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1 Introduction

Missing data is practically unavoidable in sample surveys, clinical trials, and various social studies.
Statistical analysis of data subject to non-response has received increasing attention. Models of the
non-response mechanism are often classified as ignorable or non-ignorable (Rubin, 1976). Opinions
differ as to the appropriateness of the one type over the other — see Scharfstein, Rotnitzky, and
Robins (1999) and the accompanying discussions. In a simple missing-not-completely-at-random
setting, we have one object variable of interest, one auziliary variable, and one non-response
indicator. While the auxiliary variable is all known, the object variable will be missing from the
non-respondents. If we treat the non-response as independent of the object variable conditional
to the auxiliary one, the model is said to be ignorable. Whereas it is non-ignorable if, for instance,
we regard the non-response as independent of the auxiliary variable conditional to the object one.
In either case, the non-response depends on the value, i.e. size, of the variable to be conditioned
on, and its probability may considered to be generalized proportional to the size. More generally,
of course, the size could also be multiple.

Such generalized proportional to size (GPS) ignorable non-response models are common in
sample surveys, e.g. through the use of post-stratification and calibration (Thomsen and Holmgy,
1998; Lundstrém and Sarndal, 1999). Whereas a recent example of a GPS non-ignorable model can
be found in Troxel, Harrington, and Lipsitz (1998). In this paper we apply two special instances
of the GPS non-ignorable models to the data of the Norwegian Labour Force Survey (LFS), the
Fertility Survey and the Alveolar Bone Loss Survey (ABLS). In the first two cases, we assume a
Bernoulli distribution of the non-response indicator from each sampled unit. In the ABLS data,
multiple measurements are taken from each unit, to which we shall apply a Truncated Poisson
distribution to the total number of non-response. In all the three cases, the non-response is linked
to the object variables there, making the models non-ignorable. As such the GPS models focus on
the marginal effect of the object variable on the non-response. While this is necessary if only from
a sensitivity analysis point of view, over-dispersion may occur if the variation in the non-response
pattern can not be sufficiently explained through the object variable alone. We shall give some
discussions based on our data, although we know little about its consequences in general.

Interpretational aspects aside, the non-ignorable non-response model frequently brings out
the two basic numerical problems in statistics, namely integration and optimization. The EM
algorithm (Dempster, Laird, and Rubin, 1977) gets around the first one if the missing data can
be integrated out of the complete latent log-likelihood in a closed form. Otherwise, Monte Carlo
methods can be applied in combination (Ibrahim, Lipsitz, and Chen, 1999; Ibrahim, Chen, and
Lipsitz, 1999), though it may not always be numerically efficient. We found that the Laplace
approximation (Tierney and Kadane, 1986) worked well for the ABLS data. Worse is the situation,
however, when the non-ignorable non-response model leads to sensitive point estimation (Smith,
Skinner, and Clarke, 1999). We believe that this is by no means uncommon with this type of
model, and shall offer a heuristic explanation when we present our models in more details.

Like Smith, Skinner, and Clarke (1999), we draw inference of the parameter of interest based
on the first-order theory of the profile likelihood (Barndorff-Nielsen and Cox, 1994). We do
not employ any of the various higher order corrections (Stern, 1997; Severini, 1998; Davison and
Stafford, 1998). We concentrate on adapting the Markov chain sampling techniques (Brooks, 1998;



Robert and Casella, 1999) to efficiently generate the profile likelihood inference. Our approach has
been anticipated by Geyer (1996), who rightly pointed out that the explosive development in the
MCMC methods should also liberate the likelihood-based inference. For the Bayesian inference
it is required that the marginal distribution of the Markov chain converges to the posterior, in
order to perform the various Monte Carlo calculations. For the likelihood inference, as will be
explained and demonstrated below, we only need the chain to visit the high-likelihood parameter
subspace with reasonable frequency. Otherwise we do not even need to know if, or where, the
chain converges. This gives us extra flexibility which the Bayesian approach does not enjoy.

The rest of the paper will be organized as follows. In Section 2 we present our particular GPS
non-response models, indicating possible problems of over-dispersion and model identification.
We outline the basic approach of Markov chain sampling generated profile likelihood inference in
Section 3, and explain how we deal with the two numerical problems of integration and optimiza-
tion. In Section 4 to 6 we apply the methods to the data of, respectively, the Norwegian LFS, the
Fertility Survey and the ABLS. Finally, Section 7 contains a short summary.

