
Discussion Paper
Central Bureau of Statistics, P. B. 8131 Dep, 0033 Oslo 1, Norway

No. 27 	 9 December 1987•

DEPLETION OF LARGE GAS FIELDS WITH THIN
OIL LAYERS AND UNCERTAIN STOCKS

^ 	 BY

ASBJØRN AAHEIM

ABSTRACT

The optimal depletion policy for a combined oil and gas field is studied
under the assumption that if oil is to be extractéd, it has to be depleted
before production of gas can start. In particular, focus is put on how
uncertainty affects the decision whether or not to extract the oil, and to
study the effect of "learning by doing" on this decision. In opposition to
conclusions in other literature it is shown that uncertainty alone may
change the attitude to oil production. The effect of learning is a more
attractive oil production if experience from oil production reduces the
uncertainty about gas reserves.
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1. INTRODUCTION 

A large part of the planning process in oil companies consists of

developing optimal depletion policies for oil and gas fields. Central

authorities are normally concerned with establishing a tax system which

efficiently captures the resource rent, and with the control of the level

of activity in the petroleum sector. However, in small countries like

Norway, where the petroleum sector amounts to a large part of the total

economic activity, the government should also show some concern about the

extraction policies of single fields, since the planned extraction path may

differ from the optimal one. One reason is that private companies within

the petroleum sector often seem to take a shorter view than the social time

preference suggests. This is probably why the government allowed for EL -

delay of tax-payments in the Ekofisk- water-injection project. Another

reason is that since oil and gas extraction is a considerable source of tax

income, a non-optimal extraction policy may cause huge losses for the

state. Central authorities should therefore assure themselves that al l .

relevant information is taken into account when field development plans are
made. If not, they may wish to influence decisions made by private

companies.

In this study, we examine how the effect of uncertainty and

learning affects the decision whether or not to produce oil fram large gas
fields with thin oil layers. Such fields constitue an increasing share of
total petroleum reserves in Norway. Several of the largest discoveries in
recent years are within this class: the recoverable resources in the giant
Troll field are approximately 1.3 billion tons of oil equivalents of which

95 per cent is gas, and contribute about 30 per cent of known, remaining
Norwegian resources south of the 62nd parallel. Also large discoveries in
the northern areas like Snøhvit and Midgard are mainly gas fields where

production of the small oil quantities easily might be non-profitable.

If oil is to be produced from these fields, one has to start with

extraction of oil, and produce the gas afterwards. Since, in addition, the

extraction of the resources are subject to a decreasing uncertainty with

respect to remaining reserves, one may ask whether an option value can be

attached to them. The theory of option value concerns irreversible

decisions with an uncertain outcome, and states that if future learning
about the outcome is taken into account,  the decisions will be affected,

probably in a conservative direction. (See Arrow and Fisher (1974) and
Henry (1974)). Thus, the "option value approach" might suggest that oil
production can be more profitable than one immediately should think..



Höwever, to apply this approach to the extraction of combined oil and gas

fields is probably misleading. This will be discussed in the next section.

One may ask what consequences uncertainty and learning have on the

extraction path of combined fields compared with a deterministic

approach. In particular it is of interest to see under which conditions

uncertainty and learning,effects might change the decision whether or nor

to produce the oil. A deterministic extraction policy for a single field is

the basis for later discussion, and a relatively large part of the paper is

devoted to the deterministic case.
Most of the results in this paper are known from earlier works.

Hoel (1978) and Alfsen (1987) have made analyses of similar topics, but

they do not consider the optimal extraction path of oil and gas. In this

paper we utilize a dynamic programming approach with continous time and

determine an optimal extraction path. This enables us to go through the

extraction policy in more detail, and thereby obtain more detailed results.
Though a strict use of the concept of "option value" probably is

misleading when applied to combined oil and gas fields, it turns out that
the effect of uncertainty and learning is quite similar to the option value
case. With reasonable assumptions the extraction of oil is more favorable
if learning is taken into account than if it is disregarded- The opposite,
however, might be the case if learning about oil conditions is more or less
irrelevant for the production of gas. It is also shown, in contrast to
previously published results ((Henry (1974), Hoel ( i 978) and Alfsen
(1987)), that the possibilty for profitable oil production is affected by
uncertainty alone.

Finally, we will emphasize that only one kind of uncertainty is.re-

110 garded in this paper - the uncertainty associated with the knowledge of
physical- conditions of the reservoir, or the amount of recoverable
reserves. Other kinds of uncertainty are also of considerable importance
in the oil extraction industry, particularily the future price of
petroleum. However, learning about the future petroleum price is probably
associated wdth the shape of its probability distribution, and not with a
reduction in uncertainty, which we will assume for the estimate of
recoverable reserves. There is also uncertainty about future costs and
technology, but it is limited since decisions concerning choice of capital
equipment to a large extent is taken before production starts. On the
Norwegian continental shelf about 2/3 of the present value of costs are
development costs, which primarily accrue before production start-up
(Iorentsen et al. (1985)).



