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Preface:

The econometric discipline has been criticized for being too similar to mathematical statistics and only to
a limited degree linked to formalized theoretical models. This is particularly the case as regards
formulation and specification of the stochastic elements in econometric models. Ragnar Frisch, who is
known to be the originator of econometrics, expressed both in theory and practice an opposite ideal;
namely econometrics as an almost symbiotic blend of statistical methodology and mathematically
formulated theory, cf. Frisch (1926). See also Bjerkholt (1995).

Theory and econometric methodology for qualitative choice behavior is developed in a tradition
which | believe is somewhat closer to the ideal of Frisch than much of the traditional textbook approach
to econometrics. This stems from the fact that the theory of qualitative choice is rooted in a tradition
where probabilistic concepts and formulations play a key role in contrast to the point of departure in
traditional micro theory, which is deterministic. Since probabilistic concepts are integral parts of the
theory of qualitative choice this means that the gap between theory and empirical model specification in
applications often becomes less wide than is the case in the traditional micro-economic approach.

The present compendium is a fifth revised version of an introductory course in the theory of
qualitative choice behavior (often called the theory of discrete choice).

Acknowledgement: | acknowledge the helpful comments by Steinar Strem, Yun Li and a number of
students that followed the course. | also thank Anne Skoglund for word processing assistance.
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1. Introduction

The traditional theory for individual choice behavior, such as it usually is presented in textbooks of
consumer theory, presupposes that the goods offered in the market are infinitely divisible. However,
many important economic decisions involve choice among qualitative—or discrete alternatives.
Examples are choice among transportation alternatives, labor force participation, family size,
residential location, type and level of education, brand of automobile, etc. In transportation analyses,
for example, one is typically interested in estimating price and income elasticities to evalutate the
effect from changes in alternative-specific attributes such as fuel prices and user-cost for automobiles.
In addition, it is of interest to be able to predict the changes in the aggregate distribution of
commuters that follow from introducing a new transportation alternative, or closing down an old one.

The set of alternatives may be “structurally” discrete or only “observationally” discrete. The
set of feasible transportation alternatives is an example of a structurally categorical setting while
different levels of labor supply such as “part time”, and “full time” employment may be interpreted as
only observationally discrete since the underlying set of feasible alternatives, “hours of work”, is a
continuum.

In several applications the interest is to model choice behavior for so-called
discrete/continuous settings. Typical examples of phenomena where the response is
discrete/continuous are variants of consumer demand models with corner solutions. Here the discrete
choice consists in whether or not to purchase a positive quantity of a specific commodity, and the
continuous choice is how much to purchase, given that the discrete decision is to purchase a positive
amount. Another type of application is the demand for durables combined with the intensity of use.
For example, a consumer that purchases an automobile has preferences over the intensity of use, and a
household that purchases an electric appliance is also concerned with the intensity of use of the
equipment.

The recent theory of probabilistic, or discrete/continuous choice is designed to model these
kind of choice settings, and to provide the corresponding econometric methodology for empirical
analyses. Due to variables that are unobservable to the econometrician (and possibly also to the
individual agents themselves), the observations from a sample of agents' discrete choices can be
viewed as outcomes generated by a stochastic model. Statistically, these observations can be
considered as outcomes of multinomial experiments, since the alternatives typically are mutually
exclusive. In the context of choice behavior, the probabilities in the multinomial model are to be
interpreted as the probability of choosing the respective alternatives (choice probabilities), and the
purpose of the theory of discrete choice is to provide a structure of the probabilities that can be
justified from behavioral arguments. Specifically, one is, analogously to the standard textbook theory
of consumer behavior, interested in expressing the choice probabilities as functions of the agents’

preferences and the choice constraints. The choice constraints are represented by the usual economic

4



budget constraint and in addition, the choice set (possibly individual specific), which is the set of
alternatives that are feasible to the agent. For example, in transportation modelling some commuters
may have access to railway transportation while others may not.

In the last 25 years there has been an almost explosive development in the theoretical and
methodological literature within the field of discrete choice. Originally, much of the theory was
develop by psychologists, and it was not until the mid-sixties that economists startet to adopt and
adjust the theory with the purpose of analyzing discrete choice problems. In the present compendium
we shall discuss central parts of the theory of discrete/continuous choice as well as some of the
econometric methods that apply.

In contrast to standard textbooks and surveys in econometric modelling of discrete choice
such as Maddala (1983), Train (1986), Amemiya (1981), McFadden (1984) and Ben-Akiva and
Lerman (1985), the focus of the present treatment is more on the theoretical developments than on
statistical methodology. The reason for this is two-fold. First, it is believed that it is of substantial
interest to bring forward some of the recent theoretical results that otherwise would not be easily
accessible for the non-expert student. Second, the statistical methodology for estimation, testing and
diagnostic analysis is rather well covered by the textbooks and surveys mentioned above.'

This survey is organized as follows: In Section 2 I give a brief overview of reduced form type
specifications of models with discrete response. In Section 3 I discuss some important elements of
probabilistic choice theory, and in Section 4 I discuss the modeling of a few selected applications of
discrete choice analysis. In Section 5 the extension to discrete/continuous choice model is treated. In
Section 6 I discuss applications on discrete/continuous modeling. In the final section an outline of

standard methods for estimation and testing is provided.

! An elementary survey in Norwegian is Dagsvik (1985).



2. Statistical analysis when the dependent variable is discrete

As mentioned in the introduction there are many interesting phenomena which naturally can be
modelled with a dependent variable being qualitative (discrete) or where the dependent variable may
be both discrete and continuous.

While most of the subsequent chapters will discuss theoretical aspects of discrete/continuous
choice, we shall in this chapter give a brief summary of the most common statistical models which are
useful for analyzing phenomena when the dependent variable is discrete, without assuming that the
underlying response variables necessarily are generated by agents that make decisions. A more
detailed exposition is found in Maddala (1983), chapter one and two. However, the statistical
methodology we discuss is of relevance for estimating the choice models for agents (consumers,

firms, workers, etc.), and will be further discussed in subsequent chapters.

2.1. Models with discrete response

LI N3 &,

When analyzing “demand for housing”, “tourist destinations”, “type of accident”, etc. the
response—or dependent variable—is typically discrete and it often has the structure of a binomial, or
more generally, a multinomial variable. Recall that in multinomial experiments with m possible
categories only one out of m outcomes can occur in each experiment. In other words, the outcomes are
mutually exclusive. For example, out of m possible housing alternatives the household will only select
one. Similarly, a student who has the choice between m different schools will only select one.

Statistically, a multinomial model is represented by probabilities, Pj ,J=12,...,m, where P;is the

probability that outcome j shall occur.

Let Y; denote the corresponding response variable, where Y; =1 if outcome j occurs and zero

otherwise. (For simplicity, we suppress the indexation of the agent.) Then

EY;=P(Y;=1)-1+P(Y; =0)-0=P(Y; =1)=P,. We can therefore write

2.1 Yj =Pj +e;

where {e j} are random terms with zero mean. Thus, once the systematic term P; has been specified as

a function of explanatory variables, one could estimate the unknown parameters by regression

analysis. However, it is problematic to specify the probabilities {Pj} as linear functions of the

explanatory variables due to the fact that a linear specification does not necessarily satisfy the

constraints that 0<P; <1, and 2,- P, =1 (cf. Maddala, 1983, pp. 15-16, or Greene, 1990, pp. 636-

441).



Example 2.1

Consider the modelling of labor force participation. In this case m=2, where alternative two
represents participation, while alternative one represents nonparticipation. It is believed that a number
of factors, such as age, marital status, number of small children, education, etc., explain the outcome.

Let X be the vector of relevant (observable) variables that explain the outcome. Thus

(2.2) P, =y(XB)

where y(-) is a suitable chosen functional form while B is a vector of unknown parameters. If one
could estimate P it would for example be possible to assess the marginal effect of education on labor

force participation. We realize that y(-) must be positive and 0< y(-) <1.

2.1.1. The multinomial Logit model

One convenient and commonly used specification that fulfills the restrictions that 0 < P, <1, and
zj P, =1, is the multinomial logit model. One version of the multinomial logit model has the

structure

exp (XBJ-)
2:;1 exp (X Be )

where X is, typically, a vector of agent-specific variables B;, j=1,2,...,m, are vectors of unknown

(2.3) P, =H;(X;B) =

parameters, and 3 = (B, B, ,...,Bm) . This specification is also convenient for estimation purposes as

we shall discuss in Section 6.

From (2.3) it follows that

H.(X;
(2.4) 1og[H—’§§%)=x(|3j ~B,).

Eq. (2.4) demonstrates that at most B; — B, can be identified. To realize this, suppose B; , are

parameter vectors such that [3; #B;,j=12,...m.If

B: =Bj_Bl +B:

for j=2,...,m, then {B:} will satisfy (2.4), and consequently {B-

J} are not identified. We can

therefore, without loss of generality, put 3, =0, and write



1

(2.52) H,(X;B)=——
1+Z exp(XBy)
k=2
and
XB.
(2.5b) H,(X:B) = exp (XP)

1+i exp(XBy)

for j=2,3,...,m. Evidently, with sufficient variation in the X-vector, B j»1=23,...,m, will be

identified.

Example 2.2

Consider the choice of tourist destination. Suppose there are m actual destinations. We
assume that actual variables that influence this choice are age, income, education, marital status,
family size, etc. Let X be the vector of these variables. The probability of choosing destination j can

be modelled as in (2.5).

2.1.2. The binary Probit and Logit model
Let ®@(-) denote the cumulative normal distribution, N(0,1). Then by letting y(-)=®(-) we obtain the

binary Probit model as

Xp 2
1 t
2.6) P(Y, =1)=d(XB)=—— | exp|—— |dt.
Let L(-) denote the standard cumulative logistic distribution given by

1

27 -
2.7 (y) Trexp(—y)

By letting y(-)=L(-) we obtain the binary Logit model, which also of course follows from (2.3) when
m=2.

The normal and the logistic distributions are rather close, and in most applications one has
found that the binary logit and probit models are (almost) indistinguishable.

In case there are extreme values of the explanatory variables the predictions from the logit and
probit model conditional on these extreme values may, however, differ since the logistic distribution

has slightly heavier tails than the normal distribution.



2.1.3. Binary models derived from latent variable specifications
For the sake of motivation let us reconsider Example 2.1. Let now Uj be the individual’s utility of

alternative j, j=1,2, and let

@8) U;=XB; +u,

where u; is a random variable that is supposed to capture unobserved variables that affect the utility of

alternative j. Let

*

(2.9) Y'=U,-U,=XB-u

where B=f, —B, and u=u, —u,.Let y(y) =P(u<y), be the cumulative distribution function of

u, which we assume is independent of X. Consistent with the notation in Example 2.1, let the

observable variable, Y,, be given by

, =

v Jrif Y >0
0 otherwise

and Y, =1-Y,. From (2.9) it follows that the probability of participation equals

P, =P(Y,=1)=P(Y">0)
=P(XB-u>0)=P(XB>u)=y(XB).

If w(y)=®(y), where @(-) is given by (2.6), the Probit model follows, whereas if y(-)=L(-), where

L(-) is given by (2.7), the binary Logit model follows.
For example, in the labor force participation example, Y™ may be interpreted as the difference
between the agent's (expected) market wage and the reservation wage. This, and further examples will

be discussed in Sections 4 and 7.



3. Theoretical developments of probabilistic choice models

3.1. Random utility models

As indicated above, the basic problem confronted by discrete choice theory is the modelling of choice
from a set of mutually exclusive and collectively exhaustive alternatives. In principle, one could apply
the conventional microeconomic approach for divisible commodities to model these phenomena but a
moment’s reflection reveals that this would be rather ackward. This is due to the fact that when the
alternatives are discrete, it is not possible to base the modelling of the agent’s chosen quantities by
evaluating marginal rates of substitution (marginal calculus), simply because the utility function will
not be differentiable. In other words, the standard marginal calculus approach does not work in this

case. Consequently, discrete choice analysis calls for a different approach.

3.1.1. The Thurstone model

Historically, discrete choice analysis was initiated by psychologists. Thurstone (1927) proposed the
Thurstone model to explain the results from psychological and psychophysical experiments. These
experiments involved asking students to compare intensities of physical stimuli. For example, a
student could be asked to rank objects in terms of weights, or tones in terms of loudness. The data
from these experiments revealed that there seemed to be the case that some students would make
different rankings when the choice experiments were replicated. To account for the variability in
responses, Thurstone proposed a model based on the idea that a stimulus induces a “psychological
state” that is a realization of a random variable. Specifically, he represented the preferences over the
alternatives by random variables, so that the individual decision-maker would choose the alternative
with the highest value of the random variable. The interpretation is two-fold: First, the utilities may
vary across individuals due to variables that are not observable to the analyst. Second, the utility of a
given alternative may also vary from one moment to the next, for the same individual, due to
fluctuations in the individual’s psychological state. As a result, the observed decisions may vary
across identical experiments even for the same individual.

In many experiments Thurstone asked each individual to make several binary comparisons,

and he represented the utility of each alternative by a normally distributed random variable. Let U}

and U}, denote the utilities a specific individual associates with the alternatives in replication no. i,

i=1_2,...,n. Thurstone assumed that
i i
Uj =V; +E;

where eij ,J=12,1=12,...,n, are independent and normally distributed where eij has zero mean and

standard deviation equal to 6;. Thus according to the decision rule the individual would choose
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alternative one in replication i if U} is greater than U}, . Due to the “error term”, sij , the individual

may make different judgments in replications of the same experiment. Let in =1if alternative j is

chosen in replication 1 and zero otherwise. The relative number of times the individual chooses

alternative j, f’j , equals

f’j EZ{ in/n,

j=1,2. When the number of replications increases, then it follows from the law of large numbers that

A

P, tends towards the theoretical probability;

Vi—V,

Jo? +a?

where ®(-) is the standard cumulative normal distribution. The last equality in (3.1) follows from the

3.1) P, =P(Uj>U})=0

assumption that the error terms are normally distributed random variables. The probability in (3.1)
represents the propensity of choosing alternative j and it is a function of the standard deviations and
the means, v; and v,. While v; repesents the “average” utility of alternative j the respective standard
deviations account for the degree of instability in the individuals preferences across replicated
experiments. We recognize (3.1) as a version of the binary probit model.

Although Thurstone suggested that the above approach could be extended to the multinomial
choice setting, and with other distribution functions than the normal one, the statistical theory at that

time was not sufficiently developed to make such extensions practical.

3.1.2. The neoclassisist’s approach

The tradition in economics is somewhat different from the psychologist’s approach. Specifically, the
econometrician usually is concerned with analyzing discrete data obtained from a sample of
individuals. With a neoclassical point of departure, the tradition is that preferences are typically
assumed to be deterministic from the agent’ point of view, in the sense that if the experiment were
replicated, the agent would make identical decisions. In practice, however, one may observe that
observationally identical agents make different choices. This is explained as resulting from variables
that affect the choice process and are unobservable to the econometrician. The unobservables are,
however, assumed to be perfectly known to the individual agents. Consequently, the utility function is
modeled as random from the observing econometricians point of view, while it is interpreted as

deterministic to the agent himself. Thus the randomness is due to the lack of information available to
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the observer. Thus, in contrast to the psychologist, the neoclassical economist seems usually reluctant
to interpret the random variables in the utility function as random to the agent himself. Since the
economist often does not have access to data from replicated experiments, he is not readily forced to
modify his point of view either. There are, however, exceptions, see for example Quandt (1956) and

Georgescu-Roegen (1958).

3.1.3. General systems of choice probabilities

Formally, we shall define a system of choice probabilities as follows:

Definition 1; System of choice probabilities
(i) A univers of choice alternatives, S. Each alternative in S may be characterized by a set of

variables which we shall call attributes.

(ii)) Possibly a set of agent-specific characteristics.
(iii) A family of choice probabilities {Pj(B), jeBc S} , where P,(B) is the probability of choosing

alternative j when B is the set (choice set) of feasible alternatives presented to the agent. The
choice probabilities are possible dependent on individual characteristics of the agent and of

attributes of the alternatives within the choice set.

Evidently, for each given Bc S, » = P.(B)=1, since for given B, P;(B) are “multinomial”
EB ) )

probabilities.

Definition 2

A system of choice probabilities constitutes a random utility model if there exists a set of

(latent) random variables {U i JE S} such that

(3.2) P,(B)= P(Uj =T§‘§‘U")'

The random variable U; is called the utility of alternative j. If the joint distribution function of
the utilities has been specified it is possible to derive the structure of the choice probabilities by
means of (3.2) as a function of the joint distribution of the utilities. However, in most cases the
resulting expression will be rather complicated. As explained above, the empirical counterpart of
P;(B) is the fraction of individuals with observationally identical characteristics that have chosen
alternative j from B.

Often , the random utilities are assumed to have an additively separable structure,

12



(3.3) U, =v, +;,

where v; is a deterministic term and €; is a random variable. The joint distribution of the terms

(€,,€,,...) is assumed to be independent of {v j} . In empirical applications the deterministic terms

are specified as functions of observable attributes and individual characteristics.

Similarly to Manski (1977) we may identify the following sources of uncertainty that
contribute to the randomness in the preferences:

(i) Unobservable attributes: The vector of attributes that characterize the alternatives may only
partly be observable to the econometrician.

(ii)) Unobservable individual-specific characteristics:Some of the variables that influence the
variation in the agents tastes may partly be unobservable to the econometrician.

(iii) Measurement errors: There may be measurement errors in the attributes, choice sets and
individual characteristics.

(iv) Functional misspecification: The functional form of the utility function and the distribution of
the random terms are not fully known by the observer. In practice, he must specify a parametric
form of the utility function as well as the distribution function which at best are crude
approximations to the true underlying functional forms.

(v) Bounded rationality: One might go along with the psychologists point of view in allowing the
utilities to be random to the agent himself. In addition to the assessment made by Thurstone,
there is an increasing body of empirical evidence, as well as common daily life experience,
suggesting that agents in the decision-process seem to have difficulty with assessing the precise
value of each alternative. Consequently, their preferences may change from one moment to the
next in a manner that is unpredictable (to the agents themselves).

To summarize, it is possible to interpret the randomness of the agents utility functions as
partly an effect of unobservable taste variation and partly an effect that stem from the agents difficulty
of dealing with the complexity of assessing the proper value to the alternatives. In other words, it
seems plausible to interpret the utilities as random variables both to the observer as well as to the
agent himself. In practice, it will seldom be possible to identify the contribution from the different
sources to the uncertainty in preferences. For example, if the data at hand consists of observations
from a cross-section of consumers, we will not be able to distinguish between seemingly inconsistent
choice behavior that results from unobservables versus preferences that are uncertain to the agents
themselves.

Before we discuss the random utility approach further we shall next turn to a very important

contribution in the theory of discrete choice.
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3.2. Independence from Irrelevant Alternatives and the Luce model

Luce (1959) introduced a class of probabilistic discrete choice model that has become very important
in many fields of choice analyses. Instead of Thurstone’s random utility approach, Luce postulated a
structure on the choice probabilities directly without assuming the existence of any underlying
(random) utility function. Recall that P;(B) means the probability that the agent shall choose
alternative j from B when B is the choice set. Statistically, for each given B, recall that these are the
probabilities in a multinomial model, (due to the fact that the choices are mutually exclusive), which
sum up to one. However, the question remains how these probabilities should be specified as a

function of the attributes and how the choice probabilities should depend on the choice set, i.e., in

other words, how should {Pj (B)} and {Pj (A)} be related when je BN A ? To deal with this

challenge, Luce proposed his famous Choice Axiom, which has later been known as the IIA property;
“Independence from Irrelevant Alternatives”. To describe IIA we think of the agent as if he is
organizing his decision-process in two (or several) stages: In the first stage he selects a subset A from
B, where A contains alternatives that are preferable to the alternatives in B\A. In the second stage the
agent subsequently chooses his preferred alternative from A. So far this entails no essential loss of
generality, since it is usually always possible to think of the decision process in this manner. The
crucial assumption Luce made is that, on average, the choice from A in the last stage does not depend
on alternatives outside A; the alternatives discarded in the first stage has been completely “forgotten”
by the agent. In other words, the alternatives outside A are irrelevant. A probabilistic statement of this

property is as follows: Let P,(B) denote the probability of selecting a subset A from B, defined by

P,(B)=) P,(B).

jeA

Specifically, Po(B) means the probability of selecting a set of alternatives A which are at least as

attractive as the alternatives B\A.

Definition 3; Independence from irrelevant alternatives (I1A)

A system of choice probabilities, {Pj (B)}, satisfies I1IA if and only if for all j, A, B such that
je ACBCS, the following is true:
(i) If, for given je A, P(j.k)e (0,1) forall ke A, then
(3.49) ~ P,(B)= P,(B) P, (4).

(i) If P(k, j)=0 for some j, ke B, then, forall Ac B

14



PA(B):PA\{k} (B\{k})'

Eq. (3.4) states that the probability of choosing alternative j from B equals the probability that
A is a subset of the “best” alternatives which is selected in stage one times the probability of selecting
alternative j from A in the second stage. Notice that the second stage probability, Pj(A), has the same
structure as Pj(B), i.e., it does not depend on alternatives outside the (current) choice set A. Note that
since this is a probabilistic statement it does not mean that IIA should hold in every single experiment.
It only means that it should hold on average, when the choice experiment is replicated a large number
of times, or alternatively, it should hold on average in a large sample of “identical” agents. (In the
sense of agents with identically distributed tastes.) We may therefore think of IIA as an assumption of
“probabilistic rationality”. Another way of expressing IIA is that the rank ordering within any subset
of the choice set is, on average, independent of alternatives outside the subset.

It may be instructive for the sake of clarification of the IIA property to consider the
relationship between P;(B) and the conditional choice probability given that the chosen alternative
belongs to B. More specifically, suppose for example that the universal set S is erasible. Then the
conditional choice probability that alternative j is chosen, given that the chosen alternative belongs to

BcS, equals

P,(S)
Py(S)

k4

which only coincides with Pj(B) when IIA holds. While Pj(B) expresses the probability that j is chosen

when the choice set equals B, P;(S)/Py(S) expresses the probability that j is chosen when the choice ’
set is S, given that the chosen outcome belongs to B. The empirical counterpart to P;(S) /Py (S) is the

number of agents that face choice set S and have chosen j, to the number of agents that face choice set

S and whose choice outcomes belong to B.

Definition 4; The Constant-Ratio Rule

A system of choice probabilities, {PJ (B)}, satisfies the constant-ratio rule if and only if for

allj, k, B such that j, ke BCS,

6.3 P, ({k 1)/ R (6 3= B, B/ Pu(B)

provided the denominators do not vanish.

The following results are due to Luce (1959):
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Theorem 1
Suppose {Pj ( B)} is a system of choice probabilities and assume that P, ({ j,k}) €(0,1) for
all j ke S . Then part (i) of the 1A assumption holds if and only if there exist positive scalars,

a(j), j€S, such that the choice probabilities equal

(3.6) P(B) __ai)

2 a(k)’

keB

Moreover, the scalars {a(j)} are unique apart from multiplication by a positive constant.

Proof: Assume first that (3.6) holds. Then it follows immediately that (3.4) holds. Assume
next that (3.4) holds. Define a(j)=c P;(S), where c is an arbitrary positive constant. Then by (3.4)

with B=S and A =B, we obtain

Pi(S) __a(je a(j)
P.(By=-. = =
B ® Y ae Y ak)
keB keB

where B c S. This shows that Py(B) has the structure (3.6).
To show uniqueness (apart from multiplication by a constant), let a(j) be positive scalars

such that (3.6) holds with a(j) replaced by a(j). Then with B=S we get

Pi®® _a() _3Q
P(S) a) W

which implies that

a(y=a() 2

Thus we have proved that IIA implies the existence of scalars {a( ».Jje S} , such that (3.6) holds and

these scalars are unique apart from multiplication by a constant.

QED.

Theorem 2
Let {Pj (. B)} be a system of choice probabilities. The Constant-Ratio Rule holds if and only if

114 holds (part (i)).
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Proof: The constant ratio rule implies that for ke AcBcS

P®) _P ({i.k}) _F&)
P.B) P({jk}) Pu(A)

Hence, since

P,(B)P, (A)=P;(A)P, (B)
and

Y P(A)=1,

keA

we obtain

P,(B)=P;(B) 2 P, (A)=P;(A) Z P, (B)=P;(A)P,(B).
keA keA
Conversely, if IIA holds we realize immediately that the constant ratio rule will hold.

QED.

The results above are very powerful in that they establish statements that are equivalent to the
ITA assumption, and they yield a simple structure of the choice probabilities. For example, if the
univers S consists of four alternatives, S = {1,2,3,4}, there will be at most 11 different choice sets,
namely {1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}. This
yields altogether 28 probabilities. Since the probabilities sum to one for each choice set we can reduce
the number of “free” probabilities to 17. However, when IIA holds we can express all the choice
probabilities by only three scale values, a,, a; and a, (since we can choose a;=1, or equal to any other
positive value). We therefore realize that the Luce model implies strong restrictions on the system of
choice probabilities.

There is another interesting feature that follows from the Luce model, expressed in the next

Corollary.

Corollary 1
If 114, part (i) holds it follows that for distinct i, j and k € S

(3.7) P ({i. 7}) P, (U k) (k1) = B ({i k1) P (. 73) B (U 1)

17



The proof of this result is immediate.

Recall that IIA only implies rationality “in the long run”, or at the aggregate level. Thus the
probability of intransitive sequences (chains) is positive. The result in Corollary 1 is a statement about

intransitive chains beause the interpretation of (3.7) is that

P(i>j>k>i)=P(i>k>j>i)

where > means “preferred to”. In other words, the intransitive chains i>j>k>1 and i>k>j>1

have the same probability. This shows that although intransitive “chains” can occur with positive
probability there is no systematic violation of transitivity. In fact, it can also be proved that if (3.7)

holds then the binary choice probabilities must have the form

.. a(j)
(3.8) P,({i.j})= m

where {a( RS S} are unique up to multiplication by a constant, cf. Luce and Suppes (1965).

