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Foreword

Markov chain Monte Carlo (MCMC) has been one of the most active research and application
areas for statistical methods of data analysis in the recent decade. Strongly rooted and
influenced by the Bayesian statistical inference approach, the MCMC provides means of dealing
with complicated models which are difficult, if not impossible, to handle otherwise. However,
sampling/simulation based inference need not be restricted to Bayesian posterior calculations
alone (which involve Monte Carlo methods). In some ways, Markov chain sampling can be
compared to resampling under Bootstrap. Whereas Bootstrap resampling is either directed at
the non-parametric empirical distribution of the sample, or the estimated parametric model,
Markov chain sampling can in principle be targeted at any functions, including the likelihood
and the posterior distribution. In both cases, what we do with the re-samples makes up
the statistical inference, whereas how we get the specified/required samples is more of a
numerical/technical issue. We therefore consider Markov chain sampling and Monte Carlo
approximation two separate matters. In particular, Markov chain sampling provides us with
inferential possibilities, Bayesian or not, which liberate the statisticians from numerical poverty,
allowing applications to ever more complex situations.

This note has been designed as an introduction to the subject of Markov chain Monte Carlo.
The three chapters deal with, respectively, Monte Carlo, Markov chain theory (relevant for
Markov chain sampling), and Markov chain Monte Carlo. But we hope that it will be more
than just an introduction. The materials have been organized so as to allow quick look-up of
the various details. A number of examples, based on real-life data sets including the Norwegian
Labour Force survey, have been worked out, and the relevant Splus codes included. In this
way, even the skilled user may find it helpful as desk-reference.
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Chapter 1

Monte Carlo

1.1 Introduction

Monte Carlo methods originate from the need to evaluate integrals of the following form:

I = E,(f) = f f (x)r(x)dx,

where ir(x) is the probability density function (p.d.f.) of some random X and f (x) some
real-valued function such that E,(f) exists.

In contrast to deterministic numerical methods such as the composite Simpson's rule or Gaus-
sian Quadrature or Laplace's approximation, Monte Carlo methods stochastically evaluate I
(1.1). The various methods described in this chapter are all based on independent random
samples, for which reason they sometimes are referred to as independence Monte Carlo.

Generally speaking, the precision of the Monte Carlo methods is controlled by the size of the
sample, and has nothing to do with a Errors can routinely be assessed based on the same
sample generated, wherever the corresponding central limiting theorem (CLT) applies, which
is a distinctive feature of these methods compared to many deterministic methods.

The Monte Carlo methods described in this chapter include the simple Monte Carlo, the
acceptance sampling, and the importance sampling. These will be illustrated through examples
as well as Splus transcripts. Variance reduction techniques will be briefly discussed in the end.
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1.2 Simple Monte Carlo

Given random sample of independent, identically distributed replicates from ir(x), denoted by

Xm 	 (x),

the simple Monte Carlo is defined as

IS
1 m
-E f (xi) (1.2)

Due to the strong law of large numbers, we have

44.).	 P [limo Is =1J = 1.
m

Moreover, existence (i.e. finiteness) of

implies the following CLT

oi(f) = f (f — 1") 2 71- (x)dx ,

frn(Is — I) . 13 N (0 ,

(1.3)

Example The following transcript contains an Splus simple Monte Carlo routine, in case that

(x) cos(x) and r .-_-_ N(0,1), with sample size m (10000 by default) as the calling parameter:

smc.cos.norm <- function(m = 10000)

{

x <- rnorm(m, 0, 1) 	 # random sample from N(0,1) in x

i.s <- mean(cos(x)) 	 # simple Monte Carlo in i.s

sig2.pi <- var(cos(x)) # var_pi based on the same sample

s.s <- sqrt(sig2.pi/m) # standard error of i.s

list(m = m, I.s = i.s, Sigma2.pi = sig2.pi, SD.s = s. ․ )
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1.3 Acceptance sampling

Denote by 0(x) a source distribution, such that

Vx E S2 , r(x) > 0 0(x) > 0 	 and 	 sup r(x)10(x) = a < oo.

Acceptance sampling can be described as the following: let a(x) = r(x)/[a0(x)],

• generate U N Unif (0, 1) independent of X TP(x),

• accept x if u < a(x); otherwise, repeat sampling of (U, X) till acceptance.

We have, based on acceptance of Xi , ...,X,„

..., Xm I Acceptance 	 r(x),

to which the simple Monte Carlo (1.2) applies. In particular, the acceptance rate is given by

P[Acceptance] 1/a. 	 (1.4)

Generic Splus code for acceptance sampling

pi.x <- function(x)

calculation of the target p.d.f. for the sample }

psi.x <- function(x)

calculation of the source p.d.f. for the sample }

amc.sample <- function(n = 10000)
{

generate independent source sample x of size n

w.x <- pi.x(x)/psi.x(x) # p.d.f. ratio

a <- max(w.x) # estimation of a

u <- unif(n, 0, 1) 	 # independent Unif sample

accept <- u <= (w.x/a) # acceptance?

if (surn(accept) > 0) {

x.a <- x[accept] 	 # the accepted x
}

else {

cat(" No acceptance at all!\n")

break # abnormal termination
}

list(x.accept = x.a)
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1.3.1 Understanding acceptance sampling

Illustration Let 7r "e. N(0,1). Marked below is the acceptance region in case of (a)

(student-t with one d.f.), and (b) 	 Uni f (-5, 5) , i.e. an improper source function.

Illustration: Acceptance Sampling of Normal(0,1)

U

,'1
Source distribution: Student-t (df=1)

A I
/1 I I

-1 	 I	 I	 I

), a= 1.52
1`,

I

r-,, ,

0

Illustration: Acceptance Sampling of Normal(0,1)

The joint sampling p.d.f. is p(u, x) p(u)p(x) = 1 	 ). We have, for any x0 E (-00, 04

P PC < xo 'Acceptance]
_ P[Acceptance n X < xo ] ff°.{17 (x) p(u, x)duldx

P[Acceptancej 	 f Iffoa (x) p(u, x)duldx

.1170.{70)/[aCx)i}o(x)dx p,[x . xowa Pi [X < xo}.
f1170)1{a0(x)}}0(x)dx 	 1/a

Moreover, the unconditional probability of acceptance is given by 1/a, and is often used to

measure the efficiency of the source distribution. Generally speaking, a good source function

should (i) have heavier tails than the target function 7r, while (ii) mimic the shape of 7r.

Remark Indeed, constant a in the acceptance sampling can be substituted with any b such that

b0(x) > (x) for almost all x. The resulting acceptance rate is 1/b, which is less efficient than the

choice of a =super (x) 10(x) now that a < b.
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1.3.2 Example: Truncated Normal distribution

Since X N(0, 1) 	 p o-X N N(µ, Q2), we only need to consider the standard case.

Consider N(0, 1) truncated to the tail area [0, oo). Obviously, one could sample from the
untruncated N(0, 1) and retain those that happen to fall within the specified region, which in
fact amounts to acceptance sampling with N(0, 1) as the source distribution. The acceptance
rate is 1— (DM, where (DO denotes the cumulative distribution function (C.D.F.) of N(0,1),
which can be very inefficient. For instance, at 0 = 5, we have P[X > 5; X N N(0, 1)]

2.87 x 10'.

A relocated Exponential distribution (sometimes called a two-parameter Exponential distribu-
tion) with parameter set at the censorship point, i.e. X Exp(0), is highly efficient
for severely truncated normal distributions (Geweke, 1995) 1 . For instance, at 0 = 5, the
acceptance rate is about 96.4%. The relevant Splus code has been listed below.

Splus transcript

right.tail.norm <- function(theta = 5, n = 10000)
{

x <- theta + rexp(n, theta) 	 # Exponential source function

p.e <- dexp(x - theta, theta) # psi(x) of the source function

p.n <- dnorm(x)/(1 - pnorm(theta)) # pi(x) of left-censored N(0,1)

w.x <- p.n/p.e

a <- max(p.n/p.e)

u <- runif(n, 0, 1)

accept <- u <= (w.x/a)

m <- sum(accept) 	 # size of the acceptance sample

list(a = a, Prob.accept = 1/a, Obs.Rate.accept = min)

Truncation of N(0, 1) to the tail area [911 92] can be handled by the same relocated Exponential
distribution, with the corresponding (to 0 2 ) additional truncation.

In case that truncation of N(0,1) is made to a more central region, the Uniform distribution
over that restricted region sometimes provides a good source function. For instance, it gives
an acceptance rate of 96% for N(0, 1) truncated to (0, 0.5).

1 Geweke, J. (1995). Monte Carlo Simulation and Numerical Integration. Staff Report 192, Federal Reserve
Bank of Minneapolis
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1.3.3 Invariance property subjected to proportionality

In many applications of the Monte Carlo methods, it would be the case that the target
distribution 7r is only known up to a constant of proportionality. Suppose, then,

7r (x) =  P(x) 

f P(x)dx = -P(x),

where p(x) is known but not cp (< oo). We have,

air = sup 7r (x) 11) (x) = [sup p(x) I 71) (x)} I cp = ap cpx. 	 s 

P cp 7r/(a4) = 	 = p/(ap0).
(ap/cp ) -

In other words, the acceptance sampling remains invariant when applied to (p, .

Suppose, in addition, = qIcq , we have

a, = sup 7r/ = (c cp) • sup p/q

	

(cq/cp) (p/q)  = 	 p 
7r I (a,0)

(c41 cp) •RIP x P 	 (sup x P q)

In other words, it remains invariant when acceptance is calculated based on (p, q) .

Notice that

Eip (7r I 	 = 1 ( 70-!--- ) 	 dx = 1.

We have, for w(x) = p(x) I q(x) a ir (x) I 0(x) ,

suPx 70P = suP 7r/0 = Etp(r/iP)

so that a consistent estimator of a, is given by

supx plq
Ef,p(p q)

air = maxi Axivq(xi) 
m-lE i xxivq (xi )*

(1.5)

Remark The observation above is useful in practice. To run acceptance sampling, neither do

we need to know the standardizing constant cp for it nor the Jacobian of transformation for X.
Comparison between the estimated a, and the actual acceptance percentage on a particular run

provides us with an opportunity of checking the program.

10



Scaled density of accepted theta (dotted)

Acceptance sampling: m = 12816, a =7.8

Maximum likelihood estimate = 0.627

Scaled density of accepted theta (dotted)

Acceptance sampling: m = 11777, a =4.2

Maximum likelihood estimate = 0.903

O

O
0

O
0

1.3.4 Example: Genetic linkage model

Suppose multinomial data Y = (Yi, Y2, Y3 , Y4) with probability and likelihood, respectively,

p = (
2 + 1 — 1 

4
—

4 	 4 
  4) and 	 (0; y) oc (2 + 9)Y' (1 — 6)Y24-Y3 0Y4

(Rao, 1973) 2 , with finite integral for 0 E (0, 1). Given y, we may rescale the likelihood as

L* (0; y) = L(0; y) L(O,y),

where ö is the maximum likelihood estimate (m.l.e.). This gives us L* E [0, 1], and

r (0) = L* (9) I f L*	 .

Let 	 Uni f (0, 1), i.e. 	 = 1. Together with our choice of L* this implies that

= sup r = 11 ( 	 c10) and P[Acceptance] f L* = Ev,(L*).

For graphical inspection of the results, we estimate the density ir based on the accepted draws,

using the kernel density estimator provided in S-Plus (at window width 0.05). Since f fr = 1
while f L* = 1/a, we scale fr accordingly and plot frret against L*. Simulation results and
program, based on y = (125, 18, 20, 34) and (14, 0, 1, 5), are given below.

Genetic linkage model based on y = (125, 18, 20, 34)

0.0 	 0.2 	 0.4 	 0.6
	

0.8
	

1.0
Accepted Theta

Genetic linkage model based on y = (14, 0, 1, 5)

0.0 	 0.2 	 0.4 	 0.6
	

0.8
	

1.0
Accepted Theta

2 Rao, C.R. (1973). Linear Statistical Inference and Applications. New York: Wiley.
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Splus transcript

gene.s <- function(dat = 1, n = 50000, win = 0.05)

{

y <- cbind(c(125, 18, 20, 34), c(14, 0, 1, 5))[, dat]

# which data set?

theta <- c(0:1000)/1000 # precision of the numerical m.l.e.

