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Introduction 
The field of criminal career research is the study of individual’s crimes over a longer period of time, 

and is therefore also often referred to as developmental or life-course criminology. Data will often be a 

panel with repeated measurements of offending for each individual in the sample, say for each year. 

Individuals vary with respect to crime proneness, also when observable determinants have been 

controlled for, and the correlation between observations on each individual must be accounted for. 

There are various models and techniques for dealing with this, and several of them are easily available 

in standard statistical software packages. The methods applied in the criminological literature are to a 

large extent based on generalized linear mixed models (GLMM), and as offending is often measured 

as counts, models tend to be based on the Poisson distribution. Due to software limitations, the 

standard approach assumes that the random effect(s) have a normal distribution (normal-GLMM). But 

the normality assumption might not hold, and it is uncertain whether this assumption has substantial 

consequences for the results (Lindsey & Lindsey, 2000; Litière, Alonso, & Molenberghs, 2007). An 

alternative is to relax this assumption by estimating the random effect nonparametrically (NP-

GLMM). When lacking information about the true distribution, it is recommended to compare results 

from parametric and nonparametric models (Agresti, Caffo, & Ohman-Strickland, 2004, Skrondal & 

Rabe-Hesketh, 2004).  

 

The conventional wisdom seems to be that wrongly specified mixture distribution does not have 

dramatic consequences, but this is not always the case (Agresti et al., 2004). The literature diverges 

somewhat on this point, but the issue cannot be set aside, particularly in the case of nonlinear models 

such as in Poisson regression models and logit models (Lindsey & Lindsey, 2000; Litière et al., 2007; 

Verbeke & Lesaffre, 1997).  

 

It has been argued that non-parametric mixture model is preferable for criminal career data as the true 

distribution is unknown, and misspecification of the random effects might be problematic (Nagin & 

Tremblay 2005: 85). We think that it is not strictly correct to say that criminological theory does not 

suggest anything about the correct form of the latent variable, although we agree that it is quite vague. 

It is actually of considerable theoretical interest to study the distribution of unobserved heterogeneity 

in criminal proneness, although it is not given that the “true” latent distribution is identifiable. Some 

have argued that the offender population is best understood as discrete groups (Blumstein et al 1986; 

Lykken, 1995; Moffitt, 2006). Against this view is the majority of sociological theories that explicitly 

suggest that the distribution is continuous (e.g. Gottfredson & Hirschi, 1990; Laub & Sampson, 2003), 
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but without trying to specify its functional form. However, it is reasonable to suggest that the latent 

propensity to commit crimes is skewed with a long tail to the right. That is: most people are law-

abiding to a high degree, and the number of people decreases with increasing criminal propensity. It 

should also be noticed that Nagin and Land (1993: 344), commented that a panel model with a discrete 

random intercept with five support points give a “gamma-like distribution”. Similar arguments have 

also been put forward by others (Greenberg, 1991; Rowe, Osgood, & Nicewander, 1990). We 

therefore find it reasonable to suggest a model with a gamma distributed heterogeneity. 

 

In this paper, we compare alternative model specifications for criminal career data with count 

outcomes. The purpose is to see to what extent alternative specifications of the random variable has an 

impact on the substantive results. This exercise also warrants a discussion of what is the true 

distribution of “crime-proneness”. Our approach is to fit alternative models, and comparing their 

performance, to a longitudinal dataset following a Norwegian birth cohort from age 10 to 22 years old. 

One of the models, which is denoted a Poisson-gamma regression model, might be new to 

criminologists, but is known from other areas of research (see e.g. Rolph, Adams, and McGuigan, 

2007).  

 

It might be reasonable to suggest that a fraction of the population is law abiding to a high extent and 

commit no crimes. The Poisson-gamma model can handle this situation by including a discrete mass 

for this group, and let the latent “crime-proneness” vary in degree only for the remaining sample. We 

refer to this modification of the Poisson-gamma model as a zero-inflated Poisson-gamma regression 

model, which is also discussed and fitted.  

 

Residuals are useful to assess model fit, and to diagnose potential sources of misfit. In the present 

context, residuals might be defined as predicted values of individual latent crime-proneness. A simple 

formula is developed for such residuals in the Poisson-gamma model. The residuals are used to reveal 

the distributional form of the latent crime-proneness.  

 

An advantage for the applied researcher is that all methods considered here can be estimated using 

easily available software packages. The standard models are computationally intensive, and with large 

datasets, the computation time may be substantial. An advantage of our new proposed model is that it 

is estimated analytically and is thus very quick to compute. We restrict the discussion to count data 

and Poisson models with a random intercept. We also present some additional elaborations upon the 
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suggested Poisson-gamma model that might be useful for criminologists. In conclusion, we discuss the 

appropriateness of the models, and the consequences of misspecification. 

Methods for repeated count data 

Standard random intercept models 
Criminal career data are usually structured as panels with repeated measurements of offending within 

subjects. In surveys, the respondents might have filled out a questionnaire each year, and with register 

data one might have the total number of arrests (etc.) for each person each year. When the outcome is 

counts, it is often assumed that the outcome variable is Poisson distributed, and Poisson GLMMs can 

be estimated with standard software. The distribution of unobserved heterogeneity between individuals 

is of primary interest, we will restrict attention to models with two levels.1 The basic unit of 

observation is, say the number of convictions an individual has during a period of observation, say a 

given year. The individual is then represented by its time-series of basic observation. The periods are 

at level 1 and the individual at level 2. There might be further levels, say family, neighbourhood, 

period etc, but it is beneficial for our discussions to concentrate on the two-level models. 

 

The observations consist of a response Y and a covariate vector x, possibly with individual specific 

components such as sex. If the outcome is a count variable (eg number of crimes), the preferred 

method is Poisson regression, where we model the log expected number of crimes,  log  . 

