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1 Introduction

The use of mathematical models in human demography dates back to the 1920's. In clas-

sical studies the models were linear (cf. Leslie [1945]). However, these classical models

ignore important aspects of the reproduction process, the main problem being that they

are based on age speci�c fertility and death rates for females only. In other words, the

mating process, that is, the forming of marriages, is ignored. This process plays a crucial

role in the reproduction of the human population, as the number of births is dependent on

the number of marriages. The number of marriages in each combination of age-groups of

males and females is a�ected by the total number of individuals in these age-groups, and

hence the number of births may depend on the size and age-structure of both the (mature)

male and female population in a non-trivial way. Thus, a realistic population theory should

incorporate a model that predicts how marriages are formed.

The recognition of this fact has lead to several attempts to formulate two-sex models,

see for example Pollard [1995] and the references therein. Unfortunately, the two-sex mod-

els proposed in the literature su�er from a fundamental weakness in that the associated

marriage models are not derived explicitely from behavioral principles, although they are

constructed so as to ful�ll particular reasonable qualitative properties based on biologi-

cal and demographic considerations. Thus, from a theoretical viewpoint these models are

somewhat ad hoc.

This paper di�ers from previous analyses of two-sex models in that our point of departure

is a particular behavioral marriage model proposed by Dagsvik [1998] and Dagsvik et.al.

[1998]. Given this marriage model, the updating is described by the standard Markovian

schedule. But, in contrast to the classical models, it now follows that the model becomes

nonlinear. In general, such models can be very hard to analyze. However, during the last

few decades the mathematical theory of nonlinear dynamical systems has provided us with

a powerful apparatus that may be useful for revealing some of the structural properties of

such models.

The paper is organized as follows: First we give a short survey on demographic models,

and the qualitative properties of such models. Thereafter we give a brief presentation and

discussion of the marriage model due to Dagsvik [1998]. Based on this model, we derive a

demographic model for the number of women and men in speci�c population groups at a

given time, and examine the dynamical properties of this particular model.
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2 Demographic Population models

We will at �rst give a short summary on demographic models and the two-sex problem.

For a more extensive review we refer to Pollard [1995]. The �rst models considered in the

literature were one-sex models, based on female reproduction rates. Such models may work

well if the population of men and women in each age group are of similar sizes, but may

yield rather poor results in the case of imbalances between the population sizes of men and

women, cf. Pollak [1990].

2.1 The Leslie model

In classical stable population theory the female population (at time t) is represented by a

vector

F (t) = (F1(t); ::::; Fn(t))

where Fi(t) is the number of females of age i at time t. The description of how the population

evolves over time has two 'building blocks'; namely a vector of survival rates � = (�1; ::::; �n),

where �n = 0 (n is the maximum age of an individual in the population), and birth or fertility

rates described by a vector � = (�1; :::; �n). Thus the number of newborn (females) at time

t + 1 may be represented by a linear combination of the Fi(t)'s the following way:

F1(t+ 1) =
nX
i=1

�iFi(t):

Furthermore, the population is updated according to the (agening) relation

Fi(t+ 1) = �i�1Fi�1(t)

for 2 � i � n. Hence, in matrix notation we have

F (t+ 1) = LF (t)(2.1)

where

L =

2
6666666664

�1 �2 � � � �n�1 �n

�1 0 � � � 0 0

� � � �

� � � �

0 0 � � � �n�1 0

3
7777777775
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The matrix L is called the Leslie-matrix named after P.H.Leslie who was a pioneer on this

subject, cf. Leslie [1945]. In the original version of the Leslie model, L is assumed to be

constant. If the population converges towards a constant level, we say that the matrix

equation (2.1) has a (stable) equilibrium. If the population return to an earlier state after

a �nite number of generations we say that the equation has a periodic orbit. In some

circumstances (particularily those cases where no equilibria or periodic orbits are present)

it may also be of great interest to detect whether the population grows at a constant rate

or not. This issue has been investigated by Key�tz [1972] and others.

Mathematically, there is no big di�erence between �xed and periodic points. If the

population returns to an earlier state after a �nite number of generations it has a periodic

orbit. A �xed point is a periodic point of period 1. In the case of the Leslie model, periodic

orbits satsify the equation

LpF = F

where p � 1 denotes the period. Since the matrix L is non-negative, the properties of the

periodic points are described by a theorem due to Perron & Frobenius (cf. Key�tz [1972]).

Speci�cally, there are two possibilities: If all the eigenvalues of L are real, the long term

behavior of the system is described by the eigenvalue �0 having the largest absolute value.

If �0 < 1, the population will eventually become extinct. If �0 > 1, the population will grow

towards in�nity with a constant rate equal to �0. In the case �0 = 1, the population will

converge towards a stable equilibrium. In the case of complex eigenvalues (which all have

to occur in conjugated pairs since L is real), the limit behavior of the system is a periodic

orbit, with period equal to the number of complex eigenvalues plus one, that is, the period

has to be an odd number.

Notice that the trivial (and stable) equilibrium F = 0 is always a solution of the equation

LF = F . In one-sex models this trivial equilibrium F = 0 is 'uninteresting', while in the

two-sex case to be considered next, the existence of trivial solutions usually makes the task

of �nding non-trivial equilibria by means of �xed point theorems more di�cult.

2.2 Two-sex models

In one-sex models the number of o�spring is only dependent on the number of females.

In many cases this may seem like a plausible assumption, as, at least in theory, even one

individual male can produce enough sperm to impregnate millions of females. This particular
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setting is consistent with female dominance, namely that there are always enough males

to fertilize all females. For species where only a handful of males is su�cient to ensure

a successful reproduction, the fate of most of the males is in this context unimportant.

However, in populations with monogamy, as in most human societies, the role of the mating

process becomes important.

In populations without female dominance a common phenomenon is marriage squeeze,

in which the reproduction is limited by the availability of the scarcer sex. This phenomenon

is well known even in human populations despite the fact that the overall sex ratio never

deviates far from unity. Patterns of preferences for age, education, etc., may also contribute

to the marriage squeeze. Thus, in populations without female dominance, both sexes must be

incorporated in order to provide an appropriate representation of the population dynamics.

The main di�erence between one-sex and two-sex models (except from the introduction

of the second sex) is that the birth and survival schedules no longer are assumed to be

constant, but depend on the size of the population, and its age-sex composition. The

number of births is dependent on the number of marriages, and the number of o�spring

produced by a married female may not only depend on her age, but also on the age of her

mate. In addition, the behavior of males and females in the marriage market is dependent

on the size of the respective age classes of (single) men and women.

