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ABSTRACT

Optimal developement of exhaustible natural resources is analyzed under the assump
-tion that oil prices follows a geometrical browninan motion: Under specific assumption
on cost structure closed form soltions for the reservation price (the price above which
start of depletion is optimal), the halt price (the price below which shut down is opti-
mal), and the start halt price (where no production is optimal below, and full capacity
utilization is optimal above) are derived. From the theorems we derive rules of thumb
for the impact of uncertainty and the impact of different types of costs. In the final
section we demonstrate in a numerical model that our rules of thumb applies even to
more general cases than those studied in the analytical part of the paper.
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1 Introduction

The value of an exhaustible natural resource reservoir such as a mine or an oil field
depends upon the amount of resource, the cost of development and extraction, the future
prices at which it can be sold and the rate of discount. Aspects of this problem were
dealt with by two classical contributions to the natural resource literature: Gray (1914)
discussed how to get the most out of a mine at given output price while Hotelling (1931)
introduced the Hotelling price path, i.e. the price path at which the net price (resource
Ant) grows at exactly the rate of interest when unit costs and the rate of discount
are constant. The Hotelling price path implies an astonishingly simple principle of
evaluating exhaustible natural resource reservoirs, namely by multiplying the amount
of resource with the current net price. This Hotelling valuation principle has been
exploited by Miller and Upton  (1985) for testing whether market values of oil and gas

producing companies are consistent with the Hotelling price rule. It is argued that
this valuation principle will have at least approximative validity under more general
assumptions. Gray and Hotelling did not discuss the impact of uncertain future prices
on optimal depletion and the market equilibrium. Miller and Upton (1985) indicates

(pp. 10-11) that uncertainty may have considerable impact on the valuation. In this
paper We shall replace the assumption of a known future price (which, of course, never

holds) with another but more general simplification, namely that the price follows a
path with known stochastic properties and look at the theoretical impact on valuation
under optimal depletion.

The analysis is theoretical and the main purpose is to show that powerful methods
of stochastic analysis can be exploited to give decision rules of thumb for a number of
stylized problems related to resource extraction. The setting is that a known resource
is in the ground and can be extracted at a known cost per unit. There may also be
other cost components, such as an annual cost independent of the amount of production
(rental cost). The price is supposed to follow a stochastic path with a trend component.
Our knowledge about future prices is thus in the form of properties of its distribution.
The price.path is assumed continuous: the price today is the starting point for the price
path in the near future. The mathematical representation of this idea is in the form of
a stochastic differential equation.

The fundamental question in these problems is when to act: when to start extraction
and when to stop. Hence, the analysis comes under the general heading of optimal
stopping problems. The concept of stopping time is central in this analysis and is defined
by way of introduction in section 2.

The solution for when to extract a natural resource once-and-for-all that follows
from the Gray-Hotelling analysis, does not refer to the level of the price, but, to its
rate of increase. The increase in the net price is the return to holding the resource in
the ground and with a deterministic increasing price the resource should be extracted
according to the Hotelling rule when the momentary return to holding it in the ground
is equal to the rate of interest (section 3).

But what when the price increase is known only in probability? The answer -
wellknown in the literature - is that when the price is stochastic the resource owner
should wait for a higher reservation price than in the deterministic case. The implication
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is also that the higher the variation around the trend, the higher should the reservation
price be. An exact formula is given in section 4. However, this result is based on using
the risk-free rate of interest for discounting the net return and the use of a properly
risk adjusted rate of return may reverse the conclusion. The results of section 4 are also
applicable with appropriate modifications when depletion takes time.

More realistic than a once-and-for-all extraction is an extraction process that takes
time, a common assumption being that the amount extracted decreases exponentially
over time. When extraction costs exceed the price there is a negative return to further
extraction. With no chance of a reversal, extraction should be cut off immediately. But
when the price is stochastic, there is always a chance that the price will pick up, so the
question in this case is how low the price is allowed to fall before further extraction is
permanently cut off. Again the answer differs from what it would be in the deterministic
case. The solution is set out in section 5.1. Further clarification of how the answers
depends upon cost structure is given in section 5.2.

Shutting-down a project before the resources are physically exhausted requires re-
consideration of the reservation price of starting depletion. Section 6 considers the
optimal start of an abandonable project and shows that the abandonment option lowers
the reservation price.