However, (3.7) does not imply IIA. Equation (3.7) is often called the Product rule.

3.3. The relationship between IIA and the random utility formulation

After Luce had introduced the IIA property and the corresponding Luce model, Luce (1959), the
question whether there exists a random utility model that is consistent with ITA was raised. A first
answer to this problem was given by Holman and Marley in an unpublished paper (cf. Luce and

Suppes, 1965, p. 338).

Theorem 3

Assume a random utility model, U ;=v ; +&;, where £, j €S, are independent random

variables with standard type III extreme value distribution’

(3.9) P(sj Sx|vk,keS)=exp(—e"‘).

Then, for je BCS,

(3.10) P.(B)= P(U -

2 In the following the distribution function (3.9) will be called the standard extreme value distribution.
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We realize that (3.10) is a Luce model with v; =loga(j) . Thus, by Theorem 3 there exists a

random utility model that rationalizes the Luce model.

Proof: Let us first derive the cumulative distribution for V; =max,g,(; U, . We have

3.11) P(Vij)= H P(e, Sy-vy)= H exp(—evk'y)zexp(—e‘y Dj)
keB\(j} keB\(j)

where

(3.12) D=3, gy &

Hence

(3.13) P(UFTgUk):P(Uj>Vj)=P(ej+vj>v T P(y>V;)P(e; +v; e(y,y+dy)).
Note next that since by (3.9)
P(Uij)zP(ej+vj<y)=exp(—ev"_y)

it follows that

P(t»:j +v;e(y,y+ dy)) =exp(—e""'y ).ev"_y dy.

Hence

]: y > V 8 +V;€ (y,y + dy)) = ]: CXp(—Dj e_y)exp(_evi_)')evj-y dy
(3.14) =e" T exp(—(Dj +ev")e’y)e'y dy

=_—Dje+evi _Lexp(—(Dj +evi)e_y) = Dje+ev3 .
Since

D, +e¥ =Z e'x

the result of the Theorem follows from (3.13) and (3.14).
Q.ED.

19



An interesting question is whether or not there exists other distribution functions than (3.9)
which imply the Luce model. McFadden (1973) proved that under particular assumptions the answer
is no. Later Yellott (1977) and Strauss (1979) gave proofs of this result under weaker conditions.

Yellott (1977) proved the following resuit.

Theorem 4

Assume that S contains more than two alternatives, and U ; =v ; +€;, where £, j€S, are
i.i.d. with cumulative distribution function that is independent of {v i J€ S} and is strictly increasing

on the real line. Then (3.10) holds if and only if & has the standard extreme value distribution

Sfunction.

Example 3.1
Consider the choice between m brands of cornflakes. The price of brand j is Z;. We assume

that the utility function of the consumer has the form

(3.15) U;=ZB+eg0

where B<0 and 6 >0 are unknown parameters, g, j=1.2,...,m, are i.i. extreme value distributed.

Without loss of generality we can write the utility function as
(3.16) U0,=2;B/c+e,=ZB+¢,.
From Theorem 3 it follows that the choice probabilities can be written as

exo(2)
exp (ZkB)

3.17) P. =

) m
k=1
Clearly, B is identified, since

1og(§)=(zj ~Z,)B.

However, o is not identified. Note that the variance of the error term in the utility function is large

when © is large, which in formulation (3.16) corresponds to a small .

When B has been estimated one can compute the aggregate own- and cross-price elasticities

according to the formulae
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v dlogP.
(3.18) alogZJj =Bz;(1-P,)
and
(3.19) lgh _ gz, ¥,
dlogZ,
for k+j.
Example 3.2

Consider a transportation choice problem. There are two feasible alternatives, namely driving
own car (Alternative 1), or riding a bus (Alternative 2).
Let i1 index the commuter and let

7 = 1 if j=1
i 0 otherwise,

Zy = In-vehicle time, alternative j,

Z..

i3 Out-of-vehicle time, alternative j,

Z;,, = Transportation cost, alternative j.

The variable Z;, is supposed to represent the intrinsic preference for driving own car. The utility

function is assumed to have the structure
U, =Z;B +g;

where Z;; (ZlJl Ly ’an3’an4) & and €, are i.i. extreme value distributed, and B is a vector of

unknown coefficients. From these assumptions it follows that the probability that commuter i shall

choose alternative ) is given by

exp (ZUB)

i ex lkB)

k=1

(3.20)

i 2

From a sample of observations of individual choices and attribute variables one can estimate 3 by the
maximum likelihood procedure.
Let us consider how the model above can be applied in policy simulations once 3 has been

estimated. Consider a group of individuals facing some attribute vector Z;, j=1,2. The corresponding

choice probability equals
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exp (Z jB)

3.21) P, =—
2 exp(ZkB)
k=1
for j=1,2. From (3.21) it follows that
alogP
3.22 Z,
-22) alogZ =B ( )
and
(3.23) Ilog P, B.Z. P
' ologZ,, ' ok

for k # j. Eq. (3.22) expresses the “own elasticities” while (3.23) expresses the “cross elasticities”.

Specifically, (3.22) yields the relative increase in the fraction of individuals that choose alternative j

that follows from a relative increase in Z;; by one unit.

3.4. The independent random utility model

We now consider the problem of deriving the choice probabilities in a random utility model,
U;=v;+¢g;, where €, j€S, are independent with P((»:j < y)=Fj(y) . In this case the choice

probabilities can be expressed as

(3.24) R@®=[ lB'\I{A}Fk (= v)F(y = v;)dy
€B\{j

for BcS.

To realize that (3.24) holds note that since €;, j€S, are independent we get

P( max U, < )—P ) (Ecsy-vi)|= J] Plecsy-vi)= IT E(y-vi)
keB\{j} keB\{j} keB\{j}

keB\{j}

Furthermore,

P(U; (y.y +dy)) =F{(y)dy.
Hence,

oo

P,(B) = P(U > max U ) jp(y> max U )Fj'(y)dy=j IT E(y-vi)Emdy.

keB\{j} e keB\{j}
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Example 3.3. (Multinomial logit)

Assume that

(3.25) F,(y) =exp (-—e'y )
Then (3.24) yields
e"
(3.26) P,(B)= ”
2 "
keB

Example 3.4. (Independent multinomial probit)
If

3.27) Fl(y)=®'(y)=

1
V27

then we obtain the socalled Independent multinomial Probit model,;

(3.28) P,(B)= j kl;\[{j}d)(y—vk)exp(—%(y_vj)z) %.

It has been found through simulations and empirical applications that the independent probit model

yields choice probabilities that are close to the multinomial logit choice probabilities.

Example 3.5. (Binary probit)
Assume that B={1,2} and F;(y)=®(y~2). Then

(3.29) P(U,>U,)=®(v, —v,).

Example 3.6. (Binary Arcus-tangens)
Assume that B={1,2} and

2

The density (3.30) is the density of a Cauchy distribution. Then
1 1
(3.31) P(U,>U2)=§+—Arctg(vl —-V,).
T
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The Arcus-tangens model differs essentially from the binary logit and probit models in that the tails of

the Arcus-tangens model are much heavier than for the other two models.

3.5. Specification of the structural terms, examples

Let Z;= (Z 1Ly L jK) denote a vector of attributes that characterize alternative j. In the absence

of individual characteristics, a convenient functional form is

K
(3.32) vi=Z;B=) Z;B,.
k=1

A more general specification is

K
(3.33) v;=Y h(Z;.X)B,

where h, (Z i X) ,k=1,...,K, are known functions of the attribute vector and a vector variable X

that characterizes the agent.

Example 3.7
Let X=(X,,X,) and Z; =(Z i Zi ) A type of specification that is often used is

(3.34) Vi=ZyBi+Zp By +Zy X By +Z Xy By +Zp X Bs +Z X, B -

In some applications the assumption of linear-in-parameter functional form may, however, be too

restrictive.

Example 3.8. (Box-Cox transformation):
Let Z;=(Z;,Z;),Z; >0,k =12,
and

(3.35) v, =[Z";—1JB, +[Z’§_1)BZ

1 2

where o, a,,[,,B, are unknown parameters. The transformation

(3.36) y -1
o

I
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y >0, is called a Box-Cox transformation of y and it contains the linear function as a special case

(oc=1).When ot — O then

a—
yTl—>logy.

When a <1, (y“ —1)/0L is concave while it is convex when a >1. For any o, (y"l —-l)/a is

increasing in y.

Example 3.9
A problem which is usually overlooked in discrete choice analyses is the fact that
simultaneous equation problems can arise as a result of unobservable attributes. Consider the

following example where the utility function has the structure
U;=Z;B,+Z;X,B, +Z; X, B; +¢;

where Z; is an attribute variable (scalar) and X, X, are individual characteristics. The random error
term §; is assumed to be uncorrelated with Z;, X, and X,. Also Z; is assumed uncorrelated with X, and
X,. However, X, is unobservable to the researcher. The researcher therefore specifies the utility

function as

(3.37) U;=Z,B,+Z;X,B, +¢;.
Thus, the interpretation of e; is as

(3.38) g, =¢; +Z;X,B;.
Then

E(e]]X,.2,)=Z,B,E(X,|X,).

In this case we therefore get that the error terms are correlated with the structural terms when X; and
X, are correlated. A completely similar argument applies in the case with unobservable attributes.
This simple example shows that simultaneous equation bias may be a serious problem in
many cases where data contains limited information about population heterogeneity or/and relevant
attributes. Note that even if we were able to observe the relevant explanatory variables, we may still
face the risk of getting simultaneous equation bias as a result of misspesified functional form of the
deterministic term of the utility function. This is easily demonstrated by a similar argument as the one

above.
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3.6. Aggregation of latent alternatives
In this section we shall obtain a characterization of the choice model that may be justified in
applications that conform to the following general description. For the sake of expository convenience
we proceed by means of a concrete example.

Consider migration choice: The agent faces a set B of feasible regions. Within region j there
is a set B; of feasible schooling and/or employment opportunities. The agent’s problem is to choose his
favorite opportunity. The researcher only observes the choice of region but not the choice within the

chosen region. The agent is assumed to have the utility function with structure
(3.39) Uy =v;+e;

where j=12,...,m, indexes the regions and r € B; indexes the opportunities within B;. The term v; is

deterministic and represents the systematic mean utility across all opportunities within B;, while g;,

reB, j=12,...,m, arei.i.d. with cumulative distribution function F. Let n; be the number of

opportunities in B;. Evidently the (indirect) utility of choosing region j equals

UjErrr;%)j(Uj,=vj +§

where

£ =maxe. = maxe. .
J rij r rSnj r

Suppose next that F satisfies Condition (A.6) in Appendix A. Then Theorem A3 implies, provided n;

is large, that for some positive constant ¢ one has

P(maxtajr —log(cnj)s x)’:‘exp(_eﬂ)

<n.
l'_ﬂJ

which means that
(3.40) v;+€ =v;+logn;+logc+g;

where g, j=1,2,...,m, are standard type III extreme value distributed. Thus we obtain fromTheorem

3 that the probability of moving to region j equals
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) exp(vj+logc+lognj)
j =

P, EP(UJ:maxUk

keB z exp(v, +logc+logn,)
keB
cn.e” n.e"
cz n, e’ Z n e’
keB keB

If variables that characterize the regions are available these can be utilized to model {n j} and {v j} .

The crucial point in the development above is that even if we are only interested in the
analysis of the choice of region, we can exploit the (theoretical) structure of the problem to obtain a

characterization of the choice model. Specifically, we have demonstrated that aggregation of a large

number of latent alternatives in fact implies IIA. Moreover, the set of latent alternatives {B j} are

represented in the model by the respective sizes {n j} .

3.7. Stochastic models for ranking
So far we have only discussed models in which the interest is the agent’s (most)Apreferred alternative.
However, in several cases it is of interest to specify the joint probability of the rank ordering of
alternatives that belong to S or to some subset of S. For example, in stated preference surveys, where
the agents are presented with hypothetical choice experiments, one has the possibility of designing the
questionaires so as to elicit information about the agents’ rank ordering. This yields more information
about preferences than data on solely the highest ranked alternatives, and it is therefore very useful for
empirical analysis. This type of modeling approach has for example been applied to analyze the
potential demand for products that may be introduced in the market, see Section 4.8.

The systematic development of stochastic models for ranking started with Luce (1959) and
Block and Marschak (1960). Specifically, they provided a powerful theoretical rationale for the
structure of the so-called ordered Luce model. The theoretical assumptions that underly the ordered
Luce model can briefly be described as follows.

Let R(B)= (Rl (B),R,(B),..., Rm(B)) be the agent’s rank ordering of the alternatives in B,

where m is the number of alternatives in B, and B c S. This means that Ry(B) denotes the element in

B that has the i'th rank. As above let P,(B), je B, be the probability that the agent shall rank

alternative j on top when B is the set of feasible alternatives. Recall that the empirical counterpart of
these probabilities is the respective number of times the agent chooses a particular rank ordering to

the total number of times the experiment is replicated, or alternatively, the fraction of (observationally

identical) agents that choose a particular rank ordering. Let p(B)=(p;,p,,...,Pn), Where the

components of the vector p(B) are distinct and p, € B for all k<m.
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Similarly to Definition 1 one can define a system of ranking probabilities formally. Since the
extension from Definition 1 to the case with ranking is rather obvious we shall not present the formal

definition here.

Definition 5

A system of ranking probabilities constitute a random utility model if and only if

P(RB)=p®)=P(U(p,)>U(p,)>...>U(p,))

for BCS, where {U(j), j €S}, are random variables.

The next definition is a generalization of IIA to the setting with rank ordering. For simplicity

we rule out the case with degenerate choice probabilities equal to zero or one.

Definition 6: Generalized I1A (IIAR)
A system of ranking probabilities satisfies the Independence from Irrelevant Alternatives

(IIAR) property if and only if for any BC S

(3.41) P(RB)=pB)="P, B P, (B\{p,})... B, ,({Pns:Pn})-

Definition 6 states that an agent’s ranking behavior can (on average) be viewed as a multistage
process in which he first selects the most preferred alternative, next he selects the second best among
the remaining alternatives, etc. The crucial point here is that in each stage, the agent’s ranking of the
remaining alternatives is independent of the alternatives that were selected in earlier steps. In other
words, they are viewed as “irrelevant”.

We realize that Definition 3 is a special case of Definition 6.

Let

Q;(B)={p(B):p,(B)=j, je B}.

The interpretation of Q j (B) is as the set of rank orderings among the alternatives within B, where

alternative j is ranked highest.

Theorem 5
Let {P( p(B))} be a system of ranking probabilities, defined by P(p(B))=P(R(B)= p(B)).

This system constitutes a random utility model if and only if
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P,B)= Y P(p(B)).

PB)E,(B)

A proof of Theorem 5 is given by Block and Marschak (1960, p. 107).

Theorem 6
Assume that a system of ranking probabilities is consistent with a random utility model and

that IIAR holds. Then there exists positive scalars, a(j), j€S, such that the ranking probabilities are

given by

a(p;) a(p;) ) a(P-i)

3.42 P(R(B)=p(B))= ' B
(3.42) ( (B)=p(B)) Zkeg a(k) Zkeb‘\{ﬂ,} a(k) a(pm-l)+a(pm)

Jor BCS. The scalars, {a(j)}, are uniquely determined up to multiplication by a positive constant.

Conversely, the model (3.44) satisfies IIAR.
Block and Marschak (1960, p. 109) have proved Theorem 6, cf. Luce and Suppes (1965).

Example 3.10

Consider the rankings of different brands of beer. Let B = {1,2,3} where alternative 1 is

Tuborg, alternative 2 is Budweiser and alternative 3 is Becks. Suppose one has data on consumers

rank ordering of these brands of beer. If IIAR holds then the probability that for example p, =(2,3,1),

i.e., Budweiser is ranked on top and Becks second best. According to (3.42) we obtain that the

probability of pp equals

a(2) ‘ a(3)
a)+a2)+a®3) al)+ad)’

P(R(B)=(23,1))=
The next result shows that (3.42) is consistent with a simple random utility representation.

Theorem 7

Assume a random utility model with U(j)=v(j)+ &€, where € ;»J€S, are i.i.d. with standard

extreme value distribution function that is independent of {v(]), Jje S}. Then
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P(RB)=p(B)=P(U(p)>U(p,)>...>U(p,))

(3.43) _ exp(v(p,)) . exp(v(pz)) exP(V(Pm-1)) .
2“3 exp(v(k)) Zkem{p,} exp(v(k)) exp(v(p,,,_,))+exp(v(pm))

Also here we realize that Theorem 1 is a special case of Theorem 6 and Theorem 3 is a special
case of Theorem 7 because the choice probability Pi(B) is equal to the sum of all ranking probabilities

with p, =j. A proof of Theorem 7 is given in Strauss (1979).

3.8. Stochastic dependent utilities across alternatives

In the random utility models discussed above we only focused on models with random terms that are
independent across alternatives. In particular we noted that the independent extreme value random
utility model is equivalent to the Luce model. It has been found that the independent multinomial
probit model is “close” to the Luce model in the sense that the choice probabilities are close provided
the structural terms of the two models have the same structure (see for example, Hausman and Wise,
1978). However, the assumption of independent random terms is rather restrictive in some cases,

which the following example will demonstrate.

Example 3.11
Consider a consumer choice problem in which there are two soda alternatives, namely “Coca
cola”, (1), “Fanta”, (2). The fractions of consumers that buy Coca cola and Fanta are 1/3 and 2/3,
respectively. If we assume that Luce's model holds we have
a, 1

P, ({1’2}) = =3

a, +a 3
1 2

With a, =1 it follows that a, =2. Suppose now that another Fanta alternative is introduced

(alternative 3) that is equal in all attributes to the existing one except that its bottles have a different
color from the original one. Since the new Fanta alternative is essential equivalent to the existing one

it must be true that the corresponding response strengths must be equal, i.e., a; =a, =2.

Consequently, since the choice set is now equal to {1,2,3} we have according to (3.6) that

a 1
P,({1,2,3})= ! = =
1({ 23}) a,+a,+a; 1+2+2

1
5

which implies that

P, ({12.3}) =P, ({12.3}) =

W
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But intuitively, this seems unrealistic because it is plausible to assume that the consumers will tend to

treat the two alternatives as a single alternative so that

W | =

P, ({1’2’3}) =

and

P,({1,2,3}) =P, ({1,2,3}) =

W | =

This example demonstrates that if alternatives are “similar” in some sense, then the Luce model is not

appropriate. A version of this example is due to Debreu (1960).

Example 3.12
Let us return to the general theory, and try to list some of the reasons why the random terms
of the utility function may be correlated across alternatives.

For expository simplicity consider the (true) utility specification
(3.44) U;=Z;B, +X,Z; B, +X, Z;, B; +¢;

and suppose that only Z;; and X, are observable for all j. Thus, in practice we may therefore be

tempted to resort to the misspecified version

(3.45) U; EZlel +Xij1[32 +£;
where
(3.46) 8; =g; +X,Z;,B;.

Let Z'=(Z,,,Z,,,...,Z;) - From (3.44) it follows that

Cov(e;,&; X,,Z')=Cov(X, Z;, By, X, Zy Bs | X,,z')
(347 =B§ECov(x2zjz,xzzk2|x,,z‘,x2)
+p2 ccv(E(x2 Zy| X2 X, B(X, Z, | x,,z‘,xz))
=B} E(X3|X,) Cov(Z,Z,, |2')+B3 Var(X, | X,)E(Z,|2')E(2e]2").
This shows that unobservable attributes and individual characteristics may lead to error terms that are

correlated across alternatives. Suppose next that Cov (Z i2:Zx2 I z' ) =0. Then (3.47) reduces to
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(3.48) Cov(e}.&; | X,,2')=B2 E(Z,|2')E(Z4|2") Var(X,| X,).

Eq. (3.48) shows that even if the unobservable attributes are uncorrelated the error terms will still be

correlated if Var(X,|X,)#0.(If Var(X,|X,)=0, X, is perfectly predicted by X.)

3.9. The multinomial Probit model

The best known multinomial random utility model with interdependent utilities is the multinomial
probit model. In this model the random terms in the utility function are assumed to be multinormally
distributed (with unknown covariance matrix). The concept of multinomial probit appeared already in
the writings of Thurstone (1927), but due to its computational complexity it has not been practically
useful for choice sets with more than five alternatives until quite recently. In recent years, however,
there has been a number of studies that apply simulation methods in the estimation procedure,
pioneered by McFadden (1989). Still the computational issue is far from being settled, since the
current simulation methods are complicated to apply in practice. The following expression for the

multinomial choice probabilities is suggestive for the complexity of the problem. Let h(x;) denote

the density of an m-dimensional multinormal zero mean vector-variable with covariance matrix Q.

We have

(3.49) h(x;Q)= (21‘:)_“"/2 |Q]_m exp (—% x Q! xj

where |Q| denotes the determinant of Q. Furthermore

(3.50) P(vj+£j=rl'(nsan)l((vk+ek))= jJ- ‘,.. jJ_ ".., jJnh(xl,...,x,-,."’xm;Q)dxlmdxjmdxm'

From (3.50) we see that an m-dimensional integral must be evaluated to obtain the choice
probabilities. Moreover, the integration limits also depend on the unknown parameters in the utility
function. When the choice set contains more than five alternatives it is therefore necessary to use

simulation methods to evaluate these choice probabilities.

3.10. The Generalized Extreme Value model
McFadden (1978) and (1981) introduced the class of GEV model which is a random utility model that

contains the Luce model as a special case. He proved the following result:
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Theorem 8
Let G be a non-negative function defined over R} that has the following properties:
(i) G is homogeneous of degree one,

(i) lim G(y,,...,y,,...,ym)=°°, i=12,..,m,
Yi—e

(iii) the K" partial derivative of G with respect to any combination of k distinct components exist, are
continuous, non-negative if k is odd, and are non-positive if k is even.

Then

(3.51) F()=exp(-Gle™,e™,....e™))

is a well defined multivariate (type III) extreme value distribution function. Moreover, if
(€,.€5.....€,) has joint distribution function given by (3.51), then it follows that
aG(e"’,eV2 yeer @' )/8 \z
G(ev’ e, ...,em )

(3.52) P(vj +8J=Tg,’f(vk +€k))=

The proof of Theorem 8 is analogous to the proof of Lemma A2 in Appendix A.

Conditions (ii) and (iii) are necessary to ensure that F(x) is a well defined multivariate
distribution function (with non-negative density), while condition (i) characterizes the multivariate
extreme value distribution.

Above we have stated the choice probability for the case where all the choice alternatives in S
belong to the choice set. Obviously, we get the joint cuamulative distribution function of the random
terms of the utilities that correspond to any choice set B by letting x; =, for all i B. This

corresponds to letting v, =— oo, for all i ¢ B in the right hand side of (3.52).

To see that the Luce model emerges as a special case, let

(3.53) G(Y1sr¥m) =D, Vi

from which it follows by (3.52) that
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Example 3.13
Let S={1,2,3} and assume that
e , 1e)®
(3.54) G(y1,y2,¥3) =y, +(y¥° +v5°)
where 0<6<1. It can be demonstrated that 0 has the interpretation
(3.55) corr (g,,€,)=1-67
and
corr (g,,€;) =0, j=23.

From Theorem 8 we obtain that

Vi

€

(2]
eV +(ev1/6 +ev3/9)

(3.56) P,(S)=

and

(ev2/9+ev3/e)e—] Vil

3.57 P.(S)=
( ) S eV ’*_(evzle_'_ev}/())e

J

for j=2,3. If B={1,2}, then

Vi

(3.58) P, ({1.2}) =#

When alternative 2 and alternative 3 are close substitutes 8 should be close to zero. By applying

I'Hopital's rule we obtain
. vol8 | _v3/0\ _
gl_l)lz)elog(e +e )—max(vz,v3).
Consequently, when 0 is close to zero the choice probabilities above are close to

Vi

(<

3.59 el
(3.59) 15) e"'+exP(max(V2’v3))

and
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V2
(3.60) Py(S) = ———,
e’ +e"

if v, >v;, and zero otherwise, and similarly for Ps(S). For v, = v; we obtain

v

(3.61) P, (S)=—;e—T
e'+e?
and
e’
(3.62) P.S)=—F——
2(ev‘ +e"2)
for j=23.

Consider again Example 3.11. Withv, =v,, v, =0 and e" =2.Eq. (3.61) and (3.62) yield

P, ({1.2})=1/3

and

P,({12,3})=P;({1.2.3})=1/3.

Thus the model generated from (3.54) with 0 close to zero is able to capture the underlying structure

of Example 3.11.

3.10.1. The Nested multinomial logit model (nested logit model)

The nested logit model is an extension of the multinomial logit model which belongs to the GEV
class. The nested logit framework is appropriate in a modelling situation where the decision problem
has a “tree-structure”. This means that the choice set can be partitioned into a hierarchical system of
subsets that each group together alternatives having several observable characteristics in common. It
is assumed that the agent chooses one of the subsets A; (say) in the first stage from which he selects
the preferred alternative. The choice problem in Example 3.11 has such a tree structure: Here the first
stage concerns the choice between Coca cola and Fanta while the second stage alternatives are the two

Fanta variants in case the first stage choice was Fanta.
Example 3.14

To illustrate further the typical choice situation, consider the choice of residential location.