This implies a non-linear model, in which the mating rule, describing how marriages

are formed, becomes an important element. Caswell and Weeks [1986] studied a two sex

model under particular assumptions about the mating behavior. In fact, they analyzed

several possible forms of the mating function. Chung [1994] extended the study by Caswell

and Weeks, and made a more thorough analysis of the dynamics, showing that interesting

dynamical behavior may occur also at \realistic" parameter levels, in contrast to Caswell

and Weeks who used rather extreme parameter values.

We will now describe the two-sex modelling framework formally. As in one-sex models

the population is divided into n age groups or categories. The population at time t may be

described by a (2n)-vector (M(t); F (t)), where

M(t) = (M1(t); :::;Mn(t))

represents the male population, and as above

F (t) = (F1(t); :::; Fn(t))
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represents the female population. The number of births is dependent on the number of

marriages. In traditional demographic studies one has usually assumed that the mating

function has a particular form, based on di�erent biological considerations (see Caswell and

Weeks [1986]), in contrast to the present approach, which is, as mentioned above, based on

a particular behavioral marriage model to be described in section 3.

Let �ij be the expected number of female o�spring of a male in age group i married to

a female from age group j. If now � is the rate of male to female newborns (the sex ratio,

assumed to be constant), then ��ij is the expected number of male o�spring produced by

a couple where the male has age i and the female has age j. Now let �(M;F ) denote the

mating rule or marriage function, that is, the matrix function predicting the number of

marriages in each age combination as a function of the number of single men and women in

each age group, represented by the vectors M and F . Entry (i; j) in the matrix �(M;F ) is

denoted by �ij(M;F ), and is equal to the number of marriages between males in age group

i and females in age group j. As indicated above, the functions f�ijg may be non-linear.

From the above considerations the number of newborn at time t+ 1 may be expressed as:

F1(t+ 1) =
X
ij

�ij�ij(M(t); F (t))(2.2)

and

M1(t+ 1) = �F1(t+ 1):

The agening of the population follows from the (linear) recursion formula:

Mi(t+ 1) = �Mi�1Mi�1(t)(2.3)

for i = 2; :::; n, and

Fj(t+ 1) = �Fj�1Fj�1(t);(2.4)

for j = 2; :::; n, where �Mi ; �Fj are the survival rates of males of age i and females of age j,

respectively. The above relations de�ne a vector function ggg = (g1; :::; gn; gn+1; :::; g2n) by

Mi(t+ 1) = gi(M(t); F (t))

for i = 1; :::; n, and

Fj(t + 1) = gn+j(M(t); F (t))
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for j = 1; :::; n. Hence we get a dynamical system where the population is updated according

to the recursive equation

(M(t + 1); F (t+ 1)) = ggg(M(t); F (t)):(2.5)

Due to certain biological and mathematical considerations, several authors have suggested

that the mating function �(:) should satisfy a number of criteria or axioms, including the

following (see McFarland [1972] and Pollard [1995]):

A1. �(M;F ) is de�ned for all (non-negative) vector combinations (M;F ).

A2. �(M;F ) � 0 for all M � 0; F � 0.

A3.
P

i �ij(M;F ) � Fj and
P

j �ij(M;F ) � Mi. The number of marriages involving

members of one category can not exceed the total number of members in that category.

A4. The number of marriages should depend heavily on the ages of the males and females.

A5. �ij is non-decreasing in Mi and Fj, and strictly increasing for some values of Mi and

Fj (A larger population yields more marriages than a smaller one).

A6. �ij is non-increasing (and over some interval a strictly decreasing) function ofMr; Fs; r 6=

i; s 6= j.

A7. The negative e�ect on �ij of an increase in Ms should be greater than the negative

e�ect on �ij of an equivalent increase in Mr if s is closer to i than r is. Likewise with

the sexes interchanged.

A8. �(M; 0) = �(0; F ) = 0. The extinction of one sex inevitably rules out the possibility

of a marriage, eventually making the population extinct.

A9. � is continuous in M and F (some authors assume the mating function to be de�ned

only on the integers. However, mathematically, it may be convenient to extend the

de�nition of the mating function to the positive real numbers as well).

A10. �(�M; �F ) = ��(M;F ) (homogenity).

In most papers on two-sex models, the mating function is assumed to be on a particular

closed form (see for example Caswell and Weeks [1986] or Pollard [1995]). Typical explicit
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function forms that have beeen applied in the particular case with no age structure are

summarized in the following table:

Table1: Di�erent marriage models discussed in the literature

�(M;F ) interpretation

F Female dominance.

M Male dominance.

aM + (1� a)F , where 0 < a < 1. Weighted mean.

kM+F
2

. Arithmetic mean.

k(M � F )
1

2 . Geometric mean.

2kMF
M+F

. Harmonic mean.

kminfM;Fg. Minimum.

In this table k > 0 is a suitable real constant to be determined (by data). Notice that in

the case where �(M;F ) = kminfM;Fg (minimum), there is a one-to-one correspondence

between the number of marriages (births) and the availability of the scarcer sex. As men-

tioned by Pollard [1995], most of these functions have serious aws, and Pollard �nds the

harmonic mean to be the most interesting. The two-sex model examined by Caswell and

Weeks [1986] and Chung [1994] was based on this mating function. In the general case with

age-structured populations, Pollard [1995] and others have proposed the following extension

of the harmonic mean function, namely

�ij(M;F ) =
�ij �Mi � FjP

r riMr +
P

r �rjFr

;

where f�ijg; frig and f�rjg are parameters. The main weakness of all these functions is

that they are not derived from a theory about individual behavior. In other words, they

are ad hoc from a theoretical point of view. As mentioned above, our aim in this paper

is to investigate the dynamical properties of the above two-sex model when the mating

rule (marriage model) is based on a particular behavioral theory, to be introduced below.

However, before we present our marriage model, we shall give a brief survey of some relevant

material from the theory of dynamical systems.
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2.3 A short review of some aspects of the theory of dynamical

systems that are relevant when studying two-sex models

An important purpose when analyzing dynamical systems is to reveal the long term or

asymptotic behavior of the system. In particular, it is of interest to examine the structure of

the �xed and periodic points (equilibria), a task which may be di�cult. There are two types

of equilibria that are found interesting in (human) demography. One is the case of a constant

growth of the population, while the other is the case of the population remaining unchanged

over time. The last case is called a proper equilibrium. If the population returns to an earlier

state after a �nite number of generations we say that it possesses a periodic orbit. Both

proper equilibria and periodic orbits (and other interesting dynamical phenomena as well)

have been observed in many animal populations, while among human beings, it seems like

most populations grow constantly. But even if we are not able to control the population size,

it may be of great importance to understand to which extent the structural parameteres

a�ect the growth of the population. Hence, in many circumstances, the conditions for a

'constant growth' equilibrium may be the most interesting.