A more intricate case is when the extraction process can be stopped and restarted.
This will influence both when it is optimal to start extraction and when it is optimal
to stop (temporarily). The solution to this case is given in section 7 and completes
the theoretical results of this article.Included in the article is also a numerical example
using real data for an off-shore field in the North Sea for which we demonstrate the kind
of effects implied by our theoretical propositions.

The problem of evaluating natural resources under stochastic prices have received
considerable attention in recent years. A proper evaluation is a precondition for answer-
ing optimal stopping problems as those posed in this article. Of particular importance
for the approach taken in this paper are the highly seminal contributions of Pindyck
(1980) and Brennan and Schwartz (1985).

2 Stopping times

In a deterministic context the problem of the optimal time to start or stop depletion of
a natural resource, is solved by finding a deterministic point in time, say t, that fulfills
certain optimality conditions. In stochastic models, however, the solution can not be
restricted to be in the form of a deterministic point in time, since this would exclude
the use of decision rules like: "Start depletion once the price reaches p*" With such
decision rules, the optimal time for starting depletion becomes stochastic if the price is
stochastic. The problem is then to find the optimal time from a set of stochastic times.
What is the relevant set of stochastic times?

We will introduce the concept of stopping time. Assume that the price Pt is a
stochastic process. Then a stochastic time 7" is a stopping time with respect to this
process if we know whether r < t when we know P, for all s < t. If Pt is the only
stochastic process in our model, and we assume that we can observe Pt at all times,
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then the set of stopping times with respect to Pt is the relevant set of stochastic times.
This is so because any stopping time can be implemented, i.e. turned into a decision
rule, while any stochastic time which is not a stopping time, would be impossible to
implement, since it must depend on stochastic variables not specified in the model.
Generally if Xt is a vector of all stochastic processes in a model, then the relevant set
of stochastic times, is the set of stopping times with respect to X.

A typical example of a stopping time is the first exit time T-G from a set G:

ra = infft 0 : Xt GI.

In this paper we consider tree kinds of optimal stopping problems. The firsi problem
is to find the optimal time to start depletion of an oil field. In this case the optimal
stopping time turns out to be of the form

r = inf{t > 0 : Pt > P * }

where p* is called a reservation price. Another case is the optimal time for a shut-down
of depletion, the optimal stopping time is then of the form

r = inf{t > 0 : Pt < P* 1

where p* now is called a halt price. Finally we consider the problem of optimal temporary
halts in produdtion. The solution turns out to be to produce whenever Pt > p*, where
p* now is called a start/halt price.

3 Valuation under known future prices

We assume that our resource owner has a known amount of the resource which can
be extracted at a constant unit cost C > O. There are no restrictions on the rate of
depletion. Furthermore, the future price path, Pt , is known and the rate of interest
is r. The resource owner's problem is to choose which moment to empty his resource
reservoir to maximize the present value of the resource. Nothing can be gained by
gradual depletion. We might for this reason consider the unit resource rent rather than
total rent. The problem can thus be stated

v(t) max(P, — C)e-" (1)
r>t

When the price path is monotonic and t G(P) is the inverse of Pt ,the maximiza-
tion problem can be reformulated as maximization with regard to a reservation price,
p*:

V(Pt) = max(p* c) e -re(P*)
p*> Pt

Let us now consider an exponential growth path for prices:

Pt aPt

(2)

(3)
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V(t,p) =
a	 f P	 —rt

—) e
P *r —

(6)

If a > r it is never optimal to extract, in the following we assume 0 < a < r. On
this assumption (2) can be reformulated as

V (t, = max(p	 (4)
P s ?.P	 13*

which has the solution

(5 )

unless p >	 -C in which case the solution is p* = p.r—a
The underlying logic of the solution is that the resource should be extracted when

the momentary return to holding the resource in the ground is -equal to the rate of
interest (unless this moment has already gone by). The unit value of the resource field
is thus

4 Valuation when price is stochastic

Future prices are, of course, never known. A simple representation of a stochastic price
is to assume that the price path is a diffusion process i.e. (3) is replaced by

• dPt = aFt dt crPtdBt (7)

In (7) the first term express the exponential drift a of Pt while the second term represents
the uncertainty of Pt as a Brownian motion (Wiener process) B. The path of Pt as given
by (7) can loosely be described as an exponential path with some white noise added to
it. In more technical terms Pt is said to follow a geometrical Brownian motion, which
implies that:

