
silty three suffice to fit a time series of age-specific mortality rates when no signifi-
cant cohort effects are present. In addition, we show that, of the three dimensions
required, only one suffices to capture the time-trend effects when the fit is conducted
with a model comprising additive and multiplicative terms. An illustrative mortality
projection is shown based on extrapolating with these principles the time trend that
results from fitting a series of Norwegian mortality rates.

The models used here are first and foremost empirical, in the sense that they do
not stem from theoretical considerations like the arguments behind the mortality law
components in Heligman-Pollard or Roger's models, or the linear logit link in Brass'
relational model. The analytic perspective used is derived rather from Exploratory
Data Analysis with its emphasis on disentangling structure in a data set from recur-
sive model fitting, residual inspection, and model improvement. Section 2 describes
the exploratory models used. Section 3 describes the estimation methods together
with different diagnostic tools and criteria followed for model assessment. Section 4
describes salient traits of the data set: age-specific mortality rates by single year of
age and single calendar years from 1846 to 1988, for each sex. Section 5 shows the
results of alternative fits and the main features of the preferred model. Section 6
illustrates a mortality projection for Norway twenty years from now. Finally, a brief
concluding Discussion closes the paper.
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2 Exploratory Models for Two-Way Tables

A brief clarification of forecasting terminology seems in order before shifting attention
to the models. The data series defines a two-way table yii of mortality rates (or
their transformed values) with the usual row and column subscripts i = 1, , /
and j = 1, , J, where i index age and j index calendar time. Assume we wish
to project a series of vectors yi of age-specific mortality rates to j T J t,
filling the unobserved period t > 1. Clearly, the observations available to base the
projection cover J years. Cohen (1986) calls j = T the target of the projection, j = J'
the launch date, and j = 1 the base date. These dates define three intervals, the
range of the projection (from j = 1 to j = 7 ) , the span (from j 1 to j .1) and
the gap (from j = J to j =T). The span is said to support the gap as extrapolation
is based on the former.

A variety of models can serve to describe the underlying pattern in a two-way
table yij ; from the trivial constant model yi; = r to the singular value decomposition
of y , The models used here are of at most rank two These comprise the following
partial hierarchy:

Simple multiplicative model:

• •
	

hai dti zii 	(1)

where EA; = 1;

Simple Additive Model:

	yij = r + ai+ Ai +
	

(2)

where E	 E Ai = 0;

Concurrent Model:

yii=r+ai+Ai-FicajAi+zii	 (3)

where E	 E Ai = 0;

Additive-plus-Multiplicative Model

!kJ= +ai-FAJ-FAI3j-Fzij
	

(4)

where E	 E Ai 0, E B =

Rows-linear Model:
yi; =r+a.i+MBi+zii
	

(5)
where E = 0, E BI =



Columns-linear Model:

!hi = r + Ai 1- PA Zij 	 (6)

where EA = 0, EBj = 1;

Double Multiplicative Model:

yji = aj Ai +	 xi, 	fl 	 fl 	(7)

where E 4,1.; = E B; = 1, and E AA; = O.

The different models above specify different forms of structural relationship be-
tween the row effects (age effects) and the column effects (period effects) of a data
matrix yip Not all of them, however, are truly structurally independent, as some are
just rewritten forms of others under different data transformations. The equivalence
of the multiplicative and additive models (1) and (2) under the logarithmic transfor-
mation is quite obvious. Another simple power transformation—exploited below in
Section 5—links the additive and concurrent models (2) and (3).

The multiplicative model (1) is so central to demographic analysis that it hardly
needs any comment. It is the simplest proportional hazards model where the rates yo

are the product of a 'standard' age-specific process factor ai and a group-specific risk
factor A. The additive model (2) is the classical no-interaction model in two-way
analysis of variance. The single additive effects ai and Ai represent deviations from
the means of data variation in their respective dimensions i and j, with the matrix
yii centered on r, an overall measure of center.

The concurrent model (3) states that the residuals from the additive model con-
form to the simple linear form z = scaiiii where ic is a single 'interaction term' (itself
a function of the main effects ai and A1). Tukey (1949) proposed and labeled this
model 'one degree of freedom for non-additivity'. The additive-plus-multiplicative
model (4) seeks for multiplicative structure in the residuals zii from the simple ad-
ditive model. It was first proposed by Mandel (1961) as a more general model than
Tukey's concurrent model for non-additivity in two-way analysis of variance. It can
be interpreted as the first principal component from additivity.

When additivity is not tenable and the extra 'one degree of freedom' of the con-
current model does not suffice, an alternative is to introduce a bilinear term for the
rows or the columns, leading to the 1-du's-linear (5) or columns-linear (6) models,
respectively. Finally, the double multiplicative model (7) is equivalent to the two
principal components decomposition of yii, except for the fact that the data matrix
is not mean-corrected as usually required in component analysis. As an extension
of model (1), the double multiplicative model represents a biproportional hazards
model, where the underlying hazards ai and th operate additively. Ai and 13i are the
respective `covariate' effects.



3 Estimation and Criteria for Model Selection

3.1 Fitting procedures

When in a matrix yij (as defined above) the interval widths of both age and period
concord, a third dimension is discernable, that of cohort. Thus, except for refinements
in the classification of data, any two-way table of demographic data congruously
cross classified by age of the individuals and calendar time has the extra dimension
of cohort or generation. This is indeed the case of the Norwegian mortality rates
under analysis here as will become clear in Section 4.

Logically, it is improper to treat age, period and cohort as three distinct dimen-
sions as they are subject to the linear relationship k i + j, where k 1, , K
index cohort, and the other indices stand as before.3 In some instances, however, the
three factors are genuinely of import and one would like to incorporate their relative
effects in a single model. To do so, one faces the well known indeterminacy problem
posed by the redundancy embedded in the linear relationship cited above.

To circumvent this problem we take advantage of the fact that, when modelling
age, period and cohort data with, say, only age and period factors, the effects of the
variable left out from the model should—per force—appear as structured residuals
along the diagonals of the residual matrix. If sufficiently prominent, these effects can
in turn be estimated from the residuals. A convenient fitting strategy seems thus to
resort to robust-resistant estimation methods, which precisely downgrade the weight
of data non conforming to the structure stipulated by the model. We use, with minor
adaptations, the procedures proposed by McNeil (1974) and further expounded and
exemplified by McNeil and Tukey (1975), Breckenridge (1976 and 1983) and Orav
(1977).4

Essentially, two basic estimation modules are necessary to fit the range of models
(1) to (7), one to estimate linear (additive) components, and one to estimate bilinear
(multiplicative) components. Joint linear and bilinear fits can be easily implemented
by appropriately chaining linear and bilinear fits (Gabriel, 1978). For instance, the
additive-plus-multiplicative model can be estimated in a stepwise manner by fitting
first the linear terms r + ai + Ai and then the bilinear term fliBi to the corresponding
residuals. Similarly, the rows-linear model can be estimated by fitting the bilinear
term AB' from the residuals of the linear fit y, = r

sMoreover, age, period and cohort cannot be taken themselves as factors in a strict causal sense.
They merely act as surrogate variables capturing underlying processes that exert their influence along
these three dimensions. Of the three, age is perhaps the only factor exerting a more direct effect (both
as biological ageing and accumulated injury), though tenable only at increasingly older siges.