L <- ((2 + theta) -y[1]) * ((1 - theta) - (y[2] + y[3])) * (theta -y[4])

L.max <- max(L) 	 # mode of the likelihood

theta.hat <- theta[L == L.max] # numerical m.l.e.

theta <- runif(n, 0, 1) # UNIF(0,1) as source function

L <- ((2 + theta) "y[1]) * ((1 - theta) - (y[2] + y[3])) * (theta -y[4])

L <- L/L.max 	 # standardizing

a <- max(L)/mean(L) 	 # the acceptance constant

accept <- runif(n, 0, 1) <= L # acceptance?

theta <- theta[accept] # acceptance sample

L <- L[accept]

m <- sum(accept)

o.t <- order(theta)

theta <- sort(theta)

L <- L[o.t] 	 # arranging the sample in increasing order

plot(theta, L, xlab = "Accepted Theta",

ylab = "Likelihood (solid)", xlim = c(0, 1),

ylim = c(0, 1.05), type = "1", lty = 1)

d.t <- density(theta, width = win, from = 0, to = 1)

lines(d.t$x, d.t$y/a, lty = 2) # scaling so that integral = a

text(0.3, 0.75, "Scaled density of accepted theta (dotted)")

text(0.3, 0.6, paste("Acceptance sampling: m = ", m,

", a =", trunc(10 * a + 0.5)/10, sep = ""))

text(0.3, 0.45, paste("Maximum likelihood estimate =", theta.hat))

txt <- c("y = (125, 18, 20, 34)", "y = (14, 0, 1, 5)")[dat]

title(paste("Genetic linkage model based on", txt))
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1.3.5 Multivariate acceptance sampling

The univariate theory generalizes directly to the multivariate case. Usual candidate continuous
source functions include multivariate Uniform, multinormal, and multivariate student-t.

Multivariate normal distribution. Denote by N(0, E) the multinormal distribution with zero
mean covariance matrix E. Let upper-triangular matrix C be the Cholesky decomposition of
E, such that

CTC = E.

Let N(0, I) be with identity covariance matrix, we have

CTX N N(p., E) 	 where 	 X N N(O, I) .

In particular, acceptance sampling can be based on

q(x) H 	 oc 	 (p + CT x) ,
j=1

where 0(x) is the p.d.f. of N(0, 1).

Splus transcript

r.m.norm <- function(m = 1, mu, sigma)

d <- dim(sigma) [1] 	 # dimension of the distribution

C <- chol((sigma + t(sigma))/2) # Cholesky decomposition

x <- array(rnorm(m * d, 0, 1) , c(d, m)) # m standard multinormal

x.t <- mu + t(C) %*% x 	 # transformed sample

q <- dnorm(x[1, ], 0, 1) 	 # proportional source density

for(i in 2:d) {

q <- q dnorm(x[i, ], 0, 1)

}

list(x = x.t, pdf = q)

13



Multivariate student-t distribution Denote by xi,2 the x2-distribution with v d.f.. Suppose

(X1, ..., Xic ) 	 N(0,1) independent of (Yi, 	
Ci.d.

Yk ) 	 x2 ,

then Zi Xi//17i/v, for i = 1, ..., k, form i.i.d. student Tv-observations. We say that

p-i-CTZ

has location A, scale E and degree of freedom v, where E = CT C. In particular,

+ CT Z) oc q(z) = 1-1 ( ,

where -y„() is the p.d.f. of student-t distribution with v degree of freedom.

Remark Standard parameterization of multivariate student-t distribution defines Z = X/ V-1777/,

where X N N(µ, E) and Y are independent x2v-variables, gives (p,E,v) a different interpretation.

Splus transcript

r.m.stud <- function(m = 1, mu, sigma, d.f = 3)
{

d <- dim(sigma) [1] 	 # dimension of the distribution

C <- chol((sigma + t(sigma))/2) # Cholesky decomposition

x <- array(rt(m * d, d.f), c(d, m)) 	 # m*d student-t with d.f

x.t <- mu + t(C) 7.41. x # transformed sample

q <- dt(x[1, ] , d. f) # proportional source density

for(i in 2:(1) {

q <- q * dt(x[i, ], d.f)

}

list (x = x.t, pdf = q)
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1.3.6 Example: Logistic regression

Consider the following data set (Tanner, 1993, p 14) 3 :

Days of Radiotherapy (X) 21 24 25 26 28 31 33 34 35 37 43 49

Response (Y) 	 1	 1 	 1 	 1 	 1 	 1 	 1	 1 	 1 	 1 	 1	 1

Days of Radiotherapy (X) 51 55 25 29 43 44 46 46 51 55 56 58

Response (Y) 	 1 1 0 0 0 0 0 0 0 0 0 0

and the logistic regression model, i.e.

log(pi) — log(1 — pi) = a +

where pi = P[Y = llxi] for i = 1, ..., 24. Let 0 = (a, i3), the likelihood is

24

L09; y) cc He (1 — pi) -Yi
	

where O = (a, 4) = (3.819, —0.087).
i=1

To ensure finite f LdO , we restrict ourselves to the parameter region

O = Oa x Op where Oa = (-1, 9) and Op = (-0.25, 0.05).

Three source functions are made optional:

• Unif (-1, 9) x Unif (-0.25,0.05),

• bivariate normal N(8, 	 where k is a tuning parameter and E the inverse of the

observed information, also known as the observed formation,

• bivariate student-t with location it, scale kE and di v.

Notice that truncation of the sample to e is necessary except with the Uniform distribution.

However, this changes only the density of the source function proportionally.

To visualize the results, we compare the profile likelihood with the marginal likelihood based

on the accepted sample. The profile likelihood of e.g. a is defined as

L p (a; y) = max L(a, 13; y).

Whereas the a marginal of the likelihood is defined as

LM (a; y) = f L(a, f3;

3Tanner, M.A. (1993). Tools for Statistical Inference. (2nd Edition). Springier-Verlag.
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In the first case, we may plot, say, the accepted a against their corresponding L(a, Ay)

regardless of fi. The contour of the plotted area converges to the profile likelihood of a,

provided the sample covers everywhere in 8 as it tends to infinity. To get the a marginal of
the likelihood, we simply estimate the marginal density of a based on the accepted pairs of
parameters regardless of /3. Finally, we plot the scaled LM/ max(LM) against Lp/ max(Lp),
i.e. the contour of L(0,y)IL(8;y). The result may be influenced by the choice of the window
width for LM . Nevertheless, they confirmed to the basic impression that the marginals of the
likelihood are somewhat flatter than the profiles of the likelihood.

Remark Starting with m = 100 and estimating a, as explained before, we found acceptance rate at
about 5% for the Uniform source function. The acceptance rate was best when the tuning parameter
was at k = 1.5 for the Binormal distribution, among k = 0.5, 1, 1.5, 2, 2.5, 3. Slightly higher
acceptance rate can be found for bivariate student-t at certain combinations of the parameters.

Figures below have been obtained using truncated bivariate N(8, 1.5t) as CO) with initial sample

size n = 5000.

Source function: BiTrN (theta.hat, 1.5 *Sigma.hat )

0
	

2 	 4
	

6
	

8
Alpha ( m = 3121 )

Source function: BiTrN (theta.hat, 1.5 *Sigmashat )

-0.25 	 -0.20 	 -0.15 	 -0.10 	 -0.05
	

0.0
	

0.05
Beta ( m = 3121 )
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Splus transcript

logit.s <- function(n = 1000, sampler = 2, k = 1.5, d.f = 3,

a.lim = c(-1, 9), b.lim = c( -0.25, 0.05),

theta = c(3.819, -0.087), win = c(2, 0.1))

x <- c(21, 24:26, 28, 31, 33:35, 37, 43, 49, 51, 55, 25,

29, 43, 44, 46, 46, 51, 55, 56, 58)

y <- c(rep(1, 14), rep(0, 10)) # the data

eta <- theta[1] + theta[2] * x

p <- exp(eta)/(1 + exp(eta))

L.hat <- exp(sum(y * eta + log(1 p)))

w <- p * (1 - p)

j <- c(sum(w), sum(x * w), sum(x * w), sum(x -2 * w))

j <- solve(array(j, c(2, 2))) # the observed formation

j <- (j + t(j))/2 	 # securing symmetry

# Unif*Unif

if(sampler == 1) {

z <- runif(n, a.lim[1], a.lim[2])

z <- rbind(z, runif(n, baim[1], b.lim[2]))

d.z <- repagdiff(a.lim) * 	 n)
}

# bivariate Etheta,k*Sigma)

if(sampler == 2) {

A <- chol(k * j)

z.0 <- array(rnorm(2 * n), c(2, n))

z <- theta + t(A) %**4 z.0

d.z <- dnorm(z.0[1, ]) * dnorm(z.0[2, ])
}

# bivariate student-t

if(sampler == 3) {

A <- chol(k * j)

z.0 <- array(rt(2 * n, d.f), c(2, n))

z <- theta + t(A) %*% z.0

d.z <- dt(z.0[1, ], d.f) * dt(z.0[2, ], d.f)

idx <- z[1, ] <= a.lim[2] & z[1, ] >= a.lim[1]

idx <- idx & z[2, ] <= b.lim[2] & z[2, ] >= baim[1]

z <- z[, idx]

d.z <- d.z[idx]

n <- sum(idx) # sample after possible truncation

17



L <- 1 # sample likelihood

for(i in 1:length(y)) {

eta <- z[1, ] + z[2, ] * x[i]

p <- exp(eta)/(1 + exp(eta))

L <- L * (p -y[i]) * ((1 - p) - (1 - y[i]))

}

L <- L/L.hat
	

# standardizing

w <- L/d.z

a <- max(w)/mean(w)

accept <- runif(n, 0, 1) <= w/max(w)

z <- z[, accept]

L <- L[accept]

m <- sum(accept) 	 # acceptance sample

close.screen(all = T)

split.screen(figs = c(2, 1)) 	 # graphical display

txt <- c("Unif * Unif", paste("BiTrN (theta.hat,", k, "*Sigma.hat )"),

paste("Student-t ( location", "theta.hat, scale", k,

"* Sigma.hat and d.f.", d.f, ")"))

x.b <- paste(c("Alpha", "Beta") , "( m =", m, ")")

x.lim <- 	 bairn)

for(i in 1:2) {

screen(i)

plot(z[i, ], L, xlab = x.b[i], ylab = "", xlim = x.lim[i, ])

title(paste("Source function:", txt [sampler])

text(surn(x.lim[i, 	 * c(5, 1))/6, 0.7,

"Profile likelihood (contour)")

text(sum(x.lim[i, ] * c(1, 5))/6, 0.7,

"Marginal likelihood (dotted)")

d.t <- density(z[i, ], width = win[i], from = x.lim[i, 1],

to = x.lim[i, 2])

points(d.t$x, d.t$y/max(d.t$y), type = "1", lty = 2)

list(a = a, Rate.accept = min)
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1.4 Importance sampling

Let ti)(x) be an importance sampling density, define the importance weights to be

w(xi) = 71(XiV2P(Xi)	 where X1 , ..., X77, i.̂ . a.

Cx).

The corresponding (weighted) importance Monte Carlo is given by

m	 m

= 1E f (xi* (xi)} {E w(x2)};

whereas the simple importance Monte Carlo is

m
1.0 =	 f (xi)w (xi)} -

i=1

By the strong law of large numbers, we have

/m (14 / 	 and 	 /0 	I.

Moreover, if

E,(w) = f 7r2 (x) I 0(x)dx < oo and E,(f2 w) = f f2 (x)7r2 (x) (x)dx < oo,

then

VT-n(4n — I) 	 N (0, a-2 ) 	 where a2 = E,{(f — 1) 2 Iv} ,	 (1.8)

and

— I) 4 N(0, 0-g)	 where o-g = V artp(f w) = E,(f2w) — I2 .	 (1.9)

Based on the same sample, the corresponding Monte Carlo estimates can be given as

m	 m

ei2 = {E [f(xi) -Im } 2w2 (x0 }/{E
i=1	 i=1

and

^ 2 ___
[U0	 f (X2)W (X 2 ) — /0} 2 .

i=1

(1.6)

(1.7)
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Generic Splus code for importance sampling

pi.x <- function(x)
{

calculation of the target p.d.f. for the sample

psi.x <- function(x)

{

calculation of the source p.d.f. for the sample

f.x <- function(x)

{

evaluation of f(x)

import.= <- function (n = 10000)
{

generate independent importance sample of size n

w <- pi.x(x)/psi.x(x) # importance weights

f <- f.x(x) 	 # f(x)

i.m <- sum(w * f)/sum(17) 	 # weighted importance MC

sigma <- sqrt(sum((f - i.m) -2 * w-2)/sum(w))

i.0 <- mean(w * f) 	 # simple importance MC

sigma.° <- sqrt(vara *

list(I.m = i.m, sigma = sigma, 1.0 = i.0, sigma.0 = sigma.0)



=  • Ei [ f (xi ) — Ind 2w2 (xi )
a 

[Ei W (Xi)]
2

(1.10)

1.4.1 Understanding importance sampling and invariance property

Instead of using an acceptance/rejection mechanism to obtain an i.i.d. sample from (x) ,

the importance sampling weights all the draws from the source distribution IP(x) to obtain a
convergent approximation.