E(Ps 1	 = Ptea (3-t) and var(ln(—))	 2 (s —	 (8)
Pt

The stochastic version of the problem in (1) is:

V (t, p) max E t iP{ (Pr — C)e-rr}
	

(9 )

where the maximum now is taken over the set of stopping times with respect to Pt . The
solution is given in the following theorem:

Theorem 1 Let

where:

Then

V (t,p) max E t '{(P, C)e-"}	 (10)

dP, aPs cis

V(t,p
{

i i i (p*)--1 c pi., e -rt

(II — C)e - r t

for p < p*

otherwise
(12)
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where the reservation price is
ps =  'Y C

— 1
	 (13)

with
1 	i 2

=	 (o-	
-o-	 - -

2 
a2 ) 2 2ro.2 > 1	 (14)

The optimal stopping rule is

r = in f {t > 0 : Pt >
	

(15)

or, simply, to wait until Pt is equal to the reservation 'price.

Theorem 1 is a wellknown result and a special case of the problem solved by Mc-
Donald and Siegel (1986).

(13) corresponds closely with the non-stochastic case, with / entering instead of
From the expression for -y follows that

lim -y = 
a
	 (16)

which is the deterministic solution, cf. (5).
As a increases over all bounds, will approach one from above and the reservation

price will approach inanity. For given r the reservation price is higher under uncertainty
than under certainty and increases with a.

In the stochastic problem the appropriate discount rate is no longer the risk-free rate
of return. Above we have implicitly assumed that r is the appropriate risk adjusted rate
of return. This rate will generally depend upon a. McDonald and Siegel (1986) shows
this dependence by deriving an equivalent expression for

1	 1
= [

1( 154 _ _0.2)2 2rFa2] >1
2

where ei = a - (rp - rF) and rF is the risk-free rate of return. rp is the required rate
of return on an asset with the same uncertainty as Pt according to the Capital Asset
Pricing Model. rp can be shown to be a linear function of a (assuming the correlation
with the market portfolio constant). Hence the reservation price becomes a function of
a and is shown in figure 1 in the case of positive correlation with the market portfolio.

Proposition 1 In the case of instantaneous extraction, and for a given r, the reserva-
tion price is higher under uncertainty than under certainty and increases with a. Risk
adjustment of r might reverse this effect for small a.

In (9) it is assumed that the resource is depleted instantly at the optimal point in
time, i.e. the resource exploitation is started and stopped at the same time. Fortunately,
the solution is valid for many other cases of resource exploitation. In general, this
solution gives the optimal starting point for any project where the project value is of
the form (Pt - C)e- rt with Pt following a geometrical Brownian motion. A project of
gradual depletion of natural resources with a given profile depletion will be of this form.

5



To see this, let Q 3 be the production at time s from start, and let C3 be variable unit
costs, and K3 rental cost. There may also be an investment cost I at the start-up. The
expected value of the project is then:

Et'NfoT Q 3 Pt+3 e-r" - (QCs - K3 )e-"ds I}e" rt

= [for Et,Pt {p3 .+4 1Q 3 } e-r"ds foT (Q 3 C3 - Ks )e-r"ds +

= [LT Pte"Qe -"scis K]e-rt	 (18)
= (pt-1 K ) e -rt

(pt	--"0") e —rt

which is of the required form, if the price is geometrical Brownian. rp is the rate of
return corresponding to the risk on Pt , while rF is the rate of return corresponding
to the risk on costs, and r is the rate of return on the option. Note that since rp is
increasing with a, Q will be decreasing with rp, while K is unaffected, the generalized
unit variable cost C will increase with a. Hence, compared to the case of instantaneous
extraction, an increase in a will increase reservation price. This effect is stronger, the
longer the lag between development decision and production is.

A special case of depletion profile is exponential depletion, i.e. production at a
constant share, A, of the remaining reserves, Xt , at any time. Using a common rate of
return for both revenues and costs the expected value in this case is:

E t'"{ f [AX3 (P3 - C) - K]e's ds} = 
+

A	
 ,XxC

xP (19)
rA-a	 r

In the following sections exponential depletion will be assumed. We shall also study
stochastic exponential depletion.

The results above may be summarized as:

Proposition 2 The case of extraction over time with a given extraction path and with
variable costs and other costs varying over time can be restated and cast in the form of
instantaneous production. The reservation price does not depend on the type of cost,
only upon the generalized unit variable cost C, which in this case - in distinction from
instantaneous extraction - will depend upon the required rate of return on the asset.