4A similar perspective to inspect for age, period and cohort effects is used by Wilmoth, 'Vallin and
Caselli (1989), but resorting to least squares as estimation procedure. Their analysis is pursued based
on a model of the form NJ = ai+ + +xi', an extension of the additive-plus-multiplicative
model (5).



The core of the fitting method is an extension to additive and multiplicative fits
of 14-estimates, where the weighting function is Takey's biweight function (Mosteller
and Tukey, 1977, Chapter 10):

Wi = {1 -	 (1, 4)}2 ,	 (8)

with
Ui = — 0)/cS = 4/cS,

where O is the paramter under fit of variate z, c is a resistance leverage constant
(here set equal to 9), and S is the median absolute deviation:

S = med{lzi — med(4)I}

Clearly, since O is implicit in the weights resort must be Made to iteration.

3.2 Diagnostics and assessment of fit

Model selection is based on two criteria: inspection of particular diagnostics, and
assessment of goodness of fit. We pause briefly to describe each succinctly.

3.2.1 Diagnostics

Two models play a central position in screening the pertinence of different fits in the
class (1)—(7), the concurrent model and the double multiplicative model. Takey's
concurrent model (3) essentially states that, under a suitable one-parameter trans-
formation, the data conforms to an additive pattern. Thus, regressing the residuals
xi; of the additive model (2) on aiAj /r (called a diagnostic plot):

zji = k (aiAi /r),

provides a basis for ass'essing the need for the extra parameter tc in (3). For instance,
if the slope k above approaches one, model (3) becomes simply additive under the
logarithmic transformation. In general, a power transformation (yii)P, with p =
1 — kr, can remove the non-additivity of data conforming to (3). Stated otherwise,
a power transformation links models (2) and (3). For the Norwegian data under
analysis below, both male and female diagnostic plots yield slopes k close to one,
which points out the pertinence of the logarithm transformation to enhance additive
structure.5

The double multiplicative model offers in turn a peculiarity. The two sets of
row factors ai and /3i can be taken as I points lei = (tvii ,m) and plotted in a two-
dimensional coordinate system for each i. Similarly Ai and Bi can be viewed as

60ne point worth making here is that the logarithm transformation also enhanced structure  in
models involving additive and multiplicative terms, like the rows-linear and double multiplicative
models.
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ht, =_- (A5 , B1) and plotted as J points in a plane. With a suitable choice of scale, both
plots can be displayed jointly, thus simultaneously exhibiting relationships between
rows and between columns in yip Gabriel (1971) calls this a biplot. Of particular
interest in our context is the fact that the biplot serves also as a graphical inspection
tool to diagnose the pertinence of models (1)—(7) to fit a data matrix. Bradu and
Gabriel (1978), Gabriel (1981), and Cox and Gabriel (1982) give formal arguments
for this use and show illustrative examples. The following diagnostic rules apply:

• When the row and column points are jointly collinear and lie on one single line
the data conforms to the simple multiplicative model.

• When both the row and column points are collinear and form lines at 900 to
each other the indicated model is the simple additive model.

• When both the row and column points are collinear but the angle between their
lines is not 90° the concurrent model is prescribed.

• When only the column points are collinear the rows-linear model is prescribed.

• Finally, when only the row points are collinear the columns-linear model is
indicated.

In Section 5 we make practical use of the biplot diagnostic rules to assist in model
selection.

3.2.2 Goodness-of-fit criteria

We now turn to goodness-of-fit which is usually the primordial criterion for assessment
and selection among alternative models. In the context of resistant fitting, however,
any conventional measure of goodness-of-fit may give the misleading impression of a
poor fit as it picks up large residuals that may have insignificant weight in the fit. In
view of this, two simultaneous approaches are taken to judge residuals: to examine a
number of summary measures of size and dispersion of zii, and to inspect schematic
plots of coded residuals.

In two-way analysis of variance a common measure of goodness-of-fit is the clas-
sical R2, the fraction of the sum of squared variation explained by the fit. A related
but more suitable measure in our context is:

P = (1	 E E Izjil 	) x100,E E lyi; - med{yif }

the percent reduction in total absolute variation achieved by the fit. Although P is
not as sensible as R2 to outliers it still lacks resistance to stray values. We therefore
propose to look also at E	 med{zij}, and spread(zij), the latter defined as the
difference between the middle values of each half of the ordered residuals.

To inspect for normality in the residuals we examine the mid and the pseudo-
standard deviation estimates that result from successively splitting the ordered resid-
uals exactly in half (Velleraan and lioaglin, 1981). For distributions approximately



normal, the mid and standard deviation estimates should be nearly constant at dif-
ferent depths of the data.

Finally, a complementary tool is to inspect visually the matrix of residuals, but
converted into a coded table with codes replacing the cell figures by a character
summarizing their relative position in the distribution of zip This allows for quick
inspection of residual structure. Three levels of codes are retained. These stand
roughly for medium, large and extreme residuals, positive and negative.6 All these
criteria make the core of the analysis of Section 5. Before shifting attention to the
results some general traits of the data are examined first.

4 A Time Series of Mortality Rates

The data under analysis consists of a series of Norwegian annual age-specific mortal-
ity rates for single year of age between 0 and 98, single calendar years between 1846
and 1988, and for each sex. The rates—designated mt (x)—are defined as prospective
rates, that is, coliort-period rates in the Leads diagram. The corresponding prob-
ability is denoted qt (x).7 The series up to 1980 was assembled and analyzed by
Jens-Kristian Borgan (1983). Other than different methods and pursuing different
analytic goals, a difference between the present analysis and Borgan's is that his is
based on five-year cohorts or five-year periods (according to corresponding cohort
or period perspectives) and with the rates smoothed by five-point moving averages.
While inspecting for age, period and cohort effects we have preferred to base our
analysis on the observed rates. The final retained model and the ensuing projection
are based on smoothed rates (as described in Section 5).

Figures 1 to 5 show the recorded time-series values of the probability of death
q(z) at selected ages 0, 1, 5, 10, 25, 35, 55 and 75 (plotted in the logarithmic scale).
To a large extent the graphs speak for themselves and we do not plunge in details in
our description.