2 Generalized proportional to size non-response

Suppose that non-response is suspected to be influenced by the size (i.e. value) of a univariate
variable, denoted by X where « > 0. We could, as we do in this paper, model its marginal effect
on non-response through a generalized proportional to size (GPS) predictor, i.e.

n=a(z + l)ﬂ where o > 0. (1)

Let R; = 1 denote non-response from unit ¢, and R; = 0 otherwise. We may, for instance, put a
Bernoulli distribution with parameter p; on R;|z;, i.e. conditional to X; = z;, where

pi = ni/(1+m) < log p; — log(1 — p;) = log a + Blog(z; + 1), (2)

and parameter § takes positive value if non-response is more severer with larger z;; it is negative
the other way around. In particular, the GPS mechanism above is a logistic regression of R; on
log(x; +1). The transformation of X; is of course optional, which could be appropriate if X has
many levels or is continuous. Troxel, Harrington, and Lipsitz (1998), however, applied the logistic
model directly to X. In any case, we have, for p; in (2),

Opi/0a = pi(1 —p;) [« and Opi/0B = pi(1 — p;) log(w; + 1).

Sometimes, several measurements are taken from the same unit. Let R;; be the non-response
indicator for the jth measurement from the sth unit, where j = 1,...,m. It may no longer be
reasonable to consider R;j|z;; as independent. Let R; = Zj R;;, i.e. the total number of non-
response from unit . Let x; = h(z;;) be a scalar function of (z;1,...,Zim), such as the mean
T = Tij = Zj zi;/m. We may, for instance, put a Truncated Poisson distribution on R;|z;, i.e.

Ri|lz; ~ TrnPoisson()\;) where 0<7r;<m and X\ =mp;=mn;/(1+mn). (3)



Equation (1) to (3) are all instances of GPS non-response, if the term “generalized” is taken in
a wide sense. They are ignorable (Rubin, 1976) if the x;’s are known; whereas they are said to be
non-ignorable if z; is missing from the non-respondents, such as when X is the object variable of
interest. In the latter case the GPS mechanism models the marginal effect of X on non-response.
Over-dispersion may occur if the observed variation in the non-response pattern is larger than
what can be explained through X. This is similar to the case of complete-data logistic regression,
when studying the marginal effect of the covariates on some binary outcome (Cox and Snell, 1989,
Chapter 3). In our applications, the matter seems to have caused little problem to the inference
of interest , although we can not say much about its consequences in general.

One problem which arises when dealing with non-ignorable non-response models concerns the
uncertainty of the models themselves, since they are “unexaminable in a fundamental sense”
(Molenberghs, Kenward, and Lesaffre, 1997). Other times we may face unstable or sensitive
point estimators. Smith, Skinner, and Clarke (1999) gave the matter geometric presentations.
Heuristically, under a non-ignorable model, the estimation of the parameter of interest may be
considered as bias-correction of the estimator under an ignorable non-response model. However,
this adjustment can be highly uncertain or sensitive because (i) the underlying outcomes of X are
more or less concentrated on a short interval, (ii) different parameter values of a non-ignorable
model, or even different models, may appear rather similar over the highly densed region of (X, R),
(iii) to choose or identify between them, i.e. to determine the actual bias-correction, we need to
heavily rely on data from the low density area of (X, R), which are subject to the largest sampling
variability. The GPS non-ignorable models above are no exceptions here, in which respect we
shall focus on the consequences these models have on the inference of interest, instead of the
goodness-of-fit of the models per se.

3 Resampling generated profile likelihood inference

Generically, let X = (X,ps, Xinis) be a sample of the variable of interest, where X is its observed
part and X,,;s the part which is missing due to non-response. Let f(z;{) be the model function
of X. Let R denote non-response, and f(r;y|z) its model function conditional to X = z. The
complete, latent likelihood, denoted by L1, has the following factorization w.r.t. 8 = (&,7), i.e.

Ll(H;x,r) X f((II,’I“;H) = f(wobs;g)f(xmw;€|wobs)f(r;7|xobsaxmis)- (4)

The (observed) likelihood, denoted by L, is obtained from integrating out z,,;s in L1, i.e.