2. IS TIME AN OPTION VALUE IN COMBINED OIL AND GAS FIELDS? 

One may roughly define option value as the value of the advantage

obtained by following a flexible development strategy in order to keep

future options open. Already Krutilla (1967) discussed the effects of

flexibility of future preferences, but a strictly formal introduction to

the option value concept was first made by Arrow and Fisher (1974) and

Henry (1974). Their main conclusion was that if investment decisions in-

volve irreversible damage to nature, and the future state of the world is

uncertain, a more conservative development strategy should be followed if

learning about future state is taken into account. Later M. Freeman (1984)
and J.R. Miller and F. Lad (1984) has argued that the effect of learning
also may be a less conservative extraction policy if there are different
ways to gain information, or if different strategies (flexible and fixed)

are connected with different costs.
In any case, option value is a consequence of irreversibility, un-

certainty and learning. When developing a large gas field with a thin oil

layer one must decide whether to produce oil or not before the development

is initiated. Oil is produced by expansion of gas in the reservoir, and

must therefore be produced before the gas. Höwever, if the gas are of main
importance to the profitability, the oil might be too expensive to produce.

Changes in the valuation of the oil reserves might change the decision on

whether to extract the oil or not. The background for such changes might

be different requirements to the return on capital in private companies and

in social planning, or it could be the consideration of the option value.

To support the argument that there is an option value connected to

the extraction of combined oil and gas fields, it is claimed that future
production, or recoverable reserves, are uncertain at production start-up.
This uncertainty is reduced during the production period as a consequence

of increasing information about the reservoir. Thus, both the uncertainty
and the learning conditions are present. Finally, the decisionwhether to
produce oil or not is "irreversible" since oil cannot be extracted unless
this is done fram the beginning of the production period. If gas is chosen
from the beginning, the forces that bring the oil to the surface
disappears. This seems to be the background for the argument that there is
an option value which should be considered.

However, the irreversibility mentioned here is not the same as the
irreversibility condition connected to option values, because the latter
involved a closure of future options. When developing combined oil and gas



reservoirs there are no future options. The only option to be made is

taken at production start up. Later, or in the "next period", there is

only one possibility, production of gas, irrespective of what was produced

in first period 1) Thus, the concept of option value, as defined in the

above mentioned literature, does not apply to combined oil and gas fields.

None the less, it is shown in earlier works by Hoel (1978) and

Alfsen (1987), that the effect of uncertainty and learning will affect the

extraction policy. In the following sections the optimal extraction of a

resource deposit is discussed. First, the characteristics of the
extraction path of a single deposit with certain reserves is discussed. A

general cost function is described, and the extraction of two successively
produced resources is analysed. Furthermore, the effect of changes in

decision parameters is studied. Finally, uncertainty is introduced by a

410 stochastic evolution of remaining reserves. In several earlier works, the

problem of "eating a cake of unknown size" is studied (for example Kemp

(1976), Gilbert ( i 978)). Gilbert also take a dynamic programming 'approach,
but he limits himself to study a binary distribution of stocks: Either it

is "small" or it is "large". Thus, we cannot study the effect of learning

within his framework. We shall make use of a continous distribution in
which learning is included, and will also point out how uncertainty and

learning affects the relative value of oil compared to gas. Chow (1979) has
demonstrated the uncertainty aspect in the case of a Poisson-distribution

of stocks. Much of the present analyses is based on his paper.

EXTRACTION OF ONE DEPOSIT WITH CERTAIN RESERVES 

We consider a company which is to deplete an oil field with certain

reserves (R) within a given time interval (0,T). The company is faced with
a constant oil price, which is normalized to i for simplicity, and a given,
convex cost function, c(ut). ut denotes extraction at time t. The net
income to the company at t can be written as

(3.1) 	 f(u ) 	 = 	u 1. - c(u )

■•••

1) One might say that the decision whether to produce at all or not is an
option. This does not alter the above argument since one cannot claim the
irreversible argument at the same time.



We assume that f(ut ) is bounded, and fram the convexity of c, it follows

that the income function is concave, i.e. f" < O.uu
The aim is to maximize net present value:

(3 .2 )

s.t.

i) 142Y:	 Vut )e-rtdt
u o

	

IA) 	Xt = 
-ut	 (ut> 0)-

iii) = R ,xo

iv) T is given

xT 0 ,

where xt is remaining reserves at time t. The problem is easily solved by

optimal control theory. However, since our aim is to extend the analyses to
an explicit treatment of uncertainty and the effect of learning, it is

convenient to use a dynamic programming approach (see for instance Dreyfus

(1965)).