5 Optimal stopping of exponential depletion

We consider now the exponential depletion of a given amount of resource. Unless all
costs are capital costs accrued prior to the start of depletion the current net revenue
may become negative. The question arises of when to stop depletion. Should it occur
when net revenue is zero or at some level less than zero? The stop is assumed to be
irreversible.

5.1 Optimal stopping with constant unit variable cost

Let Xt denote the resources remaining at time t. Pt is the price of extracted resource
at time t, C unit cost, and A the extraction rate.

The optimal stopping problem in this section is to find the halt price i.e. the price
at which to stop extraction.

—rt



The solution is then

g* (t , x , ,p)

with

and with

(1f —P---

= x f* (p)e-rt

2) ___ \./(

C 
+ CP1 

-rt

— 

a2 < 

c
1 	AC

1-	 r

Theorem 2 Assume'

dXt = -AXtdt
dPt = aPtdt aPt dBt

X

g* (t, z, p) = max E t [f X	 C	 dsj.

exists, with

(20)

(21)

(22)

(23)

(24)

(25)

(26)

and the optimal stopping time is

= inf{t > 0 : Pt < P * }

with:
( 7-1-A-a l.(
k 	r	 )	 )

Proof:
From Theorem A 1, in the appendix, we know that g* is a solution to the free boundary
Dirichlet-problem:

ag * 	ag*	 „ 2 a2g *at + Ax(p— c)e-	
ag*

rt Ax— ap	 -I- -2 k	 ap2	a x
	 o	 (27)

for (t,x,p) E D, and P-ag li = 0 for (t,x,p) E 6.D. It is straightforward to check that g* as
defined in (22) satisfies this condition and, hence, is a candidate as solution. Note that:

	g* (t, x , p) = sup, Et'"{ftr	 Cle-rs cis }

	= sup, Et'z'P[ftr Axe -À ( 3-t)(P, C)e-"ds]	
(28)

= e`rtx sup, Et 'P[for Ae -Au(Pu C)e-rudul
= e -rt xf* (p)

where the equality between the second and the third equation is due to the strong
Markov property of Itô diffusions.

Thus we knows that g* must be decomposed in this specific way, and in addition it
must solve the free boundary problem. Inserting the decomposition of g* in the Dirichiet
problem, we get an equation in f* • It remains to prove the uniqueness of f*. For this

'In this and later sections we will, for simplicity, use one common rate of return for both revenue and
costs



we need a condition for 1im 	f* (p)  It seems reasonable to expect that the value of
the stopping option will vanish as the price moves towards infinity. Hence if xh(p) is
the value of the resource without stopping option, the latter condition is:

lim{f*(p) h(p)1	 0

where:
xh(p) .._ EP'z{fr ÄXt (Pt — C)e- rt dt}

7-- fr XE"Xt (Pt — C)e-rtdt
. fr Axe -mpea t e-rtdt} —
. xAf

Lri-A-a --- r+CX}•

Since f* satisfy this condition, and since the solution to the differential equation with
the corresponding bondary value restrictions is unique, f* is the unique solution. QED

If	 0 we have a deterministic problem. In that case AX,(P., C) is either positive
- and then we shall never stop - or negative, but increasing. In the latter case it may
be optimal to stop now, but it can never be optimal to stop later. In any case, if it
is not optimal to halt immediately, the value of the field in the deterministic case is

Azi9 	Halt immediately is optimal if this expression is negative, and hence ther+A .
halt price is p* = r+r+Ä-Ä Œ C. From the solution given by (26) and (23) we conclude:

Proposition 3 The halt price is less than unit cost C, and for a given discount rate the
halt price is higher in the deterministic case than under uncertainty, i.e. P =o  p;>0 .

5.2 Stochastic depletion, rental cost and abandonment cost

In the previous section we examined optimal stopping of depletion when there were only
variable costs. In that case current costs approach zero as the production diminishes.
Some costs, say rental cost for the field K, are independent of the level of production.
There may also be a cost A of abandonment. A theorem which applies under these
conditions follows. It is only slightly more general than a theorem in Olsen and Stensland
(1987), which did not include abandonment cost. Our proof is, however, different. The
result is included for completeness and because the expression for the value of the field
is needed in section 6.

To analyze the impact of rental and abandonment cost, we disregard variable cost
but assume that production is also stochastic.