Mortality in the youngest age segments q(0) and q(1) (Figure 1) show no appre-
ciable decline during the nineteen century; only after 1900 a decrease is apparent,
particularly noticeable for q(1). The peaks of q(1) in 1848 and 1862 mark epidemic
periods of diphteria and scarlatina, and the two plateaux around 1915 and 1943 at-
test temporary slow downs in the decline. The slight mortality increases after 1980
in both q(0) and q(1) are attributed partly to complications after birth of 'high-risk'
pregnancies that come to term only as the result of increasingly intensive specialized

The ranked codes are: 0, =,—, +, x, s. Unfortunately, the sise of the coded tables overflow the
regular paper sise and, for this reason, they are not presented except for Figure 9 retained u the sole
illustration shown.

7I1k Lexis diagram terminology me (x) designates mit) [Li') 4t+1)1/1. which can be viewed as
mortality centered at exact age one. This convention is retained for all ages except for me (0), which
corresponds to exposure from birth to the end of year t. The conventional formula q. 2m./(2 + nu)
is used to convert rates into probabilities for 1. qo = 1 — L0/10 = 2m0/(4 +
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Figure 1: Probabilities of Death 00) and q(5) for Males and Females 1846-4988
0

0
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medical measures during the late stage of gestation and at delivery. Mortality at ages
five and ten (Figure 2) follow a similar but more gradual decline. The 1848 and 1862
diphtheria periods are also evident at these two ages, plus two eye-catching spikes
protruding at 1918-19 and 1943, the marks of the influenza pandemic—the 'Spanish
flu'—and the Second World War occupation.

Mortality at age 25 (Figure 3) shows a peculiar increase from 1846 to 1895 (slightly
more salient for men), followed by a decline perturbed quite overwhelmingly by the
Spanish flu and the War. The 1918 peak is equally prominent for the two sexes while
mortality during the War is overwhelmingly higher for males8 than for females. Also
noteworthy is that the so prominent mortality gap between the sexes prior to 1918
almost vanishes during the decline, but it reappears and increases after 1950 as the
male decline slows down and arrests earlier than the female decline.

Mortality at age 35 (Figure 4) remains approximately constant until 1890, fol-
lowed by a tenuous decline until the 1918 epidemic. Very conspicuous at this age
is the absence all along the 19th century—and well until 1910—of the characteristic
male mortality disadvantage. Indeed, for some relatively sustained periods, female
mortality surpasses male mortality. This feature plainly reflects the high levels of
maternal mortality prevailing during the 19th century.

At ages 55 and 75 (Figure 5) several features compel notice. Most remarkable is
the absence of traces of the 1918 and 1940 mortality crises. Clearly, whatever the

3The beginning of the War in 1940 shows a clear mark in this age group.

11



Figure 2: Probabilities of Death q(5) and q(10 for Males and Females 1846-1988
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Figure 3: Probability of Death q(25) for Males and Females, 1846-1988
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Figure 4: Probability of Death q(35) for Males and Females, 1846-1988
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Figure 5: Probabilities of Death q(55) and q(75) for Males and Females 1846-1988
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Figure 6: Age and Sex Profile of Excess Crisis Mortality: 1818
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etiology of the Spanish flu and the Second World War, the onslaught of these nocuous
events hit selectively by age, sparing persons of 55 years and over. Related to this
is the nearly linear trend of the graphs until 1940, to the point of almost effacing
the logistic shape common in the other figures. At younger ages, the Spanish flu
and the Second World War 'hastened' the mortality declines already in course before
1918 and during 1920-1940. In contrast, at ages largely spared by these events, the
pace of the decline is rather gradual and steady. Finally, after a trend in which
the relative disadvantage of males seems constant or slightly narrowing the sex gap,
the male decline abruptly arrests after the War. During the fifties and sixties even
mortality increases occurred for males at ages higher than 55. Only after 1970 a
tenuous reversal of this tendency is noticeable.

In sum, it is clear from Figures 1 to 5 that the 'mortality transition' in Norway
is the result of a number of complex processes affecting the decline in a marked
differential way by age and sex. In general, all the age-specific probabilities decrease,
but they do so in quite discrepant and some times unsystematic manners. Particularly
salient is the disrupting effect of the two major 'shocks' noticed, the pandemic flu of
1918 and the Second World War. To appreciate the age and sex selectivity of these
two onslaughts, Figures 6 and 7 show ratios of 'crisis' versus 'normal' probabilities
of death q(z).9 It is apparent that the flu epidemic hit predominantly young and
young adults (ages 15 to 40) with no trace of sex differential effects, while the Second
World War hit predominantly young adult males (aged 20 to 30) and children in

DThe 'normal' probabilities of death are the average q. values for the years 1914-1917 in Figure 6,
and 1937-1939 in Figure 7. The corresponding 'crisis' years are 1818 and 1940-1942.

14



1000 10 20 30 40 50 60 70 80 90

Figure 7: Age and Sex Profile of Excess Crisis Mortality: 1940-1942

school ages. In both cases the impacts are restricted to the population under age
50.

The magnitude of these two 'crises and their marked age and sex differentials
lead us to suspect that some cohort traces—in the form of selection or debilitation
effects—may be of no negligible importance in a thorough account of mortality by age
and period. A simultaneous inspection of age, period and cohort effects is, thence,
called for.

5 Model Selection and Major Results

To facilitate our review of the , findings we decided, for reasons that should become
clear shortly, to split the material into three: results based on the span 1881-1988, re-
sults based on the middle span 1918-1956, and results based on the more recent span
1965-1988. We draw only briefly upon the results of the first since, comparatively,
the latter two yield more relevant information for the purposes of this exercise.

5.1 The span 1881-1988

Figure 8 shows the time trend vectors Ai and Bi that result from fitting the double
multiplicative model yii = ajAi +ß,B, to the respective male and female matrices of
age-specific mortality rates over the period 1881-1988. 1° The fit is rather satisfactory

1°In line with their diagnostic properties, the additive and double multiplicative models were fitted
first in our analytic strategy. Results of the additive model are omitted, however, as they only point
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Figure 8: Male and Female Time Trend Parameters Ai and Bi of the Double Multi-
plicative Model, 1881-1988.
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for each sex: the goodness-of-fit statistic P is 92.5 percent for males and 91.6 percent
for females, the residuals are fairly Gaussian hi both cases, and no trace is apparent
of a grossly ill-specified model. We concentrate first on A; , which summarizes the
time trends referred to above.

The upward slopes indicate fairly parallel decreasing mortality for the two sexes
until 1918. After the Spanish flu and up to 1940, the female gradient is only slightly
higher than the male gradient. Then, after the War, it becomes much steeper, notably
between 1945 and 1955. Thereafter, an almost linear trend follows for each sex, with
females gaining ground more rapidly than males . 11 The crisis years of 1918 and
1940-44 (visible here as notches) are highly prominent. In Figure 8, the flu and
the war appear—more clearly so than in Figures 1 to 5—as events that catapult
the decline after their respective impacts. This evokes immediately the plausibility
of selection mechanism, most certainly combined with gains in sociomedical and
sanitary progress.