(3.2) gives an optimal u at t, when x is remaining, and the system

can therefore be expressed as a function of x and t alone. Define the
function S(x,t), expressing the maximum present value of future income at
t, i.e.

S(x,t)	 max f f(u)e-rtoit .
ut

Since S(x,t) represents the maximum value, its definition requires that for
a small time increment At

(3.3)	 S( xt' t )

	

tha t , t+At)
	

{f(u)e - }A +o(At)

where o(t) is a small term which disappears when At approaches zero. If
u is chosen in order to satisfy (3.2), equality is obtained in (3.3). The
Bellman-Dreyfus 1) equation may be developed directly from (3.3), and is

(3.4) = max {f(u)e - -	 +x	 t

1) This equation is also referred to as Jacobi-Hamilton-Bellman-equation
'and the fundamental partial differential equation.



maximizing (3.4) w.r'.t. u yields

(3.5) 	 f . et 	= S'
x

We solve for u, replace the solution in (3.4), and obtain

(3.6) 	 f(u*(x,t))e -rt - u*(x,t) 	
=

which is the differential equation that solves the optimal policy path - or

extraction path u*.

(3.5) gives the relationship between u and x at all points of time.

If we could develop the path of S as time passes, we would also know thex
optimal policy path via (3.5). An expression for the path of S,' may be

dS'
BY

the chain rule of differentiation we find

dS'
719E lu	 t	 xx(3.7)	 x	

Sx'	 S" u*

dxsince a. = -u*. Differentiating (3.6) with respect to x, and taking (3.5)
into account we can show that the right hand side of (3.7) is zero Thus,.

Sc' is constant with respect to time. Applying (3.5) we obtain

(3.8)	 f' *
	 rt

where C is a constant depending on x and T. Differentiating f' and C e
w.r.t. time yields

fli 	au*
UU TT"' rC ert > 0 .

Due to the concavity of f, we must have

au*(3.9) 	 Ty- < 0 .

Figure 3. i and 3.2 shows the extraction path for u with different values of
r and xo .

In figure 3.1 the. relations between f, u and t are drawn. In the
(f1:1* u*) - plane f1 isis a positive strictly decreasing function of u*,

--

1EFEfound by differentiating it with respect to time (denoted	 x



f'

Figure 3.1 	 Extraction plane fcr 	 Figure 3.2 Extraction paths at alter-

a single resource. 	 native r.

while in the (r * ,t)-plane f' * is monotonically increasing with t, accor-

ding to (3.8). The extraction path is found in the intersection of the two

planes the figures show the optimal policy for alternative values of r.

A -high 'r requires a higher initial extraction (u(o)) and a. more rapid
decline rate compared to .a low r. As expected, a higher initial reserve x

requires a higher extraction of u at all t, since f is a strictly

decreasing function. With a given reserve, the area below the u(t)-curve

drawn in figure 3.2, must be equal (irrespective of required rate of
return).

When we later come to the extraction two deposits, it is convenient

to have the relationship between the net present value S
0
 = S(xo' 0) and the

parameters r, x
o 
and T in mind. Since increased x implies a higher extrac-

tion, u., for all t, also income increases with increased xo, and thus
as 6

°x o.a,
The effect on the net present value of increased r follows from

optimal setting of the problem: Let ut denote the optimal extraction path
at r=r* and u;* the optimal path at r=r**>r* Then,

S f(ut)e-r*tdt tç vur)e -r*tdt > f f(u *)e -r**tdt

The first inequality follows fram the optimality of ut, which

represents the maximum present value among all u-paths, and the second from
the fact that for a given u-path the value of the integral decreases with



as
0increased r. Thus, we have ar < O.

To 	 see how a change in T affects the net present value we shall

consider the case where also T is to be maximized, which seems more

realistic than to keep T fixed as long as the company really seeks the

maximum yield of its reserves. The optimal choice of T, say T* is found

by the equation:

(3.10) [f(uT* ) - uT*f]e-14T* . = O.

Due to the concavity of f(u), the expression in brackets are positive for

all uT*>0. Thus, if f(u)=0 for u=0, the optimal terminal point T* From

(3.8) it follows that this solution is unique.

However, it is unlikely that f(0).0. In fact, the cost function

and thereby f(u) is probably quite complex, consisting of both investments

and operating expenditure. Even if some part of the capital equipment

might be transferred to other fields, a large part of the investments must

be regarded as "sunk costs". Total costs may therefore be divided into

different categories (see Roland (1985)). Here we shall simplify to as

great extent as possible, and assume that costs consist of a given amount x

at every point in time in addition to a variable part x may be an

expression of minimum costs or basic investments for development of a given

gas field.

