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Abstract:

In this paper we discuss two types of selection problems. The first problem is motivated by labor
market analyses such as the estimation of sector-specific wage equations where the sector for which
the wages are observed are chosen by the agents. In contrast to previous formulations which usually
are based on a probit framework, we assume here that the discrete choice is generated by a
multinomial logit model with random coefficients (mixed multinomial logit model). The advantage
compared to the multinomial probit setting is that choice sets with many alternatives become almost
as easy to handle as the binary case.

The second problem we analyze is motivated by studies where the interest is to estimate the
effect of for example labor market training programs on the labor market opportunities. Previous
works have, to the best of my knowledge, focused solely on the effect of labor market programs on
earnings. As in the first case we allow for arbitrarily large choice sets of feasible first stage choices
(programs) as well as the second stage choices (labor market status).
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1. Introduction

Ever since the seminal papers by Heckman (1973, 1979) the econometric methodology for dealing
with different types of selection problems has developed rapidly. Two types of selection problems that
arise in labor market research have been particularly popular. The first one is related to the estimation
of regression equations conditional on endogenous discrete choices, similarly to Roy (1951), Willis
and Rosen (1979), Heckman and Sedlacek (1985, 1995), Lee (1983), Hanemann (1984), and Dubin
and McFadden (1984). In this paper we demonstrate that when the choice model is assumed to be a
random coefficient multinomial logit model (mixed multinomial logit model) the analysis becomes
(under additional assumptions) simple even with a large number of sectors, in contrast to the case
where the discrete choices are generated by a multinomial Probit model. More generally, this approach
should be of interest in other discrete/continuous choice settings.

The motivation for the second type of selection problems we consider stems from the literature
on the effect on earnings and labor market opportunities as a result of participation in educational- and
training programs. While this literature has focused on the effect on earnings, we are in this paper
interested in the possible selection problem that arises when one wishes to analyze the effect on labor
market opportunities as a result of training. Abstracting from this particular applicaiton, a general
description of the second type of selection problem we analyze is as follows: The agent faces a two
stage choice problem: In stage one he chooses from a choice set of mutually exclusive alternatives
(training programs). Conditional on the choice in the first stage he chooses from a choice set of second
stage alternatives. The question of interest is whether or not the choice in the first stage has increased
the second stage choice set. Since some of the choice opportunities are latent and possibly correlated
with the choice made in the first stage, a selection problem arises. As in the first case one could also
apply a multinomial Probit setting in this case. This would, however, not lead to the same interprtation
as in this paper and it would also increase the complexity of the modeling framework.

The paper is organized as follows. In Section 2 we discuss the selection bias problem in a
regression model, where the dependent variable depends on a choice variable that is generated by a
mixed multinomial logit model. In Section 3 we similarly discuss the selection bias problem when the
(first stage) dependent variable is a multinomial logit choice variable and the corresponding choice set

is partially latent and correlated with a first stage multinomial choice variable.

2. The selection bias in regression models conditioned on a choice
variable generated by a mixed multinomial Logit model

We consider a setting where the worker faces the choice to work in one out of m feasible sectors—or

regions. For simplicity we suppress the indexation of the individual agent in the notation. The reduced

form utility function of worker i of working in sector j has the form



Q2.1 U, =Z,B+ZB+s,,
where Z; is a vector of sector and individual-specific attributes. For example, the components of Z;
may be pure alternative specific attributes and products of alternative-specific attributes and individual

characteristics. B is a K-dimensional vector of coefficients and B is a K-dimensional vector of

individual specific coefficients which are assumed to be random and independent of the attribute
vectors and with zero mean. Some of the components of 3 may be alternative-specific, but we shall
not include this in the formalism. It will, however, be rather obvious how alternative-specific

coefficients can be accounted for in the analysis below. The terms € is j=12,...,m, are assumed to be

1.1.d. with cumulative distribution function

(2.2) P(sjSy‘B,{Zk})zexp(—efy), y€R.
The regression equation is given as
(2.3) logW,=Xy;+n;

where W; is the dependent variable which depends on j, X is a vector of individual- and possibly
sector specific variables, y is a vector of coefficients and m; are random variables which distribution is

independent of the X-variables. The following Lemma is well known and easily demonstrated.

Lemma 1

Assume that U =V, e, where & i j=12,...,m, are i.i.d. with distribution function

P(gj. Sy‘ {Vk}):exp(—e_y),

yeR,and v = 1,2,...,m, are deterministic terms. Then

2.4 PU, <3|U,=max, U, )= Plmax,U, <y| U, =max, U, )= P (max,U, < y).

Loosely speaking, Lemma 1 states that the distribution of the indirect utility (maximum utility)
is independent of which alternative maximum utility is achieved. For the readers’ convenience, a proof
is given in the appendix.

We shall next allow n; to be correlated with ¢ and the components of 3. Assume as a first

order approximation that

(2.5) n; =p|(8j —0-5772)+Z P2 Brte;



where e; is independent of €; and (3 and f3, is the r-th component of B. It follows from (2.5) that

_6COV<T]J-,8J-)

(2.6) P = 5
T
and
Cov (UJ > Br )
2.7 =— "7
( ) p2r Var Br

At this point we may note that in a Probit type of framework the decomposition (2.5) is guaranteed
due to the properties of the multivariate normal distribution. In the general case it is of course not so.

As in Dubin and McFadden (1984), it may in some applications be of interest to allow n; also
to depend on {8 o K# j}. This is, however, ruled out in the present paper. The results obtained here
can easily be extended to include this case as well.

Let

exp(Zj B+Z; B)

Z exp(Zk B+Z, B)

k=1

(2.8) P;(B)=

We can now prove the following result.

Proposition 1

Suppose that ¢ ;, j=1,2,....,m, are i.i.d. and that (2.2) and (2.5) hold. Then

E(B, P,
(2.9) E (ﬁ, U, =maxU, ) = W
J
and
(2.10) E(s,~0.5772|U, = max, |=~Etogr,(5)- 3. 2,E(,|U, = maxU, )

A proof of Proposition 1 is given in the appendix.

From (2.5) and Theorem 1 we get



2 (par =2, )E(B. Py(8)

@2.11) E(nj‘Uj:m]?xUk):—plElong(B)+ : 320

But this means that nj , defined by

Z (Pzr _er (Br Pj (B))

2.12 P =logW. — Xy. ElogP. (B)— "
(2.12) N’ =logW, — Xy, + p, ElogP; (B) B (5)

has the property
E(nj ‘ U, :mlaxUk)zo.

Thus, if ElogP;(B), EBP,(B) and EP,(B) were known one could estimate y, p; and {p,, }

consistently by means of the regression equation

3 7,EB,P,p) > p,.Ep,P;(p)

(2.13) logW, + - =Xy, —p, ElogP; (B)+ +1;.
EP,(B) EP,(B)
Estimation
The choice probabilities ﬁj are given by
(2.14) P, = P(Uj :mkaxUk)z EP(Uj =max U B) =EP,(B).
The simplest version of the model is obtained when 3, =c,6,, where 6, >0 and 6,,r=12,...,...,K

are i.i.d. with c.d.f. that is independent on {Gr } Then a simple way to compute E P; (B) (conditional

on {Gr }) is to draw S independent 6}, s=1,2,...,S, and then for each given B and {Gr} simulate

EP;(B) by

(2.15) EPJ(B)z;i Py(B°)

s=1

where B} =0 ,0;,r=12,...,K. For a detailed discussion of the estimation of mixed multinomial logit

rYr?

models, see McFadden and Train (1998).

In the same way one can simulate E (Br P; (B)) and ElogP; (B) . Estimation can now be

carried out in two stages:



Stage one:

Estimate {Gr} and B on the basis of Ej.

Stage two:

In addition to ﬁj , compute E(Br P, (B)) and ElogP, (B) Then estimate y, p; and {ph} on the

basis of (2.13) with

> Z, E(B. P(B)

logW, +—
: EP;(B)
as dependent variable and X;,
E(p. P;(8))
ElogP.(B) and ———

as independent variables.

Note that when 3, =c .0, we get

(2.16) > Zy E(B. Pi(B) =E(0, P(B)) X Zy o,

and

(2.17) > s E(BPy(B)=E(0, Pi(B) D par o,

We realize that one cannot in this case identify {p 2r} . But this is not of great interest anyway.

Accordingly, it is in this case sufficient to specify two independent variables in addition to Xj, namely

Elog P;(B) and

E(el P, (B))
EP;(B)

with y, p; and p, Ez p,,0, as unknown parameters. In this case the regression equation (2.13)

T

reduces to

(2.18) long + E(sllbl)('é[;))z Z,6,=Xy,-p, Elong (B)+ P3 E(@l P, (B)) on



A special case

Consider now the special case when Varf, =0, i.e., there are no variations in the parameters in the

utility function across individuals. Then p,, =0 for all r and (2.18) reduces to

(2.19) log W, =Xy, —p, logP;(0)+n .

3. The selection bias in a two-stage multinomial discrete choice
setting where the choice in the second stage is correlated with
the choice in the first stage

In this section we discuss a fairly simple framework that can be applied for structural analysis of the

following general setting: We consider an agent that faces a two stage choice problem. In the first

stage the agent makes a choice from a set of “schooling” (training) alternatives. In the second stage,
and after the chosen schooling alternative has been made, the agent chooses between a set of different
types of opportunities (jobs). We can interpret the choice in the first stage as one in which the agent
maximizes expected utility with respect to “investment” in human capital. Investment in human capital
in stage one is assumed by the agent to increase the available opportunities in stage two.

A typical example of the above setting is found in the so-called job-training literature. In this
case the agent chooses a specific job-training program (or is allocated to a program by a central
manager) in stage one. In stage two he chooses from a set of feasible jobs.

Evidently, one can apply a two period multinomial probit framework to formulate choice
models of this type. The multinomial multiperiod model is, however, still complicated to estimate for
the average researcher. More fundamentally, the approach proposed here has, in addition of being
computationally simple, the advantage compared to the probit framework in that it enables us to
accommodate the notion of endogenous and latent second stage choice set in an explicit manner.

Let us next introduce some theoretical concepts and formalism. For notational simplicity we
drop the indexation of the agent in the notation. Let U; be the utility of the agent of alternative j, where

j belongs to the individuals choice set B. The choice set may be individual specific, but this is

suppressed in the notation here. We assumed that {U j} has the structure

(3.1) U =u; +e,

where u; is a systematic term that depends on individual and possible alternative-specific variables.

The terms €, j=1,2,...,N, are independent random variables with

(3.2) P(gj Sy‘ {uj}):exp(_e—yw.swz)



for y eR . Assumption (3.2) implies that the corresponding first stage choice probabilities fulfill the

assumption, “Independence from Irrelevant Alternatives”.

Consider next stage two. In stage two there are K observable types of choice opportunities
which each consists of a set of latent opportunities. Let J denote the chosen alternative in stage one,
and let Cj, denote the agent-specific index set of opportunities of type k, and let V; be the agent’s
utility of opportunity s in Cy, in stage two. A typical example of this setup is that Cy is the set of jobs
of type k and Vi is the utility of job s of type k. Let my, be the number of opportunities in Cy.

Assume moreover that

(3.3) Vie = Vi + My

for se C;,k=12,...,K, where v is a systematic term that may depend on individual characteristics

as well as observable attributes that characterize opportunities of type k. The term n is random and

account for unobservables that affect the utility of opportunity s in Cy.. Similarly to stage one the

random variables { nks} are assumed i.i.d. with

(3.4) P(ni <y|{vi})=exp(-e™)

for y eR.
As mentioned above, the observing analyst does, however, not observe the choice sets {Ci,k}

nor does he observe which opportunity (job) the agent chooses. He only observes the chosen

opportunity. Let

(3.5) V, =maxV,,.
seC

Tk

Note that V,, is the highest utility the agent can attain conditional on the choice set Cy,, and {\N(,k} are

therefore the utilities that correspond to the actual observed choices. It follows readily from (3.4) that

V|, can be expressed as

(3.6) Vi = vy +logmy + 7y,

where {fj; } are i.i.d. with

(3.7) P(ﬁJk SY|{m.uk}>{vk}):e"p(‘efy)

for y eR.



The variables {mi,k} are unobservable. They are presumably endogeneous in the sense that

they depend upon the “investment” that was made in the first stage. It follows from (3.2) that the

indirect utility Uy of stage one can be written as

(3.8) U, :log(z eufj+8;

r<N

where € is a random variable with conditional distribution

(3.9) P(e; < y[{u,})=exp(-¢)

for y eR . Let alternative one be a reference alternative in the first stage. Then U, — U, represents the

highest predicted value (as of stage one) of human capital attainable (to the agent). In the second stage

U, — U, can thus be viewed as a proxy for the information about the human capital acquired through

the behavior in stage one.

Thus, we are lead to postulate the following relationship:

(3.10) logmy, =6, (U, —U,) + by

with 6,, =0,, =0. The choice set C, is assumed not to be affected by the choice in the first stage. The
parameter Oy determines to which extent the increase in indirect utility, U; — U, , is relevant for the

opportunity set Cy. The motivation for the structure (3.10) is that since U, — U, can be interpreted as
the highest value of the investment in human capital, U; — U, is a sufficient statistic for the effect of

the first stage choice.

Now from (3.1) and (3.2) follows that

e.l
(3.11) P, =P (Uj = max Ur) =
r<N euf

Proposition 2:

Under Assumptions (3.2), (3.4) and (3.10) we have

) =z exp(vk +b, +¢9_].k§j)
’ Z exp(vr +b, +¢9jr§/)

r<K

(3.12) P( /o = maxV,

where &, is a random variable with distribution function

10



1

(3.13) P(& <y|{vi +b}, {u})=P(U,-U, Sy|‘]:j):]‘m

for y>R.
A proof of Proposition 2 is given in the appendix.

Corollary 1

The distribution of §; can be expressed as

! P| max| 5, +log -5 0 <y
I-p, )

where & is a random variable with c.d.f.

P(‘;/’Sy):

for yeR.

The proof of this result is straight forward.
The interest of Corollary 1 is that it is useful for computing the second stage choice
probabilities by stochastic simulation, due to the fact that the distribution of §; does not depend on

parameters nor variables in the model.

Corollary 2
Under the assumptions of Proposition 2 a first order approximation of the second stage

conditional choice probabilities is given by

U, =maxU,

4 r<N

N exp(vk +b, +¢9_ij)
)~ Z exp(vr +b, +¢9er)

r<K

P(V_,-k =maxy,

where

A proof of Corollary 2 is given in the appendix.

11



A weaker assumption than (3.10)

In the discussion above we postulated that the choice set in stage two depends on U, — U, .

We shall now relax this assumption. Specifically, assume now that it makes sense to postulate

(3.14) logm =0 (SJ _81)+bk + Y

where {0, } are unknown parameters with 6, =0 . The parameter 8y determines to which extent the
unobservables associated with the first stage investment in human capital is relevant for the

opportunity set Cy. The parameters {y jk} account for the systematic effect from the first stage

investment. Specifically, yj, captures the systematic (average) effect of first stage decision on the

opportunity set Cy, given that J = j.

We have the following result

Proposition 3

If (3.1) to (3.4), and (3.14) hold, we have that

- exp(v, +b,+y,+0,&
(3.13) p(V]_k ~max7, (Vi + b+ 75 70,8))
' r< -

Z exp(vr +b, +y,, +0j,‘§;)

r<K

U, :maxU,):E

4 r<N

where 5: is a random variable with distribution function

A proof of Proposition 3 is given in the Appendix.

Corollary 3
Under the assumptions of Proposition 3 a first order approximation of the second stage

conditional choice probabilities is given by

=maxU,
r<nN

)N exp(Vk th Ty +‘9_ij:’)
h Z exp(V, +bty, +¢9]er;)

r<K

P(ij = max IZ/, U

r<K J

where

12



Proof:
Similarly to the proof of Corollary 2, the result follows from (A.15) in the appendix.
Q.E.D.

Eq. (3.12) implies that we can compute Qj by simulation as follows: Draw M independent

realizations, 8},8?,. &M, from the logistic distribution and compute the corresponding values

=505

ge2 EJEV[, by Corollary 1. Then

j2Sj e

M

i ! 1 exp(vk +by +ejk§j)
3.16 Y ’
(3.16) Qi = Qi M ; 1-P, Z exp(Vr +b, +ejr§j)

<K

Estimation

Here we need to introduce the indexation of the agents. Let YJ-ik =1 if individual i has chosen

alternative j in stage one and alternative k in stage two. Then

(3.17) P(Y}k =1)=Q§k'1’} ~Qy Py

Consequently, the corresponding loglikelihood equals

(3.18) =33 > vi (1ogng+1ogP;)zZ >y Y;k(logéjknogpj).
i k j k ]

i

Estimation in two stages
Stage one: Estimate P; by maximum likelihood.

Stage two. Estimate the remaining parameters in Qy by maximum likelihood. The second stage

likelihood equals

(3.19) =03 YilogQy Y > > Yy logQj .
k j i k ]

i

13



4. Conclusion

In this paper we have analyzed two typical selectivity bias problems. The first one is related to the
estimation of regression equations conditional on endogenous multinomial discrete choice variables.
Specifically, we consider the case where the discrete choices are generated by a mixed multinomial
logit model. In the second part we analyze a two stage choice problem where the dependent variable in
each stage is discrete. In both cases we demonstrate that the respective selectivity bias problem can be

taken into account in a simple way.