Now, the vector Bi (first differences from Ai after controlling for aiAi), besides
being almost indistinguishable for each sex until 1965, clearly is of considerably lower
magnitude than Ai . In addition, it shows a slope not substantially different from zero.
All these features stand out suggestively as a hint to the possibility of collapsing
the time trend 'sufficient statistics' of the model into only one vector—a slightly
modified Ai—by forcing Bi to become zero. The result will be a most desirable one
to simplify to the minimum the task of extrapolation by having merely to project a
single parameter. This point is returned to in subsection 5.3. Before that, we turn
briefly to inspect the residuals of the double multiplicative model.

Figure 9 shows a segment of the table of coded residuals of model (7) fitted
to the male rates over the span 1881-1988. The selected segment goes from 1915
to 1960 and shows what seems an instance of cohort effects: a corridor of positive
residuals for a group of about ten cohorts, aged 12 to 20 years in 1918 and 34 to 42
in 1940. The trace is noticeable only after 1918 and runs—though gradually fading
out—until shortly after the end of the War. They seem to be the product of the
influenza epidemic. In a less striking manner but still eye-catching enough, a cloud
of negative residuals stretch along the cohorts under 5 years of age in 1918 and those
born shortly after 12 In view of this evidence one is left with the riddle whether
the Spanish flu produced selection effects for the cohorts hit at young ages while it
produced debilitation effects on the cohorts aged, say, 10 to 20 years in 1918.. To
belabor this question exceeds the purpose of this piper, but we take brief pause to

out the pertinence of the logarithm trandormation to enhance structure in the data. Thence, except
otherwise stated, in all references to yii the transformation yii in me (x) is assumed, holding z = i
and t = j.

11Further down in Section 5.3 we delve somewhat more deeply into the finer details of the trends
in recent years.

12These two features are also noticeable in female cohorts, notably the cloud of positive longitudinal
residuals between 1918 and 1940.
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Figure 9: Coded Table of Residuals, Double Multiplicative Model, Males, 1881-1988.
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Figure 10: Cohort Effects from the Double Multiplicative Model, Males, Selected
Cohorts Born 1883-1950.
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examine somewhat closer the cohort traces.

5.2 The span 1918-1956

Figure 10 shows the cohort effects resulting from the residuals of the double multi-
plicative modell3 when fitted to the male rates in the span 1917-1956, restricted to
ages up to 60 years. In all 100 cohorts cross the rectangle, but some are observed only
at a few years. The graph shows a selection running from the 1883 cohort (observed
26 years between ages 35 to 60) to the 1950 cohort (observed 7 years from birth). Only
the central cohorts in the graph—those born between 1896 and 1918—are observed
for the same number and range of ages (from birth to age 60).

It seems apparent indeed that some groups of cohorts have high or low relative
mortality among the cohorts shown. We notice immediately the group of cohorts
singled out before in Figure 9. It comprises the generations 1898-1906, the adoles-
cent cohorts in 1918.14 According to Figure 10, the conjecture of the Spanish flu

"These are location M-estimates of the diagonal vectors of the matrix of residuals xi'. They measure
higher or lower mortality between cohorts in relative terms, as they are constrained to sum zero.

"One is tempted to call these debilitation effects from the Spanish flu but, without a clear- under-
standing of the nature of the mechanisms involved, it is adventurous to attribute them directly to any
particular form of determinacy. A late wave of emigration that peaked in 1923 further complicates
the issue, as most probably migration introduced additional selection, in itself dependent on the ef-
fects of the Spanish fiu. Curiously enough, Wilmoth et.al. (1989) identify excess mortality in Nance
for practically the same male cohorts (1894-1904) but they attribute this phenomenon to long term
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introducing selection effects in the young cohorts alive in 1918 seems not tenable.
In turn, the low mortality of the cohorts 1923-1927 is somewhat puzzling. A de-
tailed inspection of these residuals along age confirms that the cohort effect is driven
preeminently by low mortality at ages under five. Thus, a direction to look at for
possible explanations can be to study parental changes after the flu that may have
resulted in less frail birth cohorts. To account for the cohort -effects certainly requires
further scrutiny. Without supplemental information it is hard to depart here from
mere speculation.

Now, perhaps not too much should be read into the results of Figure 10. The
excess mortality of the cohorts born under the War, for instance, is based on cohorts
observed only during a few young ages, at which, in fact, higher relative mortality
is apparent. This cohort trait disappears when the cohort is observed for a longer
period. Similarly, the high mortality of the adolescent cohorts in 1918 is the result
of high mortality between 1918 and 1940, but, afterwards, this relative excess dwin-
dles down without any noticeable compensation to balance the sign. 16 At any rate,
drawing upon the arguments above and our discussion of Figure 10, one conclusion
seems to stand sufficiently firm for the purpose of mortality projection: by 1988—
the launch date of the projection—the cohort effects alluded to before have by then
disappeared. It seems safe, therefore, to completely dispense with modelling cohort
effects when carrying out the projection.

5.3 The span 1965-1988

In Figure 8, starting about 1965, a nearly linear trend was noticed in the time pa-
rameters Ai and 131 for both sexes. Based on this finding, we concentrate the rest
of our analysis on the span 1965-1988. The trend after 1965 appears to be the sta-
bilization of gradual mortality changes after the war. It seems thus a convenient
choice to base the projection on this recent span. At the same time, drawing from
the results of subsection 5.2 above (in the sense that cohort effects are indiscernible
after the fifties) the rest of our analysis is based on two major modifications of the
procedures used so far: first, the data were smoothed to remove random variation in
the age-specific rates16 ; second, the resistance leverage constant c in equation (8) was
set to c = 100, to bring the parameter estimates close to least squares estimates. Not
having to concern about cohort effects these changes seem a sensible way to proceed.

Tables 1 and 2 show some goodness-of-fit measures from fitting the double multi-
plicative model to the respective series of male and female age-specific mortality rates

effects of the Second World War instead of the flu.
16In addition, the overall magnitude of the cohort effects—the abscissa values in Figure 10—is of

no prominent importance when compared to the age and period effects. We show in short values of
ai, ßj, Ai and By that allow comparison.

16The procedure 4253E11(twice) proposed by Velleman and Hoaglin (1981, Chapter 6) was used. It
smooths by repeated running medians of 2, 3, 5, 3; smooths the end points and finally smooths by
„anfing.
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Table 1: Goodness-of-Fit Measures, Double Multiplicative Model, Males, 1965-1988
% Reduction in Var 96.847
LS-Goodness of fit 99.979
Letter-Value Display

	

Lower 	 Upper 	 Mid 	 Gaussian shape
-0.033 	 0.036 	 0.001 	 0.051
-0.069 	 0.073 	 ,0.002 	 0.062

	

-0.112 	 0.110 	 -0.001 	 0.072
-0.159 	 0.144 	 -0.007 	 0.081

	

-0.207 	 0.181 	 -0.013 	 0.090

	

-0.282 	 0.231 	 -0.025 	 0.106
-0.370 	 0.290 	 -0.040 	 0.124
-0.432 	 0.364 	 -0.034 	 0.138
-0.487 	 0.396 	 -0.046 	 0.143

	

-0.517 	 0.424 	 -0.046 	 0.143

	

-0.566 	 0.461 	 -0.052 	 0.147

	Median	 0.002
	Spread	 1.027

SADMed 3697.190

	

Sum:z: 	 116.591

	

Sum:w.z: 	 116.080

during the period 1965-1988. In both cases, the proportion of variance explained
by the model indicates a very good fit: P. = 96.8 percent and 1)1 = 95.4 percent,
for males and females, respectively.17 The residuals are fairly concentrated and show
practically Gaussian shape. The resulting parameter estimates ai, Pi, Ai and Bi are
displayed jointly as biplots in Figures 11 and 12.

The most prominent feature in the graphs is the striking collinearity of the column
markers, which unmistakably suggest the pertinence of the rows-linear model

yij T ai+ By + zaj,

according to the biplot diagnostic rules. This is confirmed in addition by Figure 13
where the time trend parameters Ai and Bj clearly suggest that one of the parame-
ters, Ai , can be reduced to a constant. Before shifting to the rows-linear model we
examine briefly some of the results from the double multiplicative model.

A number of issues attract attention in Figure 13. Particularly salient is the fact
that the male and female trend parameters share approximately the same slopes for
both Ai and Bp The gap difference hi the A's captures, to some extent at least,
the different mortality 'levels' between the sexes. More puzzling appears the fact
that the male and female B's run virtually on top of each other when we know
that gains in life expectancy at birth have been higher for females than for males

17The accompanying least squares goodness-of-fit measures R2 indicate a virtually perfect fit. These
high values are not unusual when fitting data characterised by a very high degree of structure, like
the mortality rates under analysis here. Hobcraft and Gilks (1984) obtain comparable results from
fitting a tune series of Swedish mortality rates.
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Table 2: Goodness-of-Fit Measures, Double Multiplicative Model Females,
1965-1988

% Reduction in Var 95.426
LS-Goodness of fit 99.962
Letter-Value Display

	

Lower 	 Upper 	 Mid
	-0.051	 0.056 	 0.003

	

-0:114 	 0.112 	 -0.001
-0.184 	 0.170 	 -0.007
-0.246 	 0.219 	 -0.014
-0.303 	 0.308 	 0.002
-0.349 	 0.388 	 0.020
-0.510 	 0.445 	 -0.033
-0.547 	 0.473 	 -0.037
-0.639 	 0.555 	 -0.042
-0.705 	 0.594 	 -0.055
-0.713 	 0.614 	 -0.050

	Median	 0.003
	Spread	 1.327

SADMed 3933.779

	

Sum:z: 	 179.917
Sum:w.z: 179.277

Gaussian shape
0.079
0.099
0.116
0.125
0.142
0.152
0.180
0.177
0.193
0.197
0.190

Figure 11: Biplot Display of the Row (ai,/3i) and Column
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Figure 12: Biplot Display of the Row (ai , A) and Column A1 131 Parameters of the
Double Multiplicative Model, Females, 1965-1988

co

during the period. The answer lies in looking at Bj in conjunction with A, as we
demonstrate in short. But here it is convenient to inspect the extent of linearity
in B,—the parameter to extrapolate when carrying out the projection—benefiting
from the higher resolution of Figure 13 compared to Figure 8. For males, the Bj

values seem to follow a fairly linear trend over the whole span except after 1986.
For females, a slightly kinked line seems to divide the span into two segments, one
from 1965 to 1976, and the other from 1976 to 1988, though the second is hard to
determine as marIced faltering obliterate the trend. At any rate, looking at the two
lines together it i clearly possible to discern a common trend which seems roughly
captured by a straight line.

Figure 14 shows the corresponding age parameters a i and ß of the fit. The
a's do not need any comment: they represent the underlying age-specific hazard
rates for each sex. They conform to the expected profile of differential mortality by
age and sex. The two curves are somewhat brought together by the fact that the
A's standardize for overall sex differentials in mortality, as indicated before. The (I's
represent a pattern of first differences from the a's, that is, they constitute a schedule
of age-specific mortality variation across the period Further down we elaborate  m
more detail the interpretation of a One point worth making at this stage, however,
is that the slight male and female differences in ai noticeable in Figure 14 is what
accounts for the fact that the respective trend parameters Bi m Figure 13 show no
marked difference for each sex. In other terms, the P's take into account age- and
sex-specific differences that bring the sex trends close to each other.
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Table 3: Goodness-of-Fit Measures, Rows-linear Model, Males 1965-1988

Var 96.745
lue Display

% Redn in
Letter-Va

Lower
- 0.037
-0.074
- 0.116
- 0.161
-0.222
-0.281
- 0.379
-0.422
- 0.460
-0.537
- 0.564

Upper
0.032
0.073
0.117
0.151
0.188
0.244
0.287
0.348
0.386
0.422
0.476

Mid
-0.002
-0.000
0.001

-0.005
-0.017
-0.019
-0.046
-0.037
-0.037
-0.058
-0.044

Gaussian shape
0.052
0.064
0.076
0.084
0.095
0.109
0.125
0.134
0.137
0.145
0.149

	Median	 -0.003

	

Spread	 1.040
SADMed 3697.190
Sum:z: 120.346

	

Sum:w.z: 	 119.818

We now turn to the model diagnosed by the biplot: the rows-linear model. Tables
3 and 4 show the respective male and female measures of goodness-of-fit. Compared
with the corresponding values for the double multiplicative model, the rows-linear
fit is hardly an inferior one, despite the fact that the degrees of freedom went up by
23. The proportion of variance explained by the fit is virtually the same (P. 96.7
and Pf = 95.3) as well as the spread and the distribution of the residuals. This
comes as no surprise after the structure revealed by the biplot. Thus, Tables 3 and
4 corroborate that the rows -linear model captures sufficiently well, with one single
term, Bi , the age and period mortality variation displayed by the data. The rest of
our analysis exploits the results of this 'preferred' model.

Let us concentrate first on the time trend Bi. Figure 15 shows the corresponding
estimated values for males and females, which, with minor differences, seem like a
replica of Figure 13. Here it seems somewhat clearer that a straight line captures the
trend for males from 1968 to 1988. For females the situation is less clear as it see=
that a new pace in the trend sets in starting about 1980. At any rate, the two trends
run fairly parallel to each other. A resistant regression through the span 1965-1988
yields a common slope equal to b -0.03.

The corresponding male and female ai and A parameters are shown in Figure
16. The a's hardly need any comment: they reflect the average (across time) male
and female age-specific mortality rates adjusted from their respective overall means,

= -5.232 and rf = -5.909. Similarly to the double multiplicative results, the
rows-linear ai schedules conform to the characteristic outline of mortality differentials
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• Table 4: Goodness-of-Fit Measures, Rows-linear Model, Females, 19654988

% Redn in Var 95.312
Letter-Value Display

Lower
- 0.059
- 0.112
- 0.187
-0.259
-0.312
-0.408
-0.516
-0.620
-0.723
-0.763
-0.794

Upper
0.051
0.113
0.171
0.233
0.321
0.383
0.449
0.494
0.508
0.543
0.588

Mid
-0.004
0.001

-0.008
-0.013
0.005

-0.013
-0.033
-0.063
-0.107
-0.110
-0.103

Gaussian shape
0.081
0.098
0.117
0.132
0.147
0.164
0.181
0.193
O.199
0.198
O.198

Median 	 -0.005
Spread 	 1.382
SADMed 3933.779
Sum:z: 184.429

Sum:w.z: 183.692

Figure 15: Trend Parameter 131 of the Rows-linear Model, Males and Females,
1965-1988

••■
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ai and A of the Rows-linear Model Males and Females,Figure 16: Age Parameters
1965-1988

o
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by age and sex. 18 In contrast, the P's show a somewhat haphazard behavior around
a pattern that, at first sight, does not lend itself easily to interpretation. To clarify
their meaning it is useful to rewrite the rows-linear model as a special case of the
additive-plus-multiplicative model:

Yij = + + + (fii — 1)Bi + zii

where the (A — 1) stand as regression coefficients of the rows residuals z from the
additive model onto Bi. It becomes clear, then, that the P's represent a pattern of
first order deviations from the standard ai , where the deviations are quantified as
slopes (ß,-1) vis-à-vis Bi. The negative ß values for males at ages 18-24, for instance,
indicate relative mortality deterioration in that age segment (attributed to increased
fatal motor vehicle accidents). The !Ts in Figure 16 delineate thus sex differentials
in the age-specific pattern of mortality change during the span 1965-1988.

6 An Illustrative Mortality Projection

In what follows we show a tentative projection of age- and sex-specific mortality rates
for Norway to the year 2010. We consider the results of our exercise illustrative only,
as eventually more judicious refinements are necessary to claim a realistic forecast.

18Compared to Figure 14, the male and female ai in Figure 16 are 'brought together' as the rows-
linear model adjust the a's from their respective means, r,„ and ri.
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The gist of the projection rests on extrapolating the male and female trend values
Bi , holding constant the age standard ai and the schedule of deviations ß, Several
more or less complicated projection alternatives are open. We use here perhåps
the simplest: a (robust) linear regression extrapolation based on the whole span
1965-1988. In Section 5 we deemed the Bi trends linear enough while eye-inspecting
Figure 15. This is largely confirmed by the regression, where only a few points receive
slightly reduced weights. The projection simplifies then to extrapolate into the gap
the linear trend of the 131. As noted before, despite the fact that the models were
estimated separately for males and females, the secular trend for each sex seems well
represented by a common slope.

Before looking at the results, a minor adjustment needs to be described. In
order to free the projection from the deviating male mortality around age 20—as it
is unlikely that this injurious element will remain unchecked—, the corresponding
Pi values were adjusted to muffle out any mortality deterioration. 19 Other than
the mere extrapolation of the estimated patterns, this is the only adjustment that
seemed pertinent. Figures 17 and 18 show the projected rates—five years apart and
for males and females, respectively—reported in a special fashion: as proportional
differences from the 1980 rates.2° On the whole, the resulting graphs merely spell out
perfunctorily what expected. For males, mortality rates decline ostensibly at ages
between 3 to 17, and between 30 to 50 years.' Females show declines just as large
as males in the school ages (if not slightly larger), and more marked declines than
males at ages over 55. Centered at age 31, a curious 'hindrance' thwarts somewhat the
female decline in the young adult ages. In the absence of any satisfactory explanation
for this fact, it is taken as a peculiarity of the data.

Figure 19 shows the projection in .terms of the more familiar life expectancy at
birth. Here again the pattern is just the mere confirmation of what expected: a
gradual progression of the observed trend in the past. The target eo is 74.62 for
males and 81.82 for females. These represent respective life expectancy increases of
1.6 and 2.2 years from the launch year 1988. Clearly, tli'e projection could have been
extended beyond the year 2010 along the same principles, or modifying the slope or
the shape of the Bi trends, as judged pertinent. In this illustration, rather than to
focus on the plausibility of particular mortality projections, we point out the merits
of the proposed method.

19The adjustment consist of smoothing the /3's around age 20 in order to impede negative values to
occur. Altogether, the adjustment is rather minor.

20The baseline rates are the 1980 rates obtained from the linear fit to the I31 and the ai and A
parameters. In all, 30 yews of mortality are reconstructed, but only the last 20 represent projected
mortality proper.

21Male mortality around ages 18 to 25 is checked from deterioration, as explained above.
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7 Discussion

To conclude, we recapitulate succinctly the most salient result in this exercise. We
give convincing evidence that a relational model of the form

ln ti(x) = r a(x) + B •

accomplishes adequately the task of fitting a large time series of age-specific mortality
rates. The age standards a(x) and 0(x) represent, respectively, a baseline hazard
function and a pattern of common deviations from the basic standard. The constant
r is an overall scaling factor (that can be subsumed in the a's) and B is a parameter
indicating a certain degree of deviation from the baseline hazard. The model is
empirical in the sense model life tables are. One of its advantages is that it facilitates
mortality projection by extrapolation of the sole parameter B.

The proposed model, though justified and derived along Exploratory Data Analy-
sis coniiderations, is closely akin to relational models of extensive use in demography.
Coale's marital fertility model is a good example (Coale, 1971). In Coale's model
age-specific . marital fertility is expressed as:

ln f (a) = ln M • n(a) m • t.) (a),

where n(a) is a 'natural' marital fertility standard, v(a) is a schedule of common
departures from the standard (interpreted to reflect the age pattern of conscious
behavior to control fertility), M is a scale factor, and m is a parameter reflecting the
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extent of fertility control (as a factor of v(a)). The structural form of Coale's model
is virtually that of the relational model above.

Similarly, Brass (1977) and Zaba (1979) constitute examples of mortality models
based on a 'standard and a pattern of deviations from the standard These models,
however, require four parameters—plus the standard—for every fit. In compari-
son, the relational model used here is essentially a one parameter model--plus two
standards 22

Clearly a number of issues require further comment in our exercise. Other than
the extrapolation of the time trend itself, perhaps the strongest assumption in the
projection is whether the standards ai and ß, serve to project the age trajectories
into the future. We feel confident that, as the span 1965-1988 reflects the steady and
gradual change that characterize recent mortality improvements in Norway, to base
these schedules on this period is as reasonable a choice can be. However, how far
ahead into the future one can reasonable 'stretch' ai and pi (holding them constant
while Bi 'drives' the projection), remains still an empirical question.

Also, a more refined method could have been used to project the trend parameter
Keeping things simple, logistic extrapolation seems a good alternative. This

choice, however, bears essentially on the 'philosophy' of the projection. That is, on
whether one holds the view that mortality reductions should slow down gradually in
the future, or they may continue to decrease steadily at about the observed pace in
the span. Observing the fact that, in general, mortality reductions have been sys-
tematically underestimated by population projections in the past, no major blunder
seems to lurk in the latter view, particularly if the target lies in the not so distant
future (see Vallin, 1989).

221t is worth observing that the dimensionality of the rows-linear fit (two age standards plus a
trend vector) is the same as Brass' logit-logit model (one age standard plus two trend vectors). Brass'
original model is somewhat inflexible, however, and the rows-linear model proves superior for the same
number of parameters.

31



References:

Borgan, J.K. (1983). Cohort mortality in Norway. Central Bureau of Statistics
of Norway, Oslo, Report 83/28.

Bradu, D. and Gabriel, K.R. (1978). The biplot as a diagnostic tool for models
of two-way tables. Technometrica, 20(1): 47-68.

Brass, W. (1971). On the scale of mortality; in Brass, W. (Ed.) Biological Aspects
of Demography. London: Taylor and Francis.

Brass, W. (1977). Notes on empirical mortality models. Population Bulletin of
the United Nations, 9: 38-42.

Breckenridge, M.B. (1976). Time series model of age-specific fertility: an appli-
cation of exploratory data analysis. Ph.D. Dissertation, Department of Sociol-
ogy. Princeton University, Princeton, New Jersey.

Breckenridge, M.B. (1983). Time, Age and Fertility: Applications of Exploratory
Data Analysis. New York: Academic Press.

Coale, A.J. (1971). Age patterns of marriage. Population Studies, 25: 193-214.

Cohen, J.E. (1986). Population forecasts and confidence intervals for Sweden: a
comparison of model-based and empirical approaches. Demography, 23:105-
126.

Cox, Ch. and Gabriel, K.R. (1082). Some comparisons of biplot display and
pencil-and-paper exploratory data analysis methods; in Launer, ILL. and Siegel,
A.F. (Eds.) Modern Data Analysis. New York: Academic Press.

Ewbank, D., Gómez de León, J. and Stoto, M. (1983) A reducible four-parametez
system of model life tables. Population Studies, 37: 105-127.

Gabriel, K.R. (1971). The biplot graphic display of matrices with application to
principal component analysis. Biometrica, 58(3): 453-467.

Gabriel, K.R. (1978). Least squares approximation of matrices by additive and
multiplicative models. Journal of the Royal Statistical Society, Series B 40(2):
186-196.

Gabriel, K.R. (1980). Biplot; in Johnson, N.L. and Kotz, S. (Eds.) Encyclopedia
of Statistical Sciences. New York: John Wiley.

Gabriel, K.R. (1981). Biplot display of multivariate matrices for inspection of
data and diagnosis; in Barnet, V. (Ed.) Interpreting Multivariate Data. New
York: John Wiley.

32



Gómez de León, J. (1982). Relational models of mortality: new developments
and applications. Sc .D. Dissertation. Department of Population Sciences. Har-
vard University, Cambridge, Massachusetts.

Helignian, L. and Pollard, J.H. (1980). The age pattern of mortality. Journal
of the Institute of Actuaries, 107: 49-80.

Hobcraft, J. and Gilks, W. (1984). Age, period and cohort analysis in mortal-
ity studies; in Vallin, J., Pollard, J.H. and Heligman, L. (Eds.) Methodologies
for the collection and analysis of mortality data. Liege: Ordina.

Keyfitz, N. (1982). Choice of function for mortality analysis: effective forecast-
ing depends on a minimum parameter representation. Theoretical Population
Biology, 21(3): 329-352.

Mandel, J. (1961). Non-additivity in two-way analysis of variance. Journal of the
American Statistical Association, 56: 878-888.

Manton, K.G. and Stallard, E. (1984). Recent Trends in Mortality Analysis. New
York: Academic Press.

Manton, K.G. and Stallard, E. (1988). Chronic Disease Modelling: Measure-
ment and Evaluation of the Risks of Chronic Disease Processes. London: Grif-
fin.

Manton, K.G., Stallard, E. and Vaupel, J.W. (1986). Alternative models for
the heterogeneity of mortality risks among the aged. Journal of the American
Statistical Association, 81: 635-644.

McNeil, D.R. (1974). Fitting models to two-way tables, Technical Report 55, De-,

partme.nt of .Statistics, Princeton University, Princeton, New Jersey.

McNeil, D.R. and Tukey, J.W. (1974). Higher-order diagnosis of two-way ta-
bles illustrated on two sets of demographic empirical distributions. Biometrics,
31: 487-510:

Mosteller, F. and Tukey, J.W. (1977). Data Analysis and Regression: a Second
Course in Statistics. Reading: Addison-Wesley4

Orav, Ea. (1977). An expanded exploratory data analysis study of age-specific
fertility. Senior Thesis. Department of Mathematics, Princeton University,
Princeton, New Jersey.

Pollard, J.H. (1987). Projection of age-specific mortality rates. Population Bul-
letin of the United Nations, 21-22: 55-69..

Rogers, A. (1986). Parametrized multistate population dynamics and projections.
Journal of the American Statistical Association, 81: 48-61.

33



Tukey, J.W. (1949). One degree of freedom for non-additivity. Biometrics,
232-242.

Vallin, J, (1989). L'avenir de l'espérance de vie vu à. travers les projections  de
l'INSEE. Population 44(44): 930-936.

Velleman, P.F. and Hoaglin, D.C. (1981). Applications, Basics, and Comput-
ing of Exploratory Data Analysis. Boston: Duxbury.

Wilmoth, J., Vallin, J. and Caselli, G. (1989). Quand certaines générations ont
une mortalité differénte de celle que l'on panait attendre. Population, 44(2):
335-376.

Zaba, B. (1979). The four-parameter logit life table system. Population Studies,
33: 79-100.



ISSUED IN THE SERIES DISCUSSION PAPER

No. i 	I. Aslaksen and O. Bjerkholt: Certainty Equivalence Procedures
in the Macroeconomic -Planning of an Oil Economy. 	 -

No 3 E. Blom: On the Prediction of Population Totals from Sample
surveys Based on Rotating Panels.

No. 4 P. Frenger: A Short Run Dynamic Equilibrium Model of the
Norwegian Prduction Sectors.

No. 5 	 I. 	 Aslaksen 	 and O. Bjerkholt: 	 Certainty 	 Equivalence
Procedures in Decision-Making under Uncertainty: an Empirical
Application.

No. 6 	 E. Morn: Depreciation Profiles and the User Cost of Capital.

No. 7 	 P. Frenger: A Directional Shadow Elasticity of Substitution.

No. 8 	 S. Longva, L. Lorentsen, and O. Olsen: The Multi-Sectoral
Model MSG-4, Formal Structure and Empirical Characteristics.

No. 9 J. Fagerberg and G. Sollie: The Method of Constant Market
Shares Revisited.

No.10 	 E. 	 Morn: Specification of Consumer Demand Models with
Stocahstic Elements in the Utility Function and the first
Order Conditions.

N .11 	 E. Blom, E. Holmoy, and Ø. Olsen: Gross and Net Capital,
Productivity and the form of the Survival Function 	 Some
Norwegian Evidence.

No.12 J. K. Dagsvik: Markov Chains Generated 	 by Maximizing
Components of Multidimensional Extremal Processes.

No 13 E. Blom, M. Jensen and M. Reymert: KVARTS - A Quarterly
Model of the Norwegian Economy.

No 14 R. Aaberge: On the Problem of Measuring Inequality.

No 15 A-M. Jensen and T. Schweder: The Engine of Fertility
Influenced by Interbirth Employment.

No 16 E. Blom: Energy Price Changes, and Induced Scrapping and
Revaluation of Capital - A Putty-Clay Approach.

No 17 	E. Blom and P. , Frenger: Expectations, Substitution, and
Scrapping in a Putty-Clay Model.

No 18 R. Bergan, A. Cappelen, S. Longva, and N. M. Stølen : MODAG A -
A Medium Term Annual Macroeconomic Model of the Norwegian
Economy.

No.19 	 E. Blom and H. Olsen: A Generalized Single Equation Error
Correction Model and its Application to Quarterly Data.



No.20 	 K. H. Alfsen, D. A. Hanson, and S. Glomsrod: Direct and
Indirect Effects of reducing SO2 Emissions: Experimental
Calculations of the MSG-4E Model.

No.21 	 J. K. Dagsvik: Econometric Analysis of Labor Supply in a Life
Cycle Context with Uncertainty.

No.22 	 K. • A. Brekke, E. Gjelsvik, B. H. Vatne: A Dynamic Supply Side
Game Applied to the European Gas Market.

No.23 	 S. Bartlett, J. K. Dagsvik, Ø. Olsen and S. Strom: Fuel Choice
and the Demand for Natural Gas in Western European Households.

No.24 	 J. K. Dagsvik and R. Aaberge: Stochastic Properties and
Functional Forms in Life Cycle Models for Transitions into and
out of Employment.

No.25 	 T. J. Klette: Taxing or Subsidising an Exporting Industry.

No.26 	 K. J. Berger, O. Bjerkholt and Ø. Olsen: What are the Options
for non-OPEC Producing Countries.

No.27 	 A. Aaheim: Depletion of Large Gas Fields with Thin Oil Layers
and Uncertain Stocks.

No.28 J. 	 K. 	 Dagsvik: A Modification of Heckman's Two Stage
Estimation Procedure that is Applicable when the Budget Set is
Convex.

No.29 	 K. Berger, A. Cappelen and I. Svendsen: Investment Booms in an
Oil Economy - The Norwegian Case.

No.30 A. 	 Rygh Swensen: Estimating Change in a Proportion by
Combining Measurements from a True and a Fallible Classifier.

No.31 	 J.K. Dagsvik: The Continuous Generalized Extreme Value Model
with Special Reference to Static Models of Labor Supply.

No.32 	 K. Berger, M. Hoel, S. Holden and O. Olsen: The Oil Market as
an Oligopoly.

No.33 	 I.A.K. Anderson, J.K. Dagsvik, S. Strom and T. Wennemo: Non-
Convex Budget Set, Hours Restrictions and Labor Supply in Swe-
den.

No.34 E. Holm and O. Olsen: A Note on Myopic Decision Rules in the
Neoclassical Theory of Producer Behaviour, 1988.

No.35 E. Biørn and H. Olsen: Production - Demand Adjustment in
Norwegian Manufacturing: A Quarterly Error Correction Model,
1988.

No.36 J. K. Dagsvik and S. Strom: A Labor Supply Model for Married
Couples with Non-Convex Budget Sets and Latent Rationing,
1988.

No.37 • T. Skoglund and A. Stokka: Problems of Linking Single-Region
and Multiregional Economic Models, 1988.



No.38 T. J. Klette: The Norwegian Aluminium industry, Electricity
prices and Welfare,1988

No 39 	 I. Aslaksen, O. Bjerkholt and K. A. Brekke: Optimal Sequencing
of Hydroelectric and Thermal Power Generation under Energy
Price Uncertainty and Demand Fluctuations, 1988.

No.40 0. Bjerkholt and K.A. Brekke: Optimal Starting and Stopping
Rules for Resource Depletion when Price is Exogenous and
Stochastic, 1988.

No.41 	 J. Aasness, E. Morn and T. Skjerpen: Engel Functions, Panel
Data and Latent Variables, 1988.

N .42 R. Aaberge, Ø. Kravdal and T. Wennemo: Unobserved Hetero-
geneity in Models of Marriage Dissolution, 1989.

No 43 	K. A. Mork, H. T. Mysen and 0. Olsen: Business Cycles and Oil
Price Fluctuations: Some evidence for six OECD countries.
1989.

No.44 	 B. Bye, T. Bye and L. Lorentsen: SIMEN. Studies of Industry,
Environment and Energy towards 2000, 1989.

No 45 	 0. Bjerkholt, E. Gjelsvik and O. Olsen: Gas Trade and Demand
in Northwest Europe: Regulation, Bargaining and Competition.

No 46 	 L. S. Stamboul and K. O. Sorensen: Migration Analysis and
Regional Population Projections, 1989.

No.47 V. Christiansen: A Note On The Short Run Versus Long Run
Welfare Gain From A Tax Reform, 1990.

No.48 S. Glomsrod, H. Vennemo and T. Johnsen: Stabilization of
emissions 	 •of CO2 • A computable general equilibrium assessment
1990.

No.49 J. 	 Aasness: 	 Properties of demand functions for linear
consumption aggregates, 1990.

No.50 J.G. de León C. Empirical EDA Models to Fit and Project Time
Series of Age-Specific Mortality Rates, 1990.

No 51 J.G. de León C. Recent Developments in Parity Progression
Intensities in Norway. An Analysis Based on Population Regis-
ter Data.

No.52 R. Aaberge and T.,Wennemo: Non-Stationary Inflow and Duration
of Unemployment.


	Front Page
	Abstract
	1 Introduction
	2 Exploratory Models for Two-Way Tables
	3 Estimation and Criteria for Model Selection
	4 A Time Series of Mortality Rates
	5 Model Selection and Major Results
	6 An Illustrative Mortality Projection
	7 Discussion
	References