Nöte that the introduction of x does not in principle alter the

extraction path (i.e. (3.5) is not altered), but the optimal terminal point

is altered and it might be that extraction no longer is profitable. The

cost function may be expressed as c(u) y(u)+x, where y is the variable

part of costs. Now the profit function can be written

- 1(u) 	 - (y(u )+x )

We rewrite (3.10) and obtain the optimal condition for T:

(3.11) u* Y' - Y

which determines a finite T* (although - is a possible solution), The

left hand side of (3.11) is always positive due to the convexity of y.

Increased x involves a larger required discrepancy between marginal and

average variable costs at T*, which gives a higher optimal uT* . As the

optimal extraction path, determined by (.8), requires a steady increase in

f'u' the 'value of C increases by an increase in x, and implies a more

"intense" extraction period. If x is "very large", the optimal u may



exceed initial reserves, indicating that extraction is unprofitable. Nöte

also that if the firm requires a "higher" rate of return, r, is not

affected directly, i.e. the same terminal u T* is required. Since increa-

sed r implies a more intensive extraction, r affects T* negatively.

The optimal terminal T* determines how the net present value So is

affected by a change in T in the case of fixed T:

(3.12)
dS0 	 >
air ° dependent on T T* .

4. DEPLETION OF COMBINED OIL AND GAS FIELDS 

We now turn to the kind of fields which is the subject of this

study - large gas fields with thin oil • layers. As mentioned in th

introduction, we assume that the oil must be extracted before the gas if it

iš to 11) produced at all. We shall take a quite rigorous view and assume
that one cannot produce any gas when producing oil. Denoting production

of oil in year t as ut and production of gas in year t as v we state

the problem as:

Max { S l f(u e d + rg(vje -rtd 1
t 	 t 	 tO

= -U
•••

(4.1)	 (iii)
	

rutd = xo
o

(iv) t

(v) rvtdt = yo .

g(v) is the profit function for gas, analogous to f(u) 	 the profit func-
tion for oil, and we assume the same properties for both y t denotes the

remaining gas reserves t i denotes the time at which production is switched
from oil to gas, and is to be optimized. The optimal paths of u and vt 	 t
were discussed in the previous section. We concluded that a change in t 1

affected the level of oil extraction, but not the rate of change in



10

extraction over time ((3.8) was still valid), and that a reduction in t if

t T*, would reduce the value of the oil.

Clearly, the extraction path of gas is independent of the time for

its start up, t
1
 . Thus, when production of oil is brought to an end, the

optimal extraction policy for gas is described in section 3, with terminal

time finite or infinite dependent on whether costs are zero at zero

production or not, and we denote its present value at t 1
 as Cy

o
 ,r). The

company would just have to maximize the net present value of the oil

with given t i if the "switch point" t were known in advance, also

described in section 3. The optimal t i is determined by maximization of

(4.1). We may write the first integral as Cx0 , r, t i ) that is, the net

present value of the oil at t is known when Initial reserves of oil, the

discount rate and t is known. From the earlier discussion, we remember

that 40 > 0, < 0 and T i > 0 dependent on t < T*x 	 t < > 	 •

The problem (4.1) are now reduced to

(4.2) 	 16.x {w(xr, t ) + e -rti 	 ,r)}o'

.which gives the i st and 2nd order conditions

(4.3)

aT
-617

(ii ) 	 a 2
T

at 2

r e-rt1 Cy r)

2 -r-r  e t i (yo' r)

aT
yo . (4.3.i) requires a positive ..Tf (if r>0) which implies t < T* accor-
ding to (3.10). In words, the produbtion of oil shall come to a halt when
the increased net present value fram oil caused by increment of planned de-
pletion date equals the loss of interest caused by postponement of gas-in-
come, i.e. marginal income equals marginal loss with respect to the optimal
"switch time" t i .

Increased reserves of gas, enhanced prices or a more favorable cost
function for gas may cause an increase in the profitability of the gas
(i.e. the net present value of gas at t ). According to (4.3) the required
aT/at must increase as a result, and since

respectively.

The optimized ti may now be considered as functions of r, xo and
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a 2m

r < o
at2

the optimal t becomes smaller, reducing the value of the oil. As pointed

out in section 3, a "very small" terminal depletion date might result in an

Initial extraction higher than the oil reserves, indicating that extraction

of oil is unprofitable.

It is also worth mentioning that the basic investments, called x in

the previous section, probably will be affected by the size of both oil and

gas reserves. This makes the link between the profitability of oil and the

properties of the gas even closer. "Large" gas reserves with low unit

costs makes it expensive to postpone production, and in addition it

probably requires a high x, which also affects the cost function of the

oil.