The trivial equilibrium is always a possibility in (realistic) demographic models (if the

population enters the state of extinction, then it will remain extinct forever). This may

complicate the analysis, since the model can still have non-trivial equilibria which may be

hard to �nd, especially when these equilibria are unstable.

In the nonlinear case, one may sometimes generalize the techniques provided by the

Perron-Frobenius theorem. The main idea is �rst to detect (all the) �xed and periodic

points of the map describing the system. Thereafter, the linearization of the map, that

is, the Jacobian matrix of the map evaluated at the �xed or periodic point, is computed.

The dynamics of the model in a neighborhood of the equilibrium is determined by the

spectrum (the set of eigenvalues) of the linearization. This is due to the following theorem

(cf. Hartman [1964]):

Theorem (Hartman-Grobman): In a neighborhood of a hyperbolic �xed (periodic) point

a dynamical system is topologically conjugated to its linearization, determined by its Jacobian

matrix evaluated at the �xed or periodic point.

Remark: Two dynamical systems are called topologically conjugated if their �xed points

(equilibria) and periodic orbits have the same structure. A �xed (periodic) point of a linear
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system is called hyperbolic whenever none of its eigenvalues have absolute value (modulus)

equal to one, that is, none of the eigenvalues are lying on the unit circle in the complex

plane. Thus, in a neighborhood of a hyperbolic �xed point p, every non-linear map ggg may

be approximated by the linear map x 7! Dggg(p)x, where Dggg(p) denotes the Jacobian matrix

of ggg evaluated at p. The dynamics of this linear system may be analyzed by traditional

eigenvalue analysis. In practice one may not know whether the �xed point is hyperbolic

or not, but by computing the Jacobian, and �nding its eigenvalues, one may conclude that

hyperbolicity of the linearization must imply hyperbolicity of the original system, and vice

versa.

In the nonlinear case, the number of possible combinations of the eigenvalues is in gen-

eral large, depending on the dimension of the model (number of age groups). The invariant

manifold theorem (cf. Hirsch et.al. [1977]) tells us that the map de�ning the model is

contracting or expanding in the direction of an eigenvector according to whether the cor-

responding eigenvalue has absolute value smaller or greater than one. The behavior of the

model will also vary, depending on whether this eigenvalue is real or complex. Complex

eigenvalues always occur in conjugated pairs since the Jacobian is a real matrix. The case

of a real eigenvalue of multiplicity larger than one must also be explicitely treated. If the

absolute value of an eigenvalue is equal to one, the map is neither contracting nor expanding

along the corresponding eigenvector, and we say that the map possesses a center manifold

(see for example Guckenheimer and Holmes [1983]).

The (general) two-sex modeling framework outlined above, is dependent on a parameter

set including the birth rates �ij, the survival rates �i, and the sex ratio at birth, �. When the

parameters vary in a domain, the dynamical behavior of the model may change. Parameter

values at which such a change take place are called bifurcation points, and the process the

system undergoes at such a point is called a bifurcation. In theory, there are several types of

bifurcations a dynamical system may undergo as the parameters vary. It is an interesting,

but in general very di�cult task to classify these.

During the last couple of decades much attention has been given to the possibility of a

dynamical system becoming chaotic. Loosely speaking, this means that all of the equilibria

becomes unstable, and that the system becomes sensitive to initial conditions, making it

impossible to predict future population sizes. Numerical simulations using the Caswell-

Weeks model show that large enough values of the parameters can destabilize the equilibrium
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in age and sex structure, making their model chaotic (cf. Chung [1994]).

3 A two-sex marriage model derived from a particular

matching game

In this section we shall discuss a particular model derived from assumptions about the

behavior in the marriage market. In this market each man and woman (agent) is assumed

to behave according to speci�c rules as follows. Each man and woman are supposed to

have su�cient information about the potential partners so as to be able to establish a

preference list, that is, a list which ranks all potential partners, including the alternative of

being single. The matching process towards equilibrium takes place in several stages. There

are no search costs, and the men and women have no information about the preferences

of potential partners, which means that they are ignorant about their own chances in the

market. Either the women or the men make o�ers, that is, if the men make the o�ers, no

woman is allowed to make an o�er and vice versa. A man is acceptable to a woman if the

woman prefers to be matched to that particular man rather than staying single. A matching

between a male and female who are not mutually acceptable, which means that at least one

of the agents would prefer to be single rather than be matched to the other, is said to be

blocked by the unhappy agent. A matching � such that there exist a male and female who

are matched to each other, but who prefer each other to their assignment at �, given the

rules of the game, is said to block the matching �. We say that a matching � is stable if it

is not blocked by any individual or pair of agents.

Gale and Shapley [1962] (cf. Roth and Sotomayor [1990]) have demonstrated that stable

matchings exist for every matching market. Speci�cally, they proved that the so-called de-

ferred acceptance procedure produces a stable matching for any set of preferences provided

the ordering of the preferences are strict, that is, indi�erences are ruled out. This algorithm

goes as follows: Suppose the men make the o�ers. First each man make an o�er to his

favorite woman. Thus a woman may receive o�ers from one or several men, or may receive

none o�ers at all. Each woman immediately rejects the o�er from any man who is unac-

ceptable to her, and she rejects all but her most preferred among the acceptable o�ers too.

Any man whose o�er is not rejected at this point is kept temporarily 'engaged' until better

o�ers arrive. At any step any man who was rejected at the previous step makes an o�er to
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his next choice, that is, to his most preferred woman among those who have not yet rejected

him. Each woman receiving o�ers rejects any from unacceptable men, and also rejects all

but her most preferred among the new o�ers and any man she may have kept engaged from

the previous step. The game is terminated after any step in which no man is rejected. The

matches are now consummated with each man being matched to the woman he is engaged.

Based on the deferred acceptance algorithm Dagsvik [1998] obtained an aggregate model,

that is, a model for the number of marriages between men and women in each age group.

We shall now give a brief presentation of Dagsvik's model. For a more detailed presentation

and proofs, we refer to Dagsvik [1998].