Remark If we think of w(xi) as the inverse of the inclusion probability, as in the case of sampling
survey, then /0 corresponds to j/N, and to jig even when N (i.e. the size of the population)
is known. We therefore refer to /0 as the simple importance Monte Carlo, and 1, 71 the weighted one.

The simple importance Monte Carlo can be motivated by the following identity,

E,(f) = f fir dx = f f 111*Pdx = Etp(f w),

since _To is identical with 4, (1.2) applied to Etp(fw). Whereas in the weighted importance
Monte Carlo, also the dominate one in practice, a further identity is introduced, i.e.

E, (f) = Eigf w) /1 = Etp(fw) / Etp(w).

The simple Monte Carlo Is (1.2) is now applied to both terms on the right-hand side, and the
resulting ratio gives us the weighted Monte Carlo (1.6).

Both methods use all the sample generated. However, while the simple importance Monte
Carlo is unbiased, the same is not true of the weighted importance Monte Carlo. Neither does
strict inequality hold between their respective variances. The weighted importance Monte
Carlo is invariant w.r.t. proportional transformation of it or/and 7/), since

w = p/q oc r/0 = {E(fipi/qi)}/{Epi /qi I.

it is also clear that the same may not be said of the simple importance Monte Carlo I.

Moreover, an invariant Monte Carlo estimator of the variance of the weighted importance
Monte Carlo can be given as

To derive this from the estimator in case of w = r/O, we notice that Ei wi/m $ 1. However,
the numerator and the denominator are now both proportional to w2.

21
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1.4.2 The central limiting theorem

The convergence of the CLT is essential in application. The J-method gives, asymptotically,

Varo(Ei fiwi ) 	Et2p (fiwi )
V arp( E,..i.? 1. fiwi

E:ip(Eiwi)
V anP(Ewi)

— 2 EtP(Ei fiwi) Ec. (f-w. w-)
E,1,(Ei wi )

m • V aro (f w) (m - 1) 2
m - Var g w )

(m 1) 2 	(m 1) 4

m - /
	  m Covo (fw, w)— 2 
(m 1) 3

1
= {[Eir (f2w) — 12]+ 12 • [E,(w) — 1]

— 21 - [E,(f w) — 111
1

—
m

E,(f2 - w — 2I f • w 12 • w)

—
1

Eir{(f — I) 2w}

1 "- 0-z

since

V artp(f w) f (fri 0)20clx — [ f f (71- 0)0dx] 2

f(f2w)rdx — 12

= E,(f2w) — I2 ,

and

V arip(w) f (7 I 0) 20dx — f (r 0)0dx} 2

and, finally,

Cov,p(fw, w) = E,p(fw2) — Eip(f w)Eip(w)

f f (7 11/4 20 — / 1

E,(fw) —
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1.4.3 Relative numerical efficiency (RNE)

Recall

cr72, = Var,(f) = f (f — I) 27rdx = f (f — .0 2w0dx = Eip { ( f — I) 2w}.

Averaging of (1 — I) 2w is carried out w.r.t. 0(x), compared to 7r(x) in the case of o-2 . We
obtain, thus, Monte Carlo

=E[f(xi)-ImPtv(xivm
i=1

and/or its invariant version, i.e.

&72r = {E[f (xi) 421 2w(xi)}/{E w •)}-
i

as a by-product of the importance sampling.

In particular,

tV = 1 4#> 	 = 7r 	 (7,,r = cr2

i.e. the difference between cr 7,2 and a2 is caused by the fact that the sample is not directly
generated from 7r(x).

Define the relative numerical efficiency of the weighted importance sampling density (against
the direct sampling density 7r) to be

RNE =0.7,2/0.2.

RNE less than 0.1, certainly less than 0.01, indicates poor efficiency, and possible failure of

the underlying convergence conditions.

Two properties of are specially helpful for improvement of RNE, (a) it has thicker tails than
those of 7r, and (b) its shape closely mimic that of 7r, though it is difficult to formulate exact
measures of, or precise balance between, them.

In addition, we may define the RNE of the weighted importance Monte Carlo against the

simple importance Monte Carlo as

RNE = o-2
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1.4.4 Example: Relative numerical efficiency for target N(0, 1)

Let r(x) 	 N(0, 1) and 1/)(x) be student-Ti, where v is the degree of freedom. Random

X N Tv has zero mean with variance v/(v — 2) for v > 2 — the variance does not exist for

v = 1, and its tails are heavier than those of the normal distribution: while T i has the thickest

tails, Too reduces to N(0, 1), giving the closest mimicry of the shape of N(0, 1).

Let f (x) = x2 . Direct sampling (from 7) is possible so that we may estimate the variance of

(a) the simple Monte Carlo (1.2) based on direct sampling, i.e. a2 ,  (b) the simple importance

(1.7), and (c) the weighted importance (1.6).

Remark Although .4 2 is known here, RNE becomes more stable when it is calculated based on
its estimates.

The results suggest uniformly that

0'
2 < a2 

< Or7r
2

•

Maximum efficiency was reached by .10 with T3, where o Ps, o-,2/2. It is also interesting to

notice that thick tails alone raised the RNE of T 1 above that of Td with large v, although the

latters more and more approach the shape of N(0, 1).

Importance sampling for E[XA2; N(0,1)] ( m = 10000 )

•••

•
• •

•

• Importance sampling against direct sampling

•
• •

• • •
• 	 •
	 • 	 •	 • 	 • 	 • 	 • 	 •

O 	 • 	 •
• O

O

O

O °
00

O

Weighted Monte Carlo against simple Monte Carlo

0
	

20 	 40 	 60 	 80

Degree of freedom of Student-T (importance sampling distribution)
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Splus transcript

rne.t <- function(m = 10000, d = c(1:4, 4 + c(1:3) * 2, 10 + c(1:17) * 5))
{

B <- length(d) 	 # number of d.f. of simulation

btp <- array(0, c(4, B)) 	 # tabulating the results

dimnames(btp) <- list(c("a", "s2_pi", "s2_0", "s2_m"), d)

for(i in 1:B) {

d.f <- d[i] 	 # degree of freedom

x <- rt(m, d.f) # importance sample

f <- x -2

w <- dnorm(x)/dt(x, d.f) 	 # importance weights

btp["a", i] <- max(w) # acceptance rates

i.m <- sum(f * w)/sum(w)

btp["s2_m", i] <- sum((f - i.m) -2 * w-2)/sum(w)

btp["s2_pi", i] <- mean ((f - i.m) -2 * w)

btp["s2_0", i] <- var(f * w)

RNE <- btp["s2_pi", ]/btp["s2_m", ] 	 # I_m against I_s

plot (d, RNE, bty = "n", xlab = paste("Degree of freedom of",

"Student-T (importance sampling distribution)"), ylab =

"Relative numerical efficiency", ylim = c(0.7, 1.6))

text(60, 1.26, "Importance sampling against direct sampling")

RNE <- btp["s2_0", ]/btp["s2_m", ] 	 # I_m against

points(d, RNE, pch = 5)

text(60, 0.8, "Weighted Monte Carlo against simple Monte Carlo")

title(paste("Importance sampling for E[X -2; N(0,1)] ( m =", m, ")"))

list(tab.result = trunc(1000 * btp + 0.5)/1000)
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1.4.5 Acceptance sampling or importance sampling?

Acceptance sampling and importance sampling are clearly related. The variance of the accep-
tance sampling is air2 = f (f — I) 2 71-dx if we count only the accepted draws, and ao -,2 if we
count all the draws, where 1/a is the probability of acceptance. The variance of the impor-
tance sampling is a2 = f ( sf — n 2w7rdx where w < a, so that or 2 < aci, in which sense the
importance sampling is more efficient unless it is very costly to evaluate f (x). However, the
exact sample generated by means of acceptance sampling opens up other inferential possibili-
ties which are not available with importance sampling. In general, essential to both methods
is to find good/working /P(x), than the choice between them.

Remark While Etp(Is) = I for Is based on acceptance samples, so is /0 (1.7) unbiased. The
weighted importance Monte Carlo (1.6) is however biased in general.

Remark Given X = x N 0, the corresponding f (x) would be down-weighted by importance
sampling if w 7r/0 is small, which also implies that x would have a small probability of acceptance
since a = 71- / (coP) is small as well. Similar compatibility holds in case of large w(x).

Example The following Splus transcript compares acceptance and (weighted) importance sampling,
where N(0,1) left-censored at 8 = 5 is the target distribution, and tp + Exp(0), and f (x) x.

The results indicate that the weighted importance sampling is slightly more efficient in this case.

rne.accept.import <- function(theta = 5, n = 10000, prop = F)

{

x <- theta + rexp(n, theta)

f <- x

pi.x <- dnorm(x) 	 # with or without standardizing constant

if(!prop) {

pi.x <- pi.x/(1 - pnorm(theta))

}

psi.x <- dexp(x - theta, theta)

w <- pi.x/psi.x

a <- max(w)/mean(w)

accept <- runif(n, 0, 1) <= w/max(w)

f . a <- x [accept]
	

# f(x) based on the acceptance sample

i.s <- mean(f.a)
	

# acceptance Monte Carlo

i.m <- sum(f * w)/sum(w)	 # weighted importance Monte Carlo

sigma <- sqrt(n * sum((f - i.m) -2 * tr2))/sum(w)

s . pi <- sqrt (sum((f - i .m) -2 * w) /sum(w) 	 # importance MC

s.s <- sqrt(var(f.a)) # simple MC I acceptance

list(MC.import = i.m, MC.accept = i.s, SD.import = sigma, SD.accept

= c(s.s, s.pi), accept.rate = c(1/a, sum(accept)/n))
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1.4.6 Combined importance sampling

It is possible to combine acceptance sampling with importance sampling — the resulting
method can be referred to as the combined importance sampling.

Suppose target 7r, and importance sampling density 0, and some constant c > 0. Define the
combined importance weight as

{ir (x) l[c • 0(x)] 	 _

w (x) = 11 with probability 7r I (cO)

0 otherwise

if 7r 10 > c

if 7r	 < c

The resulting combined importance Monte Carlo takes the weighted form, i.e.

IC = 	 f (xi)w(xi ll / 	 w(xill
a.s.
—4 I = E7r(f)•

Let B = {x; 7 r (x) I0(x) > c} , we have

Etp(w) = fBcip—Odx + fB. 1 • c-7-p Oda + fBc 0 • (1— —7r dx
7r 	 7r

= P, (B) c P, (13c) c

= 1/c,

and

w) =7rf Oclx + f f • --__ L

B. 	
Oda + 0

uzyc-i f frdx
suss

I/c.

For any given problem, there is a value of c which minimizes the variance of the combined
Monte Carlo. See Muller (1991, Chapter 2) 4 for more details.

'Mailer, P. (1991). Numerical Integration in Bayesian Analysis. PH.D. thesis, Purdue University.
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1.5 Variance reduction

In any independence Monte Carlo methods, a single draw from can be replaced by the mean

of, say, k identically, but not independently distributed draws. They are numerous ways in

which these can be set up, so that a reduction in the variance of the resulting Monte Carlo

can be achieved. The most common variance reduction methods include antithetic variables

(Geweke, 1988)5 , systematic sampling (McGrath, 1970)6 , control variables (Hammersley and

Handscomb, 1964) 7 , etc..

Example (Antithetic importance Monte Carlo)

Suppose target ir with mean Air , and X — tp, define the antithesis of x as

xl = p, — (x — /A ir ) = 2p, — x.

The antithetic (weighted) importance Monte Carlo of I = E,(f) is given as, for fi = f (xi) and

= f (4) and so on,

E-2 fiwi + 
	Ei wi +	

where wi = ri/h

7 . fiwi+flu4 	, „
	wi+2,14 	--t- w0 /2

Ei (wi + wa/2

E i givi
a4.Ei

where gi (fiwi + flwa I (wi + t•) and vi = (wi + wi)/2. It can be shown that the variance of the

/2 is given by

1
Var(i2) = ;7-1 .E,{(g I)2w},

and so on. Typically, this reduces the variance of the standard importance Monte Carlo provided ir

is more or less symmetric.

5 Geweke, J. (1988). Antithetic acceleration of Monte Carlo integration in Bayesian inference. Journal of
Econometrics, 38: 73-89.