14
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Appendix

Proof of Lemma 1:

We have

P| U; >max U, ,max, Uy e(y,y+Ay))

J k+#j
= P(U j(y.y +Ay) max U, < YJ +o(ay)
#]

(A1) =P (Uj e(y,y + Ay))H P (Uk < y) + o(Ay)

k#j

=exp (— el” ) e Ayexp {— e e™ ] +o(Ay)
k#j

=e"Vexp (— e’ Zk e’k )+ o(Ay).

Since

(A2) P(man U, Sy) =exp (_e_y Zk e"k)

it follows from (A.1) that

P(Uj >max U, ,max, U, e(y,y+ dy))

k=#j

(A3) = erer ey e eXD(—e'yzk e“)+ o(Ay)

2

= Pj -P (maxk U, e (y,y + Ay))+ o(Ay).

But this implies that

P(U->maxUk max, Ukzyj =P;.
TS ]

Q.E.D.

Proof of Proposition 1:

Let f(B) be the density of B. We have for x eR*:

(A4) P(B e(x,x+ dx),Uj :m]?xUk) = P(Uj :m]flek ‘ B= x)f(x)dx: P, (x) f(x) dx.

Consequently,

16



P, (x) f(x)dx

(AS) P(B e(x,x+dx)‘ U, =m1:aXUk) = EP-(B)
]

From (A.5) we immediately obtain that

k] _ E(Br PI(B))

(A6) E(p, 0

U.=max U
] k

Now by Lemma 1 and (A.6) we obtain

E(sj

Uj :mkaXUk] - E(UJ Y :mkaXUk] - E(ZJ B‘ Y :mfok) 4P

=E E(Uj U, :mkaxUk,B] -> z, E(Br U, :mlaxUk) ~7,B
(A7) > Z,E(B.P0B)

:EE(mf‘XUk B)— : EP.(B) -Z;B

J
) Y 2,5 7(0)

:Elog(; exp(ZkB+Zk B)J+o.5772—zjﬁ— r 0 :
But since
(A.8) Elog(Z exp(2, B+2, B)j — —ElogP,(B)+Z2, B

k
(A.7) implies that we can write
3 7,E@,P, @)

(A.9) E(s - 0.5772‘ U, = mfok) =—ElogP; (B)- 5P )

which was to be proved

Proof of Proposition 2:

Consider

P(U,-U,>y|U,=U,)

Q.E.D.

for je{2,3,..,N} and y>0. LetJ * denote the preferred alternative within {2,3,...,N} . Then we can

write

17



(A.10) P(UJ >y + UI,UJ- ZUJ)zP(max(UJ*,Ul)>y+UI,UJ. :UJ*,UJ* >U1)
. :p(UJ* >y+U,l" =jU, >U,)=P(UJ* >y+ U, T :j).

From Lemma 1 it follows that J* and UJ* are independent. Furthermore, U; and J are independent

due to the assumption that €,,¢,,..., are independent, and J " does not depend on €. Hence, we obtain
(A11) P(U.>U +y,J =j)=P(U,. >U, +y)P(1" =j)
Moreover,

. el
P (U.>U+y) P (I =j)==2 :
( J 1 y) ( ‘]) z eur _eul +eul+y z eur _eul
(A12) r<N r<N
__ 1-h b _ P,
1-P+P ¢ 1-P 1-P+P ¢
Hence we obtain that
PWU,>U, +y,U =U 1
(A.13) P(U;>U, +y|[J=j)= U, >0, +3.0,=0,)_
P(U,=U,) 1-P, +P &
for y>0. Let §; be a random variable with c.d.f.
(A.14) P (5,<y)=-—
l+e™”

for y € R. Then the result of Proposition 2 follows.

This completes the proof.

Q.E.D.
Proof of Corollary 2:
From (A.13) in the appendix we obtain that
N dy © ] _ log P,
E\U; -U,|J=j)= =— log(P, +(1-P,)e™ )=——""—.
( J 1‘ J) JI—P1+Pley (|)1—P1 g(l ( 1) ) 1-P,
Q.E.D.

Proof of Proposition 3:

Similarly to the proof of Proposition 2 we have that

18



Ple, —¢, >y\J:j):P(sj —g, >y\J:j)

(A.15) P(U,~ U, >y+u,—u|T=)=P(U, ~U, >y+u, —u[I=])
P(U>U +y b)) |
= P(UJ* >U1) _l—Pl +Pl ey+uj—u|

for y >u; —u;. The results of Proposition 3 now follows.

Thus, the proof is complete.

Q.E.D.
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