L(H;(Ifobs,’l”) X f(xobs;g)/f(xmi57r;£77|xobs) dxmis = f(wobs;g)H(gafY;ﬂxobs)- (5)

The likelihood L no longer factorizes w.r.t. (£,); neither may H(&,~y) be available in a closed
form. To get around the integral H, the E-step of the EM algorithm (Dempster, Laird, and Rubin,
1977) calculates, at the present parameter estimate 6 and for [; = log L1,

E[11(0; Zobs, Ximis> 7); 0] = Q(0; 0|2 ops, 7).



Maximizing @Q(#) is usually considerably easier than that of | = log L, provided it is available in
closed form. Otherwise, we may apply the EM algorithm in combination with the Monte Carlo
method (Ibrahim, Lipsitz, and Chen, 1999; Ibrahim, Chen, and Lipsitz, 1999), possibly at the some
expense of simplicity. A worse situation, however, occurs when the non-ignorable non-response
model leads to sensitive point estimation as noted earlier. We encountered such a case in the
Alveolar Bone Loss data to which we shall return.

We have thus outlined two possible numerical difficulties of (a) integration, i.e. the calculation
of the integral H in (5) and possibly @), and (b) optimization, i.e. maximizing ). In response
we shall apply Markov chain sampling generated profile likelihood inference. However, unless
the model and data have been worked out previously, the process of Markov chain resampling
typically involves a number of trial-and-errors. Efficient evaluation of the likelihood L is therefore
crucial. In case the integral H in (5) is not available in closed form, the various Monte Carlo
methods can be used (Geweke, 1989). In what Geyer (1996) called the “many-samples method”,
each evaluation of L requires a new sample, which could be very inefficient in many cases. Geyer
(1996) suggested a “single-sample method” through importance sampling which, in the present
context, would give the following approximation to (5):

m

1 } f(fﬁgm)zs, €|wobs) i
LB opss7) 0 f (@onsi )= D F (s v, ) =500 where ), ~ (),
=1 7T(xrnzs)
where m does not depend on 6 such as when © = f(wmis;ﬂwobs). The (:1:%28,,:1:%2), once

generated, are held fixed for all values of 6 to be evaluated. Hence the term “single-sample”. The
summation involved may nevertheless be time-consuming unless all the terms can be calculated
parallelly. On the other hand, the Laplace approximation (Tierney and Kadane, 1986) may prove
to be helpful, provided the mode of f(@mis; £|Zobs) In Tmis can easily be derived. We shall apply
the Laplace approximation to the Alveolar Bone Loss data.

In any case, suppose now that we no longer have problem (a). To explore the likelihood, we
basically need to know, for which parameter values should we calculate L? Markov chain sampling
can be adapted here to our advantage. Let the target distribution be (s, 0; Zops, ) X L1.
Suppose we manage to generate a sample of (s, £, y) by means of Markov chain sampling, whose
marginal distribution follows 7. Simply omitting z,,;s, we obtain by (4) and (5) the remaining
sample of (&,), with a marginal distribution proportional to L. That is,

(@mis, &,7) ~ T(@Tmis, &,V Tobs,T) X L1 = (&£,77) ~ /7T dxmis o< L.

Since these (£,7) cover the high likelihood region of € reasonably well, they form a basis for
our exploration of L. In particular, two relaxations make this approach flexible: (i) the target
distribution 7 needs not to be exactly proportional to L; — its job is to generate high likelihood
parameter values with reasonable frequency, and (ii) neither do we need to bother much about if,
or where, the Markov chain converges — its performance is judged from the L() it generates.
Suppose we have a sample of 6, regardless how it has come about. Let 1) = h(6) be a scalar
function of the parameter 8 of interest. In particular, ¢/ may simply be a component of 8. We may
plot L(0) against t¢: the contour gives an approximation to the profile likelihood of 1, denoted



by Lpro(1), and the mode an approximation to ¢, i.e. the maximum likelihood estimate (mle) of
1. How quickly the contour takes shape as the resample grows larger, provides an indication of
how well the resampling is working for our purpose. Neither the convergence nor autocorrelation
of the Markov chain matter otherwise. We derive an approximation to the confidence interval
of 1 using the first-order y2-approximation to 2Lpyo(¥) — 2L pro(1) (Barndorfi-Nielsen and Cox,
1994, Chapter 3). Such simple approximations are consistent, provided the probability for the
resampling scheme to visit any particular point-mass in the parameter space tends to unity as the
resample grows to infinity. However, a better approximation can be obtained: we simply hold v
at the value to be evaluated, and resample the rest of the parameters under the constraint. Often
no change to the sampling scheme is required otherwise. The highest resampled L(€) can be called
the Monte Carlo (MC) profile likelihood of . This is a “many-samples method” since each value
of 1 requires a separate sample. A Rao-Blackwellization-like “single-sample” short-cut is also
available. Simply dropping 1 from the resampled 6, the rest of the parameters has a marginal
distribution proportional to [ Ldi. Recalculating L(f) over the same resample, with ¢ held fixed
at the value to be evaluated, the highest L(f) can be called an R-B MC profile likelihood of .
Having obtained either the MC or R-B MC profile likelihood over a grid of values of 1, we may
calibrate both 1[) and the end points of its confidence interval.