We assume the preferences of the males and females are represented by latent utility

indicies. Now, let Mi; i = 1; ::; n, be the number of (single) men in age group i, and

Fj; j = 1; :::; n, the number of (single) women in age group j. We de�ne Umf
ij to be the

utility of male m in age group i of being married to female f in age group j. Um
i0 is the

utility of male m in age group i of being single. Similarly, let Ufm
ji be the utility of female

f of age group j of being matched to male m in age group i, and Uf
j0 the utility of female

f in age group j of being single. The utility functions are assumed to have the structure

Umf
ij = aij�

mf
ij ; Um

i0 = ai0�
m
i0

Ufm
ji = bji�

fm
ji ; U

f
j0 = bj0�

f
j0

where aij; bji are positive (non-negative) deterministic terms (preference parameters), and

�mf
ij ; �mi0 ; �

fm
ji ; �

f
j0, are positive random variables which are supposed to account for unob-

servables that a�ect the preferences. Without loss of generality we may 'normalize' the

preference parameters for being single, that is, we let

ai0 = bj0 � 1:

The random terms are assumed to be distributed according to the type I extreme value

distribution, with cumulative distribution function given by

P (�mf
ij � y) = P (�mi0 � y) = P (�fmji � y) = P (�fj0 � y) = exp(�1=y)

for y > 0. The extreme value distribution is of particular interest in this context because it

can be given a behavioral justi�cation, and it is also tractable as it yields simple functional

forms.
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Given the above structure of the utility functions, Dagsvik [1998] demonstrates that the

asymptotic number of marriages between males in age group i and females in age group j;

Xij, can be expressed as

Xij =
cijMiFj

AiBj

(3.1)

where Ai and Bj are determined by the follwong system of equations

Ai = 1 +
X
k

cikFk

Bk

(3.2)

and

Bj = 1 +
X
k

ckjMk

Ak

(3.3)

for i = 1; ::::; n, and j = 1; ::::; n, and where cij = aijbji. The respective number of single

males and females are given by

Xi0 =
Mi

Ai

(3.4)

and

X0j =
Fj

Bj

:(3.5)

From the above expressions (3.1),(3.2) and (3.3), we may derive a polynomial equation in

Xij of a degree dependent on the number of categories. Dagsvik [1998] demonstrated (by

means of traditional �xed point techniques) that the system of equations (3.2) and (3.3)

always has a unique real and positive solution. However, expressing this solution on a closed

form is impossible in the general case. But, using numerical techniques it is straight forward

to solve these equations.

Dagsvik et.al. [1998] investigated whether or not the above marriage model satis�es the

Axioms A1-A7. Unfortunately, they were not able to prove whether or not A5 and A7 hold

in the general case. They also found that, in general, A6 does not hold. However, for their

particular estimates of the preference parameters, they did not �nd any case where A1-A7

were violated. From the expression (3.1) it is also evident that Axiom A8 is satis�ed, and

extending this formula to the real numbers makes the model continuous (di�erentiable) as

well (Axiom A9). However, since Ai and Bj are dependent on the size of the male and

female populations, the model is not homogenous, that is, Axiom A10 is violated.
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In the special case where n = 1, that is, where there is only one category of males and

females, (3.1) reduces to

X =
1

2
[�� +M + F �

p
(�� +M + F )2 � 4MF ];(3.6)

where � = 1=a, � = 1=b.

The above model (3.1) to (3.5) for the asymptotic number of marriages may be general-

ized by including the possibility of (feasible) contracts. A contract represents an agreement

between the agents when forming a marriage. In the present context, important contract

terms may for example be di�erent residential locations. In the presence of exible contracts,

the quantity cij is modi�ed to:

cij =
X
!

aij(!)bji(!)(3.7)

with aij(!) and bji(!) being the preference parameters of the men and women respectively,

under the contract !. For a more precise description of this case, we refer to Dagsvik [1998].

4 Properties of the demographic model based on our

marriage model

We will now examine the dynamics of a two-sex model of the form (2.5) based on the above

marriage model, that is, the asymptotic number of matches Xij represents the mating

function �ij in the expression (2.2). Thus, if (M(t); F (t)) is the (mature) population at

time t, the number of newborn females at time t+ 1 can be expressed as

F1(t + 1) =
X
ij

�ijXij(M(t); F (t)):

To study the properties of the above behavioral marriage model, it is desirable to �nd

realistic values of the preference parameters aij and bji (and the birth and survival rates �ij

and �Fi and �Mj as well). However, from the purpose of assessing the qualitative properties

of the model, the choice of faijg and fbjig may not be so critical. Our main purpose in

this paper is not to utilize the model to provide practical predictions, but to achieve a

better understanding of the dynamics of the model. When modeling human populations,

the assumption of one-year age groups lead to huge models. In our analysis we have, for

simplicity reasons, only considered the case where the number of age groups is equal to four

and ten, respectively.
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To detect (non-trivial) �xed and periodic points (of a map ggg), we must solve an equation

of the form

gggn(x) = x(4.1)

where gggn denotes the composition of ggg with itself n times. However, solving such equations

are not always possible using analytical techniques, and numerical methods may fail as

well if the �xed point is unstable (or semistable), that is, if the function ggg de�ning the

system is not contracting along all the eigenvectors. The possibility of several equilibria

makes the analysis even more complicated. Small variations in the model parameter may

change the system from converging towards the trivial equilibrium, to a system where each

orbit apparently tends towards in�nity, possibly indicating that if non-trivial equilibria or

periodic points exist, they are not stable. In such cases it may be more fruitful to go for an

alternative strategy, e.g. to use the possibility of reducing the dimension of the model.

Due to the standard (linear) agening structure in our model (2.3) and (2.4), we may

express the size of age class i at time t as a function of the number of newborn in year

t� i + 1, i.e.,

Mi(t) = (
i�1Y
k=1

�Mk )M1(t� i + 1);(4.2)

and

Fj(t) = (

j�1Y
l=1

�Fl )F1(t� j + 1);(4.3)

where 2 � i; j � n. Hence, we may express the number of newborn as follows:

(M1(t+ 1); F1(t+ 1)) = (�
X
i;j

�ijXij(M(t); F (t));
X
i;j

�ijXij(M(t); F (t))):(4.4)

Thus, by using (4.2), (4.3) and (4.4), we may reduce our original model to a (lagged) two-

dimensional model. If this model possesses a �xed or periodic point, then this must be the

case for the original model too. We can even continue one step further: Since the sex ratio

at birth, �, is assumed to be constant, a �xed point of the above two-dimensional model

must be on the form (�x; x). Hence we get a one-dimensional version of the model de�ned

by the map:

h(x) =
X
i;j

�ijXij(�x; ��
M
1 x; ::::; �(

n�1Y
k=1

�Mk )x; x; �F1 x; :::::; (
n�1Y
l=1

�Fl )x);(4.5)
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for x � 0. One-dimensional models are simple from a computational point of view, and are

easy to analyse by means of graphical techniques. Much of the dynamics of the original

system may be deduced from the dynamics of the corresponding one-dimensional system.