Individuals are indexed by j and occasions by t, and a simple linear model with unobserved 

heterogeneity only in the level is then written as 

(1) 
 log tj j tj

j j

x  

  

 

 
 

where β is a regression coefficient, and j  is individual-specific random intercept with mean   and 

variation j . Thus, each individual has its own intercept drawn from some distribution and we have to 

make some assumptions about the distribution of these between-individual differences. The most 

common application is to assume that j  is normally distributed, but other options are available. So 

instead of estimating one intercept for each individual, it is sufficient to estimate the parameters for 

                                                      
1 The use of the term “level” is used as in multilevel modelling even though it is a traditional panel design, which alludes to 
that there might be more levels of nesting, say, family and neighbourhoods (see, Skrondal and Rabe-Hesketh, 2004).   
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this distribution (e.g. the mean   and variance 2 ). In the following, we will refer to this model as 

Poisson-normal model. This modelling approach might be attractive since it allows structure in the 

random effects, and can be estimated with the most commonly used computer software.  

 

Another possibility is to let j  have a discrete distribution. Then we have a group-based model with as 

many groups as there are support points for the intercept and a common effect of x. A discrete 

distribution would be appropriate if indeed the population is stratified into distinct statistically 

homogeneous groups. It is also a fact that any distribution can be approximated by a finite discrete 

distribution, and latent class models with only a few classes are often found to approximate models 

with continuously distributed random effects very well (Skrondal & Rabe-Hesketh, 2004). In this case, 

we need to search for the number of support points g that best captures the variation around γ. As this 

kind of model is a GLMM with non-parametric intercept, we refer to this model as Poisson-NP model. 

A disadvantage of this model is that it can lose some efficiency since there are many parameters to be 

estimated (Agresti et al., 2004). Both the Poisson-normal and -NP models can be computationally 

demanding, especially with large samples.  

 

Importantly, in ordinary GLMMs with Poisson specification, the linear term, including the random 

term, is put on the logarithmic scale. The distribution of individuals’ “crime-proneness” is then 

symmetric on the logarithmic scale, which is a skewed distribution on the natural scale. The points of 

support for the non-parametric distribution are of course also on the logarithmic scale, and in both 

cases, the random effects might be easier to interpret when taking the exponential to bring parameters 

onto the natural scale.  

 

Although Poisson GLMMs are convenient, the Poisson distribution is restrictive in the sense that the 

variance is assumed to be equal to the mean, and this assumption might be violated. Booth et al. 

(2003) relax this assumption and assume that given the individual random effect for criminal 

proneness the counts 1, ,j jTY Y…  are independent and  negatively binomially distributed. The negative 

binomial model should be well-known in criminology (see e.g. Land, McCall, Nagin, 1996), but the 

most commonly used softwares have not a procedure for estimating it with a random effect. The 

conditional distribution for  tjY  is thus  

(2)    
 

| .
!

tjy
tj tj

tj tj j
tj tj tj

y
P Y y

y


 
    

     
             
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Booth et al. (2003) suggest modelling the individual random effects by the normal distribution. The 

variance 2 in this latent distribution reflects the degree of intra-individual correlation, while 

 reflects over-dispersion relative to the Poisson distribution with more over-dispersion the smaller 

the parameter. Their model might be called the Negative binomial normal model. It must be fitted by 

numerical integration of the individual random effects.2 The log likelihood for unit j is 

 
     

       
log 1/ log 1 log 1/

1/ log 1 / 1 log / 1

j tj tj

tj tj tj tj tj

l y y

y

 

    

        

   
 

A Poisson-gamma regression model 
In the negative binomial normal model, there is one parameter reflecting over-dispersion, and a 

separate parameter reflecting intra-individual correlation. The Poisson gamma model suggested in this 

section has a common parameter   reflecting both these extensions from the simple Poisson 

regression model. 

 

Others have hinted that a gamma distribution for unobserved heterogeneity in crime proneness might 

be reasonable (Greenberg, 1991; Rowe et al 1990). We follow this lead. In our model there is an 

individual-specific random effect, which scales the mean parameters in the Poisson distribution for the 

counts. Given the random effect, the counts are assumed (conditionally) independent given the 

covariate vectors for the individual counts. Since the gamma distribution is conjugate to the Poisson 

distribution we choose the multiplicative random effect   to be gamma distributed. 

 

Individuals might not be exposed for criminal activity during the whole of a given period. The 

individual might actually be in jail, be living abroad, or even be dead. Let th  be the fraction of time 

the individual was exposed for period t . For covariate vectors tx  the log-linear Poisson-gamma 

regression model is: 

 

 The counts 1, ,tY t T  are, conditional on the random effect   (and possibly on previous 

counts)  independent and Poisson distributed with mean value 
'
tx

t t tEY h e     where   is a 

vector of regression parameters; 

                                                      
2 Booth et al provide code to fit this model using SAS NLMIXED at the journal home page: http://stat.uibk.ac.at/SMIJ/  
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  is gamma distributed with both shape and rate parameter   to make 1E  . The random 

effects are independent across individuals. 

 

An intercept term is usually included in the regression in the exponent. This parameter will then scale 

the mean count. For this reason the gamma distribution is required to have mean 1 by having the same 

shape and rate parameter. The exposure fraction might be lifted up in the exponent, making log( )th  an 

offset term in the conditional Poisson regression. To simplify notation we assume 1th   when not 

otherwise stated. 

 

We assume the mixing distribution to be gamma, with shape parameter to be estimated. This 

distribution can be heavily skewed, with a long tail towards higher values. The smaller 0   is, the 

more dispersed and skewed is the distribution. Since  var 1/   the latent distribution might have 

been parametrized by 1/   rather than by .  The gamma distribution is, as mentioned, conjugate 

to the Poisson distribution, and integrating out the latent variable is done analytically, leaving us with 

a closed form likelihood.  

 

Let tjY  be the number of charges individual j experience in year t, which, given the idividual’s latent 

proneness j , is Poisson distributed with mean j tj   and independent for 1, ,t T . Unconditionally 

tjY   has a negative binomial distribution when τ has a gamma distribution.  In order to identify the 

intercept term in the log-linear regression,  

(3)  log 'tj tjx  ,  

we require the gamma distribution to have a mean 1, and thus density  

(4)    
1α τf τ = τ e

Γ α


    . 

Unconditionally the expected number of charges tjY  is thus tj , and the variance is 2 /tj tj   .  

 

One of the covariates in the log-linear regression (3) is the constant 1 related to the intercept term. 

Usually age appears as a third order polynomial orthogonal to the constant, and the parameter vector 

for this is the career profile. There might also be cohort and period effects together with sex, education 

etc. 
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The joint distribution of an observed growth curve  1,..., TY Y Y  for a fully exposed  individual in all 

the T periods is 

(5) 

   
 

 
   

 
 

1
1j

10

1

1

1

...

!
!

j

ytj αT τμtj α ατtj
Tj

t tj

ytj αT
jtj

y α
t tj j

y ytjT
jj tj j

T
t j j j j

tj
t

τμ αf y , , y | x,α,β = e τ e d
y ! Γ α

Γ α yμ α
y ! Γ α α

Γ α yy
Γ α y α αy !







 
  






  






 

 

    



  
  
  

  
  
 
   

     
                 








,
j

 

where 
1

T

j tj
t

y y


  is the total count for the individual, and 
1

T

j tj
t

 


  is the expected total count. 

The bottom expression in (5) shows that the total counts jy  are negatively binomially distributed, 

while given the total the individual counts are multinomially distributed within individual.  

 

The marginal distribution of the individual counts is a negative binomial as in (2), but then without 

any conditioning. The unconditional count variance is thus  
2

var tj
tj tjy





   while the 

unconditional covariance of different counts within individual is  cov , tj uj
tj ujar y y t u

 


   and 

the unconditional correlation is 
1/ 2

1 1 .
tj uj

 
 


   

          
 The correlation decrease from 1 at 0   to 0 

at    . 

 

The log likelihood for unit j is from (5)  

(6)                    log log ! log log log logj tj tj tj j j jt
l y y y y                     

where  log tj tjx  , and the total log likelihood is the sum of these individual log likelihoods.  

 

Since the likelihood (5) splits in a product of conditional multinomial likelihood components only 

involving the regression parameters, and a product of negative binomial components, the conditional 
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maximum likelihood estimator of   given the total counts is obtained from a multivariate logistic 

regression. When this is in hand, an approximate maximum likelihood estimator of  is obtained by 

maximizing the negative binomial part of the likelihood. This procedure will not yield the exact 

maximum likelihood estimator because there is some information on regression parameters in the total 

counts. If the exact estimator is required, the approximate estimator provides an excellent starting 

point for the hill climbing algorithm used. 

 

If the individual is not fully exposed,  log log( )tj t tjh x    where the offset  log th  is a constant 

that is not to be estimated.  

 

Due to the analytic nature of our Poisson-gamma regression model, the conditional distribution of   

given an observed growth curve y  is found to be gamma with shape parameter y   and rate 

parameter   . The point-prediction of the realized value of   for the individual is thus 

ˆ y
 









, and the predicted future counts are obtained accordingly.  

Zero-inflated Poisson-gamma regression model 
The gamma distribution is in some cases inappropriate for unobserved crime proneness. If, say, a large 

fraction of the individuals are law abiding with no charges the value of   should be small. If, on the 

other hand the total number of charges among those with charges show little variation, a large value of 

  is required. In such cases a remedy for the model is to augment the latent distribution with some 

discrete mass, say 1   at 0  , while retaining the gamma distribution with mean 1 for individuals 

with positive crime proneness, and   is a parameter to be estimated. This modification of the model 

does not only affect the estimation of  , but also the β-coefficients because the βs are only relevant 

given that one belongs to the crime-prone group, 0  . The log likelihood for an individual with at 

least one charge, 0jy  , is still given by (6) above, while for individuals with no charges recorded 

over the study period the log likelihood is 

 log 1j
j

l


 
 

  
         

 . 

This zero-inflated model has one extra parameter, is nearly as easy to fit as the Poisson-gamma model. 

We denote this model zero-inflated Poisson-gamma regression.  
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Note that we place the discrete mass 1   at the a priori support point 0  , and not at a support 

point to be estimated as in the Poisson-NP presented above. It seems to us more natural to have a 

latent group of completely law-abiding individuals, and to allow those with a more relaxed attitude to 

the law to have a continuous proneness distribution. The zero group might simply be more easily 

identified and handled than the less homogeneous groups of crime prone individuals. For small 's the 

density of   will decline monotonously towards higher values. The hypothesis of a distinct law 

abiding group, 1   can be tested by the likelihood ratio test. 

Assessing the distributional assumption 
The mentioned, models differ primarily in the distributional assumption with regard to the random 

intercept, and we would like to assess the impact of these assumptions. It is hard to assess the 

distributional assumptions of the random effects because these are unobserved and cannot be checked 

directly. An obvious first step is to compare relative fit, and we should put greater trust in models that 

more closely reproduce the data. Comparing raw log likelihood ratios do not apply as the models are 

not nested. However, using BIC and AIC, the relative fit are penalized according to the number of 

parameters and thus we can also make direct comparisons of non-nested models (Lindsey & Lindsey, 

2000), although this cannot be the final answer (Agresti et al., 2004). The relative fit criteria are 

calculated as BIC=log(L)-0.5m log(N) and AIC=log(L)-0.5m, where L is the log likelihood, m is the 

number of parameters in the model, and N is the number of independent observations (individuals). 

 

We should also compare the substantial results. It is often the case that even though some models 

might be statistically better, they might give essentially the same results. However, if there are 

diverging results, this gives rise to concern. This will give an indication on whether the assumptions 

underlying the various models are important for estimating the fixed effects. If eg a Poisson-NP and a 

Poisson-normal give different results, there are reasons to doubt the normality assumption.  

 

In the Poisson gamma model there are really two aspects to investigate: are the counts within 

individual multinomially distributed given the total, and are the total counts negatively binomially 

distributed. The first question can be assessed by calculating the conditional multinomial likelihoods 

in (5) and summing their logarithms for 0jy  . The likelihood ratio test of the multivariate logistic 

regression will be indicative of any possible over-dispersion relative to the conditional Poisson 

distribution. A large log likelihood ratio could also be due to the regression model not fitting well. 

These two aspects might be untangled by looking at plots of the raw residuals 
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  2 ˆˆ ˆ ˆ /tj tj tj tj tjr y        against covariates and other potential systematic factors. If no pattern is 

seen, but the likelihood ratio is high, it is natural to conclude that the counts are over-dispersed. In that 

case the more complicated model of Booth et al. (2003) might be considered.  

 

We would also like to investigate the mixture distribution more closely. Given a model, one can make 

a point prediction of the latent variable for each individual. If the assumption about the mixture 

distribution is correct, then the point predictions should give a similar distribution. As mentioned,  

(9) 
ˆ

ˆ
ˆ ˆ

j
j

j

y


 








 

is the predicted value of crime proneness, corrected for covariate information, for individual j in the 

gamma-Poisson model. If this model holds, the predicted values, which might be regarded as individ-

specific residuals, should be nearly gamma distributed. Although these residuals will be slightly 

correlated through the common parameter estimates, a histogram or other distributional plots will be 

informative. The so-called QQ-plot against the gamma distribution with shape parameter ̂  consists 

of plotting the ordered residuals against corresponding quantiles of the gamma distribution. A straight 

line indicates a good fit, while a staircase shape indicates that the latent distribution is discrete. We 

suggest to use the residuals given by (9) also for other models than the Poisson-gamma model. Then 

the expected counts are estimated from that other model, while ̂  is taken from the Poisson-gamma 

model. 

 

Note that the Poisson-NP is in itself a test of the mixture distribution, as it can be seen as a 

nonparametric approximation to an unknown continuous distribution (Skrondal & Rabe-Hesketh, 

2004). If the supportpoints looks symmetric, then a normal distribution might be reasonable.  

Data 
The data are gathered from the Norwegian administrative registers available for research purposes 

through Statistics Norway. The demographic databases contains the total population, and we have here 

chosen to look at one single birth cohort, born 1982, that is followed through the administrative 

registers. Information about charges for crimes is gathered from the official crime statistics where each 

individual is registered with their national identification number. This information is available from 

1992 until 2004. Thus, we can follow these individuals through 13 years, from the year they turn 10 

until 22 years old. We have included only persons that were alive and resident in Norway through 
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1992, and have also excluded all persons with immigrant background. The total sample is 49.975 

persons. These data are analysed and presented in some more detail elsewhere (Skarðhamar, 2009). 

 

We adhere to the standard definitions of offences as applied in the official statistics, where we 

distinguish between “serious crimes” and “misdemeanours”. The former is the more serious offences 

as defined in the Criminal Act, while misdemeanours is largely offences outside the Criminal Act, but 

for this age-group it is mainly shop-lifting and traffic offences. We chose to only look at the more 

serious offences, those defined as “serious crimes”. Each person might be charged with multiple 

crimes in a given year, or even the same day. Even though a person can commit multiple serious 

crimes simultaneously, we will here assume that crimes are committed one by one according to a 

Poisson process given the random effect and the covariates for the period.  

 

Some descriptive statistics are given in figure 1. The majority (88%) had none charges for serious 

crimes during this time period. A total of 11 per cent have been charged for at least one serious crime, 

and this is much more common among boys than girls (not shown). Most of the offenders had been 

charged for only one (43%) or a couple (27%) of serious crimes, while very few have been charged 

with a larger number of serious crimes. The maximum count for a person was over 100 crimes.  

 

Figure 1 Barplot of total number of crimes per person for the period 10 to 23 years old 
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Results 
We start by estimating an ordinary Poisson model ignoring the clustering of data within individuals, 

and then an ordinary negative binomial model recognizing over dispersion but still ignoring clustering. 

We proceed by fitting the four models for clustered counts discussed above; Poisson-normal, negative 

binomial-normal, and Poisson-NP, and Poisson-gamma models. The results are presented in Table 1. 

As expected, the ordinary Poisson model gives by far the worst relative fit to the data as it does not 

take neither clustering or dispersion into account. The ordinary negative binomial model gives much 

better relative fit, and the very large α=50.2 suggest that the data are highly dispersed. Moreover, both 

these two models give almost exactly the same parameter estimates for the fixed effects, except for the 

cubic term of age.  

 

However, these two models do not take account for correlated observations within individuals, and are 

therefore inappropriate. The Poisson-normal model handles correlated observation by a random 

intercept, which gives greatly improved relative fit compared to the ordinary Poisson model, but worse 

than the negative binomial model. The Poisson-normal model only takes account for the clustering of 

observations, but not overdispersion which is clearly present in the data. Given the highly skewed 

characteristic of our data, it might be that normal distribution is inappropriate.  

 

To take account of overdispersion, we fit the negative binomial-normal model which takes both 

clustering and dispersion into account. This improves the relative fit considerably relative to the 

Poisson-normal, giving evidence of additional over dispersion. The parameter estimates for the age 

effects are similar, while the effect for sex is similar as for the Poisson-normal model.  

 

Our main interest is in the specification of the random effect, and we proceed by ignoring over 

dispersion and estimate the Poisson-NP model, which is more flexible considering the true distribution 

of heterogeneity. This model does not improve relative fit further, and the parameter estimates are 

almost identical to the estimates from the Poisson-normal model, except for the estimate for sex.  

 

The Poisson-NP estimates can be used as a test for the distributional assumption, and suggests that the 

distribution is far too skewed to be approximated by a normal distribution. The mixture probabilities 

are plotted for each masspoint in figure 1. Seven masspoints capture the variance sufficiently in this 

case, and in this model, 86 per cent of the observations fall into the category with the lowest value on 

the intercept. The model is estimated including a mean intercept, so when the age variable (which is 

centred at age 18) is zero, the expected number of crimes for this group is exp(-4.598 - .599)= .0055. 
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Thus, this group is “crime-prone” indistinguishable from zero crimes at all times. The other mass 

points decrease in sizes with increasing crime-proneness, which suggest a pattern that is very far from 

normal distributed. The pattern is plotted in figure 2, and we conclude that this give reason to be 

sceptical about the assumption under the Poisson-normal.  

 

Table 1 Results from alternative regression models. Standard errors and mixture 
probabilities reported in parenthesis 

 
Poisson GLM 

(no random 
part) 

Neg.Bin GLM 
(no random 

part) 

Poisson 
normal-
GLMM 

Type II 
Neg.Bin. 

normal-GLMM 

Poisson NP-
GLMM 

Poisson- 
gamma
model 

Constant -2.471 (.010) -2.464 (.021) -5.805 (.046) -5.484 (.047) -4.598 (.032) -2.471 (.027) 
Age * 3.366 (.054) 3.535 (.097) 3.366 (.054) 3.663 (.097) 3.366 (.054) 3.362 (.054) 
Age squared  -4.473 (.094) -4.519 (.142) -4.473 (.094) -5.032 (.143) -4.473 (.094) -4.470 (.094) 
Age cubic  -.696 (.268) -1.393 (.429) -.696 (.268) -1.495 (.432) -.696 (.268) -.687 (.268) 
Sex  -1.865 (.018) -1.892 (.029) -2.297 (.053) -2.300 (.053) -1.889 (.038) -1.863 (.040) 

1    50.159  4.556   

2       .062 

 0 jSD     2.891 2.741   

MASS 1 (πg)     -.599 (.856)  
MASS 2 (πg)     2.951 (.097)  
MASS 3 (πg)     4.249 (.028)  
MASS 4 (πg)     5.119 (.011)  
MASS 5 (πg)     5.861 (.005)  
MASS 6 (πg)     6.458 (.002)  
MASS 7 (πg)     7.065 (.001)  

No. parameters 5 6 6 7 19 6 
Log likelihood -119 298 -64 855 -69 278 -57 215 -69 327 -69 627 
AIC -119 300 -64 858 -69 281 -57 219 -69 336 -69 630 
BIC -119 309 -64 870 -69 292 -57 232 -69 371 -69 641 
Time 
(hh:mm.ss) 

00:00:13 00:01:27 07:10:16 06:38:16 08:36:19 ** 00:02:34 

Software / 
procedure 

STATA / 
 poisson 

STATA /
 nbreg 

STATA/
 gllamm 

SAS/
 nlmixed 

STATA / 
gllamm 

R / 
nlm 

Note: The α in the negative binomial models and the Poisson-gamma models do not have quite the same meaning and 
therefore subscripted in this table and placed on separate lines.  
All estimations were done on a computer with Intel core duo E7300 processor and 2GB ram. All models were provided with 
good starting values which speed up the estimation. STATA and R read all the data into the memory, while SAS reads the 
observations one-by-one. This might affect the computation time so that SAS generally runs a little slower.  
* Age is rescaled to reduce computation time, so that age ranges from -0.7 to 0.5.  
** The computation time for Poisson-NP model is for the final model, but it requires running models from 2 through 6 
masspoints first, giving a total computation time for the six models of more than 23 hours.  
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Figure 2  Estimated masspoints from seven-group Poisson-NP model. Point estimates and 
mixture probabilities 
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Finally, we estimate the Poisson-gamma model. Contrary to our expectations, this model does not 

improve the relative fit further, although the log likelihood is in about the same region as the Poisson-

normal and Poisson-NP models. Thus, the negative binomial-normal model gives the best relative fit 

to the data. 

 

Comparing parameter estimates, the main differences are in the estimated effect of sex. While the 

Poisson-normal and the negative binomial-normal model gives an estimate of about -2.3, while the 

estimate from the Poisson-NP model and the Poisson-gamma is -1.9. Although these estimates are 

perhaps not dramatically different, it is notable. Considering the age effects, these estimates are almost 

identical across models, except for the negative binomial normal model where the effect of age on 

order two and three. The differences in the combined effect of age parameters are hard to see from the 

parameters, and can be more easily inspected by plotting the expected trajectories. We plot the three 

directly comparable models that only differ in the specification of the random effect. The expected 

number of crimes at time t from the Poisson-normal model can be calculated as 

   21
2expt tE X      , where 2  is the variance of the random part  . For the Poisson-NP 

model the expected count is    expt g t g
g

E X       , where g  is the mixture probabilities 

for masspoint g. For the Poisson-gamma model the expectation is    expt t iE X     , where 
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  1E   . The expected the sequences of counts at times 1,2,..., ,t T  are plotted in figure 1. There 

are clearly differences in the level of the expected trajectories, which is due to the differences in the 

estimated intercepts which are much lower for the Poisson-normal model than for the Poisson-NP and 

the Poisson-gamma models. Note that the scale of the y-axis for men and women are different, 

reflecting the large coefficients for sex reported in table 1.  

 

Figure 3 Expected trajectories for men and women. Calculated from the alternative models 
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Although the models considered here rely on different assumptions, the consequences for the fixed 

effects are primarily related to the intercept, although there were also some differences in the effect of 

sex. The age parameters were largely unaffected by varying model specifications. The Poisson-NP 

model should be least affected by misspecification of the random effect as it should be better able 

approximate any distribution of the latent variable. It is then interesting that the estimate from the 

Poisson-gamma model is much closer to the NP-estimates than the other models. We also estimated a 

zero-inflated Poisson-gamma model, but without any improvement in relative fit and with estimated 

1  . Thus, the much skewed gamma random effect, effectively handles that most individuals are 

‘crime-prone’ at a level indistinguishable from zero.  

 

It is also worthy to note that the Poisson-normal, Poisson-NP and negative binomial-normal models 

are computational intensive, which may be time consuming if analyzing large samples. The two 

versions of the Poisson-gamma model are much quicker to estimate. If the substantive results do not 
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differ between models, then the Poisson-gamma models can be preferable from a pragmatic point of 

view.  

 

We now study the distribution of residuals as specified in equation (9) above. We have plotted the log 

of the j  residuals in figure 4. We use the log as the right tail would not show on the natural scale due 

to the high number of persons with a negative estimated j . The plot shows a clearly skewed 

distribution where the majority of individuals have a very low level of “crime–proneness”.  

 

Figure 4 Histogram of fitted log( j ) 
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To assess whether this distribution is reasonably well captured by a gamma distribution, we plot the 

empirical quartiles against the quartile of the theoretical gamma distribution as shown in Figure 5. The 

QQ-plot does not form quite a straight line, hence, the residuals are not quite well approximated by a 

gamma distribution. Most of the observations lie in the first quartiles, and the right tail of the 

distribution of j is too thick compared with the gamma distribution.  
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A second observation is that if the true distribution was approximately discrete, we would expect a 

staircase pattern, but this is not the case. We can therefore conclude that the true distribution is 

reasonably approximated by a skewed, continuous distribution – although not quite gamma 

distributed.  

 

Figure 5 QQ-plot of predicted versus the fitted gamma distribution 

 

Conclusion 
Generalized linear mixed models (GLMM) is a popular technique of analysing clustered count data, 

and criminal career studies have often data with repeated measures of number of crimes, say each 

year. It is often assumed a normal distribution for the random effects as it can be easily estimated with 

standard software packages. However, other alternatives are almost equally easily available, and it 

might be important to consider what type of model would be appropriate for any particular study. 

Although the literature diverge on this point, it is possible that misspecification can have consequences 

for the estimation of the fixed effects (Lindsey & Lindsey, 2000; Litière et al., 2007).  

 

When comparing models resting on different assumption, it is useful to apply models with varying 

parametric assumptions in addition to nonparametric models. We have presented a Poisson-gamma 

model as an additional tool for the criminologist’s toolbox. This model has a number of additional 
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attractive properties, such as not being sensitive to start values, and being very quick to compute. This 

is beneficial because parametric models are more efficient if the mixture distribution is reasonable 

(Agresti et al., 2004). We also propose that the gamma distributed heterogeneity is a theoretically 

reasonable mixture distribution, and is therefore easier to give an explicit interpretation. Since the 

Poisson-gamma model is quick to compute, it can be useful to get start values for the more 

computational intensive nonparametric model.  

 

We have compared the results from several models resting on different assumptions. Our data are 

highly overdispersed, thus the negative binomial normal model gave the best fit. Considering the 

Poisson models, specifying the random effect as normal-, gamma or nonparametric did not have much 

impact on the estimates for age, but did affect the estimates for the intercepts and sex. Given that a 

nonparametric model can approximate any true distribution, we put greater trust in the estimates from 

this model. It is then interesting that the Poisson-gamma model gave more similar result as the 

Poisson-NP model than the Poisson-normal model did. Misspecification of the random effect can then 

have substantive consequences, although perhaps not dramatic. Although the intercept is often not of 

substantive interest, any further calculations which include the intercept might be sensitive to 

specification of the random effect.  

 

The distribution of heterogeneity might be of theoretical relevance in its own right. If there are 

meaningful clusters, as some suggest (Moffitt, 2006), a discrete distribution might be preferable to a 

continuous one. All models suggested a skewed distribution. As the random effects in the Poisson-

normal are on the log scale, a large negative intercept suggests that a large majority of the individuals 

are crime-prone indistinguishable from zero (on the natural scale), but there is a small tail towards 

higher values of criminal dispositions. Our Poisson-gamma model estimated a gamma distribution 

with a very small shape-parameter, which would imply a similar distribution: most persons 

indistinguishable from zero but with a small tail to the right. Also the Poisson-NP model indicates that 

a skewed distribution is reasonable. The residual plots suggest that a highly skewed continuous 

distribution, such as the gamma distribution, is not unreasonable for our data.  

 

The results show the importance of comparing alternative models for the same data, but also the 

difficulties of concluding on specification of the random effects. Improved relative fit can be achieved 

in several ways, and overdispersion appeared to be important in this respect for our data, so that better 

fit does not necessarily imply better estimates for the fixed effects. Accounting for over dispersion 

may improve the fit considerably without affecting the estimates much. Also; nonparametric 
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distribution should be more reliable when the true distribution is unknown, but is less efficient than 

correctly specified parametric distribution, and thus may give worse fit. Nevertheless, comparing 

alternative models and inspecting residuals is important in any empirical setting. If the models give 

different results, there are reasons for concern. In our study, the results did not diverge dramatically, 

and the largest difference was for the intercept, so the substantive conclusion would be similar even in 

presence of some bias.  
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Appendix 
Script to estimatet the Poisson-gamma model using R 
R is available for free at www.r-project.org, and the following script use only the R-function nlm for 

optimization. The following contain an example run followed by the script.  
 

# Written by Simen Gan Schweder, 18.09.2008 

# Example run using publicly available example data available at  

# http://www.andrew.cmu.edu/user/bjones/sas/zip.sas 

 

data <- scan("C:/CambridgeData.txt", dec='.', skip=1); 

data <- matrix(data, byrow=T, ncol=49) 

fit <- pgfit("y ~ x + I(x^2) + I(x^3) + z1 + z2", beta=c(-1,-1,0.2,-0.9,0,0.8,0.7),  

 y=data[,2:24], nofHomogenousTerms=2, z1=data[,48], z2=data[,49], x=data[,25:47]); 

#Display summary info 

pgfit.summary(fit) 

 

# The null-inflated version of the same as the previous model  

# (Just add one parameter to beta...) 

fit <- pgfit("y ~ x + I(x^2) + I(x^3) + z1 + z2", beta=c(0.3, -1,-1,0.3,-0.8,0.1,0.8,0.7),  

 y=data[,2:24], nofHomogenousTerms=2, z1=data[,48], z2=data[,49], x=data[,25:47]); 

#Summary 

pgfit.summary(fit) 

 
############# 

#-loglikelihood, with shape=rate for Poisson-gamma model 

pgfit.ll <- function(start, y, ypluss, modelmatrix, n, pp, nofHetrogenousTerms,  
                nofHomogenousTerms ) { 

      beta <- pgfit.buildCoeficientsFromBeta( 

   beta=start, 

   nofHetrogenous=nofHetrogenousTerms, 

   nofHomogenous=nofHomogenousTerms, 

   time=pp 

 ); 

 s <- pgfit.buildsummationmatrix(beta); 

 mu <- exp(modelmatrix %*% s); 

 mupluss <- apply(mu, 1, sum); 

 ymu <- apply(y*log(mu)-log(factorial(y)),1,sum); 

 -sum( ymu 

  + lgamma(ypluss + beta$alpha)  

  - lgamma(beta$alpha) 

  + beta$alpha*(log(beta$alpha) -log(mupluss + beta$alpha)) 

  - ypluss*(log(mupluss+beta$alpha))); 

} 
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####### 

#loglikelihood, med zero-inflated model 

pgfit.ll.nullinflated <- function(start, y, ypluss, modelmatrix, n, pp,  

              nofHetrogenousTerms, nofHomogenousTerms ) { 

  beta <- pgfit.buildCoeficientsFromBeta( 

  start, 

  nofHetrogenous=nofHetrogenousTerms, 

  nofHomogenous=nofHomogenousTerms, 

  time=pp 

 ); 

 

 s <- pgfit.buildsummationmatrix(beta); 

 mu <- exp(modelmatrix %*% s); 

 mupluss <- apply(mu, 1, sum); 

 ymu <- apply(y*log(mu)-log(factorial(y)),1,sum); 

 pii <- beta$pii; 

 

 -sum( (ypluss == 0)*log(1-pii+pii*(beta$alpha/(beta$alpha+mupluss))^beta$alpha) 

  +(ypluss > 0)*(log(pii) + ymu 

   + lgamma(ypluss + beta$alpha)  

   - lgamma(beta$alpha) 

   + beta$alpha*(log(beta$alpha) -log(mupluss + beta$alpha)) 

   - ypluss*(log(mupluss+beta$alpha))) 

  ); 

} 

 

####### 

#Internal method, just assembles the coeficients and some extra info in a standard way. 

pgfit.buildCoeficients <- function(alpha=NULL, pii=NULL, intercept=NULL, hetrogenous=NULL, 

homogenous=NULL, nofHetrogenous=0, nofHomogenous=0,time=NULL) { 

 list( 

  pii=pii, 

  alpha=alpha, 

  intercept=intercept,  

  hetrogenous=hetrogenous,  

  homogenous=homogenous, 

  nofHetrogenous=nofHetrogenous, 

  nofHomogenous=nofHomogenous, 

  time=time 

 ); 

} 
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####### 

#Internal method, builds coeficients from the result of an nlm-call + some extra info. 

#Note, the alpha is exp(beta[1]), if pii is present it is assumed to be at the first position  

#in beta and is inserted as logit(pii). 

#Dette blir galt når det ikke er noen homogene variabler. 

pgfit.buildCoeficientsFromBeta <- function(beta, nofHetrogenous=0, nofHomogenous=0,time=NULL) 

{ 

 if(nofHomogenous > 0) { 

  if(length(beta)==(2+nofHetrogenous+nofHomogenous)) { 

   pgfit.buildCoeficients( 

    alpha=exp(beta[1]), 

    intercept=beta[2],  

    hetrogenous=beta[3:(2+nofHetrogenous)],  

    homogenous=beta[(3+nofHetrogenous):(nofHetrogenous + 2 +  

        nofHomogenous)], 

    nofHetrogenous=nofHetrogenous, 

    nofHomogenous=nofHomogenous, 

    time=time 

   ); 

  } else { 

   pgfit.buildCoeficients( 

    pii=logit(beta[1]), 

    alpha=exp(beta[2]), 

    intercept=beta[3],  

    hetrogenous=beta[4:(3+nofHetrogenous)],  

    homogenous=beta[(4+nofHetrogenous):(nofHetrogenous + 3 +  

     nofHomogenous)], 

    nofHetrogenous=nofHetrogenous, 

    nofHomogenous=nofHomogenous, 

    time=time 

   ); 

  }; 

 } else { 

  if(length(beta)==(2+nofHetrogenous+nofHomogenous)) { 

   pgfit.buildCoeficients( 

    alpha=exp(beta[1]), 

    intercept=beta[2],  

    hetrogenous=beta[3:(2+nofHetrogenous)],  

    homogenous="NONE", 

    nofHetrogenous=nofHetrogenous, 

    nofHomogenous=nofHomogenous, 

    time=time 

   ); 

  } else { 

   pgfit.buildCoeficients( 
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    pii=logit(beta[1]), 

    alpha=exp(beta[2]), 

    intercept=beta[3],  

    hetrogenous=beta[4:(3+nofHetrogenous)],  

    homogenous="NONE", 

    nofHetrogenous=nofHetrogenous, 

    nofHomogenous=nofHomogenous, 

    time=time 

   ); 

  }; 

 } 

} 

 

####### 

#Builds the summation matrix s, "modelmatrix %*% s" gives mu. 

pgfit.buildsummationmatrix <- function(beta) { 

 #print(beta); 

 #Builds a temporary summation-matrix 

 if(beta$nofHetrogenous > 0 || beta$nofHomogenous > 0) { 

  s <- diag(rep(beta$hetrogenous[1],beta$time)); #First hetro 

  if(beta$nofHetrogenous > 1) { 

   for(j in 2:beta$nofHetrogenous) {#The rest of the hetrogenous variables 

    s <- rbind(s, diag(rep(beta$hetrogenous[j],beta$time))); 

   } 

  } 

  if(beta$nofHomogenous > 0) { 

   #the homogenous variables 

   s <- rbind(s, beta$homogenous %*% t(rep(1, beta$time))); 

  } 

  #the intercept 

  s <- rbind(rep(beta$intercept,beta$time), s); #the intercept 

 } else { 

  s <- rep(beta$intercept,beta$time); 

 } 

 s 

} 

 

####### 

#Internal method, returns the standard logit function. 

logit <- function(x) { 

 1/(1+exp(-x)); 

} 

inverselogit <- function(y) { 

 -log(1/y -1) 

} 
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#Prints summary information on the fit-object returned by pgfit. 

pgfit.summary <- function(fit) { 

 print(list("method:"=fit$method, "minimum:"=fit$minimum,"gradient:"=fit$gradient, 

"code:"=fit$code, "coeficients:"=fit$coeficients)); 

 print("The alfa value is log(true alfa), the pii value is logit(true pii)"); 

} 

 

####### 

#Fits the model.   

#Uses the standardmodel if number of startparameters(beta) = 2+nofHetrogenous + nofHomogenous, 

#and the nullinflated model if startparameters = 3+nofHetrogenous+nofHomogenous. 

pgfit <- function(fun, beta=NULL, y, nofHomogenousTerms, ...) { 

 #Build the dataframe 

 variables <- list(...); 

 df <- data.frame(y=I(y)); 

 for(i in 1:length(variables)) { 

  df[[names(variables)[[i]]]] <- variables[[i]]; 

 } 

 #Build the modelmatrix 

 form <- as.formula(fun); 

 modelmatrix <- model.matrix(form, data=df); 

 

 p <- length(y[1,]); 

 nofHetrogenousTerms = floor((length(modelmatrix[1,]) - 1 - nofHomogenousTerms)/p); 

 n <- length(y[,1]); 

 ypluss <- apply(y, 1, sum) 

 

 #Test for correct start params and fit the appropriate model 

 if(length(beta) == (2 + nofHetrogenousTerms + nofHomogenousTerms)) { 

  method <-"standard poisson-gamma model" 

  print("Running standard poisson-gamma model"); 

  temp <- nlm(pgfit.ll, p=beta, hessian=TRUE, iterlim=1000,  

  y=y, ypluss=ypluss, modelmatrix=modelmatrix, n=n, pp=p,  

  nofHetrogenousTerms=nofHetrogenousTerms,  

  nofHomogenousTerms=nofHomogenousTerms); 

 } else if(length(beta) == (3 + nofHetrogenousTerms + nofHomogenousTerms)) { 

  method <-"null-inflated poisson-gamma model" 

  print("Running null-inflated poisson-gamma model"); 

  temp <- nlm(pgfit.ll.nullinflated, p=beta, hessian=TRUE, iterlim=1000,  

   y=y, ypluss=ypluss, modelmatrix=modelmatrix, n=n, pp=p,  

   nofHetrogenousTerms=nofHetrogenousTerms,  

   nofHomogenousTerms=nofHomogenousTerms); 

 } else { 

  stop("Wrong number of start-parameters, should be 

(alpha,intercept,hetrogenous_1,...,hetrogenous_n,homogenous_1,...,homogenous_m)"); 

 } 

 if(temp$code > 1) print("WARNING: Code returned from nlm > 1"); 

 list(method=method, 
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  formula=fun, 

  minimum=I(temp$minimum),  

  estimate=I(temp$estimate), 

  gradient=I(temp$gradient),  

  hessian=I(temp$hessian),  

  code=I(temp$code),  

  iterations=I(temp$iterations), 

  response=I(y), 

  modelmatrix=I(modelmatrix), 

  coeficients=I(pgfit.buildCoeficientsFromBeta(beta=temp$estimate,  

  nofHetrogenous=nofHetrogenousTerms, nofHomogenous=nofHomogenousTerms,time=p)) 

 ); 

} 

 

 