4 The Norwegian LFS

The Norwegian LFS is a quarterly national survey comprising about 24000 people (Table 1). Let
the LFS-Employment Status be the object variable, which is only available from the respondents.
The auxiliary variable, i.e. the Register-Employment Status, is independently constructed from
administrative registers, and is known throughout the population. The post-stratified estimator
is unbiased under the ignorable model, short-handed obviously as “Non-response L Object |
Auxiliary”. Its bias under the non-ignorable model, i.e. “Non-response L Auxiliary | Object”,
has a particular form and can be estimated based on the respondents directly (Zhang, 1999).

LFS-Employment LFS-Unemployment Non-response
Register-Employment 12881 1158 518
Register-Unemployment 1829 6726 796

Table 1: The data of the Norwegian Labour Force Survey in the 1st quarter of 1995.

The object variable being binary, the GPS formulation (1) and (2) is rather trivial since, let
vz = P[R = 1| X = z] where z = 1 for LFS-Employment and x = 0 otherwise, we have

a=7/(1=v) and  fBlog2=log{n/(1 =)} —log{y/(1 =0}

Let £ = P[X = 1|Y = y] where y = 1 for Register-Employment and y = 0 otherwise. The
complete, latent data and its distribution are given as in Table 2. In particular, m; +mi9 = 518,
i.e. the number of non-respondents among the Register-Employment’s, and similarly mgy +mog =



(R, X)|Y Pl(R, X)|Y]

R=0 R=1 R=0 R=1
X=1 X=0 X=1 X=0 X=1 X=0 X=1 X=0

Y=1 nn n1o mi1 m1g HT—-m) A-&)X-%) &m @ —=%&)

Y=0 ng 00 mo1 Mo (l-—m) 1-&)A-7%) &bn 1-=%)n

Table 2: The complete, latent data of the Norwegian LFS, and its distribution.

796. The complete, latent likelihood is

L, 51111+m11(1 _ 51)n10+m10§6101+MO1 (1 _ 50)n00+m00
,},In11+mo1 (1 o 71)nll+n0176n10+m00(1 o ,yO)n1o+noo_

Resampling targeted at m(myq, &y, 72) o L is a standard worked-out case (Tanner, 1993, “The
Genetic Linkage Example”). At each Gibbs iteration, we draw my; from Binomial(m, +myo,py)
where p, = £,v1/ (&1 +(1—&y)v0), and & from Beta(ni; +mi1+1,n10+mi9+1), and so on from
the respective Beta distributions of &j, 71 and 9. We have plotted the resampled [ against the
overall LFS-Employment Rate, denoted by p (Figure 1), using respectively 500 and 5000 Gibbs
iterations. To calibrate the sample mle by means of the MC profile likelihood, we resample under
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Figure 1: Ilustration of the log-likelihood generated by the Gibbs sampler. (With 500 iterations on the
left, and 5000 iterations on the right.)

the constraint of p = 0.613-&; +0.387- &, over a grid of p, i.e. (0.636, 0.637, 0.638), where 0.613 is
the known marginal probability of Register-Employment. At each iteration, we still resample &;
from Beta(ni; +my1 + 1,110 +m10 + 1), but calculate &y directly from the constraint. This is the
only change from the unconstrained resampling we made. Notice that the modified Markov chain
does not converge to a marginal distribution proportional to L; under the constraint. However,
as the plots of L(0) against & and &y (Figure 2) illustrate, this hardly matters for our purpose.
In any case, based on the Monte Carlo profile likelihood of 0.636 - 0.638, we retained 0.637 as
the mle of the overall LFS-Employment Rate, which is the same as that from the proper EM
algorithm (Zhang, 1999). Applying the same calibration procedure, we obtained (0.634,0.640) as
its 95% confidence interval derived from the profile likelihood. We note in general that, since the
confidence interval here does not address the uncertainty about the non-response mechanism, it
should be treated with caution. However, compared to the post-stratified estimate, i.e. 0.645, and
the simple sample mean, i.e. 0.651, it is clear that the bias caused by non-response dominates the
sampling error in the Norwegian LFS, at which attention should be directed in the future.
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Figure 2: Illustration of the constrained Gibbs sampler: P[X = 1|y = 1] on the left and P[X = 1|y = 0]
on the right. (With 1000 iterations at p = 0.637.)

9 The Fertility Survey 1977

A primary interest of the Norwegian Fertility Survey 1977 (Table 3) was the distribution of the
number of live-births per female member of the population. Since the households with few or no

Number of Live-Births 0 1 2 3 4 5 >6 Missing
The Sample 886 640 1065 548 216 61 22 535

Table 3: The data of the Norwegian Fertility Survey 1977.

children are more difficult to reach than otherwise, a GPS mechanism is here intuitive, as it is in
many household surveys. We notice that some of the responses were obtained through call-backs.
Indeed, Thomsen and Siring (1983) considered an ignorable non-response model which allowed
the response rate to vary between the calls. Bjornstad (1995) applied the predictive likelihood
approach under the same model, where (a) the numbers of live-births of the non-respondents
were obtained from the administrative registers which, however, were not available at the time of
the survey, and (b) the following modified Poisson distribution was suggested for the number of
live-births, denoted by X, in the population:

P(X =0) =1 and P(X=x)=1—-p)X*teN(z—1)! forz=1,2,..

Let R be the non-response indicator. We apply model (1) and (2) to R|z, where we assume
P(R = 1|z > 6)/P(R = 0|z > 6) = (1 + 6)”. In particular, we expect (8 to be negative, such
that the non-response probability decreases as the number of live-births increases. Let A, be the
number of respondents with x live-births, and B, that of the non-respondents, and C, = A, + B;.
That is, ) b, = 535, i.e. the total number of missing and denoted by m, and ), ¢, = 3973, i.e.
the sample size and denoted by n. The complete, latent likelihood is, for ¢, = P[X > 6; A|X > 0],

{a(z +1)F}be
+ a(z +1)P}e’

Ll(e) :¢CO(1_¢)n co )\Zw 1 Ca(T— 1) —A(n—co— CSC H {1

We put up the following Gibbs sampler, where each step is to be carried out conditional to
the present values of the remaining variables and parameters:

1. The augmentation step: b, ~ Multinomial(m,p,), where p, is the cell-probability condi-



tional to missing, i.e. p, = P[X =z|R=1] for z =0,1,...,5, and ps = P[X > 6|R = 1].

2. Draw \ ~ Gamma(u,v) with shape parameter v = 1+ 3°_| ¢,(z — 1) and scale parameter
v=1/(n—c).

3. Draw 9 ~ Beta(l + co, 1 +n — ¢p).
4. Draw a = {z/(1—2)}/is, where z ~ Beta(1+m,1+n—m),and & =Y c,(z+1)7/ >, s

5. Draw 8 ~ Multinomial(1,p;), where p; = L1(5;)/ Z?Zl Ly(B;) for an equi-distance grid of
B, denoted by (f1, ..., B ), with sufficiently large k.

Notice that, apart from step 1 and 3, the Gibbs sampler does not aim at the exact conditional
distributions. For A, we substitute for P[X > 6/X > 0] by P[X = 6|X > 0], which results into
the conditional Gamma distribution at step 2. The grid-sampling of 8 was deviced for the griddy
Gibbs sampler by Ritter and Tanner (1992). We could, of course, sample § continuously, if we
include one extra sub-step to draw uniformly around the sampled (. Finally, for «, we expand
the involved part of L; around i3 ~ E[(X + 1)P], and obtain the leading term 2™(1 — 2)"~™,
where z = aZ3/(1 + aig) and z ~ Beta(l +m,1 +n —m).