It is often claimed that.oil companies require a higher rate of

return, r, than the social discount rate. It is therefore of some interest

to investigate the effects on t of an increment in r. This is a bit
more complex than the changes discussed above. (4.3.0 is valid for all r,

and we can differetiate with respect to r on both sides. Regarding t as a

function of r, xo and yo , we obtain

4.
t r

ati
}dr

ar
+ -r rt e

(y0

at
- r2 	 e ti(Yo 	 ,r)ldr-r 	

oar

Rearranging terms yields

(4.4) at i 
{( -t r).0(yo ,r) + rope-r 	 _ t i r  

ar Tt t" 	 + r
2 (yo,r)e-rti 

From (4.3
that T"t r
brackets;

nominator

ability of

dominating

ii) we know that the denominator is negative. Let us also assume
is "small" (i.e. close to zero). If so, the first term in the

{ }, will be positive if rt i < 1. With a low t i and r, the
in e (4.4) will be positive and ayar < 0, i.e. if the profit

gas is "high enough". In the the . opposite case, where oil are
the sign of at/ar will be positive.



DEPLETION WHEN RESERVES ARE 'UNCERTAIN 

Up to now, reserves at t=0 have been assumed certain. That is, the

oil company knows what is to be extracted. Unfortunately, plans for extrac-

tion of gas/oil-fields are not made under such favorable circumstances -

one must expect continous revisionsi.of estimates of reservoir parameters

and thereby remaining reserves. Properly speaking, the reserves are not

known with certainty before the last cubic feet of gas has been produced.

Information on which reserve estimates are based, are continuously updated

during the production period. This may lead to positive or negative reva-

luations, but the uncertainty will probably decrease monotonously.

To implement this uncertainty into the analyses, the expression for

the evolution of remaining reserves x(t) is relaxed. In sections 3 and 4
the reduction in x at t was set equal to extraction u(t). Now, we will

assume that in addition to oil or gas also information is gained or
produced which may lead to a revision of the estimate of remaining
reserves. Thus, for small time increments, At, the evolution of remaining
reserves can be written

(5.1) 	 x(t+W - x(t) 	 -ut + z(At+t) - z(t)

where z(t+At) - z(t) is a random term, we can call it dz. It is assumed
that dz has a known probability distribution, p(dz; x,u,t), with mean

00

E(dz) 	 S dz p(dz; x,u,t) d(dz)

and variance

00

var(dz) = s (dz-E(dz))(dz-E(dz))p(dz, x,u,t) d(dz)

Now, let the variance of dz at At=1 be a2 . For smaller time increments,
At < 1, we simply divide the time interval into segments of equal length,

1say n, so that At = Ti . If we assume that the n successive increments
z(t+At)-z(t), z(t+at)-z(t+ANt),...., z(t+1)-z(t+(n-1)t) are statistically
independent, even for small of At, the variance of their sum is equal to
the sum of the variances, implying that

12

(5 .2)
	

var(z(t+tit) - z(t)) 	 1 2 = a
2
At
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Since the variance is propotional to the time increments, the ran-

domness neither "washes out" nor "smoother" the process.

Note that a is not neccessarily a constant, but might be a function

of x, u or t. In the case of resource depletion under uncertainty, a will

at least be dependent on x. If a = 7x, where CF is a constant, we may
interprete the randomness as constant uncertainty with respect to remaining

reserves, and we will refer to it as the "standard uncertainty case".

However, as mentioned one must expect a certain learning effect as a result

of production. One way to include this into the analyses is to assume

decreasing uncertainty with respect to reserves. With reduction in remain-

ing reserves, the variance decreases with more than x, or ci  >

There are other ways to include the effect of learning. One

alternative is to express it in terms of t (Alfsen (1987)), or both x and t

to account for a general progress in the knowledge about the geology in the
area. A more satisfying representation of improved information would be to
let prior-probability densities represent the probability distributions
(see for example Dreyfus (1965)). In this paper we will concentrate on the
case where a = a(x). Extending the analyses to the case where a = a(x,t)
is a simple matter. To apply prior probabilities would require a more
complex analyses than the one used here.

We define the optimal policy function S(x,t), similiar to the one
in section 3. According to (5.1) the development of x is written

(5.3) dx	 -u dt + dz

with the properties described above. Analogously to (3.3) we obtain "the
recurrence relation":

(5.4) -S(x,t)	 max E{f(u)e - A + S(X-Udt+dZ+0At, t+At)}

Using Ito's difference rule for stochastic equations, we obtain after some
manipulations

(5.5)	0 = max Elf(u)e -rt+ S (-u+dz) + St 	oct-u+dzx	
1

Taking the expectation yields - directly the Bel iman-Dreyfus equation:

(5.6)
2

= max {f(u)et- uS + S' + a S1x 	 t 	 xx-

2
•

where a is a function of x only. (5.6) corresponds to (3.4) in the
deterministic case. Maximization of (5.6) with respect to u yields the



optimal condition

(5.7) 	 f e-rt x

(5.7) is similar to the basic equation for the discussion of the

optimal policy path when the amount of reserves was certain (equation

(3.5)). There, the optimal path of u was developed by differentiation of S'x
with respect to time. Now, since S' is a function of the stochastic processx
' (5.3), we need to find the expected rate of change in S.

