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Abstract

This paper discusses optimal investment plans for large gas exporters to Western Europe.
We discuss market power on the supply side, while assuming price taker behaviour on the
demand side.

A static game approach is compared to a dynamic, and we argue that the use of static
game models does not capture important market forces. A dynamic Nash game, where the
players can observe previous actions and react according to them, is introduced.
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Part I
INTRODUCTION

1 The background

This paper discusses optimal investment plans for a large gas exporter to Western Europe.
There are 4 major suppliers to this market: The Soviet Union, the Netherlands, Algeria and
Norway. The UK is also a large producer, but still a net importer (Frigg-gas from Norway),
and so far no link to the continental Europe is planned.

Since the European gas market is a regional market with a limited number of buyers and
sellers, game theory is appropriate as an analytical approach. In this paper we shall analyze
the consequences of market power on the supply side, assuming price taker behaviour on the
demand side, in spite of the fact that the buyers are represented by national monopsonies (the
distribution companies Ruhrgas, Gas de France, Gasunie, etc. are dominant firms). We make
this choice so as to be able to study the relationship and interdependence between sellers in
an oligopoly. By giving up some realism in this respect, we are able to construct a numerical
model.

In the short run, production of natural gas is constrained by the existing capacity and
exports are settled through contracts between buyers and sellers. In the longer term, however,
the capacity limits can be extended, contracts can be renegotiated, and the problem is to
decide on optimal capacity and investments within a planning horizon. In the case of price
taking suppliers this is a fairly simple problem. For a given expected price path, the best
project is put onstream when the price p exceeds some value pl at some point of time, then the
next best project will follow when the price exceeds the value p2, p2 > pl , etc. Calculations
of this type were done by M. Hoel for the government committee " Tempoutvalget" (1983).
Hoel recommended a rapid development of Norwegian off-shore oil fields. The price taker
assumption may still be defended for oil, since the Norwegian share of world oil production
is small.

Similar calculations implying price taking behaviour for gas suppliers to Continental Eu-
rope, however, are not plausible. To our knowledge, little has been done to shed light on the
problem of how to extract non-renewable resources in an oligopolistic market of this type.
An exception is a spatial trade model for the European natural gas market presented by
Mathiesen, Roland and Thonstad (1986), which also discusses degrees of market power on
the selling side. This model has a short term Nash Cournot solution (1983) when production
capacities are given, and a long term solution (2000) when the players are allowed to invest
in new capacity. Like other trade models the model focuses on other aspects than those of
primary interest here, and was designed to describe trade patterns under simplistic behavioral
assumptions like competitive, Nash Cournot and collusive.

We begin with a discussion of the use of static versus dynamic game models. We will argue
that the use of a static game model will not capture important market forces. A dynamic
Nash game is therefore introduced. In a static game, the players are not allowed to react to
the moves of the other players. The players have only one move each, and they are moving
simultaneously. In a dynamic game, the players can observe previous actions by the other
participants and react according to them. We show that if one player makes an investment,
the potential payoffs on all other possible investments are reduced. If the players are allowed
to consider the consequences in later periods of their actual investments, they are acting
strategically. In a dynamic model the players maximize discounted sum of payoffs over the
planning horizon. Compared to a static game, we find that the solution leads to increased
investments and production in all periods. The investors are willing to sacrifice large profits in
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Supplies USSR	 Norway	 Algeria Total
Imports

Total
Consumption

Marketshare
USSR

Buyers

Austria 3.8 3.8 5.2 73.8
Belgium 1.7	 2.3 4.0 9.4
France 6.8	 2.8	 7.7 17.3 26.2 25.9
Italy 5.9	 7.8 13.7 30.7 19.2
Netherlands 1.9 1.9 37.1
West Germany 12.1	 6.5 18.6 46.5 26.0
Others 0.7	 1.6 2.3 7.4
Total : 28.6	 13.6	 19.4 61.6 162.5 17.6

Source: BP review of word gas 1986.

Table 1: Imports of gas to the European Continent 1985 (bcm)

early periods to gain market shares and later profits. This means that an investment project
may appear profitable, even though the market does not seem mature enough for it.

2 A brief description of the market

2.1 The Supply side

The indigenous production of gas on the Continent was about 109 bcm in 1985 (Source:
BP 1986), most of it being produced by the Netherlands. Estimates of gas reserves in the
Netherlands have been growing recently, mainly due to the upgrading of known fields. Thus
the Netherlands will be a dominant producer for many years to come. We have, however,
excluded the Netherlands from the supply side game to reduce the number of players. The
reason is that we are focusing on the investment game, not on the static supply game for
given investments. The Dutch problem is how to extract developed fields rather than how to
invest optimally in new fields.

The remaining share of the gas demand is mainly covered by imports from the Soviet
Union, Norway and Algeria. The UK is assumed to stay a net importer, and is thus not
included in this market.

2.1.1 The Soviet-Union

The Soviet Union with its huge recoverable reserves has the greatest potential to supply
gas to Western Europe. However, there is a general political goal that imports from the Soviet
Union should be limited. EC has recommended that imports from the Soviet Union should
not be higher than 30 % of total consumption of gas in each country. At present only Austria
exceeds this limit (see table 1). The total market share is about 17 % of total consumption.
These political limitations are dependent on the present political situation. Attitudes could
change over the time horizon used in this model.

The trade balance in USSR is strongly dependent on supply of western currency through
sales of petroleum. Crude oil reserves are small compared to the natural gas reserves. The gas
trade will thus play a more important role in the economy of the Soviet Union in the future.
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Exports of natural gas from USSR to the European Continent in 1985 was about 29
bcm. Exports can be doubled by utilizing the excess capacity of the existing pipeline. The
transportation capacity can be further increased by adding compressors or new pipelines.

2.1.2 Norway

Norway has the largest reserves of natural gas in Western Europe. All the fields ire off-shore
and expensive to develop. Norwegian exports to the European Continent in 1985 was 13.6
bcm, mainly produced from the fields Ekofisk and Valhall.

Increased Norwegian gas exports will require exploitation of the large gas reserves of the
'koll and Sleipner fields. Sleipner can increase the export by 8.8 bcm/year. Troll can be
divided in two steps, eastern and western Troll. According to the Troll Contract (Stortings
Prop. Nr.1 (1987)) the first Troll platform will increase the export capacity of 24 bcm/year.
We assume that a similar volume can be extracted later on Western Troll. The development
costs of these fields are large due to deep waters.

2.1.3 Algeria

The economic situation of Algeria makes the country strongly dependent on the incomes it
receives from exports of natural gas. The government has insisted on a gas price based on
parity with the price of crude oil. This gas price has exceeded the market price, making Algeria
unable to sell all the gas they can produce. Algeria has recently been forced to abandon this
policy.