Theorem 3 Assume

g* , p,	 max E t 'm f (Q.P, K)e-' ds Ae -"} (31)

exist with:

dQ t —ÄQ' tdt 0Q t d_N
	

(32)

dPt aPtdt aPt dB:
	

(33)

(29)

(30)
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,and where rA < K, then

g *	 q) = Pq 
c(IN)-1- —

-rt (34)

with:

v 2
+ 02))

( 

—
(a2 +

# 2 )) + 2r a2	 )
<	 (35)     

and with:
1 K

C = (y*) u 	—
1— v r

r+A—a
y* = 	

— 1	 r
	[K rA]

The optimal plan is to stop production if PtQt < y * e.
and D = {(t , p, q) : pq > y* }.

Proof: g* is a solution of the free boundary problem:

	(pq K)Crt ap	 a p2	 = oag * 	1 2 a2g*	 (38)
ag * 	ag*	 1 n 82g*

at	 ap	 ap2	 aq 2	 aq2

for (t, p, q) E D where D is an open unknown set, called the continuation region, and
where the boundary conditions are:

	g* (t, p, q)	 _A-rt for (t, p, q) E SD

ap	le-(t 5 p q)	 0	 for (t, p, q) E b	 (39)
p q) = 0	 for (t p, q) E D8 ,2

It is straightforward to check that g* satisfies this equation, and it remains to show
uniqueness. This is done as in the proof of theorem 1, since the value of the resource
without abandonment option is:

K
[ 	 Pq 	

e—rt
r	 — a r

According to Theorem A 1, in the appendix, g* is the solution to the problem.

(40)

QED

In this problem the stopping criterion is the income flow y*, rather than a halt price.
But for a given extraction Q t the halt price is

I) * = Y * /Qt

Since v < 0, y* is less than "-A; [K rA] which is the halt income under certainty,
when a > A. If A > a the halt income under certainty is K rA, but in this case
u z".1 < r+Ar-a , and hence y* < [K rA]. We conclude:

Proposition 4 The halt price under uncertainty is less than under certginty. Further-
more, it is increasing with rental cost, decreasing with abandonment cost and decreasing
in size of remaining reserves.

We can prove that this conclusion holds also for the appropriate risk adjusted discount
rate (if rp > rF).

(36)

(37)

r inf{t > 0 : Pat <
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Optimal start of an a- bandonable project

In section 4 we noted that if the price is geometrical Brownian, any given depletion
program, e.g. exponential depletion, has a project value of the form (Vt C)e-rt with
Vt geometrical Brownian. However, if we have the option to abandon the project, this is
no longer the case. To study this we can use the result from section 5.2 where we found
the value of a field in the case of stochastic exponential depletion and an abandonment
option. We use the same cost assumption as in that section. We assume that we get
no new-information about the extraction path as long as the extraction is not started.
The depletion level Qo at production start is thus known with certainty. Let denote
the halt price at production start. Then the project value will be:

J _Ae t	 for Pt <V (t , Pt) =
i.
	(41)( spt 	+ Dv),,-rt

r	 (1' t	 otherwise

where s' = r+1 ° ,2 , and .0 (p*) — v 	 v 	—
We will try to find the optimal starting rule in this case. Obviously it is not optimal

to start the project if it will be immediately abandoned, hence the reservation price p*
must satisfy p* > 75. We might, for sake of convenience, argue as if the project value for
all Pt is given by:

(42)

Theorem 4 The solution to:

g* (t 	 = max E t [g (r , Pr )]
	

(43)

subject to

	

dPt aPtdt aPtdBt 	(44)

is:
g* (t ,	 = c e- rt
	

(45)

where
......( c, _ I.0.2) + , 

2

i(a _ 12_ 0.2)2 + 2ro.
1 = 	  > 1	 (46)

a
1 K

C --= (1)* ) -1 	[---- — ( 1 — v)0(P*)1	 (47)

and p* is determined by

ÇeY —1 )P * = 11C 	  r	 1 — v [-;

The optimal stopping rule is

r inf{t > 0 : Pt > P

g(t, Pt) = (s	 —K OPtv)e- rt

(48)

(49)
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Proof:
The solution is a function g* (t, p) = h(p) e t satisfying the free boundary problem:

1
— rh ceph i

2
p) 2 hi! =__ (50)

for p < p, and with h(0) = 0, h(p*) f (p*) and le (p*) fi (11. * is a solution to this
system, and it is unique. QED

Using the notation from (18) in section 4, ç = , -	 K and	 . Define A
we get:

p* 	C 	
47

— 1	 (1 — 0(1 — 1)

Comparing with (13) and noting that by assumption C
ment option reduces the reservation price.

(51)

, we find that the abandon-

Proposition 5 The reservation price with the abandonment option is less than the
reservation price without such an option.

7 Stopping and restarting

In the section 5 we discussed the optimal time of halting the depletion, but disregarded
the possibility of restarting, i.e. reopening a field when prices increase sufficiently to
make it worthwhile. We will now briefly consider the restarting problem assuming that
extraction can be started and stopped an arbitrary number of times without additional
cost. This problem is dealt with by Brennan and Schwartz (1985) who also consider the
costs of opening and closing the mine.

Theorem 5 Let:

h* (t , X, p) = sup	 ft nX„	 — C	 Ki 'ads}	 (52)

subject to:

Let further:

with

where

dPt 	a•Ptdt o- Pt dBt

dXt 	—riXtdt
ri	 E [0, A}

F(p)
	

- rt

F(p) = F2(P)
Fi(P) for p < p*

otherwise

Fi (p) =

(53)

(54)

(55)

(56)
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P C 
1+ c2PAr

(57)

(58)

(59)

(60)

F2 (p) = [
r 4- — a

cl	 (P1-I	 C

":1-14 A+rA 	1-1)
C2 = (n	

(1-4)(I4
-1	  C

p*.

A-Er	 1—A

,y = *[_(a 	+ )	 2ro-2 1

J.T Ha _10.2) ,\/(
o L 	 2

Then h* = h and the optimal control is

1ia2)2 + 2(r +

for p > p*
otherwise

Proof:
The Hamilton-Jacobi-Bellman equation is:

and

and

(61)

ah 	 ah 	 ah 1
sup{{nx(p— c) 

at 	 ax 	 ap 2

2 a2h

ap2 =.0	 (62)

with boundary conditions: h(x, 0, t) = — -rt =	 p, t) .
Assume that h*	 h, it is then easy to check that supremum is attained by ri*.

Furthermore it is straightforward to check that h in fact satisfy the Hamilton-Jacobi-
Bellman equation. Finally we have:

Fi (p*) = F2 (p*)
F(p)	 F(p*)	 (63)

(p*) =	 (p*)

This implies that h is C 2 which is a sufficient condition for h* = h QED

Since p* in (59) is independent of rental cost, K, we conclude:

Proposition 6 The start/halt price with the restarting option is independent of rental
cost.

In section 5.1 we studied the optimal stopping of depletion in a model with no rental
cost. By comparison of (26) with (59) we find that the start/halt price is equal to the
halt price times the factor 7i-2T > 1 (since -7 > (0), hence

Proposition 7 For zero rental cost the start/halt price is higher than the halt price.
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8 The impact of different types of cost on halting
decision; an application to the Ula field of the
North Sea.

Let us review our results so far.
We found in proposition 2 that the reservation price for development of a field is

increasing in costs, but independent of the type of cost, only aggregate costs matters. In
the abandonable case of proposition 5, the dependence on type of costs is more complex.

In proposition .3 we found that the halt price is increasing with variable unit costs,
and according to proposition 4 it is increasing with rental costs as well, while it is
decreasing with abandonment cost and the size of remaining reserves. All this is rea-
sonable, since an abandonment will save future unit cost, and future rental cost. An
early abandonment will, however, increase present value of abandonment costs.

In the case of stopping and restarting, we found in proposition 6 that the optimal
decision is not affected by rental costs. This is reasonable, since a temporary halt does
not save any rental costs. The start/halt price is, however, increasing in variable unit
cost. Furthermore for zero rental cost we found in proposition 7 that the start/halt
price is higher than the halt price in the abandonment case.

The analysis of the previous models gives an indication of what we might expect in a
case where all cost components are nonzero, and with an option of abandonment as well
as an option of temporary halts. Consider a field where development has already started.
From the previous analysis we might expect that for small rental cost the start/halt
price will dominate the halt price (Prop. 7). Higher rental cost would imply higher halt
price (Prop 4) while the start/halt price will remain approximately unchanged (Prop. 6).
A reduction in remaining reserves has the same effect (Prop. 4). Eventually the halt
price dominates the start/halt price and temporary halt will never be optimal. (Our
analysis this far have excluded stopping and restarting costs, but such costs obviously
makes the temporary halt option even less attractive.)