Thus, the equilibria of the above one-dimensional model may be detected by pure graphical

analysis. They are all represented by the intersections between the graph of h(x) and the

line y = x. Speci�cally, consider the marriage function (3.1), and the expressions (3.2) and

(3.3). At an equilibrium ~x of the one-dimensional map (4.5) (satisfying h(~x) = ~x), we have

Fj = (

j�1Y
k

�Fk )~x; Mi = (
i�1Y
k

�Mk )�~x

whenever 2 � i; j � n, and F1 = ~x, M1 = �~x. Thus we have

Xij =
�cij(

Qj�1

k=1 �
F
k )(
Qi�1

k=1 �
M
k )~x2

AiBj

(4.6)

where

Ai = 1 + ~x
X
k

�ik

Bk

(4.7)

and

Bj = 1 + �~x
X
k

�kj
Ak

(4.8)

for i; j = 1; :::; n, where

�ik = cik(
k�1Y
l=1

�Fl )

and

�kj = ckj(
k�1Y
l=1

�Ml ):

When ~x large (� 1), we may �nd real constants ~�i, ~�j and r, 0 < r < 1 such that Ai � ~�i~x
r

and Bj � ~�j�~x
1�r. This may be veri�ed by inserting the above expressions into the equations

(4.7) and (4.8), and by the fact that this system of equations possess a uniquely determined

solution. Thus, in this case the mating function Xij (4.6) is approximately equal to

Xij �
�cij(

Qj�1

k=1 �
F
k )(
Qi�1

k=1 �
M
k )~x2

~�i~xr ~�j�~x1�r
=

cij(
Qj�1

k=1 �
F
k )(
Qi�1

k=1 �
M
k )

~�i
~�j

� ~x(4.9)

making the model almost linear (remember that h(x) is a linear combination of the Xij).
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This is con�rmed by numerical simulations, which indicates that the graph of h(x) becomes

asymtotic linear when x increases. The main weakness of the above strategy is that the

original higher-dimensional system may have �xed or periodic points which is not possible

to detect by examining the one-dimensional system, making the above analysis incomplete.

4.1 Results from numerical simulations

We have carried out a number of numerical simulations, with di�erent number of age classes,

and di�erent parameters (we have only varied the birth and death rates). First we simulated

a 20-dimensional model with 10 age groups of each sex. Secondly, we reduced the number

of categories to four of each sex, yielding an 8-dimensional model. In both cases, we have

reduced the dimension of the model to one as described above. Based on a number of

simulation experiments, the following pattern seems to emerge:

(i) The map h(x) given by (4.5) is almost linear.

(ii) h(x) is monotonic increasing (more newborn lead to more adults).

(iii) h(0) = 0, that is, 0 is a (stable) equilibrium.

(iv) There are parameter values (birth/death rates and preference parameters) for which

h does not possess non-trivial equilibria.

(v) h(x) is (almost) convex. More precisely, there is a K > 0 such that h(x) is convex for

all x 2 (0; K). On the other hand, given K > 0, one can always �nd parameters such

that h(x) is convex for all x 2 (0; K).

(vi) There are parameter values for which h possesses (at least) one non-trivial equilibrium.

Since 0 is a stable equilibrium, and h(x) is convex, the smallest non-trivial equilibria

has to be unstable. As a consequence of the former observation, the smallest non-

trivial equilibrium x0 must satisfy x0 < K if it exists.

(vii) For some parameter values, there appears to be a set of x values such that h(x) is

concave. However, this is apparently not enough to guarantee a new intersection

with the line y = x, yielding a new non-trivial stable equilibrium. A more thorough

simulation experiment is needed to settle this question.
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(viii) Because of the almost linearity of h, the graph of h almost follow the line y = x for

some parameter values.

4.2 Discussion

From the above analysis, we may conclude that a stable, non-trivial equilibrium of our

population model does not seem to exist in the case where there are no transaction costs

associated with the dissolution of marriages. Hence, according to our model, the population

will either continue to grow until it reaches its biological carrying capacity, when a collapse

may occur (Malthus' principle), or (slowly) decrease until it becomes extinct. Since h is

almost linear, the growth of the population will also be almost linear, in accordance with

classical models. Thus, our analysis demonstrates that the case of a constant growing

population is not merely the result of a pure 'mathematical' construction, but may be a

consequence of the behavior of men and women in the marriage market.

The above analysis indicates that spectacular dynamical phenomena as cycles and chaos

does not occur in our model. The only type of bifurcation we have observed in the numerical

simulations is the birth of an unstable �xed point. However, we must emphasize that our

analysis is based on a drastical simpli�cation of actual realistic patterns.
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Appendix A: Inclusion of divorce rates

So far we have assumed the so-called Southern California life style, in which a marriage

can costlessly be dissolved after one year. This seems unrealistic in most populations, since

the cost associated with a divorce may often be rather high. One way to account for this

in the model is to introduce transaction costs into the model. This would induce 'state

dependence' in the model.

One way to relax the assumtion of costless dissolutions of marriages is to assume that

marriage dissolutions occur with some probability �. We shall now outline this approach.

To this end let Y M
ij (t) denote the population of men of age i married to women of age j at

time t and ~Mi(t) the population of single men of age i in year t. Then

Mi(t) = ~Mi(t) +
X
j

Y M
ij (t)(4.1)

is the total number of men of age i at time t. The number of single men of age i+1 at time

t + 1 is equal to the number of survived single men of age i at time t who do not marry in

(t; t + 1] plus the number of survived married men of age i at time t who divorce. Thus, if

we de�ne �ij to be the rate of divorce between men of age i and women of age j, we have

~Mi+1(t+ 1) = �Mi � [ ~Mi(t)�
X
j

(Xij( ~M(t); ~F (t))� �ij � Y
M
ij (t))](4.2)

where, as above, Xij denotes the number of marriages (during one year), ~F (t) is the available

women to the single men ~M(t), and where as before �Mi is the survival rate of women of age

i. The sum is taken over all age-classes of women. The number of men of age i+ 1 married

to women of age j + 1 at time t + 1 is equal to the (survived) number of matches (new

marriages) between (single) men of age i and women of age j at time t plus the survived

number of marriages between men of age i and women of age j at time t who are not been

divorced during (t; t + 1]. In mathematical terms this yields:

Y M
i+1;j+1(t+ 1) = �Mi � [Xij( ~M(t); ~F (t)) + (1� �ij) � Y

M
ij (t)]:(4.3)
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To check that internal consistency holds, (4.1), (4.2) and (4.3) yields:

Mi+1(t+ 1) = ~Mi+1(t+ 1) +
X
j

Y M
i+1;j+1(t + 1)

= �Mi [ ~Mi(t)�
X
j

(Xij( ~M(t); ~F (t)) + �ij � Y
M
ij (t))]

+
X
j

�Mi � [Xij( ~M(t); ~F (t)) + (1� �ij) � Y
M
ij (t)]

= �Mi [ ~M(t) +
X
j

Y M
ij (t)]

= �Mi Mi(t)

which is as required. Analogous to the above expressions we also have formulas for updating

the female population:

~Fj+1(t+ 1) = �Fj � [ ~Fj(t)�
X
i

(Xij( ~M(t); ~F (t)) + �ij � Y
F
ji (t))]

and

Y F
j+1;i+1(t+ 1) = �Fj � [Xij( ~M(t); ~F (t)) + (1� �ij) � Y

F
ji (t)]:

The above expressions may be used to de�ne a modi�ed demographic model, in which the

mating function is equal to

�ij(M(t); F (t)) = Y M
ij (t) = Y F

ji (t):

In this case, the matching game simulates the process on the marriage market between

single males and females during one year. Applying the matching model in this way clearly

provides a more intuitive and better description of reality. On the other hand, the model

becomes slightly more complicated. Notice that the original approach represents the special

case of the above situation, in which �ij = 1 for all combinations i; j.

Since each category is supposed to represent a one-year age class, the dimension of the

model may become very high. Thus, in practice, it may be a fruitful strategy to reduce the

dimension by assuming that each category represents several one-year age groups. However,

it is not obvious how to adjust the above formulas to cope with this situation. In this case

some of the individuals will remain in the same category, while others will not. One possible

way to treat this problem is to initially assume that all the individuals remain in the same

category (and thus adjust the above formulas according to this). Thereafter we use the

agening rates between age groups to compute how many (single, married and total) that

should be moved to the next category. In the next section we present another way to treat

this problem.
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Appendix B: Inclusion of agening rates

In this section we shall consider an alternative way to reduce the number of age groups in

the demographic model presented in the former section. Let �M
i ; �F

j be the agening rates of

males in age group i and females in age group j respectively, that is, the probability that

a male of category i (or female of category j) at a given time t will remain in age class i

(j) at time t+ 1 (for simplicity reasons we suppose these rates to be constant in time). To

simplify our notation we also de�ne

Xij(t) � Xij( ~M(t); ~F (t)):

Then the agening of the total male population (in age group i) may be expressed as (we

have a similar expression for the female population):

Mi(t+ 1) = �M
i �

M
i Mi(t) + (1� �M

i�1)�
M
i�1Mi�1(t)(4.1)

where i > 1. For age class one we must include the number of newborn (which may be

written as a linear combination of the number of marriages):

M1(t+ 1) = �M
1 �

M
1 M1(t) + �

X
k;l

�klY
M
kl :(4.2)

The population of single males in age group i at time t + 1 will now be equal to the single

males in age group i at time t not getting married who still are in age class i at time t + 1

plus the divorced males in age group i at time t still being in category i plus the single males

in age group i � 1 at time t not getting married and becoming a member of age class i at

time t + 1 plus the divorced males in age group i � 1 at time t being agened to category i

at time t+ 1. This yields the following updating rule:

~Mi(t+ 1) = �M
i �Mi [ ~Mi(t)�

X
j

(Xij(t)� �ijY
M
ij (t))]

+ (1� �M
i�1)�

M
i�1[ ~Mi�1(t)�

X
j

(Xi�1;j(t)� �i�1;jY
M
i�1;j(t))]:(4.3)

Again, in the special case i = 1, we must remove the entries involving age class i � 1, and

include the number of newborn (males). Of course, all newborn are supposed to be single;

hence

~M1(t+ 1) = �M
1 �

M
1 [ ~M1(t)�

X
j

(X1;j(t)� �1;jY
M
1;j (t))] + �

X
k;l

�klY
M
kl (t):(4.4)
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To compute the number of married males of category i with females of category j at time

t + 1 we must include four cases: Marriages between males in age group i and females in

age group j at time t still being in the same category at time t + 1, marriages between

males in age group i� 1 and females in age group j where the males are agened, marriages

between males of age i and females of category j � 1 where the females are agened, and

�nally marriages between males in age group i � 1 and females in age group j � 1 where

both are agened. This yields the following formula:

Y M
i;j (t+ 1) = �M

i �F
j �

M
i [Xij(t) + (1� �ij)Y

M
ij (t)]

+ �M
i (1� �F

j�1)�
M
i [Xi;j�1(t) + (1� �i;j�1)Y

M
i;j�1(t)]

+ (1� �M
i�1)�

F
j �

M
i�1[Xi�1;j(t) + (1� �i�1;j)Y

M
i�1;j(t)]

+ (1� �M
i�1)(1� �F

j�1)�
M
i�1[Xi�1;j�1(t) + (1� �i�1;j�1)Y

M
i�1;j�1(t)](4.5)

where i; j > 1. In the special case where i or j = 1, we must as before remove the entries

indexed by i� 1 or j � 1 respectively:

Special case I, i = 1; j > 1:

Y M
1;j (t+ 1) = �M

1 �
F
j �

M
1 [X1;j(t) + (1� �1;j)Y

M
1;j (t)]

+ �M
1 (1� �F

j�1)�
M
1 [X1;j�1(t) + (1� �1;j�1)Y

M
1;j�1(t)]:(4.6)

Special case II, i > 1; j = 1:

Y M
i;1 (t+ 1) = �M

i �F
1 �

M
i [Xi;1(t) + (1� �i;1)Y

M
i;1 (t)]

+ (1� �M
i�1)�

F
1 �

M
i�1[Xi�1;1(t) + (1� �i�1;1)Y

M
i�1;1(t)]:(4.7)

Special case III, i = 1; j = 1:

Y M
1;1(t+ 1) = �M

1 �
F
1 �

M
1 [X1;1(t) + (1� �1;1)Y

M
1;1(t)]:(4.8)

Similarly to the former case, we could verify the formulas (4.3) and (4.5) and their corre-

sponding special cases (4.4), (4.6), (4.7) and (4.8), by �rst summing (4.5) over all age groups

j of females, and observing that a lot of the entries are cancelling out each other. Adding

the result of this computation to (4.3) yields the right hand side of (4.1) (or (4.2)), the total

male population in age group i at time t + 1, as it should be. We have similar formulas as

(4.3) and (4.5) for the female population as well. The above formulas may be used to de�ne

an alternative demographic model, where each category may consist of several one-year age
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classes. This will reduce the dimension of the model. On the other hand, this approach

requires a knowledge of the agening parameters �M
i ; �F

j (these may be estimated using de-

mographic data), and the inclusion of these will increase the dimension of the parameter

space. We have implemented the above con�guration and run a few simulations. However,

the results so far have not been signi�cantly di�erent from the original version, indicating

that the inclusion of divorces in the model does not alter the qualitative behaviour of the

model to any extent.
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Appendix C. Simulation Results

Small sample and robustness properties of the marriage model

Recall that (3.1) to (3.5) represents the asymptotic number of marriages. Hence, it is

of great interest to analyze the robustness and small sample properties of the marriage

model. To investigate these properties, we have implemented the marriage model using the

mathematical software GAUSS from Aptech Inc on a UNIX workstation (SUN SPARC)

at Statistics Norway. The choice of language may not have been optimal with respect to

the speed of the simulation. However, the choice of programming language is made partly

because of our own experience from programming in GAUSS, and partly because GAUSS

provides the possibility of vectorization of the program code, making the programs more

compact. We have simulated versions of the model with di�erent assumptions about the

probability distributions of the random terms of the utility functions of the women and men.

The motivation for this is that it is of great interest to �nd out to which extent the

predictions of the model are robust with respect to alternative probability distributions

of the disturbances of the utility functions, and the introduction of exible contracts. To

throw some light on these questions, we have run several simulation experiments, using the

di�erent versions of the model.

We have done three series of simulations. In series one, we have considered the simple

case of only one category of both males and females, and no exible contract. In series

two we considered the case of two age groups of both males and females, and two exible

contracts. In the last simulation series, we considered only one age group of each sex,

but we allowed three di�erent contracts. In all the experiments, we ran 1000 simulations,

unless otherwise denoted in the tables displaying the results (in a couple of experiments, the

simulation speed was very slow, so we abrupted the simulation before 1000 simulations were

completed). In every case we carried out the simulations using two di�erent probability

distributions on the disturbance of the utility functions; the extreme value distribution and

the log normal distribution. Tables with simulation results are presented below. Some of

the results were also reported in Dagsvik [1998].

In general, the results of the simulations show that the small sample predictions are close

to the asymptotic ones. This is particularly the case when using extreme value distributed

disturbances. A few of the simulations gave poor results, especially the case of a large ratio
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(� 1 or � 1) between the number of males and females (in a given age group) combined

with the assumption of log normal distributed disturbances. It is not easy to point out a

reason for this.

Table C1: Simulation series I - one category of men and women

Number in Preference Number of marriages

each category parameters Predicted Simulated

M F a b X Extr.val.(st.dev.) Normal(st.dev.)

50 50 1/7 1/7 19.273 18.05 (3.0) 16.18 (2.7)

50 150 1/7 1 31.44 30.17 (3.3) 25.49 (3.1)

60 80 1 0.5 55.48 54.56 (2.0) 54.12 (?)

30 15 1 1 14.11 13.58 (1.1) 13.72 (1.3)

30 20 0.25 1 15.64 14.67 (1.7) 14.12 (1.7)

15 20 1/6 1/8 3.79 3.32 (1.5) 3.5 (1.5)

10 15 1/9 1/3 3.07 2.57 (1.3) 2.4 (1.2)

15 90 1/20 1 11.94 10.05 (1.7) 6.54 (2.0)

20 40 1/3 1/4 13.73 12.72 (2.0) 12.56 (2.1)

10 5 0.5 1 3.78 3.32 (1.0) 3.22 (0.9)

80 40 1 0.2 35.92 33.78 (2.1) 30.23 (2.7)

30 70 1/30 1/7 6.93 6.25 (2.0) 4.56 (1.8)

20 20 1/3 1/2 11.93 10.57 (1.8) 10.41 (1.9)

8 15 1/2 1/5 4.16 3.57 (1.3) 3.51 (1.3)

90 15 1 1/20 11.94 10.16 (1.7) 6.37 (1.9)

Simulation series II - two categories - two contracts

Mi is the number of men in age group i, Fj is the number of women in age group j, the

double index i; j indicates the matching between males from age group i with females of

age group j. aij(!) is the preference parameters for a man from group i to be married

with a woman from age group j under the contract !. bji(!) is the preference parameters

for a woman from group j to be married with a man from age group i under the contract !.
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Table C2: M1 = 20;M2 = 15, F1 = 30; F2 = 8.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 1:0 2:0 1:0 1:0 2:0 1:0 3:0 2:0

bji(!) 4:0 3:0 0:5 1:0 1:0 0:5 1:0 3:0

Predicted 7.569 0.382 3.672 2.224 11.353 0.191 3.672 4.449

Extr.val. 7.055 0.574 3.801 2.22 11.348 0.326 3.797 3.947

St.dev. 2.1 0.7 1.5 1.2 2.2 0.5 1.5 1.4

Normal 5.649 0.359 3.667 2.137 13.284 0.167 3.424 4.609

St.dev. 2.0 0.6 1.5 1.3 2.1 0.4 1.5 1.4

Table C3: M1 = 30;M2 = 10, F1 = 5; F2 = 20.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 1:0 2:0 1:0 1:0 2:0 1:0 3:0 2:0

bji(!) 4:0 3:0 0:5 1:0 1:0 0:5 1:0 3:0

Predicted 1.939 7.508 0.059 2.732 2.908 3.754 0.059 5.465

Extr.val. 2.194 7.437 0.065 2.548 2.578 3.679 0.086 5.487

St.dev. 1.1 1.8 0.3 1.4 1.1 1.6 0.3 1.5

Normal 2.484 7.815 0.015 2.336 2.459 2.462 0.022 6.494

St.dev. 1.1 1.7 0.1 1.4 1.1 1.4 0.2 1.6

Table C4: M1 = 20;M2 = 60, F1 = 10; F2 = 30.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 1:0 2:0 1:0 1:0 2:0 1:0 3:0 2:0

bji(!) 4:0 3:0 0:5 1:0 1:0 0:5 1:0 3:0

Predicted 2.653 1.248 1.655 9.34 3.98 0.624 1.655 18.679

Extr.val. 2.997 1.651 1.448 7.899 3.383 0.896 2.048 19.275

St.dev. 1.4 1.2 1.1 2.4 1.5 0.9 1.3 2.6

Normal (922s) 4.347 0.732 0.372 3.898 4.131 0.148 1.077 25.109
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Table C5: M1 = 15;M2 = 20, F1 = 10; F2 = 15.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 1:0 2:0 1:0 1:0 2:0 1:0 3:0 2:0

bji(!) 4:0 3:0 0:5 1:0 1:0 0:5 1:0 3:0

Predicted 3.229 1.299 0.883 4.263 4.843 0.65 0.883 8.527

Extr.val. 3.426 1.556 0.87 3.656 4.373 0.776 1.073 8.585

St.dev. 1.4 1.1 0.9 1.7 1.5 0.8 0.9 1.9

Normal 4.048 1.046 0.304 2.771 4.845 0.295 0.636 10.551

St.dev. 1.5 0.9 0.5 1.5 1.6 0.5 0.7 1.7

Table C6: M1 = 20;M2 = 15, F1 = 30; F2 = 8.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 5:0 4:0 0:5 0:5 1:0 1:0 8:0 7:0

bji(!) 2:0 1:0 1:0 3:0 2:0 1:0 4:0 6:0

Predicted 13.992 0.084 1.718 3.31 5.569 0.042 5.154 4.345

Extr.val. 13.291 0.11 1.998 3.321 6.02 0.047 4.776 4.293

St.dev. 2.1 0.3 1.2 1.4 1.9 0.2 1.3 1.4

Normal (980s) 14.192 0.015 1.784 3.294 5.542 0.002 4.728 4.613
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Table C7: M1 = 30;M2 = 10, F1 = 5; F2 = 20.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 5:0 4:0 0:5 0:5 1:0 1:0 8:0 7:0

bji(!) 2:0 1:0 1:0 3:0 2:0 1:0 4:0 6:0

Predicted 3.535 6.596 0.007 4.182 1.414 3.298 0.021 5.489

Extr.val. 3.234 6.536 0.03 4.183 1.571 3.34 0.073 5.347

St.dev. 1.1 1.7 0.2 1.5 1.1 1.6 0.3 1.6

Normal 3.854 7.127 0.004 4.292 1.068 2.551 0.024 5.586

St.dev. 0.9 1.5 0.1 1.6 0.9 1.4 0.2 1.6

Table C8: M1 = 20;M2 = 60, F1 = 10; F2 = 30.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 5:0 4:0 0:5 0:5 1:0 1:0 8:0 7:0

bji(!) 2:0 1:0 1:0 3:0 2:0 1:0 4:0 6:0

Predicted 4.531 0.201 0.906 12.836 1.812 0.1 2.717 16.848

Extr.val. (300s) 2.767 0.83 1.497 11.93 1.413 0.4 4.24 16.717

Normal (323s) 2.935 0.331 0.731 9.699 0.755 0.049 5.529 19.913

Table C9: M1 = 15;M2 = 20, F1 = 10; F2 = 15.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 5:0 4:0 0:5 0:5 1:0 1:0 8:0 7:0

bji(!) 2:0 1:0 1:0 3:0 2:0 1:0 4:0 6:0

Predicted 5.976 0.305 0.384 6.267 2.39 0.152 1.152 8.226

Extr.val. 4.84 0.791 0.665 5.667 2.232 0.439 1.999 7.935

St.dev. 1.4 0.8 0.8 1.9 1.3 0.6 1.1 1.9

Normal 5.585 0.464 0.419 5.263 1.638 0.116 2.17 9.1

St.dev. 1.5 0.6 0.6 1.8 1.1 0.3 1.1 1.9
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Table C10: M1 = 20;M2 = 15, F1 = 30; F2 = 8.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 4:0 4:0 1:5 0:5 2:0 1:0 1:0 1:0

bji(!) 0:5 0:5 0:5 0:5 1:5 0:5 1:0 2:0

Predicted 8.268 2.258 6.098 1.481 8.268 0.251 3.049 2.961

Extr.val. 8.055 2.354 5.998 1.496 8.023 0.317 3.253 2.629

St.dev. 2.1 1.2 1.7 1.1 2.1 0.5 1.5 1.3

Normal 8.212 2.322 5.799 1.486 8.166 0.139 2.939 2.917

St.dev. 2.1 1.2 1.8 1.1 2.2 0.4 1.5 1.3

Table C11: M1 = 30;M2 = 10, F1 = 5; F2 = 20.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 4:0 4:0 1:5 0:5 2:0 1:0 1:0 1:0

bji(!) 0:5 0:5 0:5 0:5 1:5 0:5 1:0 2:0

Predicted 2.181 12.558 0.363 1.856 2.181 1.395 0.181 3.713

Extr.val. 2.013 11.841 0.451 1.846 1.99 1.828 0.306 3.698

St.dev. 1.1 1.8 0.6 1.3 1.1 1.2 0.5 1.5

Normal 2.001 12.533 0.428 1.624 1.981 0.915 0.283 4.295

St.dev. 1.1 1.6 0.6 1.1 1.0 0.9 0.5 1.5
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Table C12: M1 = 20;M2 = 60, F1 = 10; F2 = 30.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 4:0 4:0 1:5 0:5 2:0 1:0 1:0 1:0

bji(!) 0:5 0:5 0:5 0:5 1:5 0:5 1:0 2:0

Predicted 2.225 5.456 3.622 7.894 2.225 0.606 1.811 15.788

Extr.val. 1.68 5.11 3.829 8.059 1.659 0.815 2.582 15.6

St.dev. 1.2 1.8 1.5 2.4 1.2 0.8 1.3 2.7

Normal 1.642 5.136 3.718 5.532 1.668 0.262 2.482 18.78

St.dev. 1.2 1.8 1.5 2.1 1.1 0.5 1.4 2.5

Table C13: M1 = 15;M2 = 20, F1 = 10; F2 = 15.

Contract ! 1 2

Age index i; j 1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

aij(!) 4:0 4:0 1:5 0:5 2:0 1:0 1:0 1:0

bji(!) 0:5 0:5 0:5 0:5 1:5 0:5 1:0 2:0

Predicted 2.988 4.416 2.44 3.205 2.988 0.491 1.22 6.411

Extr.val. 2.641 4.372 2.598 3.146 2.525 0.655 1.558 6.109

St.dev. 1.3 1.5 1.3 1.5 1.3 0.7 1.1 1.7

Normal 2.482 4.546 2.489 2.686 2.539 0.355 1.516 6.866

St.dev. 1.3 1.5 1.3 1.4 1.4 0.6 1.1 1.7

Simulation series III - one category, three exible contracts

Table C14: M = 30; F = 25.

Contract ! 1 2 3

a(!) 5:0 4:0 3:0

b(!) 2:0 1:5 2:5

Predicted 10.552 6.331 7.914

Extr.val. (St.dev.) 9.679 (2.4) 6.241 (2.2) 8.658 (2.4)

Normal (St.dev.) 9.731 (2.6) 5.201 (2.1) 9.844 (2.6)
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