Figure 3 was based on 5000 Gibbs iterations, where we used a grid of 1100 points over § €
(—10,1). While the profile likelihood based confidence intervals were derived directly from the

CTI1(0.95)=(0.28,0.36) C1(0.95)=(1.17.1.26) CTI1(0.95)=(0.27,0.60) C1(0.95)=(-4.74,-0.78)
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npliod

£ Approx_mile=0.324 Approx_mle=1.211 g Approx_mle=0.464 £ |Approx_mile=-2.025

Figure 3: Illustration of the log-likelihood generated by 5000 Gibbs iterations.

sample, the approximate mle was calibrated by means of the R-B MC profile likelihood. The
Markov chain covered the high-likelihood region reasonably well. The profile log-likelihood of
appears very flat for # < —5, where just about all non-response is attributed to women with no
live-births, whose response probability is determined by « alone. Under the GPS non-ignorable
non-response model, we have é&,/n = ay/n + by/n, where b, = E[B,| > . Bz = 535] is evaluated
at the approximate mle. In Table 4 we compare this to a,/(n —m), i.e. based on the respondents
alone, as well as the true ¢;/n acquired from the registers. The respondents alone contained large
bias due to non-response, which was greatly reduced under the GPS non-ignorable model despite
its relatively poor fit. The deviance, i.e. twice the difference between the maximum reachable
and the fitted log-likelihood, was 33.52 on 3 degrees of freedom. Over-dispersion could be one of
the reasons, now that no distinction was made among the calls. This, however, seems to have
mattered little regarding the inference of interest.
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The Sample Distribution (%) Number of Live-Births

0 1 2 3 4 5 >6
Sample Proportion among the Respondents 25.8 18.6 31.0 159 6.3 1.8 0.6
Conditional Expectation under the GPS Model 32.7 17.9 27.7 14.0 55 1.6 0.6
True Distribution Acquired from the Registers 322 184 275 144 55 16 0.6

Table 4: The distribution of the number of live-births within the sample of the Fertility Survey 1997.

6 The Alveolar Bone Loss data with missing teeth

Clinical studies are commonly hampered by the problem of missing sites (Lawrence, Beck, Hunt,
and Koch, 1996; Crawford, Tennstedt, and Mckenlay, 1995). The ABLS data (Schiiller, Thomsen,
and Holst, 1998) contained 813 persons of Age 45 to 64. From each of them, the Alveolar Bone
Loss was intended to be measured for 24 teeth, i.e. the sites. The Mean Bone Loss is considered
to be a personal health index. Among other things one is interested in how this varies with Age.
Since it is suspected that the non-response is positively correlated with the degree of Bone Loss,
the analysis could be biased without appropriate adjustment. Figure 4 contained results of some
exploratory data analysis (EDA) based on the observed data. In the bottom plot of Figure 4,
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Figure 4: (a) Age-group mean based on the observed personal Mean Bone Loss (top), (b) mean proportion
of missing sites within each Age-group (middle), (c) mean proportion of missing sites conditional to observed
Mean Bone Loss (bottom). (In the parentheses: the number of persons for each point.)

we grouped the persons according to their observed Mean Bone Loss, i.e. rounded to the nearest
integer, to explore the proportions of missing sites within such groups. The dotted model-curve
was calculated under (1) and (2), i.e. at («, 8) = (0.008,2.5) based on guessing. The same plot has
also suggested two clear anomalies in the non-response pattern, who were identified and removed
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from the subsequent analysis.

Let X;; be the Bone Loss at site j of person ¢, fori =1,...,n, 7 = 1,...,24, and n = 811. Let R;;
be the corresponding non-response indicator. It seems unrealistic to treat R;j|x;; as independent
of each other. Let R; =3 R;j and Z; = }_; z;;/24. We assume, following (3),

R;|z; ~ TrnPoisson();) where 0 <r; <24, and 7; = a(z; + 1)ﬂ, and A; = 24n; /(1 + ;).

Divide the sample into successive 5-year Age-groups, and let a; = 1,2, 3,4 be the group-index of
person 7. We model X;; as a convolution of two independent variance components, i.e.

Xij = pi +u; +e;;  where p; = 1o +1(a; — 1), and u; ~ N(O,UZ), and e;; ~ N(O,Jg),

and u; Luy for i # k, and e;j Ley for i # k or j # 1, and {u;}L{e;;}. In this way, (Xi1, ..., Xi24)"
are independent outcomes from the Truncated Multivariate Normal distribution, with mean
(ui);)fil and covariance matrix (7;) where 7, = 02+ 02 if j=kand o2 if j £ k, fori=1,...,n
and 0 < z;; < 11, where 11 is the maximum possible Bone Loss. Partition (z;;)7 = ($Z:obs7x11:mis)
into the observed and missing parts. The complete, latent likelihood is given as