Kushner (1967) provides a solution to this, if the process dx is a

right continous strong Markov-process. Let the function G(x,t) be in the

domain of a weak infinitesimal operator A. AG(x,t) can be interpreted as

the average rate of change in the process GC. in a given time interval.

Dynkin (1965) has shown that

t+tit
(5.8) 	 EG(xt+ t' t+W - G(x ,t) 	 E f AGtx,s ds

If the IV) process (5.3) has the above mentioned properties, the integral

on the right hand side can be found by expansion of G.:

•(5.9) 	Í AG(x, ․)ds - G' dx + G" d2 X 4-
x 	 xx

The expected rate of change in S c can now be found by the same procedure:

t+at
(5.10) f AS 1 (x,T)dT

t x
S"(-u+dz) +S"'(-u+dz 2 + S" .1
xx 	 7 xxx 	 xt

411 	We let t 0, take expectations and obtain:

2
(5.11) EdSI(x,t) 	 (-uS" 	 7a 	" 1 +S")dtx 	 xx 	 xxx xt

Differentiating (5.6) w.r.t. x, and noting that u u(x) , we also get

a 2

(5.12) O = f
u
 du e t - S' du - uS" + S" + aa'S" T- S"' .

	

x 	 xx 	 xt 	 x xx 	 xxx

Since, along the optimal path S c = f' -rt, we are left with:

2

(5.13) S" = uS" - 	
-

aa'S" 	 cl S I"Xt 	 XX 	 X XX 	 xxx •

Replacing S c.'t in (5.11) yields:

14



(5.14) EdS 	 (-a•a'S")dt .x	 x xx

(5.14) confirms the deterministic solution that if a=0, EdS'	 O. Inx
the stochastic case ES' will change as time passes, and the rate of change

will depend both on the present uncertainty, expressed by the expected

average deviation a, and the learning effect al. Let us first examine in

what direction EdS' moves. Differentiating both sides of (5.7) we find:x

(5.15)	 et „ du
uu a •

duIf x developes without uncertainty, we found in section 3 that TE > O. It

is intuitively acceptable to assume this to be valid also when the

evolution of x is random. Since f" < 0, we thus have S" < 0 and•	 uu	 xx

(5.16) EdS 1 > O.x

The three cases to be studied are:

The certain, or deterministic case (denoted c), with a . O.

The "standard uncertainty" case (denoted s), with a ax.

The learning case (denoted 1), where a = a(x) is a convex function.

To compare the two latter cases we need to know the difference between

a(x) s and a(x) 1 Since our starting point is how the optimal behaviour is

determined by different approaches, we will assume that the uncertain-

ties on the reserve estimates are equal when production starts, i.e.
a(x ) s 	a(x ) 1 . We cannot compare the three different cases directly
without knowing the explicit solution to the problem.	 However, we know

that (5.16) is valid in the uncertain cases, and that Ed5 1' approaches zero
as t	 1T, since- a 0 when x O. Since a(x) is a convex function in the

1learning case, EdS will be steeper than EdS cs in the first years but

sooner or later (probably very soon) the reduction in uncertainty will
cause the expected increase in EdS' 1 to be lower than the increase in EdS'.	x 	 x

The extraction paths are illustrated in figure 5.1. The north-west

-quadrant displays the relation between fe rt'	 and u with one curve for each
t. As time passes, the curve shifts downwards, and in the figure the curves
representing t.0 and t=T are drawn. The vertical axis also represent the
value of according to (5.7), and the north-east quadrant displays its
value at different t. The expected evolution of S' is found by the corre-
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Figure 5.1	 Extraction paths for one resource in the certain, the standard

uncertain and the learning case.

spondance between u and S c in the two upper quadrants. The policy path is

found by transferring u* and t from the two upper quadrants to the south-

east quadrant. Note that the level of S c must be chosen so that the area

u(v) dr is equal in all three cases.

It is seen from the figure that the standard uncertainty case

results in a "steeper" extraction path with higher initial extraction level

and lower level when production terminates, compared to the certain case.

When learning is introduced, the optimal path "falls in" between the stan-

dard uncertainty and the certain paths. It can be shown that if the

learning effect is extremely strong in the beginning, production in the

learning case may start at a higher level than in the standard case. In the

sequel, such strong learning effects will be disregarded. Note that even

though the uncertainty diminishes as t -.T in the learning case uT does not
cequal uT . The same applies for uo and uo , even though the value of a( x0) is

assumed to be the same in the two cases.

In section 4, the question whether to produce oil or not was
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reduced to a study of the relative net present value (NW) of oil versus

that of gas. It is therefore neccessary to find how NPV is affected by

uncertainty and further what the effect on learning is. We have seen that

the difference between the tree cases may be éxpressed by the steepness of

the extraction curves.. In the appendix it is shown that for two periods the

highest possible NPV among all extraction paths is obtained in the certain

case. Further, it is shown that for two periods, NW decreases the

"steeper" the path is, given that it is "steeper" than the certain path.

The results may also be extended to n periods. Thus the certain path must

give the highest NPV of the three cases.
Comparing the standard uncertainty case with the one in which

learning is involved, we remember that just after production start up, the

learning profile may be steeper than the standard profile. The above

argument is therefore not strictly sufficient for saying that the learning

case yields a higher net present value than the standard case. The appendix

shows for a two-period case that if the learning path lies closer to the

certain path than does the standard uncertain path, the learning case will

be the most profitable of the two Assuming that this is valid for all t,

we may conclude that

(5.17) NE'Ve > E(NPV) > E(NPVs )

We can call the difference between the net present value in the standard
uncertainty and the learning case the value of learning.

The case of two resources, oil (x) - and gas (y) may be enlightened

by the above results together with the results in section 4, where it was
shown that the extraction path of oil was influenced by the relative pro-
fitability of oil and gas. In Hoel (1978) and Alfsen (1987) it is stressed
that the decision whether to produce oil or not is not affected by uncer-
tainty alone. Is this result valid also in the present analyses?

We use the same notation as in section 4. Thus, 111 (x) c is the
optimal net present value of oil in the certain case, and Cy) c e-rt the
optimal net present value of gas in the certain case t is the optimal

1
"switch time" from oil to gas production. The standard and the learning
case may be denoted likewise, and the first order condition for optimal t 1

is similar in all three cases:

i(5.18) aT

.
	at

-rt
re	 1	

(y ) 3. = c,s,1



Figure 5.2 Switch time from oil to gas in the certain and the uncertain

case.

Since

according to the second order condition, a large E(y) implies a small t i

indicating that oil is . unprofitable.

The first question is whether t i possibly could be influenced when

comparing the Certain and the standard uncertainty case. It is seen from
(5.18)
We shal

that it would, unless tq c boc

1 assume that io i is affectkl only

To analyse and i compare the three

T
tuts/m.1*s, which is most unlikely.t
to l a very limited extent.

cases, we shall first concentrate

on the certain and an uncertain case. Since f(u) is concave, the solution

of the optimal path of u at given t
1
 is unique, which implies that

according to the second order condition, C.) is concave w.r.t. t i . This is
shown in figure 5.2, where the values of C.) in the certain and an

uncertain case is drawn as two concave curves. Since f(u) is bounded and

concave, C.) may become negative if the period (0,t ) is "too short".
The marginal income of gas is represented by the downward sloping

curves in figure 5.2. The difference between the certain C.) and the

uncertain EW(.) case is a lower marginal income of gas in the certain case.

This follows fram the fact that the net present value decreases when

uncertainty is introduced (most in the standard uncertainty case, and some-

what less in the learning case).

18



Figure 5.3 The effect of learning compared to a standard uncertain case.
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Ecep

However, the effect on the extraction policy of the whole field is

*determined also by aqqat , according to (5.18). In the certain case, we
found that avat was positive, zero or negative dependent on whether t 1

was less, equal or larger than the optimal terminal time T*. How mitat
1
 is

affected by the three cases also depends on how C.) is affected, but we

will assume that it changes to a .very small extent. For the sake of

simplicity we will limit ourselves to study the special case where aT/at 
1

is identical in all three cases. A shift from the certain case to the

learning and standard uncertainty cases then results in vertical, downward

shifts in the ECt ;r,x )-curves. Thus the downward sloping ò'i'/at -curve ino
the figure represents all certain and uncertain cases.

The optimal t
1
 is found by the intersection of the marginal income

curves for oil and gas w.r.t. t . If the present value of gas at t is 0(.)
both in the certain and the uncertain case (i.e. only oil reserves are

uncertain), the optimal "switch time", t °, becomes equal in both cases.
011 production is profitable in the certain case, but not in the uncertain

one. However, had it not been for the very existence of gas, the uncertain

case would also give profitable oil production since the optimal terminal

time for oil alone is T*. If the net present value of gas also is affected
by uncertainty, the value of W.) shifts downwards, and the optimal switch
time increases to t 1 and oil production again turns attractive. Whether
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oil production is less attractive in the uncertain case than in the certain

one depends on to what extent the values of oil and gas are affected by the

uncertainty of reserve estimates. For example, if the value of gas is

affected more than shown in figure 5.2, the the oil is more attractive in

To see how learning affects the attractivness of oil production we

shall compare the learning case with the standard uncertain case like in

figure 5.2. The learning case income-curves lie above the standard

uncertain case income-curves for both oil and gas. The distance between

them depends- on how strong the learning effect is. In figure

denotes the switch time in the uncertain case. The learning
1indicated by two alternatives for Fi.  If 	 oil production

contribute to the knowledge of uncertain 	 parameters determining the

estimates of gas reserves, the switch time in the . learning case is t	 If

oil production actually contributes to such knowledge, the increase in al

results in an even shorter period.for oil production, t i 2 . The immediate

effect of the learning approach is a lower uncertainty on the average, and

may be discussed similiarly to the effect of uncertainty in figure 5.2. I
5.3 this "first effect" is represented by all, and the two cases turn out

to be equally attractive for oil production: The net present value is zero

in both cases.

The second effect which is to be considered when learning is

introduced, is that oil production may reduce the uncertainty

and thereby increase the value of gas, represented by Em 12

exeeds the reduction in profitability of oil,

increased in the learning case. To compare the

case it is necessary to compare the "loss" of producing oil, A in the

figure, with the gain in profitability of gas, B.

Three conclusions can now be drawn: First, all three approaches

(certain, standard uncertain or learning) have different optimal solutions,
except in special cases. Second, whether the learning case is more

favorable to oil production than the standard uncertain case depends upon

how much the uncertainty in the estimate of gas reserves is reduced during
the oil production period. Third, even if oil production is unprofitable

alone, it may be worthwhile to produce it if it enhances the profitability

of gas sufficiently. The approach in this paper may also be applied to the

problem of optimal exploration efforts, and this second argument is exactly
the explanation for exploration expenditure.

Comparing the learning case with the certain one, we note that both
the immediate effect (reduced value of EZ) and the learning effect on gas

turns oil production more favorable when .learning is taken into account.

5.3, t i °
case is

does not

of gas at ti ,

. If this gain

the value of oil is

standard and the learning
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When discussing the difference between the three cases, it was assumed that

at» ia is unaffected by uncertainty and learning. The above conclusions are
weakened if this curve shifts upwards with increased uncertainty.

6. CONCLUDING REMARKS 

Option value is the value of following a flexible development

strategy when irreversible decisions are to be made. The option value
approach to development strategies does not apply directly to large gas

fields with thin oil layers, since there are no options in future periods.

However, the effects of taking uncertainty and learning into account when

deciding an optimal extraction policy are in many respects similar to those

obtained in the option value literature. The dynamic programming approach

has, however, the advantage that results fram previously published papers
are gathered in one model, an in addition a "new" result occur.

The relative value of oil and gas determines whether the oil is to

be produced or not Oil production might be abandoned even if it is

profitable, taken isolated, because the cost of a postponement of gas may

exceed the income from extraction of oil. When any kind of uncertainty is

taken into account, the value of postponing gas will be changed, while the

value of changing the production period for oil is probably affected to a

limited extent. Thus, in opposition to conclusions in earlier literature,
the possibility of profitable oil production is changed by uncertainty

alone.

The impacts of learning may be that the production of oil becomes
more favorable. Even if the expected net present value of oil is negative,
it may be produced, mainly to gain further information about gas-conditi-

ons. However, if the production of oil does not contribute much to the in-
for mation about the gas conditions, the opposite might be the case: The
learning approach turns production of oil less favorable.
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APPENDIX

TI E IMPACT ON THE NET PRESENT VALUE OF UNCERTAINTY AND LEARNING. 

This appendix shows that a two-period path, divergent from the

optimal path, • gives a lower net present value amo • the larger the

difference between the two paths are. This is the background for the

conclusion drawn in (5.17).

Along the optimal extraction path the condition

(Al)
	

f'e-

must be fullfilled. It u and u denote an optimal, two-period path, and0
b(t) the discount factor. Then (Al) can be written

(A2) fi
0 	 fi b(1)11

Denote the difference between an arbitrary path and the optimal one, du (du
0 0). Since total stock is equal in the two cases we have

(A3) du	 -du0

DOT for the arbitrary path may be written

(A4)	 NPV(du)	 f(uo+du) + f(u i -du)b(1)

If du > 0, an increase in du may be interpreted as a 'steeper" path, so if
NPAdu) decreases with increased du, then (5.17) will be fulfilled (in the
two-period case). Derivation of DIPIAdu) gives:

(A5) DIPT(du) = f
u
'(u +du) - fi(u -du)b(1)o 	 ui

By differentiation we obtain

(A6) OPT (du)	 f' (11 ) + f I du -f'u 0 	 uu	 u "du b(1)uuu )b(1) +

Because of (A2), the first and third term in (A6) are zero, and we
are left with

(A7 ) '	 101" (du)	 f"du + f"du b(1)uu	 uu
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