Specifically, suppose the agent is considering a move to one out of two cities, which includes a
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specific location within the preferred city. Let Uy denote the utility of location k€L ; within city j,

j=1.2, where L; is the set of relevant and available locations within city j. Let U, =v; +¢€, , where

(3.63) P[ﬂ (En<xu), [) (£2kSXZk)J=€Xp(—G(e‘xn’e-Xn’_",e—xn’e—-xzz,m))

kel kel,

and

i
(3.64) G(Yw)’lz’---’)’z]’ 2 (Z 1/9] :

j=1 \keL

The structure (3.64) implies that

(3.65) corr(ejk, )—1 92 for r#k,
and
(3.66) corr(e PR ) 0 for j#i, and all k and r.

The interpretation of the correlation structure is that the alternatives within L; are more *“similar” than
alternatives where one belongs to L, and the other belongs to L.

Let P; denote the joint probability of choosing location r € L; and city j. Now from Theorem

8 we get that

e',e" /av
P, P(U =max | max U, n=

i=1,2 | kel G(e"u,e )

6;-1
(3.67) LZ V'8 /o

kel
< ).

e

i=1 kel

Note that we can rewrite (3.67) as

(3.68) P, = .

- :P o —
2 R i 2 oVk/®
j i
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where

(3.69) P=) P,.
keL;
The probability P; is the probability of choosing to move to city j (i.e. the optimal location lies within

city j). Furthermore

evj,/e,

2 ev,.k/ej

keL;

(3.70) Py _
. Pj e

is the probability of choosing location reL;, given that city j has been selected. We notice that
P, /P; does not depend on alternatives outside L;. Thus the probability P; can be factored as a

product consisting of the probability of choosing city j times the probability of choosing r from L;,
where the last probability has the same structure as the Luce model. However, this will not be the case
if a subset different from L, and L, were selected in a first stage. Graphically, the above tree structure

looks as follows:

Location within Location within
city one city two

So far no theoretical motivation for the GEV model has been given, apart from the property
that it contains the Luce model as a special case. We shall therefore conclude this section by

reviewing two invariance properties that characterize the GEV class, and discuss their implications.

Definition 7; The DIM property’
The utilities {U f } satisfy DIM if and only if the distribution of max;Uj is independent of

which variable attains the maximum.

3 DIM is an acronym for; Distribution in Invariant of which variable attains the Maximum.
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Definition 8; The MSD property*
The utilities {U j} satisfy MSD if and only if the distribution of max;U; is the same (apart

from a location shift) as the distribution of U,.

If the utilities satisfy DIM it means that the indirect utility is not correlated with the utility of
the chosen alternative.

This property corresponds to the notion that the indirect utility in the deterministic micro
theory has prices and income as arguments, but the chosen quantities do not enter as arguments, nor
do their corresponding direct utility.

The MSD property is natural, since it implies that the stochastic properties of the utilities are
invariant under aggregation of alternatives. To realize this suppose that the univers of alternatives is
divided into subsets of alternatives called “aggregate alternatives”. Thus each aggregate alternative
consists of one or several “basic” alternatives. It is understood that the consumer's choice of an
aggregate alternative means that he chooses a basic alternative that belongs to the aggregate one.
Consequently, the utility of the aggregate alternative must be the maximum of the utilities of the basic
alternatives within the aggregate one. Under MSD, the utility of the aggregate alternative will

therefore have the same distribution (apart from a location shift) as the basic utilities.

Theorem 9

Assume that U ; =V ; + € ;, where the cumulative distribution function F of
e=(€,,€;,,...,€, ) does not depend on {vj}.

(i) Then F satisfies DIM if and only if

(3.71) F(x,x),...x, )= !//(G(e"" e e ))

where G is a homogeneous function and y is a positive function (subject to F being a proper

distribution function).
(ii) If €, &,,..., En, have a common cumulative distribution function then F satisfies MSD if and only if
(3.71) holds.

A proof of Theorem 9 is given by Robertson and Strauss (1981), and Lindberg et al. (1995).

From (3.71) and Theorem 8 we realize that when y(x)=exp(—x) we obtain the GEV class.

* MSD is an acronym for; The Maximum utility has the Same Distribution as the distribution of U, + b.
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Strauss (1979) has proved the following result which follows readily from Theorem 9, and

extends the result of Theorem 8. This result shows that the choice probabilities do not depend on .

Corollary 2
If (3.71) holds then the choice probabilities are given by

) _ aG(e"' e ,...,e'm )/8 v,

P(vA+£A=max v, +€
s "5”'( . k) G(e"’ e’,.. e""')

Thus, from Theorem 9 we realize that the class of models determined by (3.71) is equivalent
to the GEV class.

Until resently it has not been clear which restrictions on the choice probabilities are implied
by the GEV class. Dagsvik (1995) proved that the GEV class is very large; in fact the GEV class
yields no other restrictions on the choice probabilities beyond those following from the random utility

assumption.

Theorem 10

Assume that U, =V ; + & ;, where the cumulative distribution function F of (€,,€ 2reeerEm)

j’

does not depend on {v j}. If (3.71) holds then IIA holds if and only if

(3.72) F(x,,xz,...,xm)=y/(2m: e“’“"]

k=1

where a > 0 is an arbitrary constant and y is defined in Theorem 9.

A proof of Theorem 10 is given by Strauss (1979).

From (3.72) we realize that when y(x)=exp(—x) we obtain the independent extreme value

model.

Example 3.15

Another example is obtained when

1
(3.73) Y(x)= Tox’

in which case (3.72) yields
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(3.74) F(Y1,Y25 Y m) =

1+2 e M« .

k=1

Example 3.16

Assume that

(3.75) y(x)= exp(—xl/“)

with o >1. Then (3.72) implies that

m o
(3.76) F(yl’yZ""’ym)=exp[_(2 e"(l)’k] ].

k=1
In this model it can be demonstrated that

1
o2

(3.77) corr (g;,€;) =1 -

which shows that the Luce model is consistent with a random utility model with any correlation

(different from zero and one) between the utilities as long as the correlation structure is symmetric.
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4. Applications of discrete choice analysis

4.1. Labor supply (I)
Consider the binary decision problem of choosing between the alternatives “working” and “not
working”. Take the standard neo-classical model as a point of departure. Let V(C,L) be the agent's

utility in consumption, C, and annual leisure, L. The budget constraint equals

4.1 C=hW +1

where W is the wage rate the agent faces in the market, h is annual hours of work and I is non-labor

income (for example the income provided by the spouse). The time constraint equals

4.2) h+L <M (=8760).

According to this model utility maximization implies that the agent supplies labor if

LVILM) _ .

4-3) o, V(LM)

where d; denotes the partial derivative with respect to component j. If the inequality is reversed, then
the agent will not wish to work. W™ is called the reservation wage. Suppose for example that the

utility function has the form

B.M,

L)*
(c%-l)J )
(4.4) V(C,L)=|*—21L|B, +>— <

1 2

where a, <1, o, <1, B, >0, B, >0. Then V(C,L) is increasing and strictly concave in (C,L). The

reservation wage equals

«_0,V(LM) B, 1,
4.5) Wis2 2 22t
o, V(LM) B,

After taking the logarithm on both sides of (4.3) and inserting (4.5) we get that the agent will supply
labor if

(4.6) log W >(1—0L,)logl + log(-g—z].
1

Suppose next that we wish to estimate the unknown parameters of this model from a sample of
individuals of which some work and some do not work. Unfortunately, it is a problem with using (4.6)

as a point of departure for estimation because the wage rate is not observed for those individuals that
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do not work. For all individuals in the sample we observe, say, age, non-labor income, length of
education and number of small children. To deal with the fact that the wage rate is only observed for

those agents who work, we shall next introduce a wage equation. Specifically, we assume that

4.7 logW =X a+Eg,

where X, consists of length of education and age and a is the associate parameter vector. €; is a
random variable that accounts for unobserved factors that affect the wage rate, such as type of
schooling, the effect of ability and family background, etc. We assume furthermore that the parameter

B./B; depend on age and number of small children, X,, such that

(4.8) log(%l)z X,b+¢,

1

where &, is a random term which accounts for unobserved variables that affect the preferences and b is
a parameter vector. For simplicity we assume that 0; is common to all agents. If €, and €, are

independent and normally distributed with E¢; =0, Varg; = sz , we get that the probability of

working equals a probit model given by

(4.9) P, EP(W>W*)=(I>[XS+(0‘l ‘l)logl]

Joi+o;
where @(-) is the cumulative normal distribution function and s is a parameter vector such that

Xs=X,a-X,b . From (4.9) we realize that only

Sj ocl—l

’
Jo? +o?

k=12,...,

can be identified.
If the purpose of this model is to analyze the effect from changes in level of education, family
size and non-labor income on the probability of supplying labor then we do not need to identify the

remaining parameters. Let us write the model in a more convenient form;
(4.10) P, =®(Xs" —clogl),

where c=(1—0t,)/1/o'12 +05 and s, =sj/ 6. +02 . We have that
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(Xs* -—clogI)2
exp| ———— 1
@.11) dlogP, =__c<I>'(Xs*——clogI)__c 2

. dlogl (D(Xs* —clogI) - CD(Xs* —clogI),/zn )

Eq. (4.11) equals the elasticity of the probability of working with respect to in non-labor income.

Suppose alternatively that 6, =6, and that the random terms O¢, and ¢, are i.i. standard

extreme value distributed. This means that 8 =1/6~/6 , cf. Lemma A1l. Then it follows that P,

becomes a binary logit model given by

exp (6Elog W) 1
4.12) P, = - ,
exp(0Elog W) +exp(0ElogW") 1+exp(~Xs6+(1— o, )8logl)

From (4.12) we now obtain the elasticity with respect to I as

dlogP, (1-0,)8
4.13 =-(1-0,)8(1-P,)=- :
(4.13) dlogl (1-0.)0(-P,) 1+exp(Xs0—(1—a, )0logI)

4.2. Labor supply (ID)

In Section 4.1 it was assumed that the agent only has preferences over consumption and leisure. In
this section we allow the agents to have preferences over consumption, leisure and type of job.
Moreover, we allow the set of feasible jobs to be unobservable to the researcher. We also allow
offered wage rates to be job specific. The approach we follow is somewhat related to the one
described in Ben-Akiva and Lerman (1985), pp. 255-261. Let B be the set of jobs available to the
agent, S the total set of jobs, and let W; be the wage rate of job j. The researcher only observes if the
agent works and Vthe corresponding wage rate he receives given that he works. Assume that the

preferences of the agent are represented by the utility function

4.14) V[C’Z hm]
s

where V(-) is an individual specific quasi-concave function, C denotes consumption (composite), h; is

hours of work in job j and {Y j} are positive individual- and job-specific terms that account for

unobservable non-pecuniary attributes of the jobs. The structure of (4.14) implies that the different
jobs are perfect substitutes in the sense that conditional on the consumption level, job k yields the

same utility as job j if hours of work in job k is adjusted such that h, =h;y; / Y« - The budget

constraint is given by
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(4.15) C=> hW, +I,
B

where I is nonlabor income. Note that the maximization of (4.14) subject to (4.15) is formally

equivalent to maximizing of

(4.16) V(C,z xj]
B

with respect to C and {x j} subject to

W.
4.17) C=) x;—+L jeB

kB j
where h; =x; / Y; - Since (4.16) is symmetric in X;,X,,..., the agent will choose x; >0 solely for the

j with the highest value of the modified wage rates, {Wj /yj , JE B}. Let

(4.18) U; =logW; —logy;
and

V, (1,0)
4.19 U, =log| - 22>~
( ) 0 og( Vl(I,O)J

where V,(-) denotes the partial derivative with respect to the k-th component. The interpretation of U,

is as the logarithm of the reservation wage. Thus, the individual will choose job j if

U. =max{U0,maxUk)

J keB

and choose not to work if
U,>maxU, .
0 keB k
Assume furthermore that

(4.20) U, =V, +&,

where V, is a structural term and € is a random variable. In (4.18), W; is possibly correlated with ;

and we therefore introduce an instrument variable equation

(4.21) log W, =XB +1;



where X is a vector that consists of individual characteristics such as length of education and
experience, and 1); is a zero mean random term that may be correlated with ;. However, we assume

that n; and ; are independent when k # j. When (4.21) is inserted into (4.18) we get

(4.22) U;=XB+¢;
where €; =m; —log ;. Let n be the number of jobs in B. Assume now that 6e;,j=012,...,n, are i.i.

standard extreme value distributed for some 6 > 0. This means that 6 can be interpreted as

2 n’

~6Vare,

Then the probability of choosing job j equals

OXB 0 O%B
423 P(U- = (U , ))= =
*23) i = Mo T&XUk ev°+2 e®P %o 4 pe®*P
keB

where v, =0V, . Hence the probability of working (which is the probability of choosing one of the

jobs in B) equals

0Xp
ne
4.24) P, = ———CVO PO

Since n is not observed we assume that n depends on the education level and experience of the agent

and on regional and/or group-specific unemployment rate, Z, in the following manner

(4.25) logn=pZ+d

where p and 8 are unknown parameters. Then P, takes the form

1
4.26 P, = .
(426) 2 1+exp(v, —8—pZ—XB6)
When v, has been specified (as function of nonlabor income and individual characteristics) one can
estimate the parameters of (4.26). However, one will at most be able to identify 8, p and 6. To be

able to compute elasticities with respect to for example ElogW; it is, however, necessary to identify

0 and B separately. Since we observe the wage rate for those who work it seems possible to estimate B
from (4.21). However, the sample that consists of working individuals is not necessarily a random
sample. This is so because a particular wage rate is observed if the corresponding job yields maximum

utility (subject to the choice set) for some agent. Thus, if there is correlation between the random term
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mM; in (4.21) and the selection rule (the random terms in the indirect utility function), then the
application of OLS to (4.21) may yield biased estimate of 3. Let us now discuss this problem more in
detail. A formal way of expressing the problem discussed above is as follows: Let J denote the most

preferred alternative in B {0} (the job alternatives and the non-working alternative) and let J i

denote the most preferred alternative in B. If it is the case that

E(nJ. | U.> UO);&O

then OLS will give biased estimate of f.
Assume next that
4.27) E(n;|U;)=0(8U;-E6U;)

where o is a constant. If n; and 6U; where jointly normally distributed (4.27) would follow due to

the fact that the conditional mean in a bivariate normal distribution is linear. This is not the case here,
so we cannot be sure (4.27) holds exactly. We still assume that (4.27) holds approximately. Note that

it is necessary to substract EOU; from 8U; to ensure that En; =0. By Lemma A2 in Appendix A it

follows that

(4.28) E(6U.|U, >U,)=E(6U,|U,. =U,)=E6U,.

Furthermore, we have that

P(eU, .<_y)=P(k€rrB}%0}6Uk Sy)z H P(6U, <y)

keBU{0}

4.29)
= exp(-e‘y (e"° +ne™P )) = exp(—exp (log (e"° +ne®P ) - y))

But this implies that
(4.30) EOU, =log(e" +n e""") +0.5772.
Similarly it follows that

4.31) EBU . =logn +6XB+0.5772.

Now from (4.27), (4.28), (4.30) and (4.31) it follows that
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“ E(n,|U,. >Uy)=0E(8U|U, >U,)-aEBU, =aEBU, ~aERU,
4.
@32 =(xlog(e"° +neexb)—alogn—(xGXB=-oclogP2.

Note that the difference between (4.27) and (4.32) is that in (4.27) we have conditioned on U,. while
in (4.32) we have only conditioned on {UJ. > UO} .

Consequently, we can write the wage equation for the chosen job J* as
(4.32) logW,. =XB - alogP, + 1,

where 1. is a random term with the property that

(4.33) E(fi,| U, >U,)=0.

Thus we can estimate (4.32) consistently from the subsample of working individuals.

Consider finally the conditional variance
Var(nj. | U. >U0).
From Lemma A2 in Appendix A we get
(4.34) Var(e.|U. > U, )= Var(U, |U,- >U,)=VarU, = Vare; = Vare,.

The last equality in (4.34) follows from the fact that U; has the same distribution as €;, apart from an

additive deterministic term. If we are willing to assume that

(4.35) n; = 0(Bg; - 0.5772) +u;

where 1j; is independent of g; it follows that

(4.36) Var(n,.|U, >U,) = VarU,. +a?6*Vare,. = Varn,..

The last result shows that in contrast to the case with normally distributed disturbances, (cf. Heckman,

1979) the conditional variance of m,. given that U,. > U, equals the corresponding unconditional

variance.

4.3. Labor supply (I1II)
Consider an alternative modeling framework to the one discussed in section 4.2. We assume that the

agent faces a set B (unobservable) of feasible job opportunities. Let
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4.37) U;=v(W,)+e

j=1,3,...,n, be the utility of job j with wage rate W;, where v(Wj) is the structural part of the utility

function that is common to all agents, while g; is an agent-specific random term that accounts for non-

pecuniary aspect associated with job j. Similarly, let

(4.38) U, =v, +¢,

be the utility of not working. Suppose furthermore that € i j=0,,..., are i.i. standard extreme value

distributed.
Let B(w) be the subset of B that consists of all feasible jobs with wage rate w, and let n(w) be
the number of jobs in B(w), and let D be the set of all possible wages. The probability of choosing job

j in B equals

V(Wj)
B B _ €
Pj =P(UJ —maX(Uo,rkneaB?(Uk))— ev° +2 ev(Wk)
(439) keB
_ ev{wj) B ev(wj)
eV +z z eV(Wk) e’o +Z n(y)CV(y) '
yeD keB(y) yeD

Hence the probability of choosing a job with wage rate w equals

Z eV(W,-)
P(w)= Y P =—I8)
jeBz(w) J e'o +2 n(y)eV(Y)

(4.40) o
_ n(w)e'™ _ e’
el +2 n(y)eV(y) eV +2 eV()’)
yeD yeD
where
(4.41) V(y) =logn(y) + v(y).

From (4.41) we realize that we cannot without further assumptions separate n(w) from v(w).
To this end suppose that the agent also receives nonlabor income. For example, a married woman or

man may receive income from the spouse. In this case

(4.42) v(w)=v'(w+1)

. * . . .
where I denoted nonlabor income, and v (-) is a concave parametric function.
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The type of framework considered above with latent opportunity sets is discussed in Ben-

Akiva and Lerman (1985), p.p. 254-260.

4.4. Transportation

Suppose that commuters have the choice between driving own car or taking a bus. One is interested in
estimating a behavioral model to study, for example, how the introduction of a new subway line will
affect the commuters’ transportation choices. Consider a particular commuter (agent) and let Uj(x) be

the agent’s joint utility of commodity vector x and transportation alternative j, j=1,2. Assume that the

utility function has the structure

(4.43) U;(x)=U,; + U(x).
The budget constraint is given by

(4.44) p’x=y-q;,x20,

where p is a vector of commodity prices and g is the per-unit-cost of transportation. By maximizing

Uj(x) with respect to x subject to (4.44) we obtain the conditional indirect utility, given j, as

(4.45) Vi(p.y=4;)=0,;+V'(p.y - q;)
where the function V'(p,y) is defined by

(4.46) Vi(p,y)= ggycﬁ(x).
Assume that

(4.47) U,; =BT, +¢;

where Tj is the travelling time with alternative j, B is an unknown parameter and {e j} are random

terms that account for the effect of unobserved variables, such as walking distances and comfort. We

assume that €, and &, are i.i. standard extreme value distributed. Assume furthermore that

(4.48) V'(p.y-a;)=V(p)+6log(y-q))

where 0> 0 is an unknown parameter. The assumptions above yield

4.49)  V,(py-a,)=BT, +6logly—q,)+ V(p) +e,

which implies that
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P,({.2)= —s (BT, +6l0g(y—a,)

(4.50) -
Y., expBT, +6log(y—-q,))

for j=1,2. After the unknown parameters {3 and 6 have been estimated one can predict the fraction of

commuters that will choose the subway alternative (alternative 3) given that T5 and g; have been
specified. Here, it is essential that one believes that Tj and q; are the main attributes of importance.
We thus get that the probability of choosing alternative j from {1,2,3} equals

@.51) P (.23 = — BT, +0l08ly-q,)

> expBT, +6log(y-q,))

4.5. Firms' location of plants (I)

In this example we outline a framework for analyzing firms’ location of plants. Specifically, we
assume that the firms face the choice of establishing a plant in one of m differents sites (counties).
Suppose furthermore that firms profit functions (or expected profit functions) depend on observable
characteristics that are common for all sites within particular regions. Let C, denote the set of counties
within region r, r=1,2,...,m, and let n, be the number of counties in C,. The regional attributes of
interest may be the population density and macro indicators that describe the industry structure.

Finally, certain tax rates may differ across regions (tax shelters). Consider an arbitrarily selected firm.

Let U =v, +¢&, denote the firms utility of establishing a plant in county je C,, where {e,j} are i.1.

standard extreme value distributed terms that account for unobserved region and county-specific
attributes and {v,} are structural terms that depend on the attributes specific to region r. Let P,; be the

probability of a location in county j in region r. We get

4.52) Prj = P(Urj =max (Iglacx U, )) =— € =— e .
Sy e T
i=l  keC; i=1
Hence, we get that the probability of a location within region r equals
(4.53) P =Z ij = ml'\;e ' - me ! X

where

(4.54) V. =v, +logn, .
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If we assume that v, =Z B, where Z, is the vector of observable attributes associated with region r,

we get

(4.55) V.=ZB+logn,.

4.6. Firms' location of plants (II)

We now consider an extension of the setting in Section 4.5. Suppose now that the error terms for
counties within a common region are correlated. This may be a plausible assumption since it is often
the case that counties within regions are more homogeneous than counties across regions. We shall

now apply the nested logit framework to model this case. Let

(]
(4.56) =Y [2' y;-"’J
=1

and let
F(x)= exp(—G(e“" e ))
be the joint distribution function of (e” seees€in s € € ) Then it follows that
(4.57) corr (g,;,€,5) =1- 67
fori#j, 1,jeC,, and
(4.58) corr (g,;,€4) =0

forieC,,jeC,,r#s, where 0<0<1. From Theorem 8 we get

v, .0
(4.59) p, =~ = L
m \ nl‘
z Z evi/e 2 e’'n
i=1 \ jeC, =1
Specifically, the probability of choosing region r equals
evr n(-) ev:
(4.60) P=) P=—-—t =
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where

(4.61) v, =v, +0logn, .
From (4.60) we get
dlogP

4.62 —=0(1-P,
(4.62) dlogn, (1-P)
and

(4.63) M: -0P,

dlogn,

for k #r. The interpretation of (4.62) and (4.63) is as the effect from increasing the size of C;. For
example, one may wish to assess the effect of changing the number of counties that belong to a region

with “tax shelters”.

4.7. Firms' location of plants (IIT)

The setting here is the same as the one in Section 4.6. Suppose now that {n,} are unobservable, but

that we observe the number of locations in at least one county in each region, say in county number

one. Let M, be the observed number of locations in county one in C;, and let M, be the total number

of observed locations within region r. Finally, let M= 2 M, . Then M, /M, is an estimate of Py

r=1

and M, /M is an estimate of P. Since by (4.59)

1
Prl = Pr T
nl’
it follows that consistent estimates for n, is given by
. M
(4.64) n_= ., r=12,...,m.

=
<

4.8. Potential demand for alternative fuel vehicles

This example is taken from Dagsvik et al. (1996). To assess the potential demand for alternative fuel
vehicles such as; “electric” (1), “liquid propane gas” (Ipg) (2), and “hybrid” (3), vehicles, an ordered
logit model was estimated on the basis of a “stated preference” survey. In this survey each responent
in a randomly selected sample was exposed to 15 experiments. In each experiment the respondent was

asked to rank three hypothetical vehicles characterized by specified attributes, according to the
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respondent’s preferences. These attributes are: “Purchase price”, “Top speed”, “Driving range
between refueling/recharging”, and “Fuel consumption”. The total sample size (after the non-
respondent individuals are removed) consisted of 662 individuals. About one half of the sample
(group A) received choice sets with the alternatives “electric”, “lpg”, and “gasoline” vehicles, while
the other half (group B) received “hybrid”, “lpg” and “gasoline” vehicles. In this study “hybrid”
means a combination of electric and gasoline technology. The gasoline alternative is labeled
alternative 4.

The individuals' utility function was specified as

(4.65) U;(0=Z;()B+p,; +&;(t)

where Z(t) is a vector consisting of the four attributes of vehicle j in experiment t, t=1,2,...,15, and
W; and B are unknown parameters. Without loss of generality, we set |1, =0. As mentioned above

group A has choice set, C, ={1,2,4}, while group B has choice set, Cy ={2,3,4}. Let P;(C) be the
probability that an individual shall rank alternative i on top and j second best in experiment t, and let

Yi;‘ (t) =1 if individual h ranks i on top and j second best in experiment t, and zero otherwise. From

Theorem 3 it follows that if {8 j(t)} are assumed to be i.i. standard extreme value distributed then

. it z exp(Z, (HB+n,) z exp(Z, (DB+1L, )
reC reC\{i}

where C is equal to C, or Cg,. We also assume that the random terms {e j(t)} are independent across

experiments. Consequently, it follows that the loglikelihood function has the form

—

(4.67) e=25 [2 D D YilogPy (Ca)+Y, Y, Y Yi;'(t)logPij,(CB)).

t=1 heA i j heB i j

The sample is further split into six age and gender groups, and Table 4.1 displays the estimation

results for these groups.
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Table 4.1. Parameter estimates” for the age/gender specific utility function

Age

18-29 30-49 50-
Attribute Females Males| Females Males| Females Males
Purchase price (in 100 000 NOK) -2.530 -2.176 -1.549 -2.159 -1.550 -1.394
-17.7)  (-15.2) (-15.0) (-20.6)| (-11.9) (-11.8)
Top speed (100 km/h) -0.274 0.488 -0.820 -0.571 -0.320 -0.339
(-0.9) (1.5) (-3.3) (-2.4) (-1.1) (-1.2)
Driving range (1 000 km) 1.861 2.130 1.018 1.465 0.140 1.000
(3.1 (3.3) (2.0) (3.2) 0.2) (1.8)
Fuel consumption (liter per 10 km) -0.902 -1.692 -0.624 -1.509 -0.446 -1.030
(-3.0) (-5.1) (-2.5) 6.7) (-1.5) -3.7)
Dummy, electric 0.890  -0.448 0.627 -0.180 0.765 -0.195
“4.2) (-2.0) (3.6) (-1.1) (3.6) (-1.0)
Dummy, hybrid 1.185 0.461 1.380 0.649 1.216 0.666
(7.6) (2.8) (10.6) (5.6) 7.7) (4.6)
Dummy, lpg 1.010 0.236 0.945 0.778 0.698 0.676
(8.2) (1.9 9.2) (8.5) CN)) (5.6)
# of observations 1380 1110 2070 2325 1290 1455
# of respondents 92 74 138 150 86 96
log-likelihood 2015.1 1747.8 3140.8 3460.8|1 2040.9 2333.8
McFadden’s p2 0.19 0.12 0.15 0.17 0.12 0.10

" t-values in parenthesis.

Table 4.1 displays the estimates when the model parameters differ by gender and age. We

notice that the price parameter is very sharply determined and it is slightly declining by age in

absolute value. Most of the other parameters also decline by age in absolute value. However, when we

take the standard error into account this tendency seems rather weak. Further, the utility function does

not differ much by gender, apart from the parameters associated with fuel-consumption and the

dummies for alternative fuel-cars. Specifically, males seem to be more sceptic towards alternative-fuel

than females.

To check how well the model performs, we have computed McFadden’s p? and in addition we

have applied the model to predict the individuals’ rankings. The prediction results are displayed in

Tables 4.2 and 4.3, while McFadden’s p? is reported in Table 4.1. We see that McFadden’s p* has the

highest values for young females, and for males with age between 30-49 years.
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Table 4.2. Prediction performance of the model for group A. Per cent

First choice Second choice Third choice

Gaso- Gaso- Gaso-
Gender Electric  Lpg line | Electric  Lpg line | Electric Lpg line

Females:
Observed 52.1 26.1 21.9 22.3 46.5 31.2 25.6 274 46.9
Predicted 45.6 36.3 18.1 32.8 38.5 28.8 21.6 253 53.2
Males:
Observed 40.0 345 25.5 20.3 435 36.2 39.7 22.0 38.3
Predicted 32.6 442 233 32.1 35.5 324 353 20.3 443

Table 4.3. Prediction performance of the model group B. Per cent

First choice Second choice Third choice

Gaso- Gaso Gaso-
Gender Hybrid Lpg line Hybrid Lpg line Hybrid Lpg line

Females:
Observed 45.0 42.0 13.0 33.0 449 22.1 22.0 13.1 64.9
Predicted 43.0 40.3 16.7 36.9 37.8 253 20.1 21.9 58.0
Males:
Observed 38.1 46.2 15.7 329 41.0 26.2 29.0 12.8 58.1
Predicted 353 452 19.5 374 35.0 27.6 27.3 19.8 52.9

The results in Table 4.3 show that for those individuals who receive choice sets that include
the hybrid vehicle alternative (group B) the model fits the data reasonably well. For the other half of
the sample for which the electric vehicle alternative is feasible (group A), Table 4.2 shows that the
predictions fail by about 10 per cent points in four cases. Thus the model performs better for group B

than for group A.

4.9. Oligopolistic competition with product differentiation

This example is taken from Anderson et al. (1994). Consider m firms which each produces a variant
of a differentiated product. The firms’ decision problem is to determine optimal prices of the different

variants.

Assume that firm j produces at fixed marginal costs c; and has fixed costs K;. There are N

consumers in the economy and consumer i has utility
(4.68) Uij=yi+aj—wj+08ij.
for variant j, where y; is the consumers income, a; is an index that captures the mean value of non-

pecuniary attributes (quality) of variant j, w; is the price of variant j, &; is an individual-specific
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random taste-shifter that captures unobservable product attributes as well as unobservable individual-

specific characteristics and 6 >0 is a parameter (unknown). If we assume that €;, j=1.2,...,m,

i=12,...,N, are i.i. standard extreme value distributed we get that the aggregate demand for variant j

equals NP; where

(aj—wjj
exp S
(4.69) P,=Q;(w)=

Assume next that the firm knows the mean fractional demands {Q j (w)} as a function of prices, w.

Consequently, a firm that produces variant j can calculate expected profit, 7;, conditional on the

prices;

(4.70) m;=(w;—c;)NQ;(w) - K.

Now firm j takes the prices set by other firms as given and chooses the price of variant j that

maximizes (4.70). Anderson et al. (1992) demonstrate that there exists a unique Nash equilibrium set

of prices, W =(w;‘ ,Wh w;) which are determined by

“4.71) w;=c; +

4.10. Social network

This example is borrowed from Dagsvik (1985). In the time-use survey conducted by Statistics
Norway, 1980-1981, the survey respondents were asked who they would turn to if they needed help.
The respondents were divided into two age groups, where group (i) and (ii) consist of individuals less
than 45 years of age and more than 45 years of age, respectively. Here, we shall only analyze the
subsample of individuals less than 45 years of age. The univers of alternatives S consisted of five

alternatives, namely

S = {Mother (1), father (2), brother (3), sister (4), neighbor (5)}.

However, the set of feasible alternatives (choice set) were less for many of the respondents.

Specifically, there turn out to be 11 different choice sets in the sample; B,,B,,...,B,,. The data for

each of the 11 groups are given in Table 4.5. Group (i) consists of 526 individuals.
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The question is whether the above data can be rationalized by a choice model. To this end we

first estimated a logit model

(4.72) P __V’ je Bk ’
e'r

reB,

where k=1,2,...,11, and v =0. Thus this model contains four parameters to be estimated. Let 13jk

be the observed choice frequencies conditional on choice set By. Let £* denote the loglikelihood

obtained when the respective choice probabilities are estimated by 13jk ,J€ B, . From Table 4.5 it

follows that £* =— 405.8. In the logit model there are four free parameters, while there are 24 “free”

probabilities in the 11 multinomial models in the a priori statistical model. Consequently, if £, denotes
the loglikelihood under the hypothesis of a logit model it follows that —2 (Zl A ') is (asymptotically)

Chi squared distributed with 20 degrees of freedom. Since the corresponding critical value at 5 per
cent significance level equals 31.4 it follows from estimation results reported in Table 4.4 that the
logit model is rejected against the non-structural multinomial model. One interesting hypothesis that
might explain this rejection is that alternative five (“neighbor”) differs from the “family” alternatives
in the sense that the family alternatives depend on a latent variable which represents the “family
aspect”, that make the family alternatives more “close” than non-family alternatives. As a
consequence, the family alternatives will have correlated utilities. To allow for this effect we
postulate a nested logit structure with utilities that are correlated for the family alternatives.

Specifically, we assume that
4.73) corr (U;,U;)=1-67,
fori#j, 1,j#5, and

(4.74) corr (U;,Us)=0,

for i<5, where 0<0<1. This yields

evj/e

reB

(4.75) P,(B)=

when B35,
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6-1
eVJ/GLZ e"r/e ]
(4.76) Pj (B) = reB\{5}

0
e+ Y el
reB\{5}

when j#5, 5€B, and

e’s

@.77) P;(B)= 5
e’ + 2 e"/®
reB\{5}

As above we set v =0.

The parameter estimates in the nested logit case are also given in Table 4.4. We notice that
while only v; and v, are precisely determined in the logit case all the parameters are rather precisely
determined in the nested logit case. The estimate of 6 implies that the correlation between the utilities
of the family alternatives equals 0.79.

From Table 4.4 we find that twice the difference in loglikelihood between the two models
equals 17.6. Since the critical value of the Chi squared distribution with one degree of freedom at 5
per cent level equals 3.8, it follows that the logit model is rejected against the nested logit alternative.

As above we can also compare the nested logit model to the non-structural multinomial

model. Let £, denote the loglikelihood of the nested logit model. Since the nested logit model has
five parameters it follows that —2([ 2 = Z*) is (asymptotically) Chi squared distributed with 19
degrees of freedom (under the hypothesis of the nested logit model). The corresponding critical value
is 30.1 at 5 per cent significance level and therefore the estimate of —2 (f s =L *) in Table 4.4 implies

that the nested logit model is not rejected against the non-structural multinomial model. As measured

by McFaddens p?, the difference in goodness-of-fit is only one per cent.
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Table 4.4. Parameter estimates

Logit model Nested logit model

Parameters Estimates t-values Estimates t-values
V) 2.119 18.9 1.932 31.8
V2 -0.519 0.7 0.654 55
\Z 0.099 0.2 0.801 83
\2 0.725 4.8 1.242 16.8
0 0.455 15.0
loglikelihood ¢, -424.9 -416.1

McFadden’s p’ 0.33 0.34

=2(¢;-2) 38.2 20.6

In Table 4.5 we report the data and the prediction performance of the two model versions. The
table shows that the nested logit model predicts the fractions of observed choices rather well.

At this point it is perhaps of interest to recall the limitation of this type of statistical
significance testing. Of course, when the sample size increases we will always get rejection of the null
hypothesis of a "perfect model”. Since we already know that our models are more or less crude
approximations to the "true model”, this is as it should be, but is hardly very interesting. What,
however, is of interest is how the model performs in predictions, preferably out-of-sample predictions.

Since the logit and the nested-logit model predict almost equally well within sample, it is not
possible to discriminate between the two models on the basis of (aggregate) predictions. One
argument that supports the selection of the nested logit model is that even if this model contains an
additional parameter, the precision of the estimates is considerably higher than in the case of the logit
model. This suggests that the nested logit model captures more of the "true" underlying structure than

the logit model.
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Table 4.5. Prediction performance of the logit- and the nested logit model

Alternatives
Choice 1 2 3 4 5 # obser-
sets Mother Father Brother Sister Neighbor vations
Observed 30 NF NF NF 6 36
B, Predicted Logit 32.1 NF NF NF 3.9
Predicted Nested logit 314 NF NF NF 4.6 )
Observed NF NF 36 NF 20 56
B, Predicted Logit NF NF 29.4 NF 26.6
Predicted Nested logit NF NF 38.6 NF 17.3
Observed 21 NF 2 NF 1 24
B; Predicted Logit 19.2 NF 25 NF 2.3
Predicted Nested logit 194 NF 1.5 NF 2.9 i
Observed NF NF 9 21 2 32
By Predicted Logit NF NF 85 15.8 7.7
Predicted Nested logit NF NF 7.0 18.6 6.4 )
Observed NF 5 NF 2 7
Bs Predicted Logit NF 2.6 NF NF 4.4
Predicted Nested logit NF 4.6 NF NF 2.4
Observed 65 3 NF NF 10 78
B¢ Predicted Logit 65.4 4.7 NF NF 7.9
Predicted Nested logit 64.5 39 NF NF 9.6
Observed 50 4 4 NF 6 64
B, Predicted Logit 48.3 35 6.4 NF 5.8
Predicted Nested logit 492 3.0 4.1 NF 7.7 )
Observed 23 NF NF 7 8 38
Bg Predicted  Logit 27.8 NF NF 6.9 33
Predicted Nested logit 27.5 NF NF 6.0 44 .
Observed 45 2 NF 5 8 60
By Predicted Logit 41.7 3.0 NF 10.3 5
Predicted Nested logit 41.5 2.5 NF 9.1 6.8
Observed 21 NF 2 6 8 37
By Predicted Logit 24.7 NF 33 6.1 3.0
Predicted Nested logit 25.2 NF 2.1 55 42
Observed 64 4 5 15 6 94
Bn Predicted Logit 60.0 43 79 14.8 7.2
Predicted Nested logit 61.3 3.7 5.1 13.4 10.5
NF = Not feasible.
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5. Discrete/continuous choice

5.1. The nonstructural Tobit model

In this section we shall describe a type of statistical model, usually called the Tobit model. The Tobit
model (Tobin, 1958) is motivated from the latent variable specification similarly to Section 2.1.3, but
in contrast to the case described there we now also observe the left hand side variable when it is

positive. Thus we observe Y defined by

XB+uo if XB+us>0
(5.1) Y=

0 otherwise,

where ¢ >0 is a scale parameter, and u is a zero mean random variable with cumulative distribution

function F(-). Another way of expressing (5.1) is as

(5.2) Y = max (0,XB +uoc).

Tobin (1958) assumed that u is normally distributed N(0,1), but it is also convenient to work with the
logistic distribution.
An example of a Tobit formulation is the standard labor supply model. Here we may interpret

XBc+uoc as an index that measures the desire to work of an agent with characteristics X. When this
index is positive, the desired hours of work is typically assumed proportional to XfBc+ucc where 1/c

is the proportionality factor. The variable vector X may contain education, work experience, and the
unobservable term u may capture the effect of unobservable variables such as specific skills and

training. When the index XPBc+ucc is negative and large, say, it means that the agent has strong

tendence to choose leisure. Since the actual hours og work always will be non-negative we therefore

get the structure (5.1).

5.2. The general structural setting
Models such as the Tobit one account for some of the statistical nature of the data, but is not
structural in a “deep” sense. We shall now discuss structural specifications derived from choice
theory. In many situations a decision-maker makes interrelated choices where one choice is discrete
and the other is continuous. For example, a worker may face the decision problem of which job to
choose and how many hours to work, (conditional on the choice of job). Another example is a
consumer that considers purchasing electric versus gas appliances, as well as how much electricity or
gas to consume. A third example is a household that chooses which type of car to own and the
intensity of car use.

Such choice situations are called discrete/continuous, reflecting the fact that the choice set

along one dimension is discrete while it is continuous along another. Theories and methods for
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specifying and estimating structural models for discrete/continuous choice have been developed
among others by Heckman (1974, 1979), Dubin and McFadden (1984), Lee and Trost (1978), King
(1980) and Dagsvik (1994).

We now consider an agent that faces two choices; first which alternative to choose from a
finite and exhaustive set of mutually exclusive alternatives, and second; how much of a particular
good to consume. Since it is often the case that these choices depend on the same underlying factors
this should be taken into account in the formulation of the model and in the corresponding

econometric specification. Suppose for expository simplicity that there are only two continuous

goods. Let U;(x,,x,) be the utility of alternative (j,x,,x,), where j=12,..., indexes the discrete
alternatives and (x1 ,X, ) the continuous ones. Thus the agent’s optimization problem is to maximize

Uj;(x,,x,) with respect to (j,x,,X,) subject to the budget constraints jeB and

(5.3) X, P; +X, P, +Z S, ¢, =Yy, x,20, x,20,
k

where B is the choice set of feasible (discrete) alternatives, p,,p, are prices, y is the agent’s income
(exogenous), ¢; is the cost (or annual user cost) of the discrete alternative j and 8, =1 if alternative
keB is chosen and zero otherwise. Consider now the continuous choice given the discrete alternative

j- Let

(54 VJ (P, y- cj) = X1P +rxrzll?zx=y-cj Uj (XI ’ XZ)
x120,x220

which means that V; (p, y—c j) is the conditional indirect utility, given that the discrete alternative j is

chosen. Since V; (p, y—-c¢ j) expresses the highest possible utility conditional on alternative j, it must

be the case that alternative j is chosen if

(5.5) Vi(p.y~c;)=maxV,(p.y ~c,).

Second, it follows from Roy’s identity that under standard regularity conditions we obtain the

corresponding continuous demands by

(5.6) i_=_a"j(l”y‘°j)/81>r
. ! E)Vj(p,y—cj)/ay
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for r=1,2, given that j is the preferred discrete alternative, i.e., given that (5.5) holds. Thus the
discrete as well as the continuous choices are here derived from a common representation of the
preferences.

It is known from duality theory that under standard regularity conditions the specification of
the indirect utility is equivalent to the specification of the corresponding direct utility. Therefore, in
econometric model building, it is convenient to start with a parametric functional form of the indirect

utility function, including alternative-specific random terms.

5.3. The Gorman Polar functional form
When the conditional indirect utility function belongs to the class of functional forms called “Gorman
Polar forms”, (Gorman, 1953), then the structure of the demand equations and choice probabilities

become particularly convenient. The Gorman Polar functional form is given by

y—cj+a(p)(£j+mj)
b(p)

CN)) VjEVj(p,y—cj)=

where a(-) and b(-) are functions that are homogeneous of degree one, concave and non-decreasing in

p and {m } are alternative-specific terms which are independent of prices and income. It then follows

j
that V; is non-increasing and convex in prices. Here {8 j} are random terms that are supposed to

account for unobservables that affect preferences and m; is (possibly) a function of observable
attributes associated with alternative j.

From (5.7) it follows that the choice probabilities are defined by

Y r@=r{e,m oy em )

In case {s j} are i.i. extreme value distributed we obtain

exp(m; —c; /a(p))
zkeB exp(m, —c, /a(p))

(5.9) P,(B)=
By Roy's identity we obtain the demands as

(5.10)

%, =(a(p)b,(p)

b, (p) +(a(p)b,(p) _
b(p)

'a'(p))m" H-elm 1 o

ar(p))a,-

where a,(p) and b,(p) denote the respective partial derivatives with respect to component r.

63



Recall, however, that due to the selectivity problem we cannot automatically apply standard

methods to estimate (5.10), as we shall discuss in further detail below.

Example 5.1

Assume that the conditional indirect utility function has the form

1) Vi(py-c;)=(Z,a+p,ZB, +p,Z, +6(y—c;)+¢;)exp(-8p,p, 011, p,)

where {s j} are 1.i. standard extreme value distributed random terms and a, B, B, 6, i, Mo, are

parameters.” However, the specification does not have the Gorman Polar functional form. From (5.11)

we obtain

Vi(p.y-c;)

(5.12) =(ZjBr -op, (Zja+p1ZjBl +p,Z;B, +9(y —cj)+€j))eXp(—9ulpl ~6p,p,)
and
oV.(p,y—c.
(5.13) %ﬁexp(—eulp] ~01,p,).
Consequently, by (5.6)
(5.14) X5 =2Z; (aur —%’)+p,zjl3,ur +p,ZB,o1, +u,6(y—cj)+u,sj.

Second, note that maximization of Vj(p, y—c j) is equivalent to maximizing

Zja+p,Zjl3, +pZZjB2 —Bcj +§;.

Therefore, the probability of choosing alternative j equals

exp(Z;o+p,Z,B, +p,Z 8, -6c;)

2 exp(zko""Pleﬁl +p,Z,B, —Gck)'
k

(5.15) P. =

5 Note that (5.11) is not homogeneous of degree zero in prices and income. We may, however, interpret (5.11) as
an indirect utility function in normalized prices and income. This is possible because a function v(p,y) of
normalized prices and income is the indirect utility function of some locally nonsatiated utility function if and
only if it is lower semicontinuous, quasi-convex, increasing in y, nonincreasing in p, and has v(Ap,Ay)
nondecreasing in A.
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Recall while the unconditional mean of € by Lemma A1l in Appendix A is equal to 0.5772, which is
different from the conditional mean given that alternative j has been selected.

For notational simplicity let
K;=Z,0+p,ZB, +p,ZB, —6c;.

Recall that by Lemma A1 in Appendix A we have

E(ej|sj+1cj=maxk (g4 +Kk))

(5.16) =E(Ej+Kjl€j+Kj=maxk(£k +Kk))—Kj

=Emax, (g, +Kk)—Kj =05772 - x; +1°g(2k e“k).

Hence, by (5.15) and (5.16) we get

E(irj g; +x;=max, (g, +1ck))
(5.17) =—Zj %+ur91<j +Hy+H, E(sj ' 8j +Kj =max, (Ek +K‘k))
B.

==Z;" L+ 1,0y +05TT21, +, log(Zk e)

The interpretation of (5.17) is as the mean demand of good r given that j is the preferred discrete
alternative. Assume now that observations at different points in time are available. The result in (5.17)

implies that we can write

Xy =—Z,B; +1,0y+05772p,

(5.18) "‘
TH, IOE(Zk exp(Zy0+pyZiBy +P2ZiB _eckt)) +ej

where t indexes time, B, =P, /6 and e; is a random error term with the property that the mean of e;;

given that j is the chosen alternative equals zero. The estimation can be carried out in two steps: First
estimate o, 3;, B, and 6 by the maximum likelihood procedure. Second apply these estimates to

compute

log(Zexp(Zha+p,tZktB] +pnZB, —0¢c,, ))
k

which, analogous to Heckman'’s two stage procedure, is used as a known regressor in (5.18), and the

remaining parameters can be estimated by OLS in a second stage.
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Example 5.2

Assume that the conditional indirect utility has the Gorman Polar form with

(5.19) a(p)=a, [ | pi*
k

and

(5.20) b(p)=b, [] pi*
k

where ay, by, 0, By are positive and

2 Oy =2k By =1

As above, suppose data at different points in time are available. From (5.10), (5.19) and (5.20} it
follows that

(5.21) irjx Pn =a(pt)(Br —ar)mjt +(y—cj)Br +3(P,)(Br _ar)ejl :

If {E jt} are standard extreme value distributed the discrete choice probabilities are as in (5.9) with
(5.19) inserted. If for example m it = Z aY + 8, where Z; is an observable attribute vector and y and )
are parameters, then if {Z it } {c jt} and {p jt} vary sufficiently over time it is possible to estimate v,
{ak} and a, from observations on the agents’ discrete choices. The remaining paramaters to be

estimated are {B,} and d. These paramters can be estimated in a second stage by applying (5.21) and

controlling for the selectivity bias as discussed in Example 5.1.

5.4. Perfect substitute models
We now consider choice problems in which there are m +1 goods of which m brands are perfect

substitutes, cf. Hanemann (1984). The utility function has the structure

(5.22) O(x.y.2)= [Z Vi X2 ]

and the budget constraint is

(5.23) Y pex +z=y.
k=1
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Here, {\yk} are unknown parameters and U is a conventional utility function. Letting y, x, =z, , the

corresponding utility maximization problem can be written as

(5.24) maxU(i zk,zJ
k=1

subject to

(5.25) Y B, 2=y, xc20.

k=1 k

Clearly, this maximization problem implies a “corner” solution where the consumer selects the brand

with the lowest “price”. Thus, brand j is chosen if

(5.26) P  mmin, (p—k)
V; Yy

while x, =0, fork #j.

Now assume that

(5.27) logy; =Z;B/u+¢;/u

where Z; is a vector of non-pecuniary attributes associated with brand j while  and p>0 are

unknown parameters and g; are i.i. standard extreme value distributed. From (5.22) and (5.26) we

obtain that brand j is chosen if U; =max, U, , where

(5.28) U;=ZB-plogp; +¢,,

and therefore the choice probabilities are given by

exp(Z;B—plogp;)

5.29 = .
©2) T, exp(Z,B-plogp,)

The expression (5.29) can be used to estimate  and p by applying data from a single cross-section.
Note that in this case there are no fixed costs associated with the discrete choice. As above, the
continuous demands follow by applying Roy's identity.

The corresponding indirect utility equals
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(5.30) V,= max U(zj,z)=v(ﬂ,yJ

z+2;p;/V;=y j

where V(q,y) is the indirect utility that corresponds to the direct utility U(z i» z) , i.e,

(5.31) V(q,y)= max U(Zj,z)

Z+qu=y

where q represents “price”.

Example 5.3 (Hanemann, 1984, p. 550)
Let

1- -
q P eﬂy

)
V(q,y)= , 0>0, n=0.

It follows from (5.27) that the continuous demand for brand j is given by

)
(5.32) % Vi

where 9, and 9, denote the respective partial derivatives. From (5.32) and (5.29) we get

102(7‘,' Pj)’-1089+(p—1)log\|1j +(1-p)logp; + My
(5.33) B
—1ogo+ 2=

(p-1)

1
ZB+(1-p)logp; +ny+——u—ej.

Hence, it follows that

E(log(SEj pj)‘UJ:maxk Uk)=log6+ny+ E(Uj\Uj:maxk Uk).

(p-1)
1}
From Lemma A2 in Appendix A we have that

E(Uj l U, =max, Uk)= Emax U,
(5.34)
=05772 +log (2 exp(Z,B—nlogp, )]

k

which implies that
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E(log()"ij pj)l U; =max, Uk)

(5.35)
-1 -1
=10g6+05772@—)+ny+(p——)—10g exp(Z,B—nlogp,) |
m m *
k

Similarly, Lemma A2 implies that

(5.36) Var (U, | U; =max, U, )= Var(max, U,).

Note that in the conditional expectations and variances above it is implicitly understood that y and

{Z,} are given. Apart from an additive deterministic term, max, Uy has the same distribution as &;.

Consequently, (5.33) and Lemma A1 imply that

(5.37) Var(log(ij pj)IU}:maxk Uk)=Var(p;lsj):

Suppose now that our sample only consists of a simple cross-section. Then, since {Zk} do not vary

across individuals we may write

-1
(5.38) log(X; p;)=a+ny +(p_u_)10g[2 exv(ZkB—ulogpk)]*“aj
k
where
-1
(5.39) a=logf+ 05772(‘)—u—)

and §; is a random term which due to (5.39) has the property that
E(Sj l U; =max, Uk)=0
and

(p-1)"n*

Var(8j|Uj=maxk Uk)= o2

Assume now that observations at different points in time are available. Then we can use

(5.38) to estimate the remaining parameters in a second stage.

Stage I: Estimate B and p from data on the discrete choices by means of (5.31).

Stage 2: Estimate a, 1 and (p — 1) / [ on the basis on (5.38). By inserting the estimates of a, p, p—1

and B in (5.39) an estimate of 6 can be obtained.
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Similarly to (5.35) it is easy to prove that

logE(ij P; | U; =max, Uk)
(5.40)

- -1
=log9+logF(l+1—“B)+ny+(—p———llog(z exp(ZkB—ulog