Gas from Algeria is distributed partly trough a pipeline to Italy and partly as LNG
(Liquified Natural Gas) shipments. Algeria exported 19.4 bcm to Western Europe in 1985.
The exports can be increased by utilizing idle LNG capacity, and increasing the transport
through pipelines by installing compressors or building a new pipeline to Europe.

2.2 The Demand side

Total consumption on the Continent was 162.5 bcm in 1985: the main consumers are West
Germany (29 % of total consumption ), France(16 %), Italy (19%) and the BeNeLux countries
(29 %). The import situation in 1985 is listed in table 1. 90 % of the total imports are
consumed by West Germany, France and Italy.

The Continental natural gas market developed rapidly in the 1960-les and early 19704es.
The gas grid is developed and covers 83 % of the population in Western Germany, 84% in
Belgium, 69% in France, 59% in Italy and 97% in The Netherlands (Colloque internationtal
de marketing gazier (1986)).,

3 Alternative gas market models

Competitive models assuming consumers and producers as price-takers have been used in a
number of energy market models. An analysis of the European gas market is done in Dahl
and Gjelsvik (1987). They have a two-good (oil and gas) model with 5 demand regions:
France, Vest Germany, Belgium, Netherlands and Italy (all buyers of Troll-gas). Netherlands,
USSR, Algeria and Norway are gas suppliers and there are a number of oil suppliers. The
model determines the prices and quantities which maximize social surplus (consumer surplus
+ producer surplus - transportation costs) for given supply and demand curves in each region.

An attractive property is that the model gives a simultaneous equilibrium in oil and gas,
and the model is easily expanded to more goods and regions. A competitive model may be
attractive, but hard to adapt to real markets. The model simulates better with constraints
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on transport arcs, making trade flows more diversified. A more doubtful assumption is the
modeling of the supply side as static price takers. Neither market power nor dynamics are
captured.

Static game models has been introduced as an alternative. The Nash Cournot model
has an intuitive appeal in markets with a few suppliers and many buyers. Some may find it
difficult to accept a passive demand side in the European gas market. But given the demand
curves, capacities and short term marginal cost curves, the Cournot solution is identic to the
Nash solution. This is the short term solution in Mathiesen Sz al.(1986.)

The problems arise when the static model is used to solve a dynamic optimization problem.
Suppose we want to make a forecast for the year 2000. We know the demand functions in
all future years, and the suppliers are assumed to be non-cooperative Nash players. (For
a further description of the concept, see section 4.) Now, both capacities and supplies are
endogenous. The problem can be thought of as finding optimal supply for each possible vector
of capacities. This game can be formalised in the following way:

Suppose optimal capacities and production is to be decided simultaneously. Q = (qi, , qi)
denotes the production vector and Qi the production vector Q except the production of sup-
plier i (qi). Similar, let K = (k1, , ki) be the vector of production and Ki be the vector of
capacities except ki

The payoff is given by :
i : = ri(qi,Qi,ki,Ki) (1)

The Nash solution Q: K (if it exists) is defined by

• : qi,ki •: ri(qi* , Kn ri(Q:, Kn (2)

To make this problem easy to solve, Mathiesen Sz al assumes that the sample room of capacities
is discrete, i.e. there are a few, actual investment projects to be considered, like new pipelines
and some field developments. These projects may be arranged in a natural order, i.e. by
increasing unit costs. Furthermore, variable unit costs are assumed constant until production
approaches capacity limits, when costs are increasing sharply.' The long term marginal cost
curves are then continuous, step wise increasing functions. The solution of the model is defined
by those investments and quantities which maximise profits in the year 2000.

The game is illustrated in figure 1. The initial capacities (1983) are given (10). In period 3
(2000) the demand function D3 is known and the players find optimal capacities K3 . This is a
simultaneous one-move-game, and the market development before and after year 2000 are not
(explicitly) considered. The players are not even allowed to observe investments completed in
the period 1983-2000.

In the same figure another model is illustrated. The 1983-2000 period is divided in three
periods, (1,2,3). In each period the players decide optimal capacity in the beginning of next
period. The players are acting as if each period was the last. I.e the responses to their actions
in succeeding periods are not taken into consideration.

This gives three games of the same type as in Mathiesen Sz al. (1986), with a closer
horizon. In period 2, the players can observe the investments done in the first period, and
optimize given this information. Otherwise, there is no difference between this sequence of
games and the one step game above. Still the games are static, in period 1 they do not
consider the consequences in later periods of their actions.

Obviously the solution in 2000 of these games will be different from the one step gärne.
The solution will also depend on length of time periods (or number of games in period 1983-
2000). This shows that both models discussed so far are not satisfying and lead to suboptimal
solutions.

'Mathiesen 	al.(1986) p.17,fig.2
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MRT-MODEL-ONE STEP STATIC MODEL

Max ir s.t K° and D3

A SEQUENCE OF STATIC GAMES

	

Max ir1 s.t
	

Max r2 s.t
	

Max 7r3 8.t
K°,	 D2

	
K2 , D3

DYNAMIC GAME

	1 2	 /3
K2

Max E K t 3 , Dt t=0...,T

Kt	 Capacity vector
It	 Investment vector
Dt	 Demand

Profit
boxes	 Indicate game structure.

Figure 1: Illustration of different games



The lower part of figure 1 shows a dynamic game. In period 0 the players make a total
plan of actions for all subsequent periods (T). In the beginning of each period they observe
the actions (here investments) done in the last period and make their investment decisions
according to their investment plans. This means they must have a plan for how to act in
every possible situation in every period. This game may be difficult to solve, but if a solution
is found, it will be an optimal solution to the dynamic problem. A further description of this
game is given in part II.

Part II
NASH EQUILIBRIA AND DYNAMIC GAMES

4 Nash equilibrium

Consider a game with N players. Each player has a finite number of alternative pure strategies2

Denote a pure strategy for player i as si E Si. Let 8 = (81 , , 8N) be a vector of strategies.
The payoff of player i is a function of the strategy vector vi = vi(s). A strategy vector s* is
a Nash equilibrium if:

Vi : V8 E Si : (8* ) vi , , 841, , (3)

A Nash equilibrium may not exist, or there may be many of them. It is possible to prove
that a Nash equilibrium always exists in mixed strategies, but the problem of which to choose
if there are many would remain. We only consider pure strategies in this paper.

A possible defence of the Nash equilibrium concept is given by Leif Johansen (1984). He
gives four postulates of rationality in a game theoretical context, and argues that the only
solution satisfying all these postulates is the Nash solution. The postulates are 3 '

Postulate 1. A player makes his decision on the basis of, and only on the basis of, information
concerning the action possibility set of all players, and the preference functions of all players.