L) x Hw c Doy T xz 0bsa§|az) ’ (I)ri(xi,mis§§|$i,ob57ai) : w;l ’ C(Ti;7|ji)a

where ¢ = (10, %1,04,0.)", and v = (a, 3)!, and ®,, the probability density function (pdf) of
the corresponding m-variate Normal distribution, and w; the joint probability of X;; € [0,11] for
1 < j <24, and ( the probability of the corresponding Poisson distribution, and w; the probability
of R; € [0,24]. Let Z; o5 and Z; ;s be the respective means of z; ops and ; ;5. We have

L x sz obs Doy r; (]72 obs; §|az /w Tza ’7|"L‘Z) ’ witr}u’s ’ ¢(‘Ii‘i,mis§ §|$i,0557 ai) dii,misu

where ¢ is the pdf of the corresponding univariate Normal distribution, and w; s the truncation
factor of X; ops, and wj ;s that of Xi,mis|$i,obs- Notice that z; ,is has been marginalized into Z; ;.
The integral over Z;,,;s differs according to ¢, and a Monte Carlo evaluation, “many-sample” or
not, is highly inefficient. We employed the Laplace approximation. The factor w; ;s being very
close to 1, we take (1 mis = E[Zimis; €|Tiobs, i) as the mode, which gives us, omitting wj eps,

n
L x H D91, (i 0bsi E100) - Wy pis - @5 "+ (T3 Y| obs» Himis)-
i=1

We put up the following Gibbs sampler, where each step is to be carried out conditional to
the present values of the remaining variables and parameters:

1. The augmentation-step: Z;mis ~ @(Zimis; &|Tiobs, @) = Ti = {(24 — 14)Ti obs + Ti%i,mis } [ 24-

2. Draw A ~ Gamma(c,b) with shape parameter ¢ = 14 ). r; and scale parameter b = 1, and
set a to be the solution of g(a) =), A = A
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3. Draw (8 ~ N(ﬂo,a%), where By = 2.5 and 03 = 0.1.

4. Draw o, = v — 09, where og = 0.12, and v? ~ InverseGammal(c,b) with shape parameter

c=3,(24—r;)/2—1, and scale parameter b = ", 234:_1” (zij — Tiobs) /{2 —2/ (24 — 1) }.

5. Draw o, = v — 02/24, where v? ~ InverseGamma{n/2 — 1, .(%; — p;)*/2}.

6. Draw (10,41)7 ~ ®o(p,7), where u = (ATA)"1(AT%), and 79 = (02 + 02/24)(AT A)~1,
and zT = (Z1, ..., ), and the ith row of A, > is given as (1, a;).

First of all, notice that the Markov chain by no means converges to a marginal distribution
proportional to L;. The generation of a was based on ), R; ~ Poisson()_; A\;). A similar scheme
for B, however, led to unstable Newton-Raphson algorithm. The Inverse Gamma distribution for
o2 disregards the constraint of Z;,0ps and covariances among ; obs — Zi,0bs, il Which respect oy was

conceived as a tuning parameter for bias-adjustment. (Sampling from ¢(Z;ops — Zimis), Which

2
e’

the standard solution based on [[; #(Zi; ui, 02 + 02/24). Finally, to tune in on the parameter, i.e.

(Bo,03,00), of the independence sampling of 3 and o2, we used the following procedure: (1) fix

(02, 8) at some initial values, say, 02 =Y, 234:_1” (zij — Tiobs)?/(>;(24 —r;) — 1) and B = 2.5 by

EDA, and resample the rest of the parameters; (2) fix the rest of the parameters at the sampled

is a pivotal of o2, was found to give divergent results.) Conditional sampling of (02, 19,1)1) was

mode and 3 at 2.5, now resample o2 alone, by means of random walk or independence uniform,
to choose og so that Step 4 is approximately relocated about &, (3) tune in on (fy, 03) similarly.

We have plotted L against ¢ (Figure 5) based on 5000 Gibbs iterations, together with the
respective sample-based mle and the 95% profile likelihood confidence intervals. The truncation

cio.95) = (2.74, 2.89) ci(0.95) = (0.14, 0.22) ci(0.95) = (0.73, 0.8 cio.95)> = (0.81, 083>

355
L)

Logleood
Logleihond
Logfed
igiero

5
B
*B
L)

Figure 5: Illustration of the approximate log-likelihood generated by 5000 Gibbs iteration.

probability for X; . varies little around the mle f , so that L approximates the Monte Carlo L,
denoted by Ljs¢, rather well. On our Sun Ultrab Unix-server, each evaluation of Ljs¢ (with 5000
points for the Monte Carlo involved) in Splus takes over 1000 times longer than that of L, so that
the Laplace approximation was certainly helpful. The mle é can be calibrated as the following.
For a fixed value of 1y, we calculate the R-B L, by varying the rest of the parameters over the
same resample. We then calculate Lys¢ for a small number of § which had the highest L. We take
the highest Lj;¢ as the Monte Carlo Lp,,(109). Repeating the procedure over a grid values of vy,
we calibrate 1,50 as the one with the highest Lp,,(1)9). The end points of the confidence interval
can similarly be calibrated, where we approximate L = L(é) by max(Lysc) over the resample.
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We obtained the mle of interest (¢g, ;) = (2.812,0.193), calibrated over (2.805, 2.810, 2.811,
2.812, 2.813, 2.814, 2.815, 2.820) for 1 and (0.185, 0.190, 0.191, 0.192, 0.193, 0.194, 0.195, 0.200)
for 4. In comparison, the simple OLS estimates based on Z; o5 were (2.813, 0.176), which ignored
the different variances of Z; ,5s; whereas the variance component approach under the “nestet-error
regression model” (Fuller and Battese, 1973) gave us (2.809, 0.172). Both estimators require the
likelihood to factorize for € and 7, which is the case under the ignorable non-response, i.e.

R;|Z;i ops ~ TrnPoisson();) where 0 < r; <24, and 7; = (4,05 + 1)/8, and A\; = 24n; /(1 + n;).

Non-response becomes now a nuisance of the inference of interest, so does over-dispersion. On
the other hand, suppose we set up a hierarchical random-effect model, say, v; ~ ®a(y,7,) for
the non-response mechanism. The likelihood under the present marginal-effect model is then
the Laplace approximation of that under the extended random-effect model. Finally, the mle ¥
is (& B) = (0.008,2.5) based on []; w; '¢(7i;Y|Fi0bs), compared to (&, 3) = (0.009,2.4) under
the non-ignorable model. Whereas Z; 55 alone constitutes the health index under the ignorable
model, both r; and Z; o5 are considered to be informative under the non-ignorable model. The two
gave almost identical (marginal) account of the non-response, however, the non-ignorable model
adjusted the estimated marginal effect of Age, i.e. 1/31, by about one standard deviation upwards.
Since the assimilation of these results seems to require more detailed subject matter consideration,
both should be included in a report of the statistical analysis.

7 Summary

As the Norwegian LFS data have shown, an ignorable non-response model may result into sub-
stantial reduction of the bias caused by non-response, provided good correlation between the
auxiliary and object variables. Even in such cases, non-ignorable non-response models can be
necessary if only from a sensitivity analysis point of view. However, non-response model selection
differs from model selection in the complete-data case. Goodness-of-fit coupled with parsimonious
parameterization seems neither sufficient nor necessary as a general criterion. The effect which
the non-response models have on the inference of interest become more important than ever, in
which respect it is sometimes appropriate to focus on the marginal effect which the object vari-
able has on non-response. Over-dispersion may occur as a consequence of such marginal-effect
modeling. In many cases, the likelihood can be considered a Laplace approximation to that under
the model of random-effect non-response mechanism. However, we know little of how far the
argument carries us in general. The particular form of the non-response models adopted in this
paper, i.e. (1) to (3), can be useful if the size has many levels or is continuous. A generalized
proportional to size non-response mechanism, on the other hand, is fairly universal. The term
could be taken literally in almost all survey sampling. In an on-going project at Statistics Norway,
we are studying the possibilities of applying the GPS non-ignorable model to the estimation of
the household distribution in the population.

Non-ignorable non-response models may lead to numerical difficulties w.r.t. integration and
maximization. In this paper we have concentrated on adapting the Markov chain Monte Carlo
techniques to effectively generate the profile likelihood inference. The approach enjoys extra
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flexibility compared to the standard applications of these methods under the Bayesian framework,
because it is not required that the Markov chain converges exactly to some fixed target distribution.
In fact, we sometimes do not know where, or if, it has converged at all. The profile likelihood
inference can be drawn based on single or multiple samples, provided reasonable coverage of the
high-likelihood parameter region. Basically, all we need is to be able to evaluate the likelihood.
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