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ABSTRACT

This paper defines and analyzes the properties of a directional shadow elastici-
ty of substitution, i.e. an elasticity of substitution defined for an arbitrary
price change. The concept generalizes various measures of the elasticity of sub-
stitution such as the shadow elasticity of substitution, the "own" Allen-Uzawa
(partial) elasticity of substitution, and the elasticity of substitution between
factor groups. It permits a generalization of the traditional factor share lem-
ma to production functions involving more than two inputs, and provides a logi-
cal relationship between the elasticities of substitution defined on the produc-
tion and on the cost side.
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INTRODUCTION

This paper defines and analyzes the properties of a directional

shadow elasticity of substitution, i.e. an elasticity of substitution

defined for an arbitrary price change. Thé concept generalizes.

various measures of the elasticity of substitution such as the shadow

elasticity of substitution, the "own" Allen-Uzawa (partial) elasti-

cities of substitution, and the elasticity of substitution between

factor groups. It permits a generalization of the traditional factor

share lemma to production functions involving more than two inputs,

and provides a logical relationship between the elasticities of sub-

stitution defined on the production and the cost side.

The elasticity of substitution was originally defined by Hicks (1932)

for the case of only two inputs, and generalizations to an arbitrary

number of inputs have been presented by Allen (1938), Uzawa (1962)

and McFadden (1963). The definition of the directional shadow elasticity

of substitution (DSES) is due to Frenger (1978), and the present paper

extends that work by providing alternative definitions of, and justi-

fications for, the use of the DSES.

Most of this paper was written in 1975/1976. Recent work on the estimation

of Generalized Leontief cost functionslead to the idea of using the DSES

to test for the concavity of the cost function, and this test is presented

in the new section 1.4. The DSES gives us, in contrast to the eigenvalues

of the Hessian of the cost function, an economically meaningful measure

ofwhetherthe cost function is concave or not, and the extent of varia-

tions of its curvature at an arbitrary point in the price space. An emprical

application of this procedure is presented in Frenger (1985).
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Sec. 1 A DIRECTIONAL SHADOW ELASTICITY OF SUBSTITUTION

1.1 The Cost Function

Let P
n 

be the positive orthant of the n-dimensional Eucliedian space R n
i. e.

Pu
 = CPIP =( P	 P • P > 0 1=1

and let

C(y,P)

be a cost function defined on an open subset Dc P' for each level of

output y. Pn will be called the price space. Since C(y,p) is a cost

function, we know that it isa :

Cl - nondecreasing function of y and p

C2 - linearly homogeneous in p

C3 - concave in p

In the following it will additionally be assumed that C(y,p) is:

C4 - twice continuously differentiable 2)

C5 - strictly increasing in p

The last two conditions are necessary in order to be able to define both

the usual and the directional shadow elasticities of substitution. When-

ever we talk about a cost function in the following, we will assume that

it possesses properties Cl through CS.

Fram Shephard' Lemma (Shephard 1953) we know that:

aC(y,p
9pi x i ( y , p ) > 0 (2)

Standard references are Shephard (1953), Uzawa (1964), Diewert (1971),
and McFadden (1978). These are also standard references - on duality
theory. For a survey of duality theory see Diewert (1974,1982).

2) Differentiability removes the possibility of having "corners" on the
factor price frontier, or "flats" on the isoquants (see McFadden,
1978). • It does not exclude the Leontief (fixed coefficients) pro-
duction function.
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i.e. that the derivative of the cost function with respect to the price

of the i'th input gives the cost minimizing demand for that input. Con-

dition C4 insures that the derivative exists, and condition C5 insures

that it will be strictly positive.

Let C. and C. be the first and second order derivatives of the cost
i 	 ij

function with respect to i and p. and p, respectively. Then the Shadow
i	 3

Elasticity of Substitution (SES) was defined by McFadden (1963) as

a..
13

C. 	 C.C..
2_11_ _

C 2 	 C.C. 	 c;
• 	J 

1	 1
.C.	 p.C.
11 	 33

,j=1,...	 (3)

holding the output rate, total cost, and pk ,ki,j constant. 3)	
13

measures the possibility of substituting the i'th input for the j'th as

their relative prices change, and is å measure of the curvature of the

factor price frontier in a plane through p parallel to the ilth and the

j'th coordinate axes. The factor price frontier, a concept introduced

by Samuelson (1962), is defined as the set M of all price vectors, given

which a given output rate y° can be produced at the same cost C° , i.e.

M
 m(yo, 	 = {pipa, C(i) ,p) = C° } 	4)

m(y
0
 ,c

0
 ) is an (n-1) dimensional manifold in the price space. When

pEM(y
o
 ,C

o
 ), we will call M=M(y

o
 ,C

o
 ) the factor price frontier through p,

and will denote it by M(p) (the output rate y° will generally be a con-

stant, and will be ignored notationally as an argument).

For each point pEM, the gradient vector 7C(y,p) = x(37,p) will be perpen-

dicular to M and to the tangent plane T(p)
4)
 at p, where

T(p)	 vivx= , x=x(y,p) and vElln , v4 1
	

(5)

3) a
ij will in general be a function of the output rate y and the prices

p, even though these arguments have not been written explicitly.

4) T(p)t.HOL is an affine, subspace of dimension (n-1). The exclusion of

101 from T(p) facilitates the exposition below.



Assume that only p
i 

and Pj are allowed to change. The condition on v

implied by (5), becomes

4

v.x. + v.x. = 0,
11 	J

v
k "
=0 ki j (6)

and there is only one direction	 vector v (up to a factor of propor-

tionality) which satisfies condition (6): this is the direction in which

a.. is defined. In the n'ext subsection, We will define a measure of the
li

curvature of M(p) in an arbitrary direction veT(p).

•



1.2 Definition of Directional Shadow Elasticity of Substitution (DSES) 

Assume that we are given a production process producing a fixed level of

output with only two inputs, and that the input prices change such as to

keep total cost constant l) , i.e. xiAp i + x2Ap 2 = O. We can then determine

the shadow elasticity of substitution between inputs 1 and 2 from:  

Ax
2   

x1	 x
2 a _

12	 AP1

P 1	P2

This is in fact one of the definitions of the SES.

However if there are more than two inputs, and prices change, while keeping

total cost constant, what can we then say about the ease or degree of

sübstitution? It becomes impossible to say something about the individual

SES, but we can say something rather specific about the curvature of the

factor price frontier in the direction of the observed price change.

Four alternative expressions for this directional shadow elasticity of

substitution (DSES) are given in this subsection, the first of which

emphasizes the analogy with (1) above:

DEFINITION: Let va(p), then the Directional Shadow Elasticity of Sub-

stitution at p in the direction v, written DSES(v), is defined as:

(1)

USES (v) = (2)

holding the output rate y constant.

The denominator will be positive as long as v is not identically zero,

in which case the DSES is not defined. All summations are from 1 to n

unless otherwise specified.

Because of the linear homogeneity of the cost function, there always
is such a generalization.
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The DSES(v) is just the ratio of a weighted average of the percentage

change in the cost minimizing inputs to the weighted average of the per-

centage change in the input prices, the weight of each input being the

change in value of the input. 	 Since total cost and the

output rate were assumed constant, the DSES(v) represents a measure of

the curvature of the factor price frontier in an arbitrary direction v

tangent to the frontier.

We can express the change in the input vector dx as a function of the

second derivatives of the cost function since

ax 	n
	dx. = E 	 i V. = E C.. v.

1 	 3p. J

	

j 	 J 	 j=1 1J J
(3)

and we can therefore rewrite the definition of the DSES as

DSES(v) =

E: C.. v.v.ij 13 13

v .
E x.v.

l ip.

vET(p) 	 (4)

Since the cost function is linearly homogeneous in prices, we can express

the second derivatives C. 	functions of the shadow elasticities of
ij

stilsititutical
j
	i,j=1,...,n. Let

i

p.x.
i 1 	 4 i

Œ 	Ep xk ,

k k

and C = Ep x.
k k K

then we can write (by definition aii=0, i=1,...,n)

C..
. 1 3  = 1 _1_1a . - .1... E(a.+a )a. -..1... E(a. 4.0t )a.ax.x. 	 2C 	 .a. ,J (x i k 1 k ik 	 . 	 3 k jk
13 	 13 	 aj k_

+ EE(a +a a
k 

k
x

and the numerator of (4) becomes

n 	 n C.. 	 v. v.
E 	 E —11—a.a. 	 3c2 =
i=1 j=1 1 j

x.x. 1 	 p. p.
3

	v.v.	 v.4	 v.C 	 1 3
= 	 EE(a.+a.)a. 	 - EE(a.+a )a. —(EŒ. -1.)

	

2 .. i j ij p.p. 	 1 k ik13 	 2. j 	 ik 	 i j 	 3

2) See Frenger (1976), sec. 1.2.

(5)



=--EE(p.x.+ .x. a.. ---- Ea --.)(a
v .1 k

2 . 	 jj lj p. 	 k p 	 p	k k 	 j
lip.

(6)

	- EE(a.+a,)a., -
	 13

-.-(Ea.	 + EZ(a +a )a Ha a	 =
v. v.v.	 v.

j1(.3'`J"141(2,1(.1c2-ii P. P.
	.] 1	1 

= 	 EE(p.x.+p .x.)a.
2 ij 	1.	 j

v._ i (za

pi k k Pk
-. ( EŒ
pi k k p- 	 k

v,
k+ (Ea ----)(Ea	 =

k p	 k pk	 kk	 k

7

and since va(p) implies that Eak
 ---= 0, we have that
pkk

1
EEC..v.v. = 	 vET(p) 	 7)

i
. 13 ij 	 jj ij 

v. V.

p p.
j 

Thus we have a third expression for the DSES(v) this time expressed as

a function of the shadow elasticities of substitution, since (4) and (7)

give,

DSES(v)

v .v.
EE

1 ij 	 1 1 J J 1J P.P.
1 .1 

2 	 v.
E x.v.

1 1 p.
1

vET(p) 	 (8)

A more intuitive measure of the DSES may be provided by the following

argument. In differential geometry the curvature of a surface in a given

direction vET(p) is measured by the "normal curvature".
3)
 In the case of

the factor price frontier M (see eq. 1.1.4) at p it is given by

k )	 Z C. 1 E C	u.u.	 ...E 	 1
	1  .] 	 1\71 	 ij

V.V.
13

v.
(9) 

evaluated at p. It measures the curvature of the curve generated by the

intersection of M and the plane formed by x and v. u is,the unit vector

in the direction v.

The Cobb-Douglas cost function is characterized by the fact that its

shadow elasticities of substitution are everywhere equal to unity, and in

3) See e.g. O'Neill (1966), p. 196. I have yet to find a reference which
gives such a definition for spaces of dimension greater than 3.
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fact its DSES(v) is also equal to unity in every direction v in the

tangent plane. 4) 
We can use this fact as a yardstick by which to measure

the DSES of arbitrary cost functions.

DEFINITION: LET C(y,p) be any cost function defined on Dc:Pn .

„Let x
o
 = vC(Y,P)

then

00
p.x.

and a. = ii

o ' 	 r 00
P=P 	 Lp x

k k
k

C (y ,P) = Y° 471
CD 0
	 o•

10)

,
is the best approximatins Cobb Douglas cost function to C(y,p) at , yo ,p

o
 )

5)
 .

CDo o .	
C

D
C (y,p) best approximates C(y,p) at (y ,p ) in the sense that ln C(Y,P)

is the first order Taylor expansion of ln C(y,p) in terms of ln y and

In p i , i=1,...,n, i.e.

In C(yo ,p) =

00
p.x. 

•c(yo ,po) +E 	11 (ln p. - ln po )
c(yo ,po )

or

C(Yo ,P o) a9 a.
C(Y ,P) 	 o 	 = Y

o 
HP.a. .o

11(p.)
i 1

The'normal curvature at (yotpo.) of the best approximating Cobb Douglas

cost function in the direction veT(p °) is given by (see eq. 9):

k
CD

(u)	 1	 CDEEC .v.v. =
v 	1 J

00 	0o 0 	a.a.	 a.
C(y p 

E+ E(1- 1 ( 1 ) 2v2

Il2 	
j

. 	 o 0 	 1 	 . o 	 o
P.PvH ai p.

. 	 o o	  EEx.v.x.v. - EOHvii 2 C (y t p ) ij

1 	 v.
- 	 Ex.v. -=L

2. i 	 oqvU 	 Pi

4) See lemma 4 of sec. 1.3.

5) The output rate y ° is assumed constant in taking this approximation.



LEMMA: The Directional Shadow elasticity of Substitution of the cost

function C(y,p) at a point p in the direction vET(p ), is given by the

ratio of the normal curvature of C(y,p) at p0 to the normal curvature of

the best approximating Cobb Douglas cost function to C(y,p) at p° , i.e.

DSES(v)
k(u) 
CD
k 

(
u)

12

This section has given us four alternative ways of defining the directio-

nal shadow elasticity of substitution (see eqs. 2, 4, 8, and 12) 6) . They

will all be used in the following sections when studying the properties

and possible uses of the DSES.

It may be noted that definition (12) is the most specific in that it speci-

fies 	 the curve ("the normal section")
7)
 along which the curvature is

to be measured. For any direction v, this is the curve formed by the

intersection of the factor price frontier and the affine plane generated

by x and v (both x and v are "attached" at p). The intersection of the

factor price frontier and any other affine plane containing v would

generate another curve through p 8). 	The shadow elasticity of substitution,

for example, is generally defined in terms of the curve generated the inter-

section of the factor price frontier and the (v. v.) affine plane, a plane
1 J

which will in general not contain x.

6) A fifth definition is given in Frenger (1978). This was the first
definition to be proposed, and relies on a different argument
than those which lead to the four expressions above.

7) See O'Neill (1966), p. 197.

8) Would these curves have the same curvature, but different torsion?
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1.3 Properties of the DSES 

We can now prove the following properties of the Directional Shadow

Elasticity of Substitution

LEMMA 1. For every X, 	 DSES(Xv) 	 DSES(v)

The result follows directly from (1.2.4), and implies that DSES is homogene-

ous of degree zero in v and that DSES(v) 	 DSES(-v). The homogeneity

property implies that the values of DSES(v) are determined by its

values for lid 	 1.

LEMMA 2. Assume that conditions Cl, C2, C4 and C5 hold. Then

the cost function C(y,p) is concave in p if and only if DSES(v) 	 0

for every v . e T(p), v	 O.

Proof: Let C(y,p) be concave, then the quadratic form in the numerator

of (1.2.4) is negative semidefinite, while the denominator is strictly

positive, and DSES 	 O. Conversely, DSES(v) = 0 for all v 	 0

implies that the quadratic form in (1.2.4) is negative semidefinite

and thus that C(y,p) is concave.

The lemma is useful since it gives us an alternative way of determining

whether the cost function is concave, since concavity will follow

if we can show that DSES(v) 	 0 for all v, or equivalently that the

minimum of DSES(v) over veT(p) is non-negative. Such a test will

be developed in the next subsection.

Let v.
j
 be a vector in T(p) with only the i'th and jlth component diffe-1

rent from 0, i. e. the price change is limited to the i'th and the j'th

prices, all other prices being constant. Then the definition of the DSES

reduces to the definition of the shadow elasticity of substitution a..,i.e.



LEMMA 3: Let v 	 be defined as above, then DSES( v..) = a,
ij 

Proof: Apply definition (1.2.8) remembering that xivi 	x.v.
J J

v
k
 =0, k0i,j.

•

Let us define the coefficients )

v .v.
j

(x.p.+x.p.)
1 	 •j 	 p.p.ja.. (v) =

13 	 2 	 vs

E x v ---
s s p

s
n n

Then 	 E 	 E a..(v) = 1
i=1 j=1 1.3

jOi

, • • •

0 and

(4) •

and we can rewrite the DSES as an affine combination of the a ij

DSES 	 = 	 a.. 	 (5)
i.j

 13	 13

where the 'weights" are not necessarily between 0 and 1.

LEMMA 4: At any given point peP, the DSES(v) has the same value in

every direction vET(p) iff the shadow elasticities of substitution are all

equal, i.e. a. = a for every i0j.J

Proof: If a. = a for every i0j, then it follows from (4) and (5) that
ij

DSES(v) = a. If DSES(v) = a for every vET(p) then, from lemma 3, DSES(v..)

= a. = a since v..ET(p).
13	 13

McFadden (1963) analyzed the family of functions that have constant shadow

elasticities of substitution for every p in the price space. A function

which is to have all the DSES(v) constant, must have the SES constant and

hence must belong to a subset of the functions defined in McFadden (see

1963, p. 76).

Should one define a. =0, i=1,...,n, or use above definition? Note

that EEa.. = 0 if the above definition is used.
3.3
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1.4 Using the DSES to test for concavity 

This section will utilize the fact that the cost function is concave

if and only if the DSES(v) is non-negative for every v
1) 

to formalize a

test for the concavity of the cost function. The test procedure is closely

related to finding the eigenvalues of the Hessian of the cost function,

but the use of the DSES gives the test a more intuitive economic interpre-

tation.

Partial tests for concavity are provided by the own first derivatives

of the cost function which should be non-positive and by the shadow elastici-

ties of substitution, which should be non-negative. Complete tests may

be obtained by computing all higher order principal minors of the Hessian

of the cost function, or.by computing its eigenvalues. These tests, as

well as the test developed below, may be called deterministic since they deter-

mine whether or not the estimated, or fitted, cost function is concave.

Statistical tests for the concavity of the true cost functions are developed

by Lau (1978) using the Cholesky factorization of a real symmetric matrix.

The basic idea of the test is to determine the minimum value of

DSES(v) for v in T(p) 	 If this minimum is non-negative, then the cost

function is concave. As a biproduct we will also determine the maximum value

of DSES(v), and the directions in which the maxima and the minima are obtained.

Define the variables

	1/2	 .1/2

	

.P. 	 P.
G. 	 . 	 - ( -2 ) 	 C 	 ()ij 	 X. 	 ij-2X.

	

i 	 J

X. 1/2
r. 	 ( 1 ) 	v.

p

1) See lemma 2 above.

7

	 (1)

(2)



13

The definition (1.2.4 ) of the directional shadow elasticity of substitution

can now be written

DSES(r)	 =

EZ r. G.. r.3. 	 13
	. - 

2Z r.
(3)

while the requirement that v e VI)) becomes the condition

e R(p)	 { r Lrrn = 0, r 	O }.	 (4)

n 	/1 2where r .((p
1

x
1

)	 ,...,(pnxn )
1/2

Finding the extreme values of DSES(v)

over T(p) is equivalent to finding the extreme values of DSES(r) over R(p).

But equation (3) represents the Rayleigh quotient of the matrix G, and its

critical values over Rn are given by the eigenvalues X1,...,X	 2)n of G.

And rn is an eigenvector of G associated with the eigenvalue X = 0 since
n

G r n O.

This implies that R(p) is spanned by the remaining n-1 eigenvectors

-1,...rn
	of G3) , and that the critical values of DSES(r) restricted to R(p)

are given by the n-1 associated eigenvalues 1'''''Xn-1. 
Using (2) we see

that the critical points of DSES(v) are given by

vi	
dr
	

i=1,...n-1, 	 (5)

where d is a diagonal matrix with d . ((pl ix 1/2 ,...,(p 
n n 

1/2 
on the

diagonal.

2) See Hestenes (1975, p.73).
3) Or in the case of multiple roots, by a set of n-1 orthogonal eigenvectors

of G., which are also normal to tin.
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Finding the extreme values of DSES(r) on R(p), or equivalently the

extreme values of DSES(v) on T(p), means finding the smallest and the largest

among the n-1 eigenvalues {x 1

	

,...,x 1 }. Denote these by X and 	 respectively.

We have shown that

LEMMA 1: The cost function C(y,p) is concave at p if and only if X 	O, and

X . DSES(v) 	 11 for every v e T(p).

It follows in particular that X
	j	

for i, . 1,
i

i.e. that all the shadow elasticities of substitution lie in the interval

[X,]. The directions in which the extreme values are obtained can be deter-_

4)
mined by using (5) to find the v vectors associated with X and 1'.

MMINO

4) See Frenger 1985) for an empirical application of the proposed procedure.
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Sec. 2 OTHER ELASTICITIES OF SUBSTITUTION

2.1 Shadow Elasticity of Substitution between Input Groups 

We can use the definition of DSES(v) to define the elasticity .of substitu-

tion between two inputs groups. Let A and B be two disjoined sets of

inputs, i.e. AcN, Bc.N, An B = 0, N = {1,2,...,n}. Assume that the prices

change proportionately within each input group, and that all other prices

remain unchanged such as to leave us on the same factor price frontier, i.e.

-	 v.i.)
Pi

V .

iiN 	1 = ,

I T• 1131

E x. 	 + y E x.p.
icA 	

i 	 B. 	 i

for every icA

for every iEB	 (1)

for every ieAuB

+y
B

a
B 

= 0iv) y

where y
A
 and y

B are the factors of proportionality and

E x.g.

a - 	
A 	E x.p.

ieN 1

(2)

Let v
AB be the direction vector given by	 , then:

DEFINITION: The Elasticity of substitution between two disjoined ingut

groups A and B at a point p is given by:

SES 	DSES(v )
AB (3)

Given the two input groups A and B, there is for each point in the price

space a unique (except for sign) direction vector v wich satisfies con-
AB

dition (1). We can therefore remove any reference to the direction vector

v from the expression for the SES
AB

1) 
' 

by rewriting the definition (1.2.8)

with v = vAB4

1) This is what is done in the definition (1.1.3) of the shadow elasticity
of substitution. In fact, SESAB = a. when A	 al, and B = { j}.ij
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The numerator of (1.2.8) becomes:

v. v.
E	 E	 =

LEN jEN 	
.3 ij p. p.

= Cy
2
A E	 E (a +a.)a. + 2Cy y E	 E (a.+a.)a. + Cy

2 
E 	 E (a.+a.)a..

.
EA jeA i	 ij	 A .leA j	 1 	 lj  

L 	 BEB •1EB jEB

1 

a
B

= Cy y ---- E	 E (a.+a.)a.. + 2 E	 E
AB	 OEA L. 	 jEA eA 	 • 	 iEA jEB13 	 i 3 13

- .E 	E (a.+a.)a..
j

	

iEB jE13	
13

where by delinition.. =0, i=1,...,n. And the denumerator becomes:ali

v .
1 2 2E x.v.	 = C E a.y + C E a.yi 1 p. 	 .iEN 	 1EA i A

	iEBi
= CyAYB [(1A+aBl

The shadow elasticity between input groups A and B can now be written

1 aAaB f 1SES 	-	 E (a.+a.)a. 4 + 2 E (a,: +a )a
A B aAleA jEA 1 J I J 	 aAaB i. EA YEB 	 j i j

-	 E	 E (a.+a.	 (4)1
ja; iEB jeB	 13

It will be shown in sec. 4 that this definition of the elasticity of sub-

stitution between two input groups, coincides with the natural definition

in terms of price aggregates when the function is separable.

Assume that A = {. } and that B = N- { i } , i.e. that the i l th price Increases

(decreases) while all the other prices change proportionately so as to

keep the price change in the tangent plane. We will call this the shadow

elasticity of substitution of the i'th input (SES.). Applying (4) directly

gives

k

1	 2	SES. = .-a.(1-a.	 E(a.+ ka )a.2 i	 a.(1-a
i
.)	 i	 ik 2	 k 2'

1 	EE(a +a )a
(1-a.) Id,1

•

1	 1E(a.+a
k 

a
ik 

- 2.EZ(a
k

+a
2,)

ak
ai k 1 	k2,

(5 )
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2.2 DSES for arbitrary Price Change 

The shadow elasticity of substitution as defined by McFadden (1963) and

the more general directional shadow elasticity of substitution defined in

sec. 1.2 above required that any change in the prices be such as to keep

total cost constant: if some prices increased there had to be offsetting

reduction(s) in some other prices.

But since the cost function is linearly homogeneous in prices, or, by the

old adage, since "only relative prices matter", we can always deflate any

price change so as to keep us on the same factor price frontier. In this

section, we will use this procedure to define the directional shadow

elasticity of substitution for an arbitrary price change v' = (v' ...,v ).l'	 n

Let v' be any vector in Rn , and define the normalized price change variable

v by

v. =	 - p. Ect
k 

k pk

v'
k	 (1)

Then v has the following two properties

va(p), i.e. to the tangent space at p, since

Ex.v. = Ex.v! - (Ex.p.)(Ect
i., 	 1 1 1 1 1 k 

k p
k

2 v and v' give rise to the same change in the demand for factors, since

3x.
dx.(v i ) = E ---av 	 . EC. .v!

J
i	 . @

J
p. j	 j 13 3

and

dxi (v). = = EC..v! - (EC .p.)(Eat. ---
j 13 3 	j 5-3 3 k A. Pk

EC. .v
13 3

Equation (1) shows that the vector v can be written as a linear combination

of p and v', or alternatively that v' lies in the two-dimensional subspace

generated by p and v.
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We will define the DSES for an arbitrary price vector v', by associating

with v' the economically equivalent vector v, which lies in the intersec-

tion of the plane generated by p and v', and the tangent plane T(p). Hence

	f 	 IV! 	 Vi. V.

EE. x . +p . . ) a . (-1- -Ea -1"-) (-1 -Ea
1 ij 	 1 1 j j 1 j p

i lc k plc p j k
DSES Or' ) = -

2 	 v! 	v' .,
(....-1.. -Ea _hy-Ep.x

	

1 i p. 	 k pi 	 3. k 	 k

This implies that any price change vector v' in the plane generated by p

and v will have the same DSES as the vector v, though there will be a change

in cost for any v'4T(p).

There is something artificial about the definition of the SES for na3: why

should the situation when two prices change in opposite direction so as to

keep cost constant be of special interest (the case for the DES is probably

somewhat more intuitive) except that mathematically it has the great advan-

tage of reducing everything to the two factor case?

It would seem that the following question gets closer to the intuitive idea

of substitution: assume that the price of the i'th good changes (all

other prices remaining constant), at what rate can we substitute good i for
,1)the other goods, while output remains constant:	 But this is exactly

what is measure by DSES(17') for

.2)vitc. = 1	 k=3.

v
k
 = 0	 k=1,...,n; k0i.

The reader may convince himself by applying (2) that:

DSES(v ) = SES.	 (3)

where SES
i is given by (2.1.5), i.e. the shadow elasticity of substitution

between the input groups al and N- { i } .

1) This is obviously a case of designing a question to fit the answer, but
does that make the question less important?

v.=1 just represents an arbitrary normalization.

(2)
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2.3 The Allen-Uzawa Elasticity of Substitution 

The Allen-Uzawa (partial) elasticity of substitution (AUES)
1)
 assumes that

only one price, e.g. p., changes, while all other prices and the output
J

rate (though not cost) remain constant. Expressed in terms of the cost

function (1.1.1), the AUES between the i'th and the j'th input becomes:

AUES.. =
1-3

ax.(Y,P)

.p i

C(Y,P)
i,j= , • • • , n 1)

x.(y,p)x.(y,p)

The AUES has a very simple relationship to the price elasticity of demand

of the factor inputs:

E
ij

Dx.(Y,P) P*

3. 	X.p j

C..

C.C. jrj
a.AUES.	 =	 (2)

J

It turns out that there is also a very simple relationship between the

AUES..,theE,andtheSES.4s . given in (2.1.5) and (2.2.3). Substituting
ii	 ii	i

the definition of the SES in terms of the second derivatives of the cost

function (see 1.1.3) for akt in the expression for the SES. gives 2,3)

SES. _ a- CC..
i 	ii

1-a. 	 2
i X.

a.	 E.
-	 A..1-a. UES	1-a. 3)

I) The AUES was defined by Allen (1938, p. 504) in terms of the produc-
tion function. The above formulation in terms of the cost function is
due to Uzawa (1962). Neither Allen nor Uzawa give any economic justi-
fication for choosing the AUES as a measure of the degree of possible
factor substitution. The best justification is probably that the AUES
reduces to the SES (and to the direct elasticity of substitution (for
definition, see McFadden, 1963)) when n=2, or when the function is
separable.

Using the notation of Frenger (1976), and equations (1.2.4), (1.2.11),
(1.2.12), and in the second step (1.2.9), of that paper give:

a. 	 a.

DSES. = 	 1 (T . -T) . - 
3. 	 1-a.	 2. 	 1-a. 	 ii

3) Since the AUES may be negative, and the DSES may not, there is in
general no direction v such that the DSES(v) = AUES.., i,j=1,...,n.
But an unresolved question is whether there exists Psimple relation-
ship between AUES.. and the DSES(v) for some v.
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2.4 Factor Shares

of substitution
When the concept of the elasticitwas originally introduced by Hicks

(1932), it was to study what happened to the relative share of a factor

as its supply increased. The purpose of this section is to show that

Hicks' conclusion (1932, p. 247) for the case n=2, has its natural exten-

sion to n?.3, when the elasticity of substitution is "properly" defined.

Wewilllookatthefactorsharea.of the i'th input:

p.x.

3p. i = 	 EPOk

El3k4k 	
{(Ep x.)(x.+p.C..) 	 p.x.(Ep C .+x.)

2

-k 	 kkk 	 iikkki

kxkl -/{X. + p.0 

since Ep	 = 0 by linear homogeneity
k

cL.r 	C4.
= -1-:' 1 + p.x. -=.1-- - a.

P1 L 	 i i 2 	 ix .i

and applying (2.3.3)   

i
-a. + a.AUES  

a.
=

i
 (1 - SES.)

p. 
	 (1)

The share of the i'th factor will increase as its price decreases (its

supply increases) if the SES > 1, and it will decrease if the SES < 1.

When n=2, SES i = a and we have the traditional result.

k
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Sec. 3 DUALITY OF DIRECTIONAL ELASTICITIES OF SUBSTITUTION

3.1 A Directional Direct Elasticity of Substitution 

Thus far the discussion has been entirely in terms of the cost function

and the shadow elasticities of substitution. But with the duality between

cost and production functions, and between the shadow elasticity of sub-

stitution and the direct elasticity of substitution, it is a straight-

foreward matter to define a directional direct elasticity of substitu-

tioni) (DDES).

Let the production function

y = f(x) 	 (1)

be defined on 1311 , now called the input space, and assume that:

P1	 f(x) is nondecreasing in x

P2 - f(x) is quasiconcave

In order to be able to define the direct elasticity of substitution, and

to insure its existence everywhere we will further assume that:

P3 - f( x) is twice continuously differentiable

P4 - f(x) is strictly increasing in x

the
In/following f(x) will always be the production function dual to the

cost function C(y,p) defined in sec. 1.1.
2)

At any given point x in the input space, let S(x) be the hyperplane

tangent to the isoquant at x, i.e.

S( x) = {ulu= u , • • Ef.u. = 0, f. = f 1
3x.

(2)

1) Perhaps not the most fortunate choice of name?

2) For references see footnote 1 of sec. 1.1. It is probable that twice
continuous differentiability and quasiconcavity of both C(y,p) and
f(x) imply that both functions are strictly quasiconcave, and that
in this case Cl through C5 imply P1 through P4 and vice versa. See
McFadden (1978).
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DEFINITION: Let ucS(x), then the directional direct elasticity of sub-

stitution at x in the direction u is: 

df iE f.0
i i fi 

u .

E f.u.
X .

-1   

DDES(u) = (3)        

This definition is dual to the definition of the directional shadow

elasticity of substitution in the direction v of sec. 1.2. Analogously

to that section we have the following two equivalent expressions for the

DDES:     

1 

DDES(u) = 

EE f..u.u.
1J
• .	 1J 1 J  

ucS(x)	 (4)      
u .

E f.u.
i x.

-     

and    

1  

DDES(u) =

u.u.
EE (x.f.+x. f. ) .11 - '

1 ij	 jj	 ij x.x. 
ueS(x)	 (5) 2	 u.

E f u . -
i x.         

where 
3Å •

is the direct elasticity of substitution between the ilth and

the jith input3,4,5)

3) Because of the inversion necessary to express the f. as functions
ij

of the, it is believed that f must be homothetic for this inver-
ll ij

sion to be possible. Intuitively, when f is not homothetic the matrix
of second derivatives has more than n(n-1)/2 degrees of freedom
(see sec. 1.2 of Frenger, 1976).

) The DDES has the same properties as those described in lemmas 1 through
4 of sec. 1.3, when these are suitably reinterpreted.

5) There is of course also an obvious analogue to (1.2.12).



H.	 H.	 -1 H.	 H..( _ _4 (HBB ) (

BBin eq. 9, p. 72 (Frenger, 1975) must vanish. But since H	 is
H.	 H.

SES.. then the term
ij
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3.2 Duality of DSES and DDES 

We will now analyze some of the relationships that exist between the

DSES evaluated at p, and the DDES evaluated at the dual point x(p).

For the special case of the SES and the DES we know that:

LEMMA : DES..[x( )]	 SES..	 i,j=1,...,n

with equality if and only if the i'th and jith inputs are weakly sepa-

rable ].) fram all the other inputs, i.

a xi
=

4 x.k j
0 k=1,	 ,n,	 2)

Why is the DES
ij 

= SES ij when the functions are separable? The follow—

ing breéf argument will make the lemma more intuitive. Let us look upon

the changes in dxk , k=1,...,n as caused by a change in the i'th and the

j'th price, which is such as to leave us on the same factor price

frontier, i.e. x.dp.+x.dp. = O. Changing prices will leave the level
3. 	 3	 3

of output constant, and will therefore represent a movement along the

isoquant.

{p.,p I will form a weakly separable input set in the cost function

if and only if {x.,x.} form a homogeneously separable input set in

the production function (see Lau, 1969, p. 385).

2)	 The inequality, and the fact that separability implies equality is
proved in Frenger (1975, pp. 68-73). On the other hand, if DES.

ij

negative definite, this will only occur if (-2:- -	 = 0, i. e. ifx.	 x.
j

the cost function is separable.
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The inputs will change as a response to changing relative prices, and

since dpk=0, 	 and x.dp = -x.dp i
 we have that

J 	 i 

dxk = 	 Ckepz = x
k

C . 	C.
kl _  k3 

XkX i

x.dp. •	 k=1,..
1 1

But for ki,j the expression inside the square brackets is 0 by separa-

bility and dx1(=0 for kii,j. And since total output is unchanged

E fkdxk = f id xi+ 	 f i dxj = 0 	 (2)
k

The induced cost minimizing input change is exactly a change in the

direction in which the DES.. is defined, and we must therefore have

that DES.. = SES.. or stated slightly differently the DES.. will normally
13 	 13 	 13

be less than the SES. because the DES
ij 

stipulates that all inputs
13

levels,exceptx.andx.,remainfixed,whiletheSES.allows all in-
). 	 J 	 lj

puts to respond to the new price structure. When the production struc-

ture is separable, however, this does not make any difference because

the xk , kii,j, remain at their optimal (cost minimizing) level even

after the price change.

In terms of the directional derivatives,' this argument can be generalized

to non-separable functions, and the following duality theorem for direc-

tional elasticities of substitution. Any price change vector va(P),

i.e. tangent to the factor price frontier at p, will induce a change in

the input vector. Call this change dx(v), where v has been included as

an argument to emphasize the dependence of dx upon the price change.

Since there is no change in the output rate, we must have dx(v)ES[x(p)],

the tangent hyperplane to the isoquant at x(y,p).

THEOREM: Let va(p), then

DDES [dx(v)] = DSES (v)

where DSES(v) is to be evaluated at p and DDES dx(v): is to be evaluated

at the dual point x(y,p).

Proof: Incomplete (the theorem ought to be regarded at present as a

conjecture).
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Sec. 4 AGGREGATE ELASTICITY OF SUBSTITUTION

In sec. 2.1 we showed how the definition of a directional elasticity of

substitution could be used to define the elasticity of substitution

between two input groups. In this section we will show that this latter

concept is closely related to the aggregate elasticity of substitution.

Let C(y,p) be the cost function given in 1.1.1, and assume that it is

weakly separable with respect to the partition {N :i=1,. .,r1 of the index

set N={1,2,3,...,n } . It is further assumed that there exists linearly

homogeneous (consistent) price aggregates pv = Pv(pv), where pv = {p
k	 v

I 	 1kEN 

so that the cost fdnction may be written in terms of these aggregates

only, i.e.

1 	 2 2
[Y;P P , P (1)

r p t. ) ]
(1)

Regarding t: solely as a function of the price aggregates we define the

aggregate shadow elasticity of substitution between the ilth and the j i th

separable input groups (i.j) as: 2)

ce; 
	

(2)

	

1 	 1

	P 	 Pjt.
J

where i°
i 

and it. are the partial derivatives of with respect to the

consistent price aggregates.

Let us express the aggregate elasticity of substitution as a function of

the unaggregated elasticities. Since C and (e, represent the same functions

with respect to the p 4 , i=1,...,n, their derivatives with respect to these
J.. 	 3

price variables must coincide, and therefore

for every kEN i

This is often called homogeneous separability condition. For cost
functions this is implied by the linear homogeneity of re	 See
footnote 1, sec. 3.2.

) See (1.1.3) for the definition of the (unaggregated) shadow elasticity
of substitution.

3) See Frenger (1975) pp. 58-65 for more complete derivation.



(xk,2 1 sN. P s Cks

p l xk sENE p x
k	 s s

.

Because of separability we can define

t • •	 CkL	 =	 i
ij xkxz

and
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for every kEN i , ZEN i , i0j

for every keNi	(3)

for every kEN i , ZEN i , i0j (4)

	Ç:yj	 xkxz Ckz

	

3p,	 j x,
K x

z
k PkP 

av ks
E p C

sENv s ks	 C
xk E psx

s	 sEN v 
s x

sCN

	

	
K S

V

for every kENv ., v=1,... r	 (5)

where

p xv
- 	S S a

s E p x
SSseN

Bacause of the homogeneous separability condition, L 	independent of
•in

the index kENv appearing i (5). Since the variables	 p
v 

are linearly homo-

geneous:

pvt = .51 E PkPk = E xkP kv vp keN	 keNvk	 v

and the aggregate elasticity of substitution can be rewritten

MIN

	

1	 1 E..	 = E p xk 	E pkxk

	

kEN.	 kEN.
	J 	 -

1
-L.. + 2L.. - L..

ii 	1J	 JJ
(6)   

It remains to express the L. 's as functions of the a. 's. Let
il	 il

= pkxk and Cv = E pkxk
keNv



C
= - C E k 2

kk + 2E 	E 6
keN i	xk	 kEN. ZeN.

J

E ai
kkeN._

2L..2 	 ij
xk

C
- 	 E ctJ ZZ

ZEN, 56 X 2
J	

L.

C
kk

and evaluate the following two double summations:

	C kk	 Cki	 C Zz0 +6 )a 	 E 	 6 6
keN. ZEN. k Z k kEN. ZEN. k Z 	 x2 	 xkx„ 	 2

J 	k	
xz
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MIO ii

(7)

(8)

and solving the expression for L.. gives

1	 cZZ
2L.. =	 E	 E (6 +6 )0* 	 + E ai

C
 kk + E a13 	 i j	 Z	 2C C keN. ZEN 	 keNi 	 xk	 ZE 

J
	xzj 

k 	 N.
i 	

kJ 	 k 2 

Similarly

C 	 C
	kk 	 kZE	 E	 +6	 = E	 E •cS	 + 2
	keN. ZeN.	 k2, 	 keN. ZEN. k Z	

x2	 xkxZ	3.	 2. 	 k

Ck9= 2(C 1 ) 	 E 	 "
keN. L̀ ZEN.	 xk lc Z

( 	 aiZ)\ E ai kk
 k 2ZEN. 	 kEN.	 x

	i 	 k-

= 2(C - ) . [L. - E al
k 2

4 2

kENi	 k

which, when solved for Lii , gives:  

	L..	
1 

E 	 E 	 +6 )a 	 + E ai Ckk
	ii	 2	2(Ci) kEN. Z	 Z la 	 k

EN.	 keN. 	 x

	

i	 k

Setting this into the expression for the aggregate elasticity of substi-

tution (eq. 6) gives	
,

kZ
a +a

Ci 	
E 	 E (

keN. ZEN ki 	 i

.2 . E	 E (a +a
C
1

C
j 

keN. ZEN. k
1

1 E 	 E (a
k 	 k
+a )a

(CJ) keN. ZEN.
J 	 J

(9 )
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which (except for multiplying numerator and denominator by C 2 )) s seen

to be identical to eq. 4 of sec. 2.1.

The definition of an elasticity of substitution between input—groups

(SES 	 of sec. 2.1) represents therefore a generalization of the concept
AB

of an aggregate elasticity of substitution, which can be defined unambigu-

ously only for separable cost functions.
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