Postulate 2. When choosing his own decision, a player assumes that the other players are
rational in the same way as he himself is rational.

Postulate 3. If a decision is the rational decision for an individual player, then this decision

e can be correctly predicted by other players.

Postulate 4. Being able to predict the actions to be taken by other players, a player's own
decision maximizes his preference function corresponding to the predicted action of other play-
ers.

The ideas behind the postulates is roughly: If 8* is the set of rational decisions for all
players, then by postulate 3, player i will know the rational decision of the others. By
postulate 4 he thus has to choose an action according to (3), which gives a Nash equilibrium.

The postulates ensure that the solution will be unique. Postulate 3 implicitly assumes
that the solution is unique. The problem is now what do the players do when there are two
or more Nash equilibria. We have to dispense from one of the postulates if we want to find a
"rational" decision for the players, i.e. postulate 3 cannot hold if there are two equilibria. It is
beyond the scope of this paper to give a definition of rationality that applies to this situation.

2 We assume that the reader is familiar with the distinction between pure and mixed strategy. If not, a
definition will be found in most textbooks in game theory, Lex. Basar and Olsder (1982).

3The postulates have been slightly reformulated to avoid introducing Johansen's notation.
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5 Dynamic versus static games

We will follow Basar and Olsder (1982) and call agame dynamic if at least one player is allowed
to use a strategy that depends on other players' previous actions.

Some examples will make this clear. Consider a usual Stackelberg game with two players.
Player one moves first. We denote his set of possible actions Al . Since he has not observed any
previous action, his set of possible strategies is equal to the set of possible actions Si = Al.
Assume his choice is the strategy si = al E Al. Player 2 will observe this action before he
makes his move. The action of player 2 depends on al . A strategy for player two is a plan
for what to do in every possible situation. That is a mapping 82 : A1 ---* A2 where 442 is the
set of possible actions for player 2. Thus player 2 is allowed to use strategies that prescribes
different actions to different si. This game is dynamic.

It is important to note the distinction between the set of possible actions Ai and the set
of strategies Si , which is the set of mappings from the set of possible previous actions to the
set of possible actions. Another important observation is that the Stackelberg solution is in
fact a Nash equilibrium. Let s(ai) be chosen to satisfy:

Val E A1 : v2(ai, 8;(ai)) = max v2 (ai , a2)
a2EA2

(4)

and let 81` = a; satisfy:

vi(4, 4(4)) = max vi(ai, 8;(ai))	 (5)

Then (4, 4) is a Nash equilibrium, and (a'1, 8;(an) is a Stackelberg solution.
An important example of a game that is not dynamic is the following: There are T periods

and 2 players. Let the set of possible actions for player i in period t be Ait , and assume that
it does not depend on previous actions. If we restrict the set of possible strategies for player
i to the set of vectors si = (ail, , ail.) where ait E Ait then this game is not dynamic.
The reason is that no player is allowed to use a strategy that depends on previous observed
actions. But, to cite Basar and Olsder: ".., by an abuse of language, such games is often also
called dynamic."

This last game would, however become dynamic if we allowed at least one of the players
to use a strategy that is a (non-constant) function of the other players' previous actions. If
all players are allowed to choose their strategy from the set of all such mappings, then we call
the solution to the game the closed loop solution. The solution of the static game described
above is called the open loop solution.

This last point is very important. Let us look at an example with 2 players and two
periods, and let Ait = {L, R} for all it. The game is static if the set of strategies for i
is restricted to the set of vectors :{(L, 14, (L, R), (R, L), (R, R)). The interpretation of the
strategy (L, R), is that i plans to play L the first period, and R in the second period (no
matter what happened in the first). The interpretation of the other alternatives are similar.

On the other hand the game is dynamic if the set of strategies for i is the set of (sib 8i2 )
where ail E {L, R) but where si2 is in the set of all mappings {L, R) --+ {L, R}. To take an
example let sii = L and s12(L) = R and 812(R) = L be a strategy for player 1 (P1). This
strategy says that P1 will play L the first period, while in the second period he will play R if
P2 has played L the first period, and L if P2 has played R.

We have to introduce some additional notation. Let xit be typical variables indexed by
player and time (like ait and sit). We can form two types of vectors of these variables. We
use the notation x = (24 1 , ..., xiT), and x.t = (xit, ...,xNt). x is the vector of all xit .

Since the equilibrium in a dynamic game is a set of mappings, it is obvious that in many
interesting applications, the equilibrium will be very complex. To make it more transparent



we do not in this paper present the equilibrium strategies, but only the resulting actions. Let
s* be the equilibrium set of strategies. In the first period there is no previous actions, so the
strategies are just actions. I.e. 8 .*1 = a. In the rest of the periods the resulting actions will
be defined as a .*t = 8*.t(a*.i , , a*.t_ 1). The equilibrium is then presented as a* = (a .*1, , a .*T).

A reason for choosing this concept of dynamics is that it corresponds with what we have
called "strategic behaviour". By saying that a player in a game behaves "strategically" , we
mean that he takes into consideration the effect of his actions on the actions of the other
players. If the other players are not allowed to use strategies that depend on his actions, then
his action has of course no effect on the other players' actions. "Strategic behaviour" is thus
eliminated in static games.

5.1 Perfect equilibrium

An important concept in dynamic games is Selten's concept of a perfect equilibrium (Selten
1965). It is possible that there exists Nash equilibria (81, 82) for which 82 does not satisfy (4)
such that: if Player 2 uses strategy 82 and player 1 chooses his strategy si, as in (5) (using
82 instead of s;), then player 2 will be better off than using 8. The idea is that player 2, by
threatening to be irrational, forces player 1 to use a strategy that is good for player 2. But
this is not a reasonable solution, because it implies that player 2 will not be maximizing his
payoff, given the action of player 1. Player 1 has good reasons to believe that P2 will change
to s; when P1 has made his move, and the threat of playing 82 is thus empty. The idea of
perfect equilibrium is to eliminate such solutions.

A strategy in a dynamic game is a total plan for what to do in every possible situation.
For a set of such plans to be a perfect equilibrium it must be optimal for the players to stick
to the plan in every possible situation.

We will in this paper consider only perfect equilibria.

5.2 Strategic behaviour

Assume we have found a perfect equilibrium s* with the corresponding actions a*. In the game
presented in this paper the actions ait will be investments. Assume that player i undertakes
a large investment in period t. Is he then making this investment simply because the "market
is mature" , or is it to prevent other players from investing the next period? There are two
steps in answering this question, and we define the investment to be strategically motivated
if we get an affirmative answer in both the two following tests:

First test : Would other players increased their investments in period t 4- 1, if i had not
undertaken his investment in period t?.