To check these assertions we have constructed a discrete time/state model which is
numerically solvable. Let:

V(t,k,p,l) = sup Et1 {i[ir(s,k, P3 ,1„a3 )5-1
	

(64)
at

be the value of an oil field at time t, after k —1 years of production. ir is annual profit,
p is the current price, and I indicate the state of the field, and at is the action chosen.

1	 open
= 0	 closed

—1 abandoned

1 1	 produce
a= 0	 halt

—1 abandon

(65)

(66)
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C 	• C, Cc K A T 6
6.95 $/barrel 5 mill $ 0 60 mill $/year 137.5 mill $ 30 year 1.05

Table 1: Data for Ula

In period T, a still operating field must be abandoned. ir is defined as:

ir(t,k,p,l,	 —

(13 — C)Q(k) K	 for a = 1, / = 1
—C, — K	 for a = 0, = 1

CY2(k) — — Co for a = 1,/ =
—K	 for a = 0, =
o 	for = —1
—A	 for a = —1,/ —1  

where C is unit variable cost, K is rental cost, A is the cost of abandonment, C, the
cost of closing the field, and C, the cost of opening it. Obviously:

, _ kt_ i + 1 for at = 1
Kt — else

and

lt =
for 4_ 1 —1
elseat

By dynamic programming

V (t, k,p,l) = max[r(t, k,p,l, a) ± 6 -1 E t ik1 V (t + 1, kt+i(a) , Pt+1,1t-f-i(a))] 	 (68)

with V(T, •, .) known.
For a finite number of possible prices, V can be represented in numerical form on a

computer. It is then straightforward to compute V, and hence the optimal strategy, for
t T,T — 1, ...,O successively, using dynamic programming.

We have applied this algorithm to data for the Norwegian oil field Ula in the North
Sea. Ula is a small field with a peak production of 78.45 thousand barrel a.day in 1988,
with 95% (in o.e.) oil and the rest is natural gas. The relevant data is

The optimal solution for i = 1, with data from Ula is shown in figure 3 a). This
is compared to a case with rental costs reduced from $ 60 mill pr. year, in a) to $
30 mill pr. year in b). As expected from the previous analysis the start/halt price is
relatively unchanged at about 8-10 $/barrel as rental cost is decreasing from $ 60 mill
pr. year to $ 30 mill pr year, and as the size of remaining reserves decreases through
production. The halt price, however, is sharply decreased by the decrease in rental cost,
and it increases with year of production as the size of remaining reserves decreases.

This analysis shows that the even though the propositions was proved only under
rather strong assumption, they render valid rules of thumb even under more complex
cost structures.

14



A An optimal stop theorem

Let
dXt = b(t,Xt)dt a(t,Xt)dBt

be an n-dimensional Its5 diffusion. We define the operator

(A f) (t ,	
=

f E bi (t, x)40 +, Ei

for f E C 2 (Rn).
The following theorem is a special case of Shiryayev (1978, Theorem 3.17

Theorem A 1 Let

g* , = sup E { f f (s, X s)ds g (r, Xr)}

with Xt a n-dimensional geometrical Brownian motion:

dXit
= aidt E bij dBit

Xit 5=1

Let
D = {(t,	 g(t,	 < g* (t, x)}

Assume that g E C l , g*(t,x) E C 2 (D) and that 221 exists on SD, at least as a one sided
differential from D. Assume further that

sup g(t,x) < M
(t,z)E613

then
(Ag*)(t,	 f (t, x) for (t, x) E D

	
(74)

g* (t, x) = g(t, x) for all (t, x) E SD
	

(75)

and for all i
ag* „ ag

(t,x)=	 for all (t, ) E SD	 (76)
axi 	axi

To use Shiryayev's theorem we set gm (t, x) max(M, g(t, x)), since obviously gm* =
g* in D. Furthermore Shiryayev's theorem is stated for the case f 0. However, the
extension to a general f is straightforward, introducing a new state variable Xn+1,t
where:

dXn+1,t = f (t, Xt)dt	 (77)

t, x

(69)

(70)

(71)

(72)

(73)
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Figure 2: Optimal stop/abandonment on Ula. Production independent cost $ 60 mill
pr year in a) and $ 30 mill pr year in b)
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