6 McGrath, E.I. (1970). Fundamentals of Operations Research. San Fransisco: West Coast University
Press.

7 Hammersley, J.M. and Handscomb, D.C. (1964). Monte Carlo Methods. London: Methuen and Company.
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Chapter 2

Markov chain

2.1 Introduction

In this chapter we review some of the theory of Markov chains. Our aim is to provide the
necessary background for understanding the methodology of Markov chain Monte Carlo in the
next chapter.

Two results are above all important. The first of them is formulated in terms of the Ergodic
Theorem, which ensures the desired convergence of Monte Carlo based on a Markov chain
sample. The other one, expressed as the central limit theorem, measures the precision and the
efficiency of basing Monte Carlo on such a Markov chain sample.

The Markov chain sample being dependent, the techniques by which these results can be
derived are different from those of the previous chapter, which dealt with independent samples.
However, efforts have been made to keep the presentation at a minimum technical level. Details
which are not absolutely necessary have been excluded.

Having explained the definition of a Markov chain, we introduce increasingly stronger prop-
erties: irreducibility, recurrence, invariant distribution and positive recurrence, and finally re-
versibility. It is important to understand the difference between these properties, and which of
them is needed for which type of convergence.
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2.2 Markov chain

2.2.1 Definition

Denote by

(Xn)n>0 where Xn E S2 and n = 0, 1, 2,

a discrete-time random process taking values from state-space O. Denote by e the distribution
of Xo , i.e. the initial distribution. Denote by P = p(x2 , xj+1) the probability function governing
transition from x 2 to xi+1 for 0 < i < oo, i.e. depending only on x i , but not xi for j < i. In
this way the random process generated by e and P is a Markov chain, denoted by

(xn ) n >0 —

More compactly, we may write

(Xn)n>o M(e, P) 	 VO < N < 00,

PRX0, X1, X N)} = P[X0]P[Xilx0iP[X2Ixil • • • P[X Nix N-11

= C(xo)P(xo, xi)P(xi, x2) ... P(x 	 xN)•

Illustration The beginning of a discrete-time Markov chain:

x

n = 2

n = 4

n=0

n=3

t

4	
n = 10

n = 5

Remark The transition P is constant over time, for which reason the Markov chain is said to be

time homogeneous. Notice also the constant interval/period of time before the current state of the

chain is changed: with continuous-time Markov chain, the time the random process spends at each

state is independent, and exponentially distributed.
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2.2.2 Weak and strong Markov Property

A Markov chain with fixed initial state x o has degenerate initial distribution, i.e.

e (x0) = (5x0 = {1 	
if X0 = x0

0 	 otherwise

in which case it is denoted by

114 (Sx0, P).

(Weak) Markov property (WMP)

(xn).>0 m (e,P)

	

Vm < 00, (Xm+n)n>0 M (Oxm 1 )-

Remark Given Xm = xm and N < oo, PRXm+1,...,Xm+N)Ixml admits the required factoriza-

tion by definition for any sequence of (xo, ...,xm_i,xm ). According to the weak Markov property,

therefore, what happens to a Markov chain from any fixed time in 'future' on, is entirely determined

by the state at that point, and has nothing to do with whatever has happened before that.

Stopping time A stopping time T is a random variable, for T E {0, 1, 2, ..., oo}, such that
= m depends on (X0 , ..., Xm ) alone.

Example The first passage time of x E 0, i.e. inf{m > 1; Xm x}, is a stopping time. So is the

first recurrence time of x E 1, i.e. inf{m > 1; 3n < m, Xn = Xm = x}. The last exit time of x,

i.e. sup{m > 0; Xm = x}, is in general not a stopping time.

Strong Markov property (SMP)

(x,2).>0 m(e,P)
	

VT < CO, (X7--1-n)n>0 M ((5x7 ,

Remark Notice that exactly when r occurs can not be known in advance. In contrast, it happens

precisely at step m with WMP.

Remark This lack of memory of Markov chains, expressed here in terms of the WMP and the SMP,

is a characteristic of particular importance. In fact, the Ergodic theorem later on ensures that, under

mild regularity conditions, a Markov chain will eventually 'forget' all about its initial state, and enter

into a state of equilibrium.
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2.3 Discrete state-space theory

2.3.1 Some elementary calculations

Transition matrix The transition P of an M(e, P) with (countable) discrete state-space C2

is a stochastic matrix, whose (i, j)-th element is given by

pi; = P[x7,44 = 	 = =p(i,i)

for i, j E SZ. In particular, Ej pij = 1, which is the defining property of a stochastic matrix.

Transition after transition For any n > 0, we write

pii (n) = P[Xn j1X0 = = Pi [Xn =

which is given by the 	 j)-th element of Pn . In particular, P is a square matrix given finite

a Denote by A1, A2, ... its eigenvalues, such that

P = UD(A)11-1

i.e. diagonalizable, where D(A) is the diagonal matrix defined by A. Since

Pn = UD(A)U-l UD(A)U-1 - - • UD(A)U -1 =UD(An)U -1 ,

An are eigenvalues of Pn . Thus, if A are all real and distinct, then, 3 constants a such that

Pij(n) = (Pn)ij = E c/a/c s

Hitting-time Random variable hitting-time of j E S2 is defined as

H(j) = inf{m 0; Xm = j}.

The hitting probabilities, denoted by = Pi [H (j) < oo] and = 1, are given by the minimal

non-negative solution to

kEn

Whereas the expected hitting-time, denoted by di = Ei [Hwi and 	 = 0, are given by the

minimal non-negative solution to

.Epik (1 ± = 1 ± Pike";
kES/ 	 kES1
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2.3.2 Irreducibility

For all i0jE SZ , i leads to j if pii (n) > 0 for some n, denoted by

i 	 j.

Moreover, i communicates with j if i j and j 	 i, denoted by

i H j.

Equivalent relation 44 divides S2 into disjoint communicating classes. A Markov chain, indeed
P, with discrete state-space is irreducible if S2 consists of one single communicating class:

V j S2 	 i ÷÷ j.

Remark Irreducibility implies that the initial distribution has no bearing on the convergent states

of the Markov chain. Every state in S/ can be reached by the chain no matter where it starts.

On the other hand, a class C is closed if

(i E c) n 	 j) 	 E C.

A state i is absorbing if {i} is closed.

Example Diagram makes irreducibility easy to check. Consider P defined by the following stochastic
matrix (Norris, 1998, p 11) 1 , i.e.

P =

/	 2I 1 0 0 0 ON2 
0 0 1 0 0 0
1	 1 1 03 0 0 3 3
0 0 0 1 1 02 2
0 0 0 0 0 1

\o 0 0 0 1 0)

The corresponding diagram makes the solution obvious

1 	 4

2 	 5 ------ 6
The communicating classes are {1, 2, 3), {4} and {5, 6}, where {5, 6} is closed in addition.

'Norris, J.R. (1997). Markov Chains. Cambridge University Press.
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2.3.3 Recurrence

Denote by Ti = inf{n > 1; Xn = i} a stopping time called the first passage time. Denote by

ri the probability of return in finite time, i.e.

ri = P[ri < oo IX° = i] = [-ri < ool.

A state i is recurrent if ri = 1; it is transient otherwise.

Theorem Given (Xn )n>0 M(, P), each state of C2 is either recurrent or transient, and

00 	 00

ri = 1 <#. 	 pii(n) = 00
	 and 	 ri < 1 .4=;>	 pii(n) < oo.

n=0
	 n=0

Define Vi = En°_,0 5x0=i to be the number of visits to state i, such that

E [Vi IXo = =
Enc1-0 Ekn=ii ,Co = ii =En=oPi2(n)

00

Et,' 1 vPi[vi = v] = Ecy'',..'-i. E.21-10 Pi [V = v]

= Emcc=0 Er—m+1 Pi [Vi = = Emcc=0 Pi [V > 771].

Finally, due to the SMP, Ti is independent and identically distributed between each return, so that

P{Vi > miXo = = rr for m > 0, i.e. the probability of making m returns in a finite time.

Theorem Any communicating class either consists of all recurrent states or all transient ones.
For any i 44 j, there exists some n, m > 0, such that pii(n) > 0 and pji(m) > 0, and for all t > 0,

pij(n)pjj(t)p.ji(m) pii(n + t + m)
Ep Jim pii (n + t + m)

•t=o	 Pii(n)Pii(m)

Thus, (1) transient i implies ato pij(n) < oo, i.e. transient j, and (ii) recurrent j implies recurrent

i. Symmetry implies that the results also hold the other way around.

Remark Like irreducibility, recurrence (or transience) is a class property. Thus, that P is recurrent

implies that it is irreducible. Indeed, recurrence of P ensures that each member state of Si will be

visited infinitely often, which makes the convergence of the Markov chain interesting.

Theorem Every recurrent class is closed. Every finite closed class is recurrent.
Should recurrent i and i -4 j not imply j 	 i, we would have Pi [Ti = oo] > 0 	 < 1. Whereas

the states of a finite closed class can not all be transient, since to nowhere can the chain escape.

Remark An irreducible Markov chain may be transient only if it has an infinite state-space.
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2.3.4 Invariant distribution and positive recurrence

A probability distribution, denoted by 7r = (ri ) iEn, is invariant for M(e, P), indeed P, if

7r =	 <=> 	 Vj E f2, 7ri = Eiripij .

iEr2

(2.1)

Invariant distribution 7r is also said to be stationary or equilibrium.

Remark (2.1) shows that M (7r. , P) generates a dependent, but identically distributed sample.

Invariance and recurrence are closely related. Denote by 77i the expected time of return, i.e.

rji = E[7-i 1X0 = i] = Ei Fri l

of a recurrent state i. It is positive recurrent if ni < oo ; otherwise it is null recurrent.

Theorem Irreducible M(CP) 	 (V i E 	 < 00 44#. ir = 7P where 7ri = 1/7)i ).

Remark Positive recurrence strengthens the convergence of the Markov chain. In a way, it is about

the rate of convergence, i.e. each member state of S2 will be reached in a finite period of time.

Example (One-dimensional random walk) Let S/ = {0, ±1, ±2, ...} with transition probability
p(i, i + 1) = p and p(i, i — 1) = 1 — p = q. Clearly, it is irreducible for p E (0, 1). To check if it is
recurrent, we only need to consider one point, say, the origin, where

n n

	Poo(n) =	 p-2	 if —
n E Si, and 0 otherwise.n 	 2)

Stirling's formula n! Nrinirn(n/e)n gives us, in case of p = q,

00 	 00

Poo(2n) oc (4Pq)"/iii = 1/Ngi 	 3 N, E poo(2n) 0( E vin- = oo.
n=N 	 n=N

Thus, the symmetric one-dimensional random walk is recurrent. Otherwise,

	4pq = b < 1
	

3 N, E poo(2n) E bn < oo,
n>N 	 n>N

so that the asymmetric one-dimensional random walk is transient. Returning to the case of p = q,

= 1 	 and
1	 1

= 2 'Yi —1 + 27i+ 1 =7-P.

Yet, Ei = oo, i.e. not a probability function, so that the symmetric random walk is null recurrent.
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2.3.5 Reversibility

Random process Yn = X N_n is said to be the time-reversal of (X.)0<n<N-

Theorem Let (Xn)0<n<N	 M (7 P) , with irreducible P and its invariant 	 The time-
reversal is then CYn,0<n<N M (7r, P) with the same invariant ir , where P' is given by

--=

First, P' is a stochastic matrix, since

= E
pji =	 = 1.

Next, 7r is invariant for P', since

E ^jpji = E1iPi j =	 Pij = 1 =

Finally, M(r, P') defines a Markov chain, since

	P[Y0 = io n = n n YN = iN] = P[X0 = iN n =	 n n XN = io]
= riNP(2N7iN-OP(iN-1,iN-2) • - - P(ii7i0)

= (iN-1, iN)riN-1P(iN-17 iN-2) • ° • P(il, i0)

= (iN-1,iN)P' (iN-2,iN-1) • - 131 (i07

A probability measure, denoted by it = (iri)iEn, is in detailed balance with P if, Vi, j E C2,

TiPij = IriPii
	

(2 . 2)

In particular, the time-reversal of M(ir, P) is the same M (7, P), and the chain is reversible.

Remark Detailed balance implies invariance, since (rP) 3 = E i 	= Ei	= iri. The
implication from detailed balance to positive recurrence (and invariant distribution), to recurrence,
and finally, to irreducibility, ensures that all the important properties are satisfied once the Markov

chain attains detailed balance. Moreover, (2.2) is computationally easier to handle than (2.1). In

the context of Markov chain Monte Carlo, where the existence of a target function, denoted by 7r,
is granted a priori. The detailed balance equation then provides a powerful means of constructing
transition P with desired convergence properties.
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2.3.6 Ergodic theorem

Observed frequency As before, let Ti be the first passage time of i, and ni the expected
return time. In addition, let Vi (n) be the number of visits to state i before time n, and Vi (n)
the observed frequency of i based on the same sample, i.e.

Vi(n) = E (5,4=i
m=0

and 	 V (n) = n-1 14 (n).

Ergodic theorem (I) Irreducible (Xn)n>0 N M(C 	 17i(n) (49. 7C.
Let Ti(k) be the time of the k-th return to i, and Ti(k) the corresponding k-th wandering period,

Vi(n)-1 	 Vi(n)

Ti(k) = Ti(k) —	 —1)	 Ti[Vi(n) — 1} = E Ti (k) n G E	 TA) = Ti[Vi (n)]•
k=1	 k=1

The SMP implies that ri(k), for k = 1,2, ..., are independent and identically distributed. The strong

law of large numbers implies that, in case of ni < oo (positive recurrence),

EI(71 Ti(k) a.s.
—÷Vi(n)

and E lkii 1 )-1 Ti(k) 
Vi (n)

a.s. 	 Vi(n) — 1
--+ ni 11M 	 =

n-+oo V (72)

forcing almost sure convergence of 1/Vi(n) towards ni . Otherwise, ni = 00, and Vt < oo,

P[ lira Ti(k) I k < = P[ lira Ti(k — 1)1 k < = 0 	 Vi(n) 44 0 =	 •
k-+oo	 k-->oo

Sample and invariant average Let f(x) be any real-valued function. Let in , and 	 be,
respectively, its sample, and invariant average (in case of positive recurrence), i.e.

fn
1 n-1

=
n 	

f (xk)
k=0

and 	 AI = E,(f) where ri = 
1

77i

Ergodic theorem (II) Positive recurrent (Xn) n>0 M(e, P) 	 E,(f).

Remark A simple proof can be given for bounded f, i.e. Ifl < M < oo. A countable state-space

S/ can be labeled as {1, 2, ...}. We have, VN < oo,

1-Ifn	 < 	 V;(n) 	 + E[ Vi(n) + 	
a.s.
---> 2 E

M 	i.i n i<N n 	i>N n 	i>N

Since Er=i 7ri = 1 (i.e. finite), we have VC > 0, 3N(E) < oo, such that 2 Ei>me) < E, and

P[lim I fn — Eir(i)1 < Ej = 1.
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2.4 General state-space theory

2.4.1 Some definitions

General state-space C/ is a general state-space w.r.t. distribution P, if the collection of

subsets of CZ, denoted by E, on which P is defined, is a countably generated or-algebra. We

may also say that S/ is E-/P-measurable.

Remark This is the case in most applications. However, apart from certain mathematical details,

the general state-space theory is almost the exact parallel of the discrete one. See e.g. Tierney

(1994)2 for a review.

Transition kernel The transition kernel P of M(e, P) with measure p() defined on a general

state-space S2 is such that, VO < n < oo and A C

P(x, A) = P[Xn+i E AlXn = 	 f P(x) Oit(dY)•

Transition after transition The two-step transition kerne! derived from P is defined as

P2 (x, A) = P[X2 E AIX°

= f P(y,A)P(x, dy)

J f P(Y, z)gdzil 13(x, Y)gdY)-
Si A

The n-step (for n > 2) transition kernel is recursively defined by

Pn = p pn-1

2Tierney, L. (1994). Markov chains for exploring posterior distributions. (With discussion). The Annals of
Statistics, 22, 1701 - 1762.
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2.4.2 Irreducibility

Let stopping time TA be the first passage time of A C C2, i.e.

TA inf{n > 1; 	 E A}.

M(e, P) is 0-irreducible for some probability distribution 	 if

V A c 	 7P(A) > 0 	 P[TA < opoj > O.

M(e, P) is irreducible if it is '0-irreducible for some it/), and 	 is an irreducibility distribution.

Remark Like the case with discrete state-space, the initial distribution becomes aymptotically

irrelevant provided irreducibility. The chain can reach all the interesting sets of S2 w.r.t. to the

irreducibility distribution concerned. This is more general than in the discrete case.

Example (Random walk on the non-negative half line with an absorbing origin)

This is not an irreducible chain in the discrete case, since e.g. 1 -4 0 but 0 4 1. However, the chain

becomes irreducible under the present definition, since it is 1P-irreducible w.r.t. e.g. tpx = 1 if x = 0

and ox = 0 everywhere else.
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2.4.3 Invariant distribution and detailed balance

M(C P) has an invariant distribution, denoted by 7r, if

7r = 7rP 4#> VA cQ, 7r(A) = f P(x , A)7r(dx). 	 (2.3)

Theorem Irreducible M(, P) with invariant distribution 7r implies that

1. it is 7r-irreducible,

2. ir is the unique invariant distribution,

3. the chain is positive recurrent, so that VA cS2 where 7r(A) > 0, we have

3.1. P[Xn E A infinitely oftenIX0 = x] > 0 for all x, and

3.2. P[X7, E A infinitely oftenIX0 x] = 1 for 7r-almost all x.

Remark Unlike the discrete case, positive recurrence is by definition given by the existence of
invariant ir. It is also defined to be a class property. Since ir is granted a priori in applications of

MCMC, we have omitted the definition of recurrence, as it builds on several concepts not presented

here. In particular, recurrence without invariant distribution is said to be null recurrent.

Invariant 7r and transition kernel P are in detailed balance if, for P(x, dy) p(x, y)p(dy),

r(x).13(x, Y) = r(Y)13(Y x)- (2.4)
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2.4.4 Ergodic theorem

Define the (n-step) average transition kernel to be

pn(x, A) _ Epk(x, A)I(n 1).
k=0

General Ergodic theorem (I) Irreducible (Xn ) n>0 e‘o M(e, P) with invariant distribution ir

suPAcr2 1 13"(x, A) — r(A)I # 0 for 7-almost all x.

Remark This is the generalized version of the pointwise convergence of the observed frequency in

the discrete case. It can be further strengthened, i.e. VA E St, Pn(x, A) c.14 7r(A) for 7r-almost all

x, provided .11/1(',1)) is aperiodic in addition.

Let f be a real-valued function with finite absolute invariant average, i.e.

E,(1f1) f If (x)17(dx) < oo.

General Ergodic theorem (II) Irreducible (X71 ) n>0 e\d M(e, P) with invariant distribution 7r
(.1,4.

E, (f) for w-almost all x.

Remark This corresponds to the convergence of sample average in the discrete case.

Remark Unlike Ergodic theorem in the discrete case, the initial distribution is not entirely irrel-

evant here: it should be absolutely continuous with 7r, i.e. granting null probability to ir-null sets.

More specifically, irreducible M(6, P) with invariant ir admits decomposition

S2=HUD,

where H is absorbing and recurrent, and D is 7r-null and dissipative, i.e. a countable union of

transient sets. The set H is called a Harris set for the chain, where

P[Xn E A infinitely ofteniXo = = 1 	 for all x E H.

A Markov chain is Harris recurrent if and only if S2 is a Harris set, where initial Xo is entirely irrelevant.

Example (Random walk on the non-negative half line) W.r.t. degenerate irreducibility distri-

bution tko = 1, the chain is Harris recurrent if p < 1/2, in which case with unity probability it ends

up with the absorbing state 0; otherwise it is recurrent but not Harris recurrent, where H = {0} and

D = {1,2,...}.
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2.5 The central limit theorem

2.5.1 The central limit theorem

The Markov chain sample average converges almost surely to the invariant average provided
positive recurrence. Its efficiency is governed by the CLT for Markov chains 3 .

Central limit theorem (CLT) Irreducible, reversible (Xn)n>0 r`d 114 (e 1: ) with invariant

— E,(f)] 4 N(0,o-D

where

00

	nVarCfn ) 	 = Var,(f)+ 2 Ecov(fo , fh)
h=1

00

= 'Yo ± E yit < co. 	 (2.5)
h=1

With independent sample the variance would have simply been Var,(f). In any case, we have

-
nVar(fn 

1
) = —

n 
E varirui) + 

2
- covui,

i=1	
n

n-1 
n-i

=Var,(f) + 	 2_,Cov(h,fi+h)
i=1 h=1

n-1

=Var,.(f)+ 2 E(1 -n-- )Cov(fo, fh)
h=1

n-1

= 70+ 2 E(1 — ;d7h)
h=1

since, by reversibility and invariance,

	Co71 (fi, 	 = Cov(fo, itz = Cov(fo, sf--h )-

This gives us a monotone increasing sequence which converges almost surely to D'°___ 00 Cov(fo , fh),

provided the sum exists.

Remark Notice that the CLT here requires reversibility, which is stronger than positive recurrence

in the case of Ergodic theorem.

3The version presented here was ascribed to Kipnis and Varadhan, and described in
Geyer, C.J. (1992). Practical Markov chain Monte Carlo. (With discussion). Statistical Science, 7, 473 - 511.
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2.5.2 Variance estimation

No sample of finite size can to used to estimate Pyh as h 	 oo, so that no consistent estimator

of o f can be formed based on the corresponding sample covariances. Of course, this does not

imply that there exist no consistent estimators.

Batch-mean estimator A simple batch-mean estimator can be constructed by sequentially
dividing the sample into q sub-samples, denoted by S i, sq , each of size m, i.e. n = m • q.
The batch-means, i.e.

= E fon
iEsk

for k = 1, ..., q,

converge in distribution to i.i.d. Normal sample, i.e.

cc& N[E,(f), Im].

The sample variance of these batch-means, multiplied by m, provides an estimator of al, i.e.

	\ --`t T(k) 	 702.
`-/bat 	 1 Z_s kJm

k- 1

Remark The convergence of the batch-means is valid under the same conditions as those of the
CLT. The batch-mean estimator is simple but inefficient: for practical situations, the Markov needs
to be long enough so that each batch is much longer than the characteristic mixing time of the chain.

Generic Splus transcript

sigma.batch <- function(x, q)
{

n <- length(x)
	

# sample size

m <- trunc (n/q)
	

# batch-length

y <- array(x[(a - m * q + 1) :n] , c(m, q))

# each column of y forms a batch

f.m <- c(t(rep(1/m, m)) %*% y) # q batch means

m * var .m)	 # output batch-mean estimate of sigma2J
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Window estimator The sample covariance of lag-h is given by

n—h

= —n 	fn)(fi+h — fn)•

3=1

A window estimator is defined as

oo

= wo% + E W Oh)
h=1

where 0 < wh < 1 may dependent on the sample size n. Truncation window estimators are

typical in practice, i.e.

wh = 1 for 0 < i < Kn 	and	 wh = 0 for i > Kn,

where Kn is some constant depending on n.

Remark Under strong regularity conditions wh can give consistent window estimator. However, it

is unclear whether this is possible under the mild conditions under which the CLT holds. Notice also

that the standardizing constant for 7yh is n instead of n — h.

Generic Splus transcript

sigma.window <- function(x, w)

{

max.lag <- length(w) 	 # no need for more lags

a.v <- c (acf (x , lag.max = max.lag, type = "covariance", plot = F)$acf)

# (a) Splus routine "acf" returns sample autocovariance

upto lag-"max.lag" (default value = log(length(x)))

# (b) type = "correlation" returns autocorrelation instead

# (c) "plot = F" turns off default graphical display

a.v <- a.v[ - length(a.v)] 	 # lag-0 corresponds to w[1]

2 * sum(w * a.v) - w[1] * a.v[1] 	 # window sigma2J
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Initial sequence estimator Geyer (1992) 4 noticed that, for a reversible Markov chain, it can

be shown that

rh = 72h +72h+i

is non-negative, non-increasing, convex function of h. The initial m-sequence estimator,

denoted by

2m+1
2

aini = -1- E
h=1

can be defined w.r.t. any of these three characteristics:

1. the initial positive sequence estimator is such that

f h > 0 for h < m 	 and

2. the initial monotone sequence estimator is such that

> > > 0 and

< 0,

m < fm+1,

3. the initial convex sequence estimator is such that, in addition to being monotone,

rh--1-}-> 2th for h < m 	 and
	

1' m-1 fm-Fl < 2fm .

Remark The initial sequence estimators are special cases of the truncation window estimator. It is
not clear that any of them are consistent given reversibility. But they are obviously over-estimates
compared to any other window estimators. Indeed, "Theorem 3.2" of Geyer (1992) states that they
are consistent over-estimates in the sense that, for any of the three initial sequence estimators,

P[ urn'? • > o-2] = 1.m_÷0,0	 f

'Geyer, C.J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7, 473 - 511.
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Generic Splus transcript for the initial sequence estimators

sigma.ini <- function(x, max.lag = 100)
{

a.v <- c(acf(x, lag.max = max.lag, type = "covariance", plot = F)$acf)

k <- trunc(length(a.v)/2) 	 # how many Gamma can we form?

gma <- array(a.v[1:(2 * k)], c(2, k))

gma <- gma[1, ] + gma[2, ] 	 # the sample Gamma

npos <- gma <= 0 	 # idnetifying the non-positive Gamma

npos[k] <- T 	 # securing against the case of all positive

pos <- min(c(0:k)[npos]) 	 # the first one of them

s.pos <- 2 * sum(gma[1:pos]) - a.v[1]	 # initial positive sigma2_f

goon <- T

mono <- 0

while(goon) {

mono <- mono + 1
	

# update monotone sequence

goon <- (gma [mono + 1] <= gma [mono]) & (mono < k - 1)
}

mono <- min(mono, pos) # positivity guarantee

s.mono <- 2 * sum(gma[1:mono]) - a.v[1] # initial monotone sigma2_f

goon <- T

cnv <- 1

while(goon) {

cnv <- cnv + 1 # update convex sequence

goon <- (gma[cnv 1] + gma[cnv + 1] >= 2 * gma[cnv]) & (cnv <

k - 1)
}

cnv <- min(cnv, mono) # monotonicity guarantee

s.cnv <- 2 * sum(gma[1:(cnv - 1)]) - a.v[1] 	 # convex sigma2_f

c(s.pos, s.mono, s.cnv) # output the three ini_seq_est
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2.5.3 Example: Autoregression model AR(1)

Consider an autoregression model AR(1), i.e. let p be the lag-one autocorrelation, and

Xt = pXt—i + ft 	 where 	 ..., en "1 N(0,72 ).

Clearly, Xt1(X0, Xt_2)Ixt_1, so that (Xt)t 0 is a Markov chain. Let f(x) = x. We may

apply the various variance estimators and compare the results against the theoretical al, i.e.

= 70( 1 + p)/( 1- 	 72/(1- p) 2 .

We set up the following simple simulation framework. Let

= 0.1 	 and 	 p= (i— 1)/20 for i 1, ..., 20.

Starting at xo = 0, we generate a sample of 10000 observations at each p. To ensure that the

Markov chain accepted has reached equilibrium, we throw away the first 4% points so that

the final sample size is n 9600. Based on these, we calculate, for each p, the initial positive

and monotone sequence estimators, as well as the 10-, 20- and 30-Batch-mean estimators.

Remark The part of simulated sample which is thrown away is referred to as the "burn-in" period.
We notice that sample size of 9600 is probably too small for the larger values of p.

AR(1) with autocorrelation Rho and white-noise SD 0.1 ( n = 9600 )

0.0
	

0.2
	

0.4
	

0.6
	

0.8
Rho

AR(1) with autocorrelation Rho and white-noise SD ( n = 9600 )

Rho
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It can be seen that the Batch-mean estimators are rather sensitive towards the number of
batches formed. This complicates its application, since no general results seem to be available
for optimal choice in this respect. The burn-in influenced the results to an extent more than
one might have expected, so that it remains an issue which should not be dismissed without
some inspection in a given situation. Moreover, repeating the simulation at the same value of
p shows that the variance estimators are unstable for large p, such that they should be treated
with caution.

The importance of various diagnostics in simulations like these can not be over-stated. For
illustration we have included the following plots based on a single run: (a) the histogram
indicates the invariant distribution, (b) the step-by-step Markov chain shows how well the
chain mixes, and (c) the sample autocorrelations form the basis of inference.

AR(1) with autoconelation 0.8 and white-noise SD 0.1 ( n = 9600 )    
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Splus transcript

sigma.arl <- function(m = 10000, rho = c(0:19)/20, tau = 0.1,

q = c(10, 20, 30), ini = 0, burnin = 0.04, max.lag = 200)

est <- c("sigma_f", "pos", "mono", "cnvx", paste(q, "-bat", sep = ""))

tbl <- array(0, c (length(est) , length(rho))) # tabulation of results

dimnames(tb1) <- list(est, rho)

for (i in 1:length(rho)) {

r <- rho[i] 	 # fixed parameter value

cat(" rho =", r, "\t") # display the parameter

tbl["sigma_f", i] <- (taugl r)) -2 	 # theoretical sigma2J

x <- rep(ini, m) 	 # starting at x_O = ini

for(j in 2:m) { # generating AR(1) process

x [j] <- rnorm(1, r * x [j - 1] , tau)

}

x <- x[round(m * burnin + 1):m] # burn-in

n <- length(x) # final sample size

for(j in 1:length(q)) { # batch sigma2_f

tbl [4 + j, i] <- sigma.batch(x, q[j])

}

tbl[c("pos", "mono", "cnvx") , i] <- sigma.ini(x, max.lag)

sink("sigma.btp")

cat (tbl)

sink() # save the results

list(simulation.result = tbl)
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Chapter 3

Markov chain Monte Carlo

3.1 Introduction

The first part of the Ergodic theorem ensures that the sample frequency of a Markov chain
converges pointwise to the invariant distribution. The sample is dependent if it is formed from
a single chain, whereas it is independent if we take only one state from a number of chains with
independent starting values. Statistical inference can be based either on such a single-chain
dependent sample or a multiple-chain independent sample.

The second part of the Ergodic Theorem ensures that the sample average almost surely con-
verges to the invariant average under mild regularity conditions. Various Monte Carlo methods
can thus be performed through Markov chain (MC) sampling, which is the so called Markov
chain Monte Carlo (MCMC).

The MC sampling opens up other inferential possibilities as well. For instance, profile likelihood
inference is feasible just like in the case of acceptance sampling. Whereas integrated likelihood
methods' should naturally find their applications here. Indeed, the promising field of non-
(standard) Bayesian inference through MC sampling is only starting to be explored.

In this chapter we explain the Metropolis-Hastings (MH) algorithm as a general MC sampling
technique. The Gibbs sampler is shown to be a special case of the MH algorithm. It is also
possible to build an Acceptance-Rejection (AR) step into the MH-algorithm, which gives us
the MH-AR algorithm. We shall describe a number of practical convergence diagnostics. Case
studies will be included for illustration.

'Berger, J.O. and Liseo, B. and Wolpert, R.L. (1999). integrated likelihood methods for eliminating
nuisance parameters. Statistical Science, 14, 1-28.
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3.2 Metropolis-Hastings (MH) algorithm

Denote by 7r (x) the target invariant distribution. Let Cx , y) be some arbitrary p.d.f. of y
conditional on x, called the sampler. Generate a Markov chain, denoted by (X i ) i>o , iteratively
as follows: suppose Xi x at the i-th step,

• generate u Uni f (0, 1) independent of y ti (x, y) , where 0(x , y) is the sampler,

• update Xi.f i = y if u < &(x, y) and Xj+1 = x otherwise, where

a(x , y) = 	 r(Y)0(Y, 
7r (x)0(x , y) }

The resulting Markov chain converges to the invariant distribution 7r (x) in the sense of the
Ergodic Theorem, provided it is irreducible and aperiodic.

Generic Splus code for univariate MH algorithm

diagnos <- function(x,i)

convergence diagnostic based on Markov chain x and counter i }

mcs.mh <- function(x.0,n)
{

x <- rep(0,n) 	 # n = maximum length of the chain

x[1] <- x.0 	 # x.0 = starting value

goon <- T 	 # initialization

i <- 1 	 # i = the iteration counter

while (goon) {

y <- sampler(x[i]) 	 # conditional sampling of y given x

alpha <- alpha.xy(x[i], y) 	 # acceptance threshold

accept <- runif(1, 0, 1) <= alpha

if (accept) {

x[i+1] <- y

}

else {

x[i+i] <- x [i]

# update the iteration counter

goon <- diagnos(x, i) # convergence diagnostic
}

list(x = x)
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3.2.1 Understanding the MH algorithm

In MC sampling the target 7r (x) is known a priori, possibly upto a proportionality constant.
Recall that a sufficient, as well as practical, condition for a Markov chain (irreducible and
aperiodic) with transition kernel P(x, -), to converge to 7r(x) in the sense of the Ergodic
Theorem, is the detailed balance equation, i.e.

(x) P , dy) = (y) P , dx)

The transition kernel defined in the MH algorithm provides a general solution.

The transition kernel of the MH-algorithm can be written as, for any A C C2,

P(s, A) = 	 Y)a(x Y) gdY) + xEA{ 1 — Lo(x, Y)a(x Y) 1.001

= A P(x Y) gdy) + r (x)IxEA,

where r (x) is the probability of remaining at x. By definition, /xEdy = 0 and

(x)71)(x , 	 > 7r (y)Cy, x) 	 a(y , 	 = 1,

and vice versa. We obtain the detailed balance as

(x)P (x , dy) = (x)gx , y) 	 = 7r(y)p(y, x)p(dx) = (y)P , dx).

In addition,

P , A)7 (dx) = f [ fA P(x Y) 144)1r (x) P(dx) f r (x) xEAr (x) it(dx)

= fA [ f P(x, 	(x) tz(dx)jit(dy) fA r (x)r (x) gdx)

= fA [ f p(y, , x)7r. (y) p(dx)1p(dy) fA r (x)r (x) p(dx)

= fA [1 — r (y)]r (y) tt(dy) fA r (x)71- (x) gdx)

= f r (Y) gdY)

= (A) ,

so that 7r is the invariant distribution of the Markov chain generated by the MH algorithm.

Finally, it is also clear that MC sampling by the MH algorithm is invariant towards possible
proportionality constants in r and O.
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3.2.2 Random walk, independence and autoregressive chains

Random walk chain The MH-algorithm generates a random walk chain if

2P(x, 	 = 	 — xl), 	 i.e. a(x , y) 	 74) 
(x)

The chain moves 'upwards' whenever possible and 'downwards' with a probability of 7r(y)/7r(x).
This was in fact the Metropolis algorithm suggested by Metropolis et al. in 19532 .

Random walk chains are typically generated using samplers which are symmetric about the
current state x, such as the (multivariate) normal and student-t distributions. It remains to
be decided the spread of the sampler 0(z) where z = y — x, i.e. 'how big the steps of the
random walk are'. Both the acceptance rate of each updating and the mixing rate of the chain
will be affected. Suggestions3 have been made that the acceptance rate should be tuned at
about 50% in one-dimensional case, and about 25% for large to infinite dimensional problems.

Independence chain The MH algorithm generates a so-called independence chain if

0(x, y) CY),

since the candidate y is drawn independently of the current state x. The sample is nevertheless
dependent due to the acceptance-rejection mechanism, i.e.

7r (x)
a(x , y) = 	

w(x)
w(Y) } 	 where w(x) = 

0(x)
.

The independence chain was proposed by Hastings in 19704 .

The independence sampler 	 should mimic the shape of the target 7r, as in the case of
independent acceptance sampling. In fact,

a.s. 	 a.s.
11/) = 7r 	 a(x y) = 1

in which case we recover the independent sample. In particular, the independence-chain Monte
Carlo resembles the importance Monte Carlo: the former builds up probability mass over the
points with large weights w(x), by staying at such points for longer periods of time; whereas
the latter does so by assigning them larger pieces of share in the sample average.

2 Metropolis, N. and Rosenbluth, A.W. and Teller, M.N. and Teller, E. (1953). Equations of state calcula-
tions by fast computing machines. J. Chem. Phys., 21, 1081-91.

3 Roberts, G.O. and Gelman, A. and Gilks, W.R. (1994). Weak convergence and optimal scaling of random
walk Metropolis algorithms. Technical Report, University of Cambridge.

4 Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57, 97-109.
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Autoregressive chain In an autoregressive chains the candidate value is given as

y = a + b(x a) z 	 where z q(z),

for some independent sampler q. This represents an intermediate transition kernel: we obtain

• the random walk chain by setting

b =1;

• the independence chain if

• shrinkage towards a if

• a method of antithetic variates if

a=b=0 -,

0 < b <1;

b= —1,

which provides a simple way of introducing negative correlations between the successive
states. This is most effect when 7r is approximately symmetric, and often helps to reduce
the variance of MCMC estimators of linear functions.

5Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussions). Ann. Statist.,
22, 1701-62.
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3.2.3 Approximate profile likelihood

First-order profile likelihood inference Suppose bipartition of parameter-vector into

where 6 denotes the interest parameter and 7 the nuisance part. First-order likelihood analysis

of can be based on the profile log-likelihood of 6, whose asymptotic distribution is given by

21/P(4) lP(6)} e`i X2 (4)

where dg is the dimension of 6 (Barndorff-Nielsen and Cox, 1994) 6 .

Remark To calculate the exact profile likelihood by definition, we need to find, for each value of 4 . ,

the m.l.e. of 7, which can be time-consuming.

Sample profile likelihood Suppose a sample of 0 1 , ..., 9m has been obtained, no matter from

what the distribution, denoted by 0. If we plot ei against L(92 ), for i = 1, ..., m, the contour

would converge to LAO, provided the sample covers the entire parameter space, denoted by

0, as m —+ oo, i.e.

VA Ee n fL(e)de > 0	 2P(A) > O.
A

The condition is obviously satisfied by

01, •••, Om

and we may either use independent samples coming through e.g. the acceptance sampling, or

dependent samples by means of MC sampling. In any case, the naive sample profile likelihood
based on such a sample is given as

LAO = 1 1-9 46,70-

Remark The sampling techniques mentioned here are in general more efficient than, say, random

uniform samples over 0, but probably not the most efficient ones. Indeed, the higher probability a

sampler would visit the subsets of e containing '-"yZ the more efficient it is for simulation of Lp().

Remark The sample profile likelihood provides quick means of graphical inspection of Lp(6, but

is in general not suitable for numerical calculations, such as estimation of confidence intervals of 6.

6 Barndorff- Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics. London: Chapman and Hall.

— 0(0) oc L(9),
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Approximate profile likelihood To improve on the naive sample profile likelihood, we define

the approximate profile likelihood w. r.t. 01 , ..., Om , as

.Lp(e) = max 	 7i) > max L(e,	 (3.1)

so that lip always improves on Lp, i.e. the contour. This is a Rao-Blackwellization-like 7

procedure. The improvement comes at an extra cost of evaluating, for each e at which one

wishes to calculate Lp(), the likelihood of L(e, 09) for all in the sample.

Remark In a computing environment like Splus, which handles vector calculations, the extra effort

would be small compared to repeated iterative maximization at each

Generic Splus code for scalar approximate profile likelihood

L.obs <- function(xi, gamma)

{

theta <- rbind(rep(xi, dim(gamma)[2]), gamma)

calculate the likelihood of theta

pro.rao <- function(theta) 	 # theta = p*m matrix of sample

{

L.p <- rep(0,dim(theta)[2]) 	 # only at the sample values

for(i in 1:length(L.p)) {

L p [i] <- max (L. obs (xi = theta [1, i] , gamma = theta [-1, ] )

}

list(L.pro = L.p)

7 Rao-Blackwellization Suppose a sample of bivariate (x, y) 	 7r (x , y) is available. Suppose that we are
interested in calculating the marginal p.d.f. 7r (x) , and that we know the form of r(xly). Since yi, 	 ym form
a sample from the marginal 7r (y), we may approximate 7r (x) by the simple Monte Carlo, i.e.

7r(x) = f 7r (xly)7r (y)dy = 	 r(xiyi).
m 

i=1

This technique is often referred to as the Rao-Blackwellization. It generally improves on the standard smoothing
techniques based on x l, xm alone, now that the evaluation of r(xj) is able to make use of all the sample
points. The main draw-back is that r(xly) may not be available in closed form.
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3.2.4 Example: Approximate profile likelihood analysis of a simple

nonresponse model for the Norwegian Labour Force Survey

Consider the Norwegian Labour Force Survey (LFS) data of the 2nd quarter in 1995:

LFS-Employment Not LFS-Employment Nonresponse
Register-Employment
	

12881 	 1158 	 518
Not Register-Employment

	
1829 	 6726 	 796

Let X = 1 stand for Register-Employment, and X = 0 otherwise. Let Y = 1 stand for LFS-
Employment, and Y = 0 otherwise. Let R = 1 stand for Response, and R 0 otherwise. A
simple non-ignorable nonresponse model is such that

PAR = 11(x , y)] = P[R =

i.e. nonresponse is independent of the Register conditional to the LFS. The model is said to be
non-ignorable since the LFS-Employment Rate among the respondents differs from that among
the nonrespondents. An analysis of post-stratification under such non-ignorable nonresponse
can be found in Zhang (1999) 8 .

Let q = P[X = 1] which is known from the Register. Define the parameters of the model as

rl = P[R = 1 ly = l]

= P[1' = 1 ix = 1]

ro = P[R = lly = 0]

Po = P[Y = 1Ix = 0],

denoted by 0 = (pi , Po, r1, ro)T The interest parameter is the overall LFS-employment Rate

P qPi ± ( 1 q)Po.

Index the joint data (table above) as a 2 x 3-matrix, denoted by (nii) for i 	 1, 2 and
j = 1, 2, 3, with the corresponding cell-probabilities (6 ii ), i.e.

=

The likelihood and its logarithm are given as

L(0) = L(e) a H 	 and 	 1(9) = /(e) = 	 nii log eii.
i=1,2;j=1,2,3	 i=1,2;j=1,2,3

The maximum likelihood estimator (m.l.e.) can be obtained through the EM-algorithm, giving
us O = (0.912, 0.202, 0.971, 0.901), and /3 = 0.637. In comparison, the simple sample mean is

8 Zhang, L.-C. (1999). A note on post-stratification when analyzing binary survey data subject to nonre-
sponse. J. Off. Statist., 15, 329-34.

[qpir	 q(1 pi )r 0 	qpi(1 r	 q(1 — pi ) (1 — ro )

(1 — &on. (1 — q) (1 — po)ro (1 — q)p0 (1 — r1 ) + (1 — q) (1 — po ) (1 — ro )
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Psrs = 0.651, and the post-stratified estimate ppst = 0.645, which corrects about 50% of the
bias in /3, s under the nonresponse model.

First-order likelihood inference of the interest parameter p, with nuisance parameters 0 sub-
jected to the restriction of p = qp i + (1 — q)po , can be based on the profile likelihood Lp(p).

Exact profile likelihood requires repeated EM-algorithm, and is time-consuming. Instead, we
shall calculate the approximate profile likelihood (3.1) using three different sampling tech-
niques. Notice that, all parameters taking value from (0, 1), both 8 and L(9) have finite
measures in the present case.

• The first method is the acceptance sampling, which gives us an independent sample.
As the source function, we take the multivariate Normal distribution, located at O. We
take the observed formation 3 -1 , multiplied by an inflation constant k, as the covariance
matrix. Tentative pre-runs at k = 0.5, 1, 1.5, 2, 2.5, 3 with m = 100 suggests k = 1.5
as the best choice. The corresponding acceptance rate is about 40%, which is not bad
for a four-dimensional problem.

Remark It is tedious to derive the observed information, i.e.

x60.-820082 ,

directly w.r.t. 0. However, we can easily write down the 6 x 4-Jacobian of transformation

J = ova() i(e) =

where j(0 is a diagonal matrix with nij/ei as its diagonal elements.

• The same multivariate Normal distribution can be used as an independence sampler,
which gives an independence chain with L(0) as its invariant distribution. The accep-
tance rate is about 60 — 70% here.

• Finally, we construct a random walk chain through a multivariate Normal sampler, cen-
tered at the current state with shrinked observed formation as the covariance matrix.
The acceptance rate is about 40% at k = 0.6.

Setting n = 2200, we retained an independent sample of size m = 894 through the acceptance
sampling. We then ran both Markov chains for 1000 iterations, and took the first 107 iteration
(about 10%) as the burn-in period, so that all the three samples are of the same size.

The sample pathes (of p) have been given in the figure, from which the random walk chain
clearly is the slowest mixing of the three. Estimation of the standard deviations of the sample /3
based on the initial positive estimator gave us & = 2.32 x 10-3 for the acceptance sampling,
and a = 2.52 x 10-3 for the independence chain, and a = 7.42 x 10-3 for the random
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walk chain. The sample autocorrelation of the independence chain decayed rather quickly.
Nevertheless, the acceptance sampling appeared to be the most efficient in this case.

A Markov chain has to be run one iteration after another, and therefore always takes much
longer time to complete. In contrast, the acceptance sampling is able to take advantage of the
parallel vector computing facility of the Splus. The main problem is to find a workable source
function in high-dimensional problems. Explicit observed formations can be difficult to obtain,
and the likelihood may be highly skewed. The independence chain faces the same problem.
In short, the random walk chain is the easiest to construct, but generally results in the largest
autocorrelations and, therefore, is often the least efficient.

200
	

400

Iteration

Independence chain

200
	

400
	

800
	

1000

Iteration

Random walk chain

0
	

200
	

400
	

600
	

800
	

1000

Itstabon

In any case, we have calculated the approximate profile likelihood Lp(p) based on each sample.
They have been plotted together for comparison. In particular, the 95% confidence intervals
agree very well with each other (to the precision of 10 -3). In fact, much better than the
estimated standard deviations of /3 have suggested. Notice that both Ppst = 0.645 (post-
stratification) and sr = 0.651 (simple sample mean) fall outside of the 95% confidence
region. Indeed, the bias caused by nonresponse clearly dominates the sampling variance in the
overall error of the estimator of LFS-Employment.

600 SOO
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Splus script

# calculating the observed formation

j.hat <- function(y, theta, q)
{

xi <- array(0, c(2, 3)) 	 # xi = canonical parameter

xi[1, 1] <- q * theta[1] * theta[3]

xi[1, 2] <- q * (1 	 theta[1]) * theta[4]

xi[1,3] <- q - sum(xi[1, ])

xi [2 , 1] <- (1 - q) * theta[2] * theta[3]

xi[2,2] <- (1 - q) * (1 -theta[2]) * theta[4]

xi[2, 3] <- 1 - q - sum(xi[2, ]) # the 2*3 cell-probabilities

j.xi <- diag(c(y[1, ], y[2, ])/(c(xi[1, ], xi[2, ]) -2))

Jacobian <- array(0, c(6, 4)) 	 # J = Jacobian of transformation

Jacobian[1, ] <- q * c(theta[3], 0, theta[1], 0)

Jacobian[2, ] <- q * c( - theta[4], 0, 0, 1 - theta[1])

Jacobian[3, ] <- - q * c(theta[3] - theta[4], 0, theta[1],

1 - theta[1])

Jacobian[4, 	 <- (1 - q) * CO, theta[3], theta[2], 0)

Jacobian[5, ] <- (1 - q) * CO, - theta[4], 0, 1 - theta[2])

Jacobian [6, ] <- - (1 - q) * c(0, theta [3] - theta[4],

theta [2] , 1 - theta[2])

t(Jacobian) 7.**4 j.xi 	 Jacobian
}

# calculating the log-likelihood (theta in matrix form)

log.L <- function(y, theta, q)
{

xi.11 <- q * theta[1, ] * theta[3, ] # cell-prob. (1,1).

1 <- y[1, 1] * loexi.11)

xi.12 <- q * (1 - theta[1, ]) * theta[4,

1 <- 1 + y[1, 2] * loexi.12)

xi.13 <- q - xi.11 - xi.12

1 <- 1 + yCl, 3] * log(xi.13)

xi.21 <- (1 - q) * theta[2, ] * theta[3, ]

1 <- 1 + y[2, 1] * log(xi.21)

xi.22 <- (1 - q) * (1 - theta[2, ]) * theta[4, ]

1 <- 1 + y[2, 2] * log(xi.22)

xi.23 <- 1 - q - xi.21 - xi.22

1 + y[2, 3] * log(xi.23)
}
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# acceptance sampling of the nonresponse model for the Norwegian LFS

nores.acpt <- function (n = 3000, met = 1, ifl = 1.5, d.f = 3, store = T)
{

y <- array(c(12881, 1829, 1158, 6726, 518, 796), c(2, 3))

dimnames(y) <- list(c("x=1", "x=0"), c("y=1", "y=0", "nores"))

q <- 0.613 	 # register employment rate

theta <- c(c(0.559, 0.078)/c(q, 1 - q), 1 - c(0.029, 0.099))

1.0 <- log.L(y, cbingtheta, theta) , q) [1] 	 # initial para

1.max <- sum (y * loey/sum(y))) # global maximum log-L

j.obs <- j.hat(y, theta, q) 	 # observed information

sigma <- .solve(j.obs) # asymptotic covariance matrix

A <- chol(ifl * sigma) # inflated Cholesky decomposition

if (met == 1) # multinormal N(theta,k*Sigma)

z.0 <- array(rnorm(4 * n), c(4, n)) 	 # std. normal

z <- theta + t(A) %*% z.0 	 # sample transformation

d.z <- dnorm(z.0[1, ]) * dnorm(z.0[2, ]) 	 # pdf/J

d.z <- d.z * dnorm(z.0[3, ]) * dnorm(z.0[4, ])
}

if (met == 2) { # multivariate student-t with d.f

z.0 <- array(rt(4 * n, d.f), c(4, n)) 	 # iid sample

z <- theta + t (A) %**/. z.0 	 # sample transformation

d.z <- dt(z.0[1, ], d.f) * dt(z.0[2, ], d.f) # pdf/J

d.z <- d.z * dt(z.0[3, ], d.f) * dt(z.0[4, ], d.f)

d.z <- d.z * dt(z.0[3, ], d.f) * dt(z.0[4, ], d.f)
}

idx <- rep(T, n) 	 # truncation of sample if necessary

for(i in 1:4) {

idx <- idx & z[i, ] < 1 & z[i, ] > 0
}

z <- z[, idx]

d.z <- d.z[idx]

m <- sum(idx)

cat(m, "sample retained...\n variance ratio:\n")

cat(diag(var(t(z)))/diag(sigma), "\n") # sample charact.

1 <- log.L(y, z, q) 	 # sample log-likelihood

L <- exp(1 - max(1)) 	 # standardized likelihood

cat ("sample m.l.e. =", z [, L == max(L)], "\n")

w <- L/d.z
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a <- max(w)/mean(w)

cat("(max_w, a, P[Accept]) =", c(max(w), a, 1/a), "\n")

x.a <- w/max(w)

accept <- runif(m, 0, 1) <= x.a

cat("accept =", c(sum(accept), sum(accept)/m), "\n")

z <- z[, accept]

L <- L[accept]

n <- sum(accept)

print (sigma) 	 # covariance matrix of the target function

print(var(t(z))) 	 # cov_matrix of the accepted sample

if(store) 	 # store the sample for detailed analysis

sink("nores.sim")

cat(z)

s ink ()
}

}
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# independence-chain MC sampling of the nonresponse model ---

# mix = option for mixture algorithm & m = number of multiple chains

nores.idp <- function (n = 1000, mix = F, m = 10, ifl = 1.5, store = T)
{

y <- array(c(12881, 1829, 1158, 6726, 518, 796), c(2, 3))

dimnames(y) <- list(c("x=1", "x=0") , c("y=1", "y=0", "nores"))

q <- 0.613 	 # register employment rate

theta <- c(c(0.559, 0.078)/c(q, 1 - q), 1 - c(0.029, 0.099))

1.0 <- log.L(y, cbind(theta, theta), q)[1] 	 # initial para

1.max <- sum (y * log(y/sum(y))) # global maximum log-L

j.obs <- j.hat(y, theta, q) 	 # observed information

sigma <- .solve(j.obs) # asymptotic covariance matrix

A <- chol(ifl * sigma) # inflated Cholesky decomposition

w.x <- exp(1.0 - l.max) # improper current weight

move <- n - 1 	 # move = counter of number of moves

z.s <- array(theta, c(4, n)) 	 # Markov chain sample

for (k in 2:n) { # independence-chain MC sampling

if(trunc(k/100) == k/100) {

cat(k, " ")
}

z.0 <- array(rnorm(4 * m), c(4, m)) 	 # std. normal

z <- theta + t(A) °A*7. z.0 	 # sample transformation

d.z <- dnorm(z.0[1, ]) * dnorm(z.0[2, ]) 	 # pdf/J

d.z <- d.z * dnorm(z.0[3, ]) * dnorm(z.0[4, ])

idx <- rep(T, m) 	 # truncation if necessary

for(i in 1:4) {

idx <- idx 	 z[i, ] < 1 & z[i, ] > 0
}

z <- z[, idx]

d.z <- d.z[idx]

m <- sum(idx)

1 <- log.L(y, z, q) 	 # sample log-likelihood

L <- exp(1 - l.max) 	 # standardized likelihood

w.z <- L/d.z 	 # weights of the candidates

if(!mix) {

s <- 1 	 # the first chain
}

else {
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s <- sample(1:m, 1) 	 # random selection
}

w.z <- w.z[s]

z <- z[, si

alpha <- min(1, w.z/w.x) 	 # acceptance probability

stay <- runif(1, 0, 1) > alpha

if(stay) {

z.sE, k] <- z.sC, k - 1]

move <- move - 1 	 # update number of moves
}

else f
z s [ , 	 <- z
w.x <- w.z

}

}

cat("\n move =", c(move, move/n), "\n")

print(sigma) 	 # cov_matrix of the target function

print(var(t(z.s[, (n/10):n]))) # cov_matrix of the MC sample

if(store) 	 # store the sample for detailed analysis

sink("nores.sim")

cat(z. ․ )

sink()
}

close.screen(all = T) # graphical display of the sample path

split.screen(figs = c(4, 1))

for(i in 1:4) {

screen(i)

plot(1:n, z.s[i, ], type = "1")
}

}
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# random-walk-chain MC sampling of the nonresponse model ---

# mix = option for mixture algorithm & m = number of multiple chains

nores.rdw <- function(n = 1000, mix = F, m = 10, shr = 0.6, store = T)
{

y <- array(c(12881, 1829, 1158, 6726, 518, 796), c(2, 3))

dimnames(y) <- list(c("x=1", "x=0") , c("y=1", "y=0", "nores"))

q <- 0.613 	 # register employment rate

theta <- c(0.912, 0.2015, 1 - 00.029, 0.099))

1.0 <- log.L(y, cbind(theta, theta), q)[1] 	 # initial para

1.max <- sum(y * log(y/sum(y))) # global maximum log-L

j.obs <- j.hat(y, theta, q) 	 # observed information

sigma <- .solve(j.obs) # asymptotic covariance matrix

A <- chol(shr * sigma) # inflated Cholesky decomposition

w.x <- exp(1.0 - l.max) # current weight

move <- n - 1
	

# move = counter of number of moves

x <- theta	 # starting value

z.s <- array(theta, c(4, n))	 # Markov chain sample

for(k in 2:n) { # random-walk-chain MC sampling

if(trunc(k/100) == k/100) {

cat(k, " ")

z.0 <- array(rnorm(4 * m), c(4, m)) 	 # std. normal

z <- x + t(A) %eh z.0 # multi_katheta,k*Sigma)
idx <- rep(T, m) 	 # truncation if necessary

for(i in 1:4) {

idx <- idx 	 z[i, ] < 1 & z[i, ] > 0
}

z <- z[, idx]

m <- sum(idx)

w.z <- exp(log.L(y, z, q) - l.max) 	 # sample log-L

if(!mix) {

s <- 1 	 # the first chain
}

else {

s <- sample(1:m, 1) 	 # random selection
}

w.z <- w.z[s]

z <- z[, s]

alpha <- min(1, w.z/w.x)
	

# acceptance probability
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stay <- runif(1, 0, 1) > alpha

if(stay) {

z.s[, k] <- x

move <- move - 1
	

# update number of moves

else {

z.s[, k] <- x <- z

w.x <- w.z
}

}

cat ("\n move =", c(move, move/n) , "\n")

print (sigma)

print(var(t(z.s[, (n/10) :n])))

if(store) {

sink("nores.sim")

cat(z. ․ )

sink()

close.screen(all = T)

split.screen(figs = c(4, 1))

for(i in 1:4) {

screen(i)

plot(1:n, z.s[i, ], type = "1")
}
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# display of more detailed results (on p) of the MC sampling ---

# mixing (disp = 1) profile-L (disp = 2) based on acceptance sampling

# (met = 1) & independence chain (met = 2) & random walk chain (met = 3)

disp.nrs <- function (fit = "nores.sim", n = 894, burn = 0, met = 1,

disp = 1, q = 0.613, alpha = 0.95, p.lim = c(0.625, 0.647))
{

y <- array(c(12881, 1829, 1158, 6726, 518, 796), c(2, 3))

dimnames(y) <- list(c("x=1", "x=0"), c("y=1", "y=0", "nores"))

z <- array(scan(fil), c(4, n))[, (burn + 1):n]

n <- dim(z)[2]

p <- q * z[1, ] + (1 - q) * z[2, ]

txt <- c("Acceptance sampling", "Independence chain",

"Random walk chain") [met]

if (disp == 1) {

plot(1:n, p, type = "1", ylab = "Sample",

xlab = "Iteration")

title(txt)

else {

1 <- log.L(y, z, q)

1.hat <- max(1)

L <- exp(1 - 1.hat)

mle <- p[L == max(L)]

if(length(mle) > 1) {

mle <- mle[1]

# sample likelihood

}

cat("sample mle =", mle, "\n")
p.1 <- sort(p)[trunc((n * (1 - alpha))/2 + 0.5)]

p.h <- sort(p)[trunc((n * (1 + alpha))/2 + 0.5)]

cat("sample", 100 * alpha, "pct =",

c(p.l, p.h), "\n")

L.p <- rep(0, n) 	 # approximate profile likelihood

for(i in 1:n) {

if(trunc(i/100) == (i/100)) {

cat(i, " ")
}

x <- z

x[1, 7 <- (p[i] - (1 - q) * x[2, ])/q
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1 <- max(log.L(y, x, q))

L.p[i] <- exp(1 - 1.hat)
}

1.hat <- max(L.p) 	 # standardizing

L.p <- L.p/l.hat

L <- L/1.hat

mle <- p[L.p == max(L.p)]

if(length(mle) > 1) {

mle <- mle[1]
}

cat("\n", "approximate mle =", mle, "\n")

L.a <- exp( - qchisq(alpha, 1)/2)

diff <- abs(L.p 	 L.a)

low <- p < mle

p.1 <- p[low][diff[low] == min(diff[low])]

p.h <- p[ !low][diff[ !low] == min(diff[ !low])]

cat("profile", 100 * alpha, "pct CI_p =",

c(p.1, p.h), "\n")

plot(p, L, ylab = "Likelihood", xlim = p.lim,

ylim = c(0, 1))

points(sort(p), L.p[order(p)], type = "1", lty = 2)

abline(v = mle, lty = 3)

abline(h = L.a, lty = 3)
}

}
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3.3 Product of kernels

Mixture and cycle MH algorithm Suppose 1)1 , ..., Pry, are all Markov kernels with invariant
distribution 7r. Tierney (1994) 9 showed that, under weak conditions, they can be combined to
generate Markov chains with the same invariant 7r.

• In the mixture algorithm, one of the kernels will be slected at each updating step,
according to some fixed probability, say, al , ..., am . This generates an irreducible and
aperiodic chain if any of these kernels is irreducible and aperiodic.

• In the cycle algorithm, each kernel will be used in a cyclic order. The irreducibility and
aperiodicity of the combined kernels can not be proved under the same weak condition
as above, but need to be verified from case to case.

Block-at-a-time updating In another generalization of the MH algorithm, the current state
is updated block-at-a-time or, simply, component-wise. Suppose q-partition of X, i.e.

= 	 X2 , •.., Xq ).

Let P1 , ..., Pq be, respectively, transition kernels with invariant distribution 71- (x 1 lx2 ,	 xq),
7r(x2 Ix i , x3 , ..., xq ), 	 7r(xq lxi , 	 xq_ i ), i.e. the distribution of each part conditional to the
rest parts. Each updating of the current x can be broken into q-updates corresponding to

Xl 	r (X1IX2 1	xq), X2 	 ir(x2Ix1, x3,	 xq ), 	 Xq 	 (Xq I X1 • • Xq-1)

The combined kernel generates a Markov chain with the invariant 7r. This is sometimes referred
to as the product of kernels principle.

A complete split into component-wise updating may result into slow mixing chains, which
sometimes can be improved by blocking together the highly correlated components. On the
other hand, one may combine the kernels either systematically or randomly. To ensure irre-
ducibility and aperiodicity, it is often enough if each block would be updated infinitely often
as the chain evolves. Extra concern is required to preserve reversibility.

9 Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussions). Ann. Statist.,
22, 1701-62.
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3.3.1 Gibbs sampler

Suppose p-component state vector, i.e.

x 	 xp)T

The Gibbs sampler updates the current state x component-wise, i. e.

• generate

xi	 "d 	7r(x1 lx2, •• xp)

x; ti r (x2 14, x3 , ..., xp)

X* 	ti 7r(XpIXI,	 Xp*_1).

• update x = x*, and iterate.

The Gibbs sampler is a direct application of product of kernels principle, which ensures us that

r(x) is the invariant distribution of the resulting Markov chain, provided it remains irreducible

and aperiodic.

Remark Instead of component-wise, the Gibbs sampler can also be applied block-at-a-time, so long

as exact sampling from the conditional distributions is feasible.
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3.3.2 Understanding the Gibbs sampler

Let p-component x and y differ only at, say, the i-th component, i.e.

andx = (x 1 , ..., xi-1' xi, xi+i,	 xp)

We have

1P(x,Y) =

It follows that

y = