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1 Introduction

The scale properties of production technologies are of vital importance for our under-
standing of market structure, productivity, and economic growth, and, within the indus-
trial economics literature, economies of scale is put forward as a possible important barrier
to entry, see e.g. Tirole (1989, pp. 305 — 306) and the references therein. Hence, knowing
the scale properties may help us understand the evolution of industries. Although there
are important exceptions, it is common in empirical analyses of the production process,
applying both the primal and the dual approach, to assume a constant returns to scale
technology. This is true for analyses using both micro and macro data. One explanation
for this restriction is co-movements of the explanatory variables that makes it difficult
to identify independently the impacts of technical change, capital stock growth, and re-
turns to scale; cf. Morrison (1988) and Bigrn, Lindquist and Skjerpen (1998). However,
if the constant returns to scale restriction is false, this is likely to influence conclusions
regarding technical change and productivity.

There is a growing number of articles that analyse the production process econometri-
cally using micro data under the assumption that heterogeneity in size, age, management,
employees’ education, technology, etc., can be represented by a plant specific fixed or ran-
dom intercept term in the production, cost, or profit function. Most likely, however, such
differences will manifest themselves not only as a permanent, i.e., constant, variation in
efficiency across plants, but will also result in heterogeneity in scale properties. In this
case, the standard modelling approach, with only fixed or random effects in intercept
terms, may lead to inefficient estimation of the slope coefficients and invalid inference.

This paper chooses a more general approach and analyses the importance of scale
economies by estimating a four-factor (K LE M ) production function with heterogeneous
scale properties and no a priori restrictions on the returns to scale. Our approach differs
from that in the panel data literature on frontier production functions and efficiency mea-
surement, dealing with deterministic or stochastic production frontiers in a framework
with firm specific heterogeneity; cf. Cornwell and Schmidt (1996). In the present pa-
per, three (nested) functional forms of the average production function are investigated:
the Translog, an extended Cobb-Douglas, and the strict Cobb-Douglas. Heterogeneity
in both the slope coeflicients representing the scale properties as well as the intercept
term is allowed for. To avoid overparameterization and the degrees of freedom problem,
a random coefficient approach, with specific assumptions made about the distribution
from which the plant specific coefficients are drawn, is applied. This is a parsimonious
and easily interpretable way of representing heterogeneity. The expectation vector in this

distribution represents the coeflicients of an average plant, while its covariance matrix



gives readily interpretable measures of the degree of heterogeneity which is due to the
random coefficient variation. In addition, the non-homotheticity of the production func-
tion allows for systematic variation in the scale elasticity, i.e., variation with the input
quantities. The purpose of this paper is to quantify both the random and the systematic
variation of the scale elasticity.

Our primary argument for using the primal approach and not following the alternative
dual approach is our focus on heterogeneity in the production function parameters rather
than in the parameters of the cost or profit function. Arguments for taking the primal
approach, even if the agents follow optimizing behaviour, have been given by, inter alia,
Zellner, Kmenta, and Dréze (1966) and Mundlak (1996) in a Cobb-Douglas context; see
also Griffiths and Anderson (1982), Mairesse (1990), Mairesse and Griliches (1990), Wan,
Griffiths, and Anderson (1992), and Griliches and Mairesse (1998, section 2).

The panel data set applied in this paper is from the Norwegian manufacturing statis-
tics data base of Statistics Norway. It is unbalanced and consists of plants from the
Pulp and paper industries, the Chemical industries, and the Basic metals industries in
Norway. We follow the recommendations in Matyas and Lovrics (1991) and Baltagi and
Chang (1994) and do not apply a balanced subsample of the original unbalanced data
set. Qur output measures for the three industries are in physical units, and are in several
respects preferable to those used in other studies of production technologies, e.g., deflated
sales, which may be affected by measurement errors; see Klette and Griliches (1996).

The combination of a random coefficient model and unbalanced panel data which
our analysis examplifies, is far from standard, at least in applied econometrics. Mixed
regression models with unbalanced design, however, have, to some extent, been discussed
in the statistical literature, see, e.g., Amemiya (1994) and Shin (1995). Random coef-
ficients in regression equations in econometrics are treated in the pioneering studies of
Swamy (1970, 1971, 1974); see also Hsiao (1975, 1996) and Longford (1995a,b).

A major finding in this study is that substantial improvement in model fit is obtained
when allowing for random coefficient heterogeneity. We find constant or weakly increasing
returns to scale for a plant with an average technology, but the results reveal important
variation across plants, and plants with both increasing and decreasing economies of scale

are present.

2 Model and econometric method

We assume that the average plant has a four-factor technology, with capital (K'), labour

(L), energy (F), and materials (M) as inputs and with one output (Y'). The most general



specification of the technology is assumed to be non-homothetic and is represented by a
production function belonging to the Translog class, with a trend, and with some coef-
ficients specified as random variables. This random variation represents non-systematic
heterogeneity of the technology.

Below we describe the basic elements of our model, for simplicity without explicitly
incorporating the unbalancedness of the panel data set. The accommodation of the
model to our unbalanced panel data and the Maximum Likelihood estimation procedure
is elaborated in Appendix A.

Let subscripts ¢ and ¢ denote the plant and the year (number) of observation, respec-

tively. Our Translog model framework can be written as

(1) Y = ¢ YT + %7*7}2 + 20, + %Zz’/tBZit + 2,07 + uy,
where
Yir = hl(Yz't)a Zit = [hl(](it)vhl(Lit)vln(Eit)vln(Mit)]/7

¢; is a plant specific random intercept term, 7, is a deterministic trend term representing
the level of the technology in year ¢, and u;, is a genuine disturbance term. The vector «;
is specified as plant dependent and random, and the matrix and vector of second-order

coefficients, B and &, as constants:
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The intercept term ¢; and all elements of «; are specified as plant dependent and random
in general, but in some models, we impose additional restrictions, as will be explained
below.

The heterogeneity of the coefficient structure across plants is represented as follows.
Let 6, denote the column vector containing all the (random or fixed) coefficients in the

model, i.e.,
(2) 02 = [Ci7 ailv Y, 7*7 ﬁlv 6/]/7

where 3 = vech B is the half-vectorization of B, i.e., the lower triangular part of B stacked

into a column vector. We assume that all z;, u;, and 6;’s are mutually independent,

! Attempts were made to solve the Maximum Likelihood estimation problem (under normality of the
random coefficients and the disturbance terms) for the specification with random and plant dependent
B, v, 74", and 6§, but this turned out to raise numerical problems. We therefore decided to consider only

models in which these second-order coefficients are constants.



with E(u;) = 0, var(u;) = oy, and
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where a = E(a;), we. = var(¢;), Q,, = E[(a;—a)(a; —a)'], etc., and the zero sub-matrices
of (), representing non-random coeflicients, have suitable dimensions.

We denote the model with diagonal B, § = 0,7" = 0 as the Fztended Cobb-Douglas
model, B = 0,6 = 0,7* = 0 giving a strict Cobb-Douglas model. The Extended Cobb-
Douglas model implies that the output elasticity of a specific input (input elasticity, for
short) depends on the volume of that input, but is independent of the other inputs.
This is in contrast with the more flexible Translog model, in which the input elasticities
depend on all inputs. Both the Translog and the Extended Cobb-Douglas technologies
are non-homothetic, unlike the strict Cobb-Douglas model, which is homothetic and has
a constant scale elasticity.

The (column) vector of input elasticities of plant ¢ in year ¢ is

3@/2'
(4) Nie = [Mcies MLies NEits nMit]/ = 92 L

= o; + Bz + 07,

it

the derivative of log output with respect to the trend is

dy. .
(5) Nrit = agj_ltt =7 + AE + 6/Zit7

and the scale elasticity of plant ¢ in year t is
(6) Vi = €47y = a; + B/Zﬁ + 57}7

where e, is the n vector of ones and @, = eja,, 3’ = ejB, 6 = e}6. Conditionally
on z;, the random variation of the input elasticities and the scale elasticity is due to
the randomness of the first-order coefficients in the production function, «;, only. The

expectation and variance of the scale elasticity of plant 7 in year t, conditionally on the

input vector z,,, can be written as, respectively,

(7) E(vie]zi) = E(a) + B/Zit + 57’1&7

(8) var(vy|z;,) = var(a),



where E(a) = eja and var(a) = e;§,,€e, are the common expectation and variance of &;.
We can interpret E(v;,|2;,) as representing the systematic (non-random) heterogeneity in
the scale elasticity, while var(v,|z;,) represents the dispersion of its random heterogeneity.
Similar expressions can be derived for the input elasticities. Using (7), (8), and the law
of iterated expectations, the marginal (unconditional) expectation and variance of the

scale elasticity can be written as

E[E(vylzit)] = E(a)+ B/E(Zit) + 57—1&
= eja+e;BE(z;,) + ejéT,,
(10) E[var(v;,|z;)] + var[E(v;|2;,)]

= var(a)+ B/V(Zit)ﬁ = eigaa% + eiBV(Zit)Bezp

where V(z;) is the covariance matrix of z;;. Eq. (10) represents jointly the heterogeneity
in the scale elasticity which is due to the stochastic variation in the first-order coeffi-
cients (the first term) and the heterogeneity which is due to the variation in the input
vector across plants (the second term). Similar expressions can be obtained for the input
elasticities.

Nine models, that differ with respect to functional form and the representation of the
heterogeneity of the technology, are considered. As abbreviations for Translog, Fxtended

Cobb-Douglas, and strict Cobb-Douglas we use TL, ECD, and CD, respectively — in

parenthesis indicating which coefficients are treated as random in each model. The
models are specified below:
Model Wee Qoa Qe B o, v*
TL(c, @) unrestricted unrestricted unrestricted unrestricted unrestricted
TL(c¢) unrestricted 0 0 unrestricted unrestricted
TL 0 0 0 unrestricted unrestricted
ECD(c,a) | unrestricted unrestricted unrestricted diagonal 0
ECD(c) unrestricted 0 0 diagonal 0
ECD 0 0 0 diagonal 0
CD(c, ) unrestricted unrestricted unrestricted 0 0
CD(c) unrestricted 0 0 0 0
CD 0 0 0 0 0

The structure of the model tree is presented in Figure 1.

The expected coefficient vector # and the unknown elements of the covariance matrix

Q, given by (3), for the different models are estimated by Maximum Likelihood, using




the PROC MIXED procedure in the SAS/STAT software [see Littell et al. (1996)]. Pos-
itive definiteness of the non-zero submatrix of Q (relating to the random coefficients) is

imposed as an a priori restriction. See also Appendix A.

3 Data

We use an unbalanced plant-level panel data set that covers the period 1972 — 1993.
The primary data source is the Manufacturing Statistics database of Statistics Norway.
Our initial data set includes all large plants, generally defined as plants with five or
more employees (ten or more employees from 1992 on), classified under the Standard
Industrial Classification (SIC)-codes 341 Manufacture of paper and paper products (Pulp
and paper, for short), 351 Manufacture of industrial chemicals (Chemicals, for short) and
37 Manufacture of basic metals (Basic metals, for short). Both plants with contiguous
and non-contiguous time series are included.

Some minor data cleaning has been performed; i.e., we have removed observations
with zero production or zero inputs. This reduced the number of observations by 4 —
8 per cent in the three industries. The number of plants per year ranges from 81 to
179 in Pulp and paper, from 46 to 66 in Chemicals, and from 71 to 111 in Basic metals.
There is a clear negative trend in the number of plants from the mid-seventies in all three
industries. The unbalance in our data set is shown in Table 1, which gives the number of
plants sorted by the number of observations. For example in Pulp and paper, 60 plants
are observed in all 22 years (1972 — 1993), while 20 plants are observed in one year only.

Some remarks on why gaps occur in the time series of some plants (non-contiguous
time series) seem appropriate. All large plants are obliged by law to report information
on a large number of variables to Statistics Norway. Missing observations due to non-
response can therefore be expected to be a minor problem. Three reasons for gaps in the
series may be given: (i) Only large plants, according to the above mentioned criterion,
are obliged to report. If a plant switches between being ‘large’ and ‘small’, there may be
gaps in its time series. This may cause a potential endogenous selection problem, and
ideally, our data set should have included these ‘missing’ observations. An inspection of
the data revealed, however, that this was not an important cause for gaps. (ii) The plants
in our sample are in general multi-output plants and are defined as belonging to a specific
industry depending on their most important products. Although not very common, a
plant can switch between two industries due to major shifts in output composition, and
hence go into and out of our sample. With respect to identifying the technology of true

Pulp and Paper, Chemicals, and Basic metals plants, these plants represent a potential



problem. (iii) Gaps may be due to dramatic events such as insolvency. If the same
type of production continues at the same location after an inactive period, the plant will
re-enter the data base with the same plant-number.? In general, plants with gaps do
not seem to differ from plants with contiguous time series, and we therefore decided to
include these plants in our information set. By reproducing the estimation with the non-
contiguous time series removed, within a related dual approach for Chemicals, we found
that such plants did not tend to ‘pollute’ the estimation results [cf. Bigrn, Lindquist, and
Skjerpen (1998)].

TABLE 1. NUMBER OF PLANTS CLASSIFIED BY NUMBER OF REPLICATIONS

p = no. of observations per plant, N, = no. of plants observed p times,

N =2 Ny, n=3 Npp

Industry | Pulp & paper | Chemicals | Basic metals
P N, Nyp| N, Nyp| N, Npp
22 60 1320 | 29 638 | 44 968
21 9 189 0 0 2 42
20 5 100 3 60 4 80
19 3 57 0 0 5 95
18 1 18 2 36 2 36
17 4 68 4 68 5 85
16 6 96 9 144 5 80
15 4 60 6 90 4 60
14 3 42 1 14 5 70
13 4 52 3 39 3 39
12 7 84 1 12| 10 120
11 10 110 2 22 7 77
10 12 120 3 30 6 60
09 10 90 2 18 5 45
08 7 56 2 16 2 16
07 15 105 2 141 13 91
06 11 66 3 18 4 24
05 14 70 3 15 5 25
04 9 36 2 8 6 24
03 18 54 3 9 3 9
02 5 10 3 6 6 12
01 20 20 7 71 20 20

Sum: N,n | 237 2823 | 90 1264 | 166 2078

2If the plant is ‘new’, i.e., largely retooled, it is identified by a new number.



4 Empirical results

Goodness of fit

Table 2 reports the goodness of fit of all the estimated models, expressed in terms of
the log-likelihood value (LLH),®> Akaike’s Information Criterion (AIC), and Schwarz’s
Bayesian Criterion (SBC).* Within models with the same functional form, these three
criteria give identical ranking with respect to the specification of heterogeneity: the mod-
els that include heterogeneity in both the intercept term and the first-order coeflicients
in the production function, i.e., ¢; and ay, give a clearly better fit than the models with
heterogeneity only in the intercept term, and a markedly better fit than the models with
no coeflicient heterogeneity. There is thus evidence that allowing for random heterogene-
ity in the «; coefficients of the production function improves the fit to our plant panel
data in comparison with more restrictive models.

Concentrating on the functional form and comparing models with the same specifica-
tion of heterogeneity, we find that the picture is somewhat less clear, although the general
result is that TL(-) outperforms both ECD(-) and CD(-). In some cases, however, SBC
ranks CD first. This is particularly true for the models with random intercepts and a;’s.
It should be remembered, though, that this criterion penalizes coeflicient-rich models rel-
atively hard. The estimates of the genuine disturbance variance, oy, , support our general
conclusion with respect to model fit: it decreases strongly when more heterogeneity is
allowed for and also when the flexibility of the functional form increases.

The estimated variance of the random intercept, w.. is substantially higher when the
coefficient vector «; is specified as random than when it is fixed (compare columns 1 —
3 with 4 — 6 in Table 2). On the other hand, the choice of functional form affects the

estimated variance of the random intercept modestly.

Degree of coefficient heterogeneity

The last row of each panel of Table 2 gives a measure of the overall degree of coeffi-

cient heterogeneity (including intercept heterogeneity) in each estimated equation. The

Likelihood Ratio test statistics can be easily calculated from the tables. These statistics are, however,
not asymptotically y?-distributed under the null hypothesis of full coefficient homogeneity, because the
parameters in £ then are on the border of the admissible parameter space, see Shin (1995, p. 321). Thus,
for making formal inference of coefficient heterogeneity versus homogeneity, other test procedures may
be needed, see the recent papers by Khuri et al. (1998) and Andrews (1999). We have not followed up

these ideas in the present paper, however.
*The two latter criteria are defined, for a model, m, by, respectively, AICy = lm — ¢m and SBC,, =

ln — 0.5¢p, In(Nyy ), where I, is the log-likelihood value of model m, ¢y, is its number of parameters, and

N, 1s its number of observations.
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measure is the estimated share, ¢, at the overall sample mean of the inputs,® of the
variances of the gross disturbance 4, ), [cf. (A.3) and (A.8)] which is due to coefficient
heterogeneity. In the model with random intercept term ¢; only, it is the estimated value

of

<'UCC

<"uCC —I_ O-UU ‘
In the random coefficients model, the share is the estimated value of

SQ:

_ w'Q,,w
7T Wt o
where w is the 5 x 1 vector with 1 in the first position and the log of the overall mean of
the inputs in the remaining positions, and €,, is the sub-matrix of € which corresponds
to the random coefficients, cf. (3). These ratios show that a very high share of the total
variance is due to coefficient heterogeneity: 72 — 85 per cent in the models with random
intercept term and 82 — 91 per cent in the models that also include random first-order

coefficients.

Input and scale elasticities

The complete set of (mean) coefficient estimates in the various models is given in Tables
A2 — A4 in Appendix C. Table 3 reports the derived estimates of the expected input
elasticities, the expected scale elasticity, and the expected trend effect — all calculated at
the overall mean of the inputs.® The expected scale elasticity is relatively stable across
models and the results clearly indicate weakly increasing or constant returns to scale
for Pulp and paper and Basic metals. The estimates for Chemicals are more variable
and both Models TL(¢, @) and ECD(c, @) show increasing returns to scale, with scale
elasticities in the range 1.3 — 1.4. There is no systematic pattern in the expected scale
elasticity with respect to choice of functional form or specification of heterogeneity that
is robust across industries.

Overall, the estimated expected input elasticities at the sample mean show larger vari-
ability across models than does the scale elasticity. Most estimates have the expected
positive sign, the exception is the labour elasticity in six of the nine cases that do not
include coefficient heterogeneity. This indicates that “no heterogeneity” is an inappropri-
ate empirical specification of the average technology for our plant panel data. A weakly,

although not significantly, negative” labour elasticity is also found in Model TL(c, ) in

®The overall means of the inputs are defined as the logarithms of their arithmetric means; cf. Table Al

in Appendix C.
SNote that the standard deviation estimates given in parenthesis refer to the uncertainty of the esti-

mated parameters and hence is conceptually different from the standard deviation of the random param-

eter, i.e., the square root of the diagonal elements of Q244.
TA 5 per cent significance level is used throughout.
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Basic metals, however. Materials input comes out with a relatively high input elasticity,
in particular in Pulp and paper and Basic metals. In Chemicals, but also to some degree
in Pulp and paper, the input elasticity of capital is high according to several models.
Comparing columns 4 — 6 in Table 3 with columns 1 — 3, it is clear that when we allow
for randomness of the «;’s, the standard deviation estimates of the expected coefficients
increase substantially — in most cases to almost the double value. This seems to be a

consequence of allowing a less restrictive model specification.

Trend effects

The trend variable 7 is represented by the calendar year. Excepting the three models
with no heterogeneity in Pulp and paper, the estimated (sample mean) trend coefficient
7y, in Table 3, is significantly positive in all models. The values vary between 0.7 and 0.8
per cent in Pulp and paper, between 3 and 4 per cent in Chemicals, and around 2 per
cent in Basic metals. Hence, the estimated technical progress is strongest in Chemicals
and weakest in Pulp and paper.

This is consistent with industry specific R & D costs, which are available in some
years. It is plausible to assume a connection between R & D costs over time and technical
progress, and the Chemical industry invests much more in R & D than the other two
industries, measured both in NOK and as a share of value added. For example in 1995,
R & D costs were about 12 per cent of the value added in Chemicals, and only 3 — 4 per

cent in Pulp and paper and Basic metals.

Distribution of the random coefficients

Tables 4a — 4¢, ba — 5c and 6a — 6¢ all characterize, in different ways, plant heterogeneity.
Tables 4a — 4c contain estimates of the covariance matrix of the random coefficients in
our most general specification of plant heterogeneity. There is one table, covering all
three industries, for each functional form, with variances along the main diagonal and
correlation coefficients below. For each industry, the results are very robust with respect
to the form of the average production function. In only one case [corr(apm;, ax;) for
Chemicals|, the sign switches. The majority of the correlation coefficients are negative,
and in several cases, they are quite large in absolute value. Hence, a relatively high
coefficient of one input is often matched with a relatively low coeflicient of the other
inputs, and vice versa.

The correlation structure of the random coefficients seems to be somewhat different
for the three industries. The coeflicients of capital and materials are clearly negatively
correlated in both Pulp and paper (about -0.60) and Chemicals (about -0.35). The

coeflicients of capital and energy are clearly negatively correlated in both Pulp and
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paper (about -0.40) and Basic metals (about -0.65). The correlation between the random
coeflicients of capital and labour is rather weak in Pulp and paper, but fairly strong in
the two other industries: about -0.30 in Chemicals and about -0.55 in Basic metals. In
Chemicals the highest correlation coefficient, about -0.50, is found between the coefficients
of labour and energy. Turning to the coeflicients of materials and energy, which is often
treated as one single input in empirical studies, we find that the correlation is positive,
but weak in Pulp and paper, clearly negative in Chemicals (about -0.30), and quite large
in Basic metals (less than -0.60). The large negative correlation between the intercept ¢;
and the coefficient of labour and the positive correlation between the intercept and the

coeflicent of energy for all industries and models should also be noted.

Predicted input and scale elasticities. Random and systematic heterogeneity

In Appendix A we explain how plant specific random coefficients can be predicted [cf. in
particular eq. (A.10)]. From such predictions we can obtain plant specific scale elasticities,
v;, and input elasticities, (7x:, 7L, NE:, Mai)- Figures 2 — 10 exhibit all the predicted scale
elasticities and input elasticities according to Models TL(¢, ), ECD(¢, ), and CD(¢, ),
evaluated at the plant specific means of the explanatory variables, when the plants are
sorted by ascending scale elasticities. In Tables ha — hc and 6a — 6¢ we report descriptive
statistics of these plant specific predictions. These figures and tables all represent both the
random heterogeneity, i.e., due to the random coefficient variation, and the systematic
heterogeneity which is due to differences in the input mix across plants. Confer the
variance expression (10) for the scale elasticity, in which the first component, var(a),
represents the random part (as illustrated in Tables 4a — 4c) and the second component,
B'V(z;)3, represents the systematic part.

Taking Model ECD(¢, ) as an example (cf. Table 5b), we see that the pairs of the low-
est and highest predicted scale elasticities are (0.42,2.10), (—0.22,4.43) and (0.72, 1.58)
in Pulp and paper, Chemicals, and Basic metals, respectively. About two thirds of the
plants in Pulp and paper and Basic metals have increasing returns to scale when evalu-
ated at the plant specific means of the explanatory variables. The corresponding share
in Chemicals is somewhat lower, about 0.55. Similiar results are obtained for the two
other functional forms.

The means of the plant specific predicted elasticities are given in the first column of
Tables ba — He. Figures 2 — 10 show that the variability of the scale elasticities is much
less than the variability of the input elasticities. This is confirmed by the coefficients
of variation of the predicted elasticities in the third column of Tables 5a — 5c: for all
functional forms and all industries, the coefficient of variation is smaller for the scale

elasticity than for any of the input elasticities. The coefficient of variation of the scale
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elasticities is uniquely higher in Chemicals than in the two other industries for any of
the three functional forms. This explains why we can find clearly increasing returns to
scale at the sample mean in some models in Chemicals only, although this industry has
the smallest share of individual plants with increasing returns.

The last column of Tables 5a — 5¢ (and Figures 2 — 10) shows that a share of the pre-
dicted input elasticities are negative. The occurrence of negative input elasticities means
that the predicted functions for some of the plants does not fulfill the usual regularity
conditions of a production function, as representing the technically efficient combinations
of inputs and output. This makes economic interpretation more difficult. Generally, this
problem seems to be somewhat more pronounced for Models TL(¢, a) and ECD(¢, ) than
for CD(e, o). Stated otherwise, increased flexibility of the functional form intensifies the
problem of violation of the regularity conditions. Negativity of the predicted input elas-
ticities occurs least frequently for materials. The occurrence of negative predicted input
elasticities as well as negative estimates of average input elasticities (cf. Table 3) may
suggest that some kind of constrained estimation procedure, or other distributional as-
sumptions for the random coeflicients, should have been applied. Such modifications,
however, may require computer software which is presently unavailable, and/or may
enhance the numerical problems. Hence, depending on the purpose of the analysis, it
may be advisable to choose a relatively restrictive functional form if heterogeneity in
technology is a major concern and is represented by random coefflicients.

We will now compare the input and scale elasticities in Tables ha — 5¢ with those in
Table 3. Differences between these values reflect both random and systematic hetero-
geneity. The values in Table 3 are calculated at the estimated expected values of the
random coefficients and the overall means of the inputs. For the CD functional form, the
a;’s have interpretations as input elasticities. In this case there is practically no differ-
ence between the two types of measures (see Table 5¢, column 1, and Table 3, column 3).
However, this does not hold for the two other functional forms, in which the input elas-
ticities depend on the input vector. In Pulp and paper, the differences are modest for the
scale elasticities, the largest difference, 0.06, occurring for the energy elasticity in Model
TL(¢,a). For the other two industries, we find larger discrepancies. In Chemicals (com-
pare Table 3 with Tables 5a and 5b), the estimated average scale elasticities are 1.31 and
1.43 in Models TL(¢, a) and ECD(¢, @), respectively, whereas the means of the predicted
plant specific elasticities are lower, 1.04 and 1.09, respectively. The main contribution
to these discrepancies comes from the capital elasticity. For instance in Model TL(¢, @),

the estimate (Table 3) is 0.52, whereas the mean of the predicted elasticity is only 0.25.
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Predicted input and scale elasticities. Correlation pattern

The empirical covariance pattern of the predicted plant specific input elasticities, given
in the last four columns of Tables 6a — 6¢ (variances along the diagonal, correlation
coefficients below), shows that most of the correlations are negative. To a considerable
extent this reflects the pattern in Tables 4a — 4c for the (random) first-order coefficients
(aki,ari, g, api). Comparing Table 6¢ with 4c, both of which relate to the CD model
with random, but input independent input elasticities, is interesting. Since the 1;’s and
the a;’s coincide in this case, we get an illustration of the difference between the estimated
joint population distribution of the a’s and the sample distribution of the predicted
empirical counterparts. The empirical variances of the predictions are far smaller than
the estimated population variances of the random input coefficients.

High estimates (in absolute value) of corr(ay,;, ay;) (m and n denoting two arbitrary
inputs) seem to be accompanied by high empirical correlations between predicted input
elasticities of inputs m and n. Since parameter heterogeneity accounts for an important
part of the dispersion in the predicted input elasticities, this is not surprising. For instance
the estimate of corr(aps;, ak;) is -0.57 for Model ECD(¢, ) in Pulp and paper (Table 4b),
whereas the corresponding empirical correlation coefficient between 7jps and 7k is -0.71
(Table 6b). In both cases this is the highest correlation (in absolute value) among any
pair of inputs. Reproducing the calculations in Tables 6a — 6¢ with the predicted plant
specific coefficients replaced by their estimated means confirms that most of the dispersion
reflects the randomness of the coefficients. For example, the empirical variances of the
scale elasticities is reduced to less than one third.

Finally, turning to the first column of Tables 6a — 6¢, we note that the predicted plant
specific scale elasticity is strongly positively correlated with the predicted labour input
elasticity in all the three industries (correlation coefficient 0.70 or more). Hence, plants
with a high labour input elasticity tend to have a high scale elasticity. On the other
hand, the predicted plant specific scale elasticity is clearly negatively correlated with the

predicted energy input elasticity (correlation coefficient -0.25 or below).

5 Concluding remarks

In this paper, the importance of heterogeneity in economies of scale is analysed using
an unbalanced plant-level panel data set from Norwegian Manufacturing Statistics. The
plants are from Pulp and paper, Chemicals, and Basic metals industries. A random
coefficient approach is chosen, and unlike most previous work on micro data, our model

specification allows for heterogeneity in the slope coeflicients representing the scale prop-
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erties as well as in the intercept term. Nine specifications of a four-factor (K LEM)
production function is estimated: the Translog, an IFxtended Cobb-Douglas and the
strict Cobb-Douglas, each with three alternative representations of the heterogeneity.
The three functional forms are nested, and both the Translog and the Extended Cobb-
Douglas imply non-homothetic technology with input dependent scale elasticity.

We find constant or weakly increasing returns to scale for a plant with an average
technology, but the results reveal considerable variation across plants, and plants with
both increasing and decreasing economies of scale are present. The input elasticities at
the sample mean are found to be even more variable than the scale elasticity, this is
particularly true for labour. In general, the input elasticity of materials is largest, while
that of energy is smallest. Variations in the input coefficients across plants seem to a
larger extent to be due to randomness of the production function parameters than to
systematic differences in the input mix.

Specifications that include heterogeneity in slope coefficients, in addition to heteroge-
neous intercept terms, improve the fit. This holds for all three functional forms. Among
the models with heterogeneity in slope coefficients the fit does not seem to deviate much
across functional forms, and for two of the three industries the ranking of the models de-
pends on the choice of information criterion. However, according to the predicted input
elasticities, the CD model yields plant specific production functions which to a less degree
than the two other functional forms violate the regularity conditions regarding technical
efficiency. Hence, it may be advisable to choose a relatively restrictive functional form if
heterogeneity in technology is a major concern and is represented by random coefflicients.

We expect our main finding, i.e., that economies of scale properties vary substantially
across plants, to be a general feature in micro data. The lesson we learn is that one should
work carefully with the representation of the plant specific heterogeneity when analysing
the production technology by means of micro data. This supports the findings of Mairesse
and Griliches (1990), who use a simpler description of the average technology than we
do. It is interesting to note, though, that, apart from one industry, the estimated scale
elasticity for the average plant is very robust to the choice of the model specification.
An interesting issue for future research would be to analyse the distribution of scale
properties, and their aggregate implications, in more detail. This may be important since
knowledge about systematic variation in characteristics of plants with either increasing
or decreasing returns to scale, such as age, size, growth performance, etc., could be

important for our understanding of the evolution of an industry.
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Table 2. Model fitting information for the various models in the three industries®

Model

TL(c,) ECD(c,a) CD(c,a) TL(c) ECD(c)  CD(c) TL ECD CD
Pulp and
paper
qQ° 37 26 22 23 12 8 22 11 7
LLH -330.65 -358.77 -364.73  -725.83 -764.85 -779.22 -2250.15 -2368.11 -2409.85
AIC -367.65 -384.77 -386.73 -748.83 -776.85 -787.22 -2272.15 -2379.11 -2416.85
SBC -477.65  -462.06 -452.14 -817.20 -812.52 -811.00 -2337.55 -2411.81 -2437.66
Cu 0.0397  0.0406  0.0408  0.0708  0.0729  0.0734  0.2883  0.3134  0.3228
Oee 59590 57793 59336  0.3789  0.3821  0.4003 0° 0° 0°
o? 0.9034  0.8986  0.9085  0.8426  0.8398  0.8450 0° 0° 0°
Chemicals
qQ° 37 26 22 23 12 8 22 11 7
LLH -1350.06 -1371.88 -1374.42 -1539.89 -1601.92 -1624.17 -2102.14 -2151.74 -2179.96
AIC -1387.06 -1387.88 -1396.42 -1562.89 -1613.92 -1632.17 -2124.14 -2162.74 -2186.96
SBC -1482.19 -1464.73 -1452.98 -1622.02 -1644.77 -1652.74 -2180.70 -2191.02 -2204.96
G 02926 03019 03019  0.5214 05711  0.6028  1.6295  1.7626  1.8431
Oe 23.6710 24.6901 25.0253  1.5646  1.5791  1.5196 0° 0° 0°
0! 0.9082  0.8993  0.9006  0.7501  0.7307  0.7160 0° 0° 0°
Basic
metals
qQ° 37 26 22 23 12 8 22 11 7
LLH -1041.70 -1076.64 -1083.00 -1223.51 -1279.51 -1284.46 -2533.11 -2622.37 -2654.60
AIC -1078.70 -1102.64 -1099.00 -1246.51 -1291.51 -1292.46 -2555.11 -2633.37 -2661.60
SBC -1183.02 -1175.95 -1144.11 -1311.36 -1325.35 -1315.02 -2617.14 -2664.39 -2681.34
Cu 0.0968  0.0984  0.0986  0.1409  0.1483  0.1490  0.6704  0.7306  0.7536
Oe 27431 33558  3.5973  0.6517  0.7084  0.7109 0° 0° 0°
0! 0.8196  0.8212  0.8293  0.8223  0.8269  0.8267 0° 0° 0°

*LLH is the Log likelihood value; AIC is Akaike's Information Criterion; SBC is Schwarz's Bayesian Criterion.

b q is the number of parameters in the model.
°A priori restriction.
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Table 3. Estimated scale properties. Standard errors in parentheses®

Parameter Model
TL(c,a) ECD(c,a) CD(c,ar) TL(c) ECD(c) CD(c) TL ECD CD
Pulp &
paper
Nk 0.2677 0.2448 0.2503 0.1275 0.1532 0.1717 0.1093 0.0969 0.0735
(0.0469) (0.0455) (0.0344) (0.0296) (0.0277) (0.0197) (0.0272) (0.0264) (0.0187)
. 0.1485 0.1476 0.1717 0.1096  0.1330 0.1863 -0.4189 -0.3036 -0.2314
(0.0514) (0.0468) (0.0381) (0.0301) (0.0278) (0.0215) (0.0270) (0.0251)  (0.0206)
Ne 0.1339 0.1487 0.0854 0.1649  0.1582 0.0921 0.4936 0.3995 0.3333
(0.0256)  (0.0253) (0.0169) (0.0189) (0.0175) (0.0103) (0.0190) (0.0166) (0.0099)
MM 0.5136 0.5183 0.5666 0.6367  0.6243 0.6064 0.7074 0.7586 0.7530
(0.0421)  (0.0406) (0.0309) (0.0263) (0.0239) (0.0167) (0.0246) (0.0226) (0.0160)
v 1.0637 1.0595 1.0740 1.0386  1.0687 1.0564 0.8914 0.9514 0.9284
(0.0426) (0.0411) (0.0287) (0.0302) (0.0291) (0.0186) (0.0139) (0.0135)  (0.0095)
N: 0.0067 0.0065 0.0065 0.0069 0.0074 0.0084 -0.0093  -0.0005 -0.0002
(0.0017) (0.0013) (0.0013) (0.0016) (0.0012) (0.0012) (0.0026) (0.0019) (0.0019)
Chemicals
Nk 0.5201 0.4490 0.1270 0.5020 0.3986 0.0713 0.7839 0.7557 0.4646
(0.1954)  (0.1905) (0.1149) (0.1176) (0.1150) (0.0667) (0.0846) (0.0826) (0.0577)
o 0.4215 0.3457 0.3117 0.2057 0.2618 04711  -0.2408 -0.1379 0.0537
(0.2245)  (0.2089) (0.1605) (0.1150) (0.0978) (0.0763) (0.1041) (0.0883) (0.0733)
Ne 0.1500 0.1698 0.2156 0.1548 0.1916 0.2244 0.2504 0.2247 0.3046
(0.1089) (0.0999) (0.0718) (0.0646) (0.0594) (0.0368) (0.0618) (0.0575)  (0.0350)
N 0.3389 0.3478 0.3544 0.4548  0.5245 0.2530 0.2341 0.2146 0.1825
(0.1321)  (0.1250) (0.0968) (0.0807) (0.0725) (0.0482) (0.0693) (0.0597) (0.0404)
v 1.4305 1.3123 1.0087 1.3172  1.3763 1.0199 1.0276 1.0570 1.0053
(0.1918) (0.1821) (0.1062) (0.1085) (0.1059) (0.0606) (0.0435) (0.0437) (0.0292)
Nt 0.0375 0.0323 0.0306 0.0329  0.0384 0.0422 0.0243 0.0253 0.0238
(0.0067) (0.0048) (0.0047) (0.0066) (0.0046) (0.0045) (0.0098) (0.0067) (0.0068)
Basic
metals
Nk 0.1806 0.0270 0.1246 0.1180 0.0619 0.0944 0.1039 0.0103 0.1438
(0.0830) (0.0732) (0.0472) (0.0587) (0.0461) (0.0273) (0.0564) (0.0437) (0.0280)
o -0.0316 0.2400 0.2749 0.0381 0.2257 0.3073  -0.0648 0.1149 0.1629
(0.0847) (0.0702) (0.0550) (0.0602) (0.0444) (0.0351) (0.0721) (0.0484) (0.0360)
Ne 0.4440 0.3970 0.2138 0.3010 0.1734 0.1628 0.3857 0.2478 0.1502
(0.0635) (0.0618) (0.0374) (0.0437) (0.0330) (0.0174) (0.0386) (0.0293) (0.0190)
MM 0.4262 0.3960 0.4928 0.5521  0.5666 0.5210 0.5411 0.6446 0.6868
(0.0640) (0.0598) (0.0406) (0.0452) (0.0356) (0.0235) (0.0480) (0.0324) (0.0217)
v 1.0192 1.0600 1.1061 1.0091 1.0276 1.0856 0.9660 1.0176 1.1438
(0.0570)  (0.0535) (0.0324) (0.0510) (0.0492) (0.0271) (0.0999) (0.0228) (0.0142)
N: 0.0156 0.0220 0.0214 0.0153  0.0215 0.0228 0.0246 0.0211 0.0220
(0.0035) (0.0022) (0.0021) (0.0034) (0.0020) (0.0020) (0.0059) (0.0036) (0.0036)

* The elasticity of output with respect to a specific input j (n);), the scale elasticity (v) and the derivative of the log
of output with respect to time (n,) are evaluated at the overall empirical mean and at the expectation of random

coefficients.
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Table 4a. The distribution of plant specific coefficients in model TL(c,a). Variances along the main
diagonal and correlation coefficients below

Pulp and paper G Olki (o8 Ol Olnfi
Ci 5.9590
Ol -0.4606 0.1182
ol -0.7185 -0.0749 0.1539
OlE; 0.3611 -0.4387 -0.2442 0.0224
Ol 0.4157 -0.5697 -0.4498 0.1072 0.1045
Chemicals Ci Olgi ol Olg; Olpgi
C; 23.6710
Ol -0.2175 0.4984
Ol -0.8084 -0.2561 1.2501
OlE; 0.4750 -0.0832 -0.5478 0.2660
Olni 0.1811 -0.3389 -0.2037 -0.3169 0.3743
Basic metals G Ol ol OLgj Ol
C; 2.7431
Ol -0.0959 0.1496
OlLi -0.6226 -0.5912 0.1422
Olg; 0.2727 -0.6727 0.2784 0.0852
Ol 0.1081 0.0952 -0.3612 -0.6432 0.1007

Table 4b. The distribution of plant specific coefficients in model ECD(c,0). Variances along the main
diagonal and correlation coefficients below

Pulp and paper C Ol ol Olg; Ol
C; 5.7793
Ol -0.4419 0.1163
Ol -0.7111 -0.0850 0.1501
OlEi 0.3424 -0.4025 -0.2504 0.0231
Olni 0.3791 -0.5748 -0.4264 0.0707 0.1075
Chemicals Ci Oli ol Olg; Olpii
C; 24.6901
Ol -0.1680 0.5284
OlLi -0.7909 -0.3138 1.2903
Olg; 0.4052 0.0071 -0.5199 0.2408
Ol 0.1818 -0.3718 -0.2111 -0.3161 0.4423
Basic metals G Oli ol Olg; Oy
Ci 3.3558
Olgi -0.0698 0.1611
oL -0.6744 -0.5664 0.1753
OlE; 0.2091 -0.6226 0.2600 0.1004
Ol 0.2153 0.0698 -0.4188 -0.6390 0.1335
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Table 4c. The distribution of plant specific coefficients in model CD(¢,a). Variances along the main
diagonal and correlation coefficients below

Pulp and paper Ci OKi Oy OlEi Omi
Ci 5.9336
Ol -0.4512 0.1147
OlLi -0.7274 -0.0559 0.1515
OlE; 0.3968 -0.4197 -0.3009 0.0232
Ol 0.3851 -0.6029 -0.4262 0.1437 0.1053
Chemicals G Olki Ol Ol Olnfi
Ci 25.0253
Ol -0.1666 0.5715
Ol -0.7798 -0.3362 1.3028
OlEi 0.3933 -0.0189 -0.4965 0.2443
Ol 0.1784 -0.3545 -0.2091 -0.3112 0.4484
Basic metals Ci Ok Ol Olgi Ol
C; 3.5973
Ol -0.0787 0.1604
Ol -0.6846 -0.5503 0.1817
OlEj 0.3040 -0.6281 0.1366 0.1190
Ol 0.1573 0.1092 -0.3720 -0.6122 0.1200
Table S5a. Descriptive statistics of plant specific predicted elasticities for model TL(c,at)
Predicted Mean Std. error Coef. of Minimum Maximum Share of
elasticities variation® value value values < 0°
Pulp and paper
v 1.0733 0.1915 0.1784 0.4231 2.1030 0.0
Ny 0.2699 0.2523 0.9349 -0.9108 1.4421 8.0
n, 0.1689 0.2885 1.7079 -1.0834 1.5788 23.6
Ny 0.0886 0.1032 1.1654 -0.4367 0.3732 16.5
Ny 0.5459 0.2324 0.4257 -0.5641 2.6416 1.3
Chemicals
v 1.0889 0.6032 0.5540 -0.2642 4.1287 33
Ny 0.2476 0.6023 2.4319 -1.4071 2.2645 37.8
n; 0.2902 0.8677 2.9902 -2.5113 4.0672 31.1
Ny 0.2030 0.3982 1.9617 -0.9682 1.8736 25.6
Ny 0.3481 0.4616 1.3259 -2.0210 1.9588 13.3
Basic metals
% 1.0557 0.1381 0.1308 0.7141 1.5756 0.0
Ny 0.1018 0.2876 2.8253 -1.7133 0.7442 29.5
n; 0.1997 0.3623 1.8147 -0.5816 1.5107 30.7
Ny 0.2220 0.2666 1.2012 -0.9719 1.2953 15.1
N 0.5323 0.2696 0.5064 -0.1642 1.4767 3.0

? Defined as the standard error divided by the mean.

® In percentage of the total number of plants.
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Table 5b. Descriptive statistics of plant specific predicted elasticities for model ECD(c,a)

Predicted Mean Std. error Coef. of Minimum Maximum Share of
elasticities variation® value value values < 0°
Pulp and paper
v 1.0685 0.1906 0.1784 0.4176 2.0975 0.0
Ny 0.2511 0.2491 0.9922 -0.9079 1.4487 8.0
n, 0.1667 0.2768 1.6602 -0.8692 1.6395 20.7
Ny 0.0875 0.1088 1.2425 -0.4752 0.4150 15.6
N 0.5632 0.2365 0.4199 -0.5824 2.6413 1.3
Chemicals
v 1.0381 0.5750 0.5539 -0.2242 4.4304 33
Ny 0.1595 0.5753 3.6073 -1.4167 2.0343 40.0
n, 0.3065 0.8805 2.8730 -2.4537 4.3556 31.1
Ny 0.2106 0.3708 1.7605 -0.9477 1.8410 21.1
N 0.3615 0.4989 1.3800 -2.1927 2.0873 15.6
Basic metals
v 1.0687 0.1315 0.1230 0.7210 1.5817 0.0
Ny 0.0956 0.3085 3.2250 -1.6831 0.8331 34.9
n, 0.2665 0.2906 1.0904 -0.4398 1.5265 12.7
Ny 0.2238 0.2687 1.2007 -0.9921 1.3472 15.7
N 0.4828 0.2631 0.5451 -0.2515 1.5322 3.6
 Defined as the standard error divided by the mean.
® In percentage of the total number of plants.
Table Sc. Descriptive statistics of plant specific predicted elasticities for model CD(c,0)
Predicted Mean Std. error Coef. of Minimum Maximum Share of
elasticities variation® value value values < 0"
Pulp and paper
v 1.0740 0.1933 0.1799 0.4024 2.1530 0.0
Ny 0.2503 0.2489 0.9946 -1.0200 1.4549 8.0
n; 0.1717 0.2777 1.6171 -0.9296 1.6471 20.7
Ny 0.0854 0.0927 1.0854 -0.4532 0.3246 12.7
Ny 0.5666 0.2352 0.4151 -0.5906 2.5597 1.3
Chemicals
v 1.0087 0.5347 0.5301 -0.3507 4.2879 1.1
Ny 0.1270 0.5540 4.3622 -1.3238 2.1714 36.7
n; 0.3117 0.8872 2.8464 -2.5227 4.4403 30.0
Ny 0.2156 0.3726 1.7281 -0.9524 1.8507 21.1
Ny 0.3544 0.5044 1.4233 -2.2047 2.1518 15.6
Basic metals
v 1.1061 0.1079 0.0976 0.8579 1.6006 0.0
Ny 0.1246 0.2970 2.3840 -1.6788 0.8409 27.1
n, 0.2749 0.2927 1.0647 -0.3374 1.4944 12.0
Ny 0.2138 0.2563 1.1990 -1.0058 1.4276 14.5
Ny 0.4928 0.2449 0.4970 -0.1662 1.4471 1.8

 Defined as the standard error divided by the mean.
® In percentage of the total number of plants.
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Table 6a. The distribution of plant specific predicted elasticities from Model TL(c,o)). Variances along the
main diagonal and correlation coefficients below

Pulp and paper v Ny n, Ny Ny
v 0.037
Ny 0.170 0.064
n, 0.777 -0.031 0.083
Ny -0.309 -0.512 -0.318 0.011
Ny -0.189 -0.679 -0.426 0.252 0.054
Chemicals v i i, i i
v 0.364
Ny 0.316 0.363
n; 0.724 -0.236 0.753
Ny -0.531 -0.085 -0.584 0.159
Ny -0.010 -0.373 -0.121 -0.347 0.213
Basic metals v N n; Ny Ny
v 0.019
Ny -0.086 0.083
n, 0.701 -0.558 0.131
Ny -0.366 -0.567 0.043 0.071
N 0.023 0.200 -0.432 -0.628 0.073

Table 6b. The distribution of plant specific predicted elasticities from Model ECD(c,0). Variances along
the main diagonal and correlation coefficients below

Pulp and paper v N n, Ny Ny
v 0.036
Ny 0.162 0.062
n, 0.778 -0.009 0.077
Ny -0.294 -0.447 -0.336 0.012
N -0.140 -0.707 -0.380 0.167 0.056
Chemicals v i i, i i
v 0.331
Ny 0.233 0.331
n, 0.689 -0.325 0.775
Ny -0.474 0.042 -0.556 0.137
Ny 0.019 -0.341 -0.182 -0.356 0.249
Basic metals v Ny n, Ny Ny
v 0.017
Ny -0.003 0.095
n; 0.562 -0.663 0.084
Ny -0.276 -0.685 0.356 0.072
Ny 0.165 0.258 -0.411 -0.750 0.069
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Table 6c. The distribution of plant specific predicted elasticities from Model CD(c,0). Variances along the
main diagonal and correlation coefficients below

Pulp and paper v N n; Ny Ny
v 0.037
Ny 0.160 0.062
n, 0.794 0.021 0.077
Ny -0.296 -0.495 -0.384 0.009
N -0.168 -0.757 -0.400 0.341 0.055
Chemicals v i i, i i
v 0.286
Ny 0.103 0.307
n; 0.746 -0.354 0.787
Ny -0.488 0.027 -0.534 0.139
Ny -0.005 -0.386 -0.185 -0.346 0.254
Basic metals v N n, Ny Ny
v 0.012
Ny -0.216 0.088
n; 0.720 -0.689 0.086
e -0.250 -0.708 0.361 0.066
Ny 0.103 0.257 -0.420 -0.729 0.060
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Figure 1.The model tree. Random coefficients in parentheses
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APPENDIX A: Details on estimation method and coefficient prediction

Consider a data set from an unbalanced panel, in which the plants are observed in at
least 1 and at most P years. We assume that the selection rules for the unbalanced
panels are ignorable, i.e., the way in which the plants enter or exit is not related to the
endogenous variables in the model; see Verbeek and Nijman (1996, section 18.2). The
plants are arranged in groups according to the number of years the plants are observed.
Let N, be the number of plants which are observed in exactly p years (not necessarily
the same and not necessarily consecutive), let (ip) index the ¢’th plant among those
observed in p years (i = 1,...,N; p=1,..., P),and let ¢ index the observation number
(t =1,...,p). The total number of plants in the panel is N = 25:1 N, and the total
number of observations is n = 25:1 N,p. The regression equation, i.e., the production

function (1), can be written compactly as
(Al) y(ip)t:w(ip)te(ip)—l_u(ip)t? p= 177P7 1= 17"'7Np; t= 17---71’7

where O(ip) is the coefficient vector of plant (¢p). The regressand of plant (ip), observation
115 Y(;p)¢, the corresponding (1x H ) regressor vector is x(
The (H x 1) coefficient vector of plant (ip), cf. (2), is

ip)t> and the disturbance is Uiipyer

(A.2) O(ip) = 0+ €3y

where 6 is the common expectation vector of ;) for all plants, and €(;,) is a zero mean

random vector specific to plant (ip). Inserting (A.2) in (A.1), we get

(A.3) Yiipyt = Z(ip)t0 + V(ipyer Viip)t = T(ip)e€(ip) T Uip)e:
where we interpret zb(ip)t as a ‘gross disturbance’. We assume that

(A4) T(ip)ts Up)tr €@ip) are all independent,

(A5) u(ip)t ~ IIN(O g ), E(ip) ~ ”N(O,(Z)7

Y un

where |IN signifies independently, identically, normally distributed. The matrix € is
singular, reflecting that some of the coefficients are fixed, cf. (3).

We stack the p realizations from plant (ip) in
Y(ip)1 Z(ip)1 U(ip)1 Plipn
Y =|  |» Xw=|  |» = | ¥@=| ¢ |
Yap)p Z(ip)p U(ip)p Pip)p
which have dimensions (p x 1), (p x H), (p X 1), and (p X 1), respectively. Then we can
write (A.3) as

(A.6) Yip) = X ()0 + Py P (ip) = X (ip)€(ip) T Y(in)-
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It follows from (A.3), (A.4), and (A.5) that

(A.7) All ¢(ip)|X(ip) are independent and ¢(ip)|X(ip) ~ N(O,Q(ip)),
where

The joint log-density function of plant (ip), i.e. of Y(ip) conditional on X (;,), is
Loy =— 2lm) = w190, - Sy - X0 2 Wiy — X 6)6)
2 2 P 27 P (ip) 19 (ip) (i)
so that by utilizing the ordering of the observations in the P groups, we can write the
log-likelihood function of all observations on the y’s conditional on all observations on
the X'’s as

P Np P Np

n 1
p=1:=1 p=1:=1
1 L&
(A.9) > Z;[yup) = X (i)0) i) i) — X (1))
p=11=

The Mazimum Likelihood (ML) estimators of (8,0,,,82) are obtained by maximizing
L with respect to (the unknown elements of) these parameter matrices. The solution
conditions may be simplified by concentrating £ over 8 and maximizing the resulting
function with respect to o, and the unknown elements of £2. For a further discussion,
see Bigrn (1999).

The coefficient vector of plant (ip), 0(ip), can be predicted as follows:

(A.10) (i) = 0+ QX (1) (X (1) X (i) + T L) T (Y1) — X (i) 0),

uut p

where @ is the ML (strictly, the Feasible GLS) estimator of the expected coefficient vector
6 [cf. Lee and Griffiths (1979, section 4) and Hsiao (1986, p. 134)], and € and &, are
the corresponding estimates of € and o,,. Apart from the fact that @ and o,, have
been estimated, this is the best linear unbiased predictor (BLUP) of O(ip)- It can be
shown that this expression can be rewritten as a matrix weighted average of the overall
estimator of @ and the OLS estimator of 6(,,), based on observations from plant (ip),
ien, Oy = (X (1) X

ip))_l(X(/ip)y(ip)), in the following way

. ~_1 o =11 o ~

cf. Judge et al. (1985, pp. 540 — 541). The latter expression, however, is only valid when

p > H, since otherwise é(ip) does not exist.
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APPENDIX B: Data description

Our unbalanced plant-level panel data set is collected from the Manufacturing Statistics
database of Statistics Norway. The Manufacturing Statistics follow the Standard Indus-
trial Classification (SIC) and gives annual data for large plants at the 5-digit code. Until
1992, plants with at least 5 employees were defined as large, while from 1992 on the limit
is 10 employees. In 1993, the activity classification was revised according to EU’s NACE
Rev. 1 and UN’s SIC Rev. 3, while previously based on UN’s SIC Rev. 2. While the
revision of the activity classification does not cause inconsistency problems in our data,
the change in the definition of large plants causes a break in the time series for plants
with 5 — 9 employees in 1992. Our data set includes all industries classified under SIC-
codes 341 Manufacture of paper and paper products (Pulp and paper), 351 Manufacture
of industrial chemicals (Chemicals) and 37 Manufacture of basic metals (Basic metals).
In addition, to achieve consistency after the revision of the activity classification, a few
plants belonging to other SIC industries are included.

Most variables are observed directly. The exceptions are materials input and capital
stock, which are calculated from available information. In the description below, MS
indicates that the data are from the Manufacturing Statistics, and the data are plant
specific. NNA indicates that the data are from the Norwegian National Accounts. In
this case, the data are identical for all plants classified in the same National Account
industry. While the plants in our unbalanced panel mainly are collected from 18 different
industries at the 5-digit SIC-code level, the plants are classified in 14 different National

Accounts industries. Data in value terms are in 100 000 Norwegian kroner (NOK).

Y: Output, 100 tonnes (MS)
K = KB+ KM: Total capital stock (buildings/structures plus
machinery/transport equipment), 100 000 1991-NOK (MS,NNA)
L: Labour input, 100 man-hours (MS)
E: Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS)
M = CM/QM: Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS,NNA)
C'M: Total material cost (incl. motor gasoline) (MS)
QM: Price of materials (incl. motor gasoline), 1991=1 (NNA).

Output: The plants in the Manufacturing Statistics are in general multi-output plants
and report output of a number of products measured in both NOK and primarily tonnes
or kg. The classification of products follows The Harmonized Commodity Description
and Coding System (HS), and assigns a 7-digit number to each specific commodity. For

each plant, an aggregate output measure in tonnes is calculated.
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Capital stock: The calculations of capital stock data are based on the perpetual in-
ventory method assuming constant depreciation rates. We combine plant data on gross
investment with fire insurance values for each of the two categories Buildings and struc-
tures and Machinery and transport equipment from the Manufacturing statistics. The
data on investment and fire insurance are deflated using industry specific price indices
of investment goods from the Norwegian National Accounts (1991=1). The depreciation
rate for Buildings and structures is 0.020 in all industries. For Machinery and transport
equipment, the depreciation rate is set to 0.040 in Pulp and paper and Basic metals,
and 0.068 in Chemicals. For further documentation of the capital stock calculations, see
Bigrn, Lindquist and Skjerpen (2000, Section 4).

Other inputs: From the Manufacturing Statistics we get the number of man-hours used,
total electricity consumption in kWh, the consumption of a number of fuels in various
denominations, and total material costs in NOK for each plant. The different fuels, such
as coal, coke, fuelwood, petroleum oils and gases, and aerated waters, are transformed to
the common denominator kWh by using estimated average energy content of each fuel
[Statistics Norway (1995, p. 124)]. This enables us to calculate aggregate energy use in
kWh for each plant. For most plants, this energy aggregate is dominated by electricity.
Total material costs is deflated by the price index (1991=1) of material inputs (incl
motor gasoline) from the Norwegian National Accounts. This price is identical for all

plants classified in the same National Account industry.
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APPENDIX C. Estimation results for the three industries

Table Al. Overall mean and standard deviation of basic variables

Industry Pulp and paper Chemicals Basic metals
Variable Mean Logof  Std.dev. Mean Logof  Std.dev. Mean Logof  Std.dev.
mean mean mean
In (Y) 4.117 2.079 4.750 2.444 3.586 2.658
Y 5.697 7.351 5.861
In (K) 6.691 1.787 7.217 1.942 6.643 2.244
K 7.971 8.777 8.512
In(L) 6.836 1.297 6.886 1.496 7.060 1.694
L 7.568 7.889 8.277
In(E) 4.417 2.599 5.332 2.481 4.808 2.807
E 6.575 7.440 7.809
In(M) 5.393 1.792 5.452 2.014 5.404 2.254
M 6.603 6.983 7.285
T 9.940 6.205 10.952 6.188 10.794 6.259
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Table A2. Coefficient estimates for models in Pulp and paper. Standard errors in parentheses

Coef. | TL(o,c) ECD(ac) CD(ac) | TL(c) ECD(c)  CD(c) TL ECD CD

c 41716  -2.8340 23021 | -22214 27811 -2.1214 | 03804 22919  -0.3244
(0.7319)  (0.5774) (0.2279) | (0.4249) (0.3387) (0.1331) | (0.4592) (0.3002) (0.0842)

v 0.0234  0.0065  0.0065 | 0.0074  0.0074  0.0084 | 0.0124  -0.0005  -0.0002
(0.0108)  (0.0013) (0.0013) | (0.0099) (0.0012) (0.0012) | (0.0162) (0.0019) (0.0019)

Ok 0.5379 02716 02503 | 0.0666 02172  0.1717 | -0.6000  0.0534  0.0735
(0.1984)  (0.1298)  (0.0344) | (0.1223) (0.0742) (0.0197) | (0.1462) (0.0540) (0.0187)

o 09479 02753  0.1717 | 03524 04145  0.1863 | 0.1129 04711 -0.2314
(0.2446)  (0.1619)  (0.0381) | (0.1547) (0.0879) (0.0215) | (0.1910) (0.1045)  (0.0206)

o -0.0255  0.0078  0.0854 | 03113  0.0215  0.0921 | 12893  0.1829  0.3333
(0.1035)  (0.0291) (0.0169) | (0.0708) (0.0188) (0.0103) | (0.0901) (0.0244)  (0.0099)

Ot -0.0083  0.6871  0.5666 | 03912  0.5705  0.6064 | 0.0368  0.7081  0.7530
(0.1771)  (0.0780)  (0.0309) | (0.1135) (0.0382) (0.0167) | (0.1332) (0.0405) (0.0160)

B 0.0081  -0.0034 0° | 0.0657  -0.0080 0° | 0.1072  0.0055 0°
(0.0421)  (0.0194) (0.0262)  (0.0114) (0.0317)  (0.0087)

Br -0.1565  -0.0169 0 | -0.0361 -0.0372 0° | -0.1352  -0.1024 0
(0.0603)  (0.0244) (0.0403)  (0.0136) (0.0515)  (0.0153)

Bre 0.0269  0.0214 0° | 0.0447  0.0208 0° | 0.1648  0.0329 0
(0.0125)  (0.0064) (0.0089)  (0.0046) (0.0129)  (0.0054)

Buv | -0.1298  -0.0256 0° | -0.0353  0.0081 0° | -0.1025  0.0077 0°
(0.0391)  (0.0148) (0.0229)  (0.0078) (0.0300)  (0.0081)

v 0.0013 0? 0* | 0.0019 0? 0° | 0.0027 0 0
(0.0003) (0.0003) (0.0006)

Bik -0.0841 0° 0° | -0.0088 0° 0° | 0.0518 0° 0°
(0.0399) (0.0230) (0.0332)

Bex -0.0072 0° 0° | -0.0419 0° 0° | -0.0797 0° 0°
(0.0208) (0.0134) (0.0185)

Bk 0.0567 0° 0° | -0.0093 0? 0° | 0.0030 0 0
(0.0309) (0.0173) (0.0246)

Sk -0.0026 0° 0° | -0.0060 0° 0° | -0.0033 0° 0°
(0.0025) (0.0022) (0.0032)

BrL 0.0256 0° 0° | -0.0351 0? 0 | -0.1632 0 0
(0.0229) (0.0155) (0.0188)

Ba 0.1431 0° 0° | 0.0516 0? 0° | 0.1773 0 0
(0.0385) (0.0253) (0.0317)

8L -0.0058 0° 0 | -0.0010 0° 0° | -0.0019 0° 0°
(0.0026) (0.0023) (0.0037)

Bue -0.0275 0° 0° | 0.0203 0? 0° | -0.0012 0 0
(0.0180) (0.0122) (0.0152)

8¢ 0.0028 0° 0° | 0.0025 0° 0° | -0.0001 0° 0°
(0.0012) (0.0011) (0.0017)

S 0.0025 0° 0° | 0.0029 0° 0° -0.0010 0° 0°
(0.0020) (0.0018) (0.0028)

* A priori restriction.
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Table A3. Coefficient estimates for models in Chemicals. Standard errors in parentheses

Coef. | TL(o,c) ECD(ac) CD(ac) | TL(c) ECD(c)  CD(c) TL ECD CD

c 17184 1.1441 -1.9302 [2.0138  -1.4777  -2.1141 |1.5094  -3.0740  -1.8519
(2.4210) (2.0642)  (0.7378) | (1.4086) (1.2103)  (0.4501) |(1.2633) (0.9433)  (0.2715)

v -0.0739  0.0323 0.0306 |-0.1371  0.0384 0.0422 |-0.0896  0.0253 0.0238
(0.0361)  (0.0048)  (0.0047) | (0.0348) (0.0046)  (0.0045) | (0.0518) (0.0067)  (0.0068)

Ok -1.1664  -0.7696  0.1270 |-0.4862  -0.6916  0.0713 |-1.7504  -0.7604  0.4646
(0.5810) (0.4388)  (0.1149) | (0.3404) (0.2656)  (0.0667) |(0.3709) (0.2060)  (0.0577)

o 0.5126  0.1298 03117 |-0.8201  1.1386 04711 |02165  1.6863 0.0537
(0.8271)  (0.6375)  (0.1605) |(0.5009) (0.3502)  (0.0763) |(0.5862) (0.3704)  (0.0733)

o 0.1581  0.2866 02156 |-0.0413  0.2348 02244 |1.0083  0.4592 0.3046
(0.3527) (0.1281)  (0.0718) |(0.1997) (0.0685)  (0.0368) |(0.2217) (0.0851)  (0.0350)

oy | 04553 0.3957 03544 |1.4507  -0.0694 02530 |1.1574  -0.0270  0.1825
(0.4244)  (0.1922)  (0.0968) | (0.2830) (0.0813)  (0.0482) | (0.2860) (0.0933)  (0.0404)

Bux  |0.0843  0.1388 0° |-0.2988  0.1242 0° |-0.3551  0.1727 0°
(0.1365)  (0.0658) (0.0827)  (0.0400) (0.1020)  (0.0292)

B |-0.1132  0.0274 0* |03316  -0.1111 0° |-0.3064 -0.2312 0
(0.2235)  (0.0952) (0.1425)  (0.0511) (0.1814)  (0.0524)

Bee  |-0.0323  -0.0157 0° |-0.0915  -0.0058 0° |0.0576  -0.0315 0°
(0.0436)  (0.0237) (0.0306)  (0.0141) (0.0337)  (0.0167)

Buv | -0.0007  -0.0069 0° |0.2396  0.0850 0° 02967  0.0346 0°
(0.0623)  (0.0352) (0.0394)  (0.0172) (0.0471)  (0.0183)

v 0.0034 0? 0* |0.0070 0? 0° |0.0039 0 0
(0.0013) (0.0014) (0.0023)

Bk |0.0398 0° 0° |0.1574 0° 0 |0.5802 0° 0°
(0.1398) (0.0866) (0.1119)

Bex | -0.0056 0° 0* |0.1516 0? 0° |0.1142 0 0°
(0.0625) (0.0360) (0.0467)

Bux | 0.0344 0? 0 |0.1299 0? 0° |-0.0166 0 0
(0.0698) (0.0411) (0.0512)

S 0.0397 0° 0* |0.0305 0° 0° |0.0310 0° 0°
(0.0074) (0.0065) (0.0095)

Be. | 0.0770 0° 0* |-0.0342 0? 0° |-0.1987 0 0°
(0.0784) (0.0523) (0.0584)

By | 0.0034 0* 0° |-0.4104 0° 0° |-0.2288 0° 0°
(0.0941) (0.0630) (0.0717)

8L -0.0131 0° 0° |0.0136 0° 0 |-0.0052 0° 0°
(0.0093) (0.0088) (0.0130)

Bue | -0.0349 0° 0* |-0.0219 0? 0 |-0.0979 0 0°
(0.0484) (0.0291) (0.0372)

8¢ -0.0075 0° 0° |-0.0028 0° 0 |0.0057 0° 0°
(0.0043) (0.0037) (0.0056)

S -0.0165 0? 0* |-0.0373 0? 0° |-0.0289 0 0
(0.0055) (0.0052) (0.0080)

*A priori restriction.
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Table A4. Coefficient estimates for models in Basic metals. Standard errors in parentheses

Coef. | TL(o,c) ECD(ac) CD(ac) | TL(c) ECD(c)  CD(c) TL ECD CD

c 34141 -39143  -3.1177 |-3.0541 -4.0191 -3.0379 |-4.7863 -4.9276 -3.1912
(0.7874)  (0.6481) (0.2702) |(0.5717) (0.4271) (0.2055) |(0.7134) (0.4355) (0.1424)

v 0.0900  0.0220  0.0214 |0.0695  0.0215  0.0228 |0.1410  0.0211  0.0220
(0.0172)  (0.0022) (0.0021) |(0.0163) (0.0020) (0.0020) |(0.0294) (0.0036)  (0.0036)

Ok 03304 03012  0.1246 |-0.0671 0.1638  0.0944 |0.5409 04690  0.1438
(0.2201)  (0.1508) (0.0472) |(0.1368) (0.0917) (0.0273) |(0.1730) (0.0847) (0.0280)

o 02718 03731 02749 |-0.0761 06303 03073 |-0.4586 04271  0.1629
(0.3211)  (0.2040)  (0.0550) |(0.2219) (0.1183) (0.0351) |(0.3155) (0.1598) (0.0360)

o 02200  0.0285 02138 |0.5352  0.1668  0.1628 |0.4398  0.0803  0.1502
(0.1712)  (0.0628) (0.0374) |(0.1145) (0.0361) (0.0174) |(0.1623) (0.0465) (0.0190)

oy 09901  0.6632 04928 |0.8175 04217 05210 |1.0896  0.7338  0.6868
(0.1712)  (0.0886) (0.0406) |(0.1190) (0.0493) (0.0235) |(0.1418) (0.0602) (0.0217)

Bux  |-0.0072  -0.0322 0° [-0.0020 -0.0120 0° |0.0206  -0.0539 0°
(0.0452)  (0.0233) (0.0257)  (0.0146) (0.0360)  (0.0134)

B |02832  -0.0161 0° |02183  -0.0489 0° |0.4834  -0.0377 0
(0.0866)  (0.0291) (0.0611)  (0.0168) (0.0886)  (0.0228)

Bee  |0.0812  0.0472 0° |0.0895  0.0008 0° |0.1040  0.0214 0°
(0.0286)  (0.0131) (0.0205)  (0.0076) (0.0271)  (0.0082)

Buv | 0.0880  -0.0367 0° |0.1340  0.0199 0° 02391  -0.0122 0
(0.0375)  (0.0166) (0.0251)  (0.0095) (0.0336)  (0.0110)

v -0.0024 0? 0* |-0.0029 0? 0° |-0.0047 0 0
(0.0006) (0.0006) (0.0012)

Bk | -0.0583 0° 0* |0.0045 0° 0 |-0.1131 0° 0°
(0.0495) (0.0319) (0.0486)

Bex | 0.0499 0° 0* |-0.0115 0? 0° |0.0397 0 0°
(0.0288) (0.0152) (0.0224)

Bux | 0.0024 0? 0* |0.0345 0? 0° |-0.0009 0 0
(0.0353) (0.0225) (0.0301)

S -0.0013 0° 0* |0.0003 0° 0 |0.0020 0° 0°
(0.0039) (0.0034) (0.0056)

Bo  |-0.0732 0° 0 |-0.0691 0? 0° |-0.0914 0 0°
(0.0385) (0.0262) (0.0379)

By | -0.1313 0° 0* |-0.1608 0° 0 |-0.2356 0° 0°
(0.0429) (0.0312) (0.0390)

8L -0.0073 0° 0* |-0.0018 0° 0° |-0.0198 0° 0°
(0.0045) (0.0042) (0.0072)

Bur | -0.0267 0* 0* |-0.0301 0? 0 |-0.0597 0 0°
(0.0255) (0.0160) (0.0226)

8 -0.0032 0° 0° |-0.0040 0° 0 |-0.0011 0° 0°
(0.0021) (0.0018) (0.0033)

S 0.0065 0? 0* |0.0028 0? 0° |0.0124 0 0
(0.0024) (0.0021) (0.0037)

* A priori restriction.
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