This is a well posed question, because 8; t+i for j i is a function of previous actions.
We then just change al:t to an action ait implying less investment, and examine whether
or not the value of sit is changing. Note that it is sufficient to examine the behaviour
in period t 1 since, if the actions of the other players are not changed in period t 1,
player i has the opportunity to delay the investment ait to period t +1, without affecting
the other players' optimal reply.

Assume that if i had not undertaken the investment, then another player would have
undertaken a larger investment the next period. But this does not imply that the market
is not mature. It might be the case that as the other players are acting, the market simply
becomes mature for investment ait in period t.

The second test is based on the idea that if a player postpones an investment in the optimal
solution at least one of the other players will undertake a larger investment the next period.
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The question is then, is the player investing to prevent the other players from investing, or
would he have done the investment anyway ?

Second test : Would he have made the investment later, if he considered the future actions
of the other players to be fixed ?

Let ia* be the set of actions of all players except i. What is optimal for i if he knew
that the other players would choose the actions ia* in all future periods? Let vi(ai,i
be i's payoff if he chooses ai and the others move ia*. Let ai be defined by	 =
maxai vi(ai,i al. The answer to the posed question is positive if	 al.

To learn more about the impact of dynamics, you can compare a static game to a dynamic
one. It seems most natural to compare it with the open loop solution, since this can be
considered as the static game version of the same model. However, the solution might be very
different from the closed loop solution, and thus it will be difficult to distinguish the different
effects working at the same time.

Part III
A DYNAMIC INVESTMENT GAME MODEL

Before describing the theoretical model, we will look at an example that gives the main ideas
of this model. We then describe the general model briefly.

6 An example

There are two producers both producing at full capacity. Initially they produce one unit of
gas per period. Both are able to make one and only one investment that will increase their
production capacity by one unit from the period the investment is made. This irreversible
investment costs 2. Let pt(q) be the price at time t when q units are produced. Then suppose
that in the first period the prices are: )21(2) = 11, 121(3) = 7 and pi (4) = 5, and in the second
period the prices are p2(2) = 15, p2(3) = 11 and p2(4) = 6. The game lasts two periods and
in each period the players make their decisions simultaneously.

Let I denote the action "to invest", and N the decision "not to invest". The game with all
possible paths of actions is illustrated in figure 2. To illustrate how a payoff is computed, let
us look at the case where (N,I) is played in the first period and P1 plays I in the second. This
is node 4. The first period Pl's production is still 1, since he has not made any investment,
while P2 has carried out his investment and produce 2. Total production is 3. Hence P1's
payoff the first period is pi(3) = 7 and P2's is 2p1(3) = 14 . The second period they both
produce 2 and both earn 2p2(4) = 12 . Both have used 2 to invest. This sums up to
(7 12— 2,14+ 12— 2) = (17,24).

Note that in the first period P2 does not know the action of Pl. Thus his strategy can
not depend on this action. This is indicated in figure 2 with a stippled line indicating the
information set, within which the strategies are to be constant. An example may make this
point clearer: In figure 2 it looks like P2 makes his first move after Pi has made his move. To
indicate that this is not so we have drawn the information sets. The point is that P2 is not
able to distinguish the two points in a. Thus his strategy must prescribe the same action in
both these points. When he makes his second move, however, he can distinguish 4 different
sets be, and his strategy might depend on witch set he is in.



P1

P2

P1

P2

111
5	 6	 7	 8

( 1,I) (LI)	 ,N) (LI) (N,N)
1	 2	 3	 4

St.	 (I,I) (I,I)	 ,N) 	(1,1)

6.1 The set of possible strategies

To make this game a dynamic game we must allow the players to use strategies that depend
on previous actions. The game has only two periods and the players are assumed to move
simultaneously. Thus the only way to make it dynamic is to let the strategies for the second
period strategies depend on the actions used in the first period.

Po.1 20	 24	 34 	 17 	 18 	 21 	 Si 	22	 26
Po.2 20 	 17 	 18 	 24 	 34 	 21 	 22 	 Si 	26

Figure 2: St.-State, Poi- Payoff for player i . The stippled lines indicate the information
structure: The acting player is not able to distinguish the nodes within one information set.

6.2 Perfect equilibrium

As we have pointed out earlier, a strategy is a total plan for what to do in all possible
situations. Thus the following would be a strategy in our example: "The first period I do not
invest, the second period I invest if the other player has invested otherwise I will not invest."
We will not allow this strategy as an equilibrium-strategy! The reason is as follows. If the
other player has invested then it is not optimal for me to invest, because this gives me 17
while playing not investing gives me 18. My threat of investing is thus empty. To rule out
such empty threats we assume the equilibrium to be perfect.

It is not quite correct to use the word "threat" in this connection, because there is no
communication between the players. But the other player is assumed* to be able to compute
what is my optimal strategy, so there is no need for communication.

6.3 The second period subgames. Nonexistence of Nash-solution

An important consequence of using perfect equilibrium as the solution concept, is that we
may solve the game by solving a sequence of the subgames. I.e. we might solve the model by
dynamic programming.
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Let us consider the case when (N,N) is played the first period. The solution constrained
to this subgame must then also form an equilibrium. Let us look at the payoff-matrix of this
subgame: (Pl's payoff is first in every quadrant)

P2	
N

Pl

N

	21,21
	

31,22

	

22,31
	

26,26

These payoffs are given as node 6-9 in figure 2.
This game has two Nash-equilibria (N,I) and (I,N). (I,N) is the best for Pi and the worst

for P2 and vice versa. None of these equilibria gives a satisfying solution of this game. Even
with mixed strategy there is no unique Nash-equilibrium in this game.

A possible way out of this problem is to assume that the players in such situation have a
maximin behaviour. In our example Pi might argue that "If I do not invest then I get at least
22 while if I invest, I might get only 21. Thus I do not invest." The same argument applied
to P2 gives the solution (N,N). The problem with this solution is that if P2 understands that
P1 has a maximin behaviour, then he knows that P1 is playing N, the optimal for P2 would
thus bee to play I. The same may P1 think.

Still we have chosen to use the maximin solution concept when the Nash-solution is not
defined. Note that if we have to use a maximin solution in any of the subgames, the solution
of the total game will no longer be a perfect Nash-equilibrium.

The maximin solution will give the payoff (26,26). Thus the players know that if they play
(N,N) the first period they will gain a payoff (26,26).

It is interesting to see what would have happened if the payoff matrix above had been:

P2

Pl

N

	21,21
	

24,18

	

18,24
	

26,26

In this case there are also two Nash-equilibria. (1,I) and (N,N). But note that (N,N)
is preferred by both players. This is thus a natural solution. If there exists such "best
equilibrium" we will implement it as the solution, even if the equilibrium is not unique.

The rest of the second period games are easy to solve.lf they played (I,N) the first period,
only P2 has a real choice in the second period. We see that it will be optimal for him not to
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invest in the second period. Similarly with (N,I) in the first period. Thus if only one player
invests in the first period, the other player will lose his marketshare for the rest of the game.
The final payoff when (I,N) is played in the first period is thus (34,18). Similarly the payoff
is (18,34) when (N,I) is played. If (1,I) is played in the first period the payoff is (20,20).

6.4 The first period decision. The reduced game

For every possible outcome in the first period we now know what will happen in the next
period and the corresponding payoff. We use this to construct a reduced form of the game.
The payoff for the first period reduced game is now known:

P2	
N

Pl

N

	20,20
	

34,18

	

18,34
	

26,26

This is the prisoner's dilemma, and the Nash-solution is (1,I). This solution is Pareto-
dominated by (N,N). It is in agreement with the common result in oligopoly theory, that
competition forces the players to produce at a higher level than they would in the monopoly
case.

6.5 Payoff or periodical profits

In this example we have used the usual game description with the payoff given for each
terminal node. For computational reasons we have in our model used another approach. Let
us review the subgame that occurs after the players have played (N,N) in the first period. In
the first period they have then earned 11 each. The difference in payoff only depends of what
they will earn in the second period.

The payoff earned in the second period is :

P2	
N

Pl

N

	10,10
	

20,11

	

11,20
	

15,15

This game is equivalent to the subgame considered earlier. The solution is still (N,N) and
the payoff is (15,15). The total payoff from playing (N,N) the first period is /then the profit
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earned that period (11,11) plus the profit earned by continuing playing optimally which is
(15,15) Total profit from playing (N,N) is then (26,26) as we got before.

The reason why this is an equivalent game is that it is only the differences in payoff for
different strategies that are important. Thus, adding a constant profit from earlier period to
total profit, does not affect the ranking of the different paths. This is easily seen from the
following bi-matrix:

P2

Pl

N

Here kl is the profit Pi has earned in previous periods and k2 is the previous profit for
P2. Obviously the values of kl and k2 do not effect the solution of the game.

In the game in figure 2 the state is (I,N) in both terminal node 3 and 7. If these games
continue after the second period, the profits would be equal in the subgames starting at 3
and 7, thus the solution would also be equal in the two subgames. In a perfect equilibrium
we have only to consider strategies that depend on the state, and not the total history. This
simplifies the computations in bigger models considerably.

The formal model

We have described an example which captures the main ideas in our model. We then proceed
to present the general model.

The model may be presented graphically as:

Each player maximize discounted profits earned in the short run games. We assume that
the profit in period t is a function of all previous investments, but only of the last short run
game decision:

Irct	 ri,t(11 1, • • •	 q.t )	 (6)
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The dynamic structure of the game is: Let K,0 be the capacities in period O. The invest-
ment decision will determine the capacities next period: K,1 = f(K,0,10). K,1 will be an
input into the first short run game, and for the next investment decision. Note that what
happens in the short run game has no effect on the rest of the game, in the sense that the
result is not input for any other decision.

To solve the game we use dynamic programming, and so we have to start in the other end.
When all investment decisions has been undertaken, only the last short run game remain.
But in this game there is no future reaction to take care of, and the game might be solved as
a static game. Note that since the profit is not a function of earlier production, the outcome
from previous short run games will have no effect on the outcome in the last one. We now
turn to the last investment decision. This investment decision will only affect the last short
run game. Thus the payoff from 1x-1 is the outcome irx from the last short run game, given
that this investment has been undertaken. (This will of course depend on previous investment
decisions, but these can be taken as data at this stage.)

For the second last short run game, we have already noted that this has no effect on future
decisions. We thus might solve it as a static game. But again the payoff in this game, is not a
function of previous production, thus the previous short run games will not affect this game
either. Using this argument successively we conclude that all short run games may be treated

410 as static games! This is a parallel to Selten's "chain-store paradox" (R. Selten(1965)).
Let us turn to the second last investment decision. Assume the outcome is IT-2. This

is input to the second last short run game, giving outcome r .*T  as well as input to the
last investment decision. The outcome here results in an output ir. The total payoff from
undertaking 11T-2 is thus w* -I- a- .*Td. Given the payoff in all possible outcomes at this stage,
we are able to solve the game. This is similar to the first period decision in section 6.4. We
then repeat the procedure in the third last investment decision, and so on.

Note that since the short run games may be treated as static, any numerical solvable
model of the short run market defined by the capacities might be used as short run games.

In this paper it is assumed that each producer operates at full capacity. A theoretical
argument for this choice is that production at full capacity is the solution of a game where
the players have prices as decision variables. This is known as the Bertrand price-game.

To show this, let p* be the price if all players produce at full capacity, and suppose that
p* is higher then variable cost for all players. Each player i, sets the price pi. Obviously
pi > p*. We might assume (without loss of generality) that in < p2. If pi < p2 there are two
cases. (i) P2 has zero sales. If this is the case for all p2 > pi then pi, > p*, and hence P2 gets
positive profit by choosing p2 = p*). This is then better for P2. (ii) P2 has positive
sales. Then 1 might increase his price without letting pl > /32, and without losing sales. This
is obviously better for 1. Thus in equilibrium pi = x = 15 for all i,j. Assume next that j5 > p*,
then not all the capacity is used. But then any player might decrease his price infinitesimally
and utilize his total capacities which obviously will increase his profit. Thus the only possible
equilibrium is that everybody sets pi = p* and produces at full capacities.

7.1 A formal ,description of the model

We have n producers labeled with the index i. Further we assume that the producers make
their investment I (possibly zero) and production decision, q at the beginning of every period.
Production and capacity are thus assumed to be constant within each period. The production
capacity Ki,t for a producer is determined by his previous investments and initial capacity

Ki,t =
	

(7)
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We denote the vector of capacities K t:

K. =	 ,Kn,t)•
	 (8)

The set Si of possible strategies for player i is the set of functions from observed capacities
to possible investments. One for each period.

= (80,• • • ,8i,T)
	

(9)

When implementing a strategy 8j4 we must invest:

= si ,t (K.t)
	

(10)

The gas price is a function of the total quantity gas delivered to the European market.
Pt = pt(Qt) , Qt = Ei qi,t. The function pt depends on t. The production cost Ci,t is a
function of the capacities and production, and is fully known to all participants in the market

Ci,t = Cct (qi,t, Ki,t).	 (11)

The production is determined in the short run game. In this paper we have used the
Bertrand price game which have a particular simple solution:

qi,t 7-7 Ki,t

The cash flow is:

Irct = (Pt — Ci,t)qct ict

The producer maximizes discounted cash flow:

Max Eirctdt	 (14)
t=0

Where d = 1,+r • Assume that the players use strategies (81, , 8,0, and denote the
corresponding other variables with the superscript °.

The payoff for player i in this case will be.

Vir(81,- 8° ) =, n 	 s",
o	 (15)

t=r

(4,...,etn* ) is a Nash equilibrium if:

Vi0(811 ,••• )4-1, 8i,41-1,••• Sn* )	 'KO 1 ••• sn) 	 (16)

for all possible strategies si, and for all

7.2 The dynamic programming solution of the game

To describe the algorithm we first assume that we have been able to find the solution for the
subgames for period s = t 1,...,T. We then solve the subgame for period t. Let i's profit
from period r to T be VT (Kr) when the players behave optimally from period r to T.

Assume we "stand" at Kt at time t. To go from Ki,t to Ki,t+i player i has to invest
Ki ,t+i). The cash flow in period t is

iri,t (Kt) = (pt(Q — Ci ,t )qct — Ii(Ifi, t ,Ki,t+i )	 (17)
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The payoff for player i when all players make the necessary investment so as to increase
capacity from Kt to Kt÷ i will thus be:

Wi,t (Ift , Ki,t) = wct(Kt) -/- dVi,t+1(Kt+i)	 (18)

If we find a Nash solution in this game, we assume that this strategy will be implemented.
If not the maximin solution is implemented. Let K * 1 be the capacities corresponding to the
relevant solution. The payoff for player i in position Kt at time t is

	Vi,t (Kt) = Wi,t(Kt, K;-1-1)
	

(19)

Thus we see that if we know Vt+1 we are able to compute Vt , and the optimal decisions
at time t. But we know that from time T there will be no more gas production, so then
VT+1 = O. Thus we might compute Vt starting with t=T, using the result to compute Vt for
t=T4 e.t.c. until t=0.

Now we know what everybody will do in time t=0, and we might compute the state in
time t=1. We then know what to do in t=1 and might compute the state in time t=2. In
this way we continue until t=T, and the game is solved.

Part IV
THE MODEL APPLIED TO THE EUROPEAN GAS
MARKET.

The previous chapter describe the theoretical basis of a dynamic game model of the gas market
of the European Continent. In this chapter we will apply the model to this market.

The input figures used in the model are from Mathiesen, Roland Thonstad (L. Math-
iesen, K. Roland and K. Thonstad(1986)) and from BP review of Word Gas. (BP (1986))

8 Demand

In the model, the European Continent is regarded as a single homogeneous market. Great
Britain is, as earlier mentioned, not included in the marked. We could have included Great
Britain by building a model with simultaneous dynamic equilibrium in two markets. This
would certainly be interesting, but will not be commented upon in this paper.

We also disregard market power on the demand side. There is no difference in price on
imported and domestically produced gas in the model.

Natural gas is assumed delivered in a "centre of gravity" in the demand region. Trans-
portation costs to this point are included in the production costs, and all deliveries of gas are
sold to the consumers at the same price (cif).

Demand equation:
	E(t) = aP(t)elY(t)e2 	(20)

Variable	 Value used in model Unit
E = Demand	 (bcm)
a = Constant	 6167.0 bcm
P = Price of natural gas	 (million $ /bcm)
Y = GDP in demand region
el = Price elasticity	 —0.7
e2 = Income elasticity	 0.8
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The demand for natural gas in the model is a function of price and GDP level in the
demand region. We could easily have made the function more realistic. We could have
included substitution effects through alternative energy prices in the demand equation,
making exogenous assumptions about such prices. But the main goal of this model
is to show the effects of strategic considerations in a game situation on the players
investments. A more complicated demand function would not have contributed to the
understanding of this matter.

Price and income elasticities are computed as weighted mean of the elasticities of the
countries in the region computed by Mathiesen dz al.

Growth in GDP:
(t) = yoe6t	 (21)

GDP in the consumer region is assumed to grow with a constant yearly rate. GDP in
the base year (1985) is normalized to unity.

Variable	 Value used in model Unit 
vo	 Base value	 1

= Rate of growth	 2.5%

Domestic Production:
S(t) = Solt 	(22)

The amount of remaining recoverable gas within the European Continent, except for

Netherlands is relative small. For the sake of simplicity domestic production is assumed
to decrease by a constant rate throughout the simulation period.

Variable	 Value used in model Unit
So = Domestic production in 1985	 109	 bcm

= Rate of decrease	 —1.2

9 Supply

From present state of gas production and distribution we have chosen to consider at most
three foreign producers competing for the supply of gas to The European Continent. These
producers are the Soviet Union, Norway and Algeria.

Each of these producers can increase their present export capacity by a few large in-
vestments. The players choose the investment profile in order to maximize discounted payoff.
Thus the decision maker in each producer country faces a limited discrete investment problem.

The present situation and the new possible investments considered in the model with es-
timated capacity and costs are listed below.

Soviet Union
Existing export
Excess capacity

28.6 bcm
27.0 bcm

Investment projects Increased capacity Costs (85 $ )
Installation of compressors in existing pipeline
New pipeline to Western Europe
Installation of compressors in new pipeline

23.0 bcm
56.0 bcm
23.0 bcm

$ 200 mill
$ 15000 mill
$ 200 mill
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The capacity and cost of installation of compressors in the existing pipeline are estimated on
the assumption that no compressors are installed at present.

Norway
Existing export
Excess capacity

13.6 bcm
None

Investment projects Increased capacity Costs (85 $ )
Field developments
Sleipner
Troll I
Troll II

8.8 bcm
24.0 bcm
24.0 bcm

$ 1900 mill
$ 6500 mill
$ 6000 mill

The present producing wells in Norway are relatively small. Therefore we have imple-
mented a production profile for these fields based on Wood Sz Mackenzie Sz Co (1986). The
effect is that production decreases and that existing wells are empty about 2010.

Algeria
Existing export
Excess capacity

17.8 bcm
None

Investment projects Increased capacity Costs (85 $ )
Restore idle LNG capacity
Installation of compressors in existing pipeline
New pipeline to Italy

20 bcm
6 bcm

i	 18 bcm

$ 1000 mill
$ 400 mill
$ 3500 mill

Variable unit costs : Variable unit costs included transportation are regarded constant,
and is estimated to mill $ 90/bcm for Norway and USSR.

Due to the different variable cost of LNG and pipeline gas production and transporta-
tion we have calculated the mean variable costs for Algeria after each project is fulfilled.

Algerian project
	

Variable unit cost (85
Existing capacity	 mill $ 108.4 /bcm
Restore idle LNG capacity mill $ 119.5 /bcm
Installing compressors	 mill $ 111.2 /bcm
New pipeline to Italy	 mill $ 105.0 /bcm

The reason for the high variable unit costs for Algeria is the expenses related to LNG
production.

Production : The players in the game decide their investment profile so as to maximize
discounted payoff. In the model we assume that everybody produces at full capacity,
despite the fact that the USSR has idle capacity at present.

Rate of discount : The rate of discount is set to equal 5 % in the three producer countries.
We have done some simulations where we assumed higher rate of discount in Algeria
based on the assumtion that less developed economies have higher rate of discount. This
change had very little impact on the investment decisions in the model.
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Order of investments : It is assumed that there is a natural ordering of the investment
projects for the Soviet Union and Algeria. You most have a pipeline before you can
install compressors, and we assume, due to the cost per unit, that the capacity of an
existing pipeline is increased by installing compressors before a new pipeline is built.

The possible Norwegian investments are fields developments. The fields can be explored
in any order. A discussion of impact of different investment profiles is given below.

Time horizon and payoff: The producers can undertake new investments until time ti,
set to 2060 in the model. The production resulting from the investments is assumed
constant throughout the simulation period. This is a strong simplification as far as
small fields like Sleipner are concerned. The production achieved at time ti is assumed
to remain constant until time t2 (2085). As seen from the results below all investments
are done long before time t2 in all cases. We have chosen this long time horizon to be
sure that the the investment decisions of the players are not affected by an arbitrary
horizon.

These assumptions give unrealisticly high discounted payoff figures, so that the actual
value of the discounted payoff over the whole simulation period is not very interesting.
We have chosen to comment upon the accumulated discounted cashflow for the first
periods.

Full information : We have assumed that all players have access to the same information.
Obviously this is not the case in real life. Algeria does not estimate investmentcosts in
the North-sea as accuratly as Norway does, and vice versa.

Other assumptions : There is considerable time lag from the time an investment is decided
until it is put into effect. This justify a model with long time intervals. In our model
the producers can choose an action every 5'th year.

Many of the assumptions in the model can be relaxed. But this would result in a more
complex model which is less transparent.
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Part V
SIMULATION RESULTS

10 The impact of dynamics

In the dynamic game the investment decisions are affected by previous investments of all
actors. This makes strategic behaviour possible. It seems to be widely accepted that there
is a conflict between "fighting for high marked shares" , and "fighting for high prices" . This
conflict is only possible to model in a dynamic game. We thus believe that this model captures
important marked forces, not included in other models. But even if this empirical hypothesis
should turn out to be incorrect, there is strong normative argument for the model. A producer
who is aiming at maximizing NPV of future profits, will behave unoptimal, if he does not take
care of the dynamic game element.

Figure . 3: Investment profiles with dynamic and static assumptions

.
To illustrate some main features of a dynamic game we have simplified the model to a two

actor game. USSR is excluded from the game by assuming a fixed market share of 30 % of
.total consumption. The resulting investment profile of a simulation based on this assumption
is shown in figure 3. We can see that Algeria will start all their projects the first period.
Norway starts the development of Sleipner in the second period, 'Ilion I in the third, and Ilion
II in the fifth period.

Test one In order to clarify the impact of dynamic behaviour we perform the test described
in section 5.2. In the first part of the "strategic test" we ask the question " What is the effect
on the Norwegian investments if Algeria had chosen not to build the pipeline to Italy the
first period?" . A simulation shows that if Algeria does not build a new pipeline, Norway will
start the development of Sleipner and Troll I in the second period. In this case the Algerian
pipeline to Italy will be postponed until period 4. The conclusion is : Algeria postpones the
second Norwegian investment one period by investing all their projects the first period. This
makes the discounted Algerian payoff higher.
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Test two The second part of the test is answered if we perform a simulation where we
assume that the investment profile of Norway is fixed and equal to the base run profile. This
makes Algerian strategic considerations irrelevant. In this case Algeria chooses the investment
profile which maximize their payoff given the fixed production of Norway. The result shows
that in this non-strategic situation Algeria will invest later than in the base simulation. All
investment projects are postponed to the second period. This indicates that the production
is higher in a dynamic game than in a static game.

Open loop The fixation of the Norwegian production is of course an unrealistic case. Nor-
way would have invested if Algeria were to postpone their investment. The difference between
a static and a dynamic game is best shown if we implement an open loop game. In the open
loop situation the actors consider the investment possibilities for himself and the other actors
at time to, and at this time he decides the investment profile which gives him the highest
discounted payoff. An equilibrium is obtained if both actors agree upon an investment profile
given the investment of the other actors. This game differs from the dynamic game since
the actors will follow their plans whatever happens after the game is started. The previous
actions of the actors do not affect the investment decisions. Consequently we have a dynamic

O model but a static game.
A simulation of the same dynamic model with an open loop game gives the investment pro-

file shown in figure 3. The corresponding price development is shown in figure 4. Investments
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Figure 4: Price development with dynamic and static assumptions

in the first period is considerably higher in the closed loop solution (44 ban) than in the open
loop (0 bcm). This results in lower second period prices in the closed loop case. But already
in the second period this difference has vanished. The explanation of this lyes in the number
of possible investment project for each player. In the dynamic case Algeria carries out all of
its investments in the first period, and has thus no possible investment project in the rest of
the game. Hence in the subgame starting in the second period the open loop and closed loop
solutions will be identical.

• The difference between a static and a dynamic game can besumraarized by:

1. In order to gain higher market shares in the dynamic game one or more players
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make one or more investment earlier than in the non-strategic case,
affect the investment decisions of the other actors.

2. This results in a higher production in the dynamic game.

3. Higher production makes the gas price decrease.

4. The lower gas price affects the investment decisions. Investments of the
become less profitable. And one or more of their investments are post

5. The players making strategic investments gain higher marketshares
higher discounted payoff.
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Figure 5: Discounted cashflow under different assumptions

Norway Algeria
Dynamic 41,713 45,645
Open loop 67,655 (+62%) 30,832 (-32%)
Norway fixed 45,113 (-I- 8%) 47,598 (+ 4%)
Algeria delayed 49,724 (+19%) 44,115 (- 3%)

Table 2: Accumulated payoff of up to 2015. And change from dynamic run in %

Because of the long time horizon in this model the payoff is very large, and the relative
difference in the discounted payoff is small. Thus we have shown the discounted cashflow for
the two countries the first 5 periods in figure 5. The accumulated discounted cashflow over
the same period is listed in table 2. The results indicate that the dynamic game is the worst
case for Norway, open loop is the best. Observe that in the case with a fixed Norwegian .
production both actors will be better of.
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11 The significance of market share of the Soviet Union

USSR is highly dependent on Western currency to finance imports. This fact implies that
USSR wants a big share of the supply of natural gas to Western Europe, while political
considerations in Western Europe suggest minimal dependency on gas deliveries from the
communist area.

• We have run the model under four different assumptions:

1. 20 % of the total consumption is imported from USSR. This is about the present
situation.

2. 30 % of the total consumption is imported from USSR. This is the highest single
country import share recommended by EC

3. 40 % of the total consumption is imported from USSR. A liberal import restriction.

4. The Soviet Union is an active player in the game.

The different assumptions give different supply of gas from the Soviet Union to the market.
Higher market shares give higher total supply.
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Figure 6: Enodenous market shares of the Soviet Union.

The path of the market share when USSR is an active player is illustrated in figure 6.
The market share starts at a level slightly below 30 % and rises to about 40 % by the end
of the simulation period due to the tact that Norway and Algeria have completed all their
investments. The results indicate that a 30 % aggregate market share restriction will not hit
USSR exports hard. But a more disaggregated model where we put the restriction on each
country may change this result.
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The market share of the Soviet Union affects the total gas supply and thus the gas price.
The total production of the three suppliers in the different situations are shown in figure 7.

Figure 7: Production with different Russian market shares.

It is obvious that the total supply increases when USSR is allowed higher market shares.
The supply from USSR as an active player lies near the 30 % case.

When more gas is supplied the price decreases. The gas price affects the discounted payoff
of the actors. The payoff as result of different market situations is illustrated in figure 8.

The results show that a higher market share from the Soviet Union makes the investments
of the other players less profitable due to a lower price. Investments are consequently delayed
in most cases.

4000 -

20 X	 30 X	 40 %Active player
USSR market situation

Figure 8: Payoff with different Russian market shares.

USSR as an active player gives the lowest payoff. This is surprising since USSR produces
less than in the 40 % of total supply. The reasons for this is that the importance of dynamic
considerations increases when USSR is a player in the game. There are now three players
fighting for marketshares. The result shows that preventing USSR from investing in a new
pipeline gives decreased payoff for Norway and Algeria.
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The conclusion is that the Soviet market share strongly affects the situation in the gas
market.

12 The price elasticity

A uncertain factor the European gas market is the price elasticity of demand. The value used
in the model is calculated as a weighted mean of the elasticities of each country as estimated
by Mathiesen dz al (L. Mathiesen, K. Roland and K. Thonstad (1986)).

To analyze the effect of a changed price elasticity we remind the reader of the situation in
a static Nash-Cournot situation.
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Figure 9: Effect of a higher price elasticity

In a Nash-Cournot game the marginal cost (equals marginal revenue) i : mc = p(1
s = market share
p = gas price
e = price elasticity

The change in the price due to a change in el is given by (constant marginal cost):

Sp 	 Ps 
e2 (1+ ale]

(23)

The short term effect is that if the magnitude of the price elasticity increases the price
decreases.

The situation is more complicated in the dynamic game situation. We have done a sim-
ulation where we increase the price elasticity from -0.7 to -0.8. The effect on the investment
profile is shown in figure 9.

As seen from the investment profile in figure 9 the change in price elasticity alter thé order
of the investments. Norway completes all their investments before Algeria starts investing. A
reasonable explanation to this is that the higher price elasticity results in a lower price (fig.9),
and this hits Algeria harder than Norway due to higher Algerian variable costs.æ
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13 The ordering of the Norwegian investments

In the model we have assumed a natural ordering of the investment projects in each country.
In Algeria and USSR the ordering is given by cost considerations and physical limitations, e.g.
you need a pipeline before you install compressors. The existence of such a natural ordering is
not so obvious in the case of the development of the Norwegian gas fields Troll and Sleipner.

Order of investments
Sleipner	 Troll	 2,614,725 mill $
Troll --+ Sleipner	 2,643,977 mill $
Difference	 -29,252 mill $

Table 3: Discounted payoff with different ordering of the Norwegian investments

These fields could be developed in any order, but we have chosen td assume that Sleipner
is developed before Troll. The ordering of the fields has an impact on the equilibrium solution
and thus the discounted payoff. We have done a simulation with development of both Troll
fields before Sleipner.

Figure 10: Investment profile with different ordering of the Norwegian investments

From the calculations we can se that Troll-Sleipner investment have a higher payoff than
Sleipner-Troll. This seems surprising since the unit cost of Sleipner is less than the unit cost
of Troll. The explanation is again found in the strategic aspect of the game. If we change
the ordering of the field developments the investment profile is changed (se figure 10). The
extra production capacity provided by Sleipner and Troll I is not sufficient to keep Algeria
from investing. All of the investments are too expensive due to the resulting fall in prices.
Investments Troll I -F II are large enough to keep Algeria from investing and the extra supply
does not course a radical price fall. This conclusion may be dependent on the price elasticity.
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Part VI
CONCLUSIONS

The main purpose of this paper is to describe and present empirical simulations on a dynamic
game model of the gas market. The model gives a very simplified picture of the market
structure, and we have not incorporated detailed information about costs or technology. The
results should thus not be taken as concrete advice as to whether or not undertake specific
investments.

Still, we beleve that some important qualitative conclusions can be drawn. The solution
in a dynamic game differs considerably and systematically from the results in static games.
The main difference is a higher production compared to a static game. We thus believe that
static game models will underestimate optimal production.

The most striking example of this effect of the dynamics is the result that Algeria in-
vestes in the period 1985-89 even though this investment reduces their cash-flow (excluded
investment-costs) in the period 1990-94, to prevent later Norwegian investments. We might
say that Algeria sacrifices short run profit to fight for market-shares.

As already pointed out we have made many simplifications. It is possible to expand the
model and overcome some of these simplifications, at the cost of a more complicated model.

Some potential generalizations witch can be done are:

• It is possible to increase the realism of the model by introducing a stochastic demand
for gas.

• The demand is estimated in a period of high oil prices. It is possible to introduce
connections between the gas price and the oil price, and give exogenous price paths for
oil.

• We might have assumed that the players moved sequentially, one succeeding the other,
and not simultaneously. It is not obvious which assumption is the most natural in the
gas market. A sequential model is at least as easy to solve on a computer as the one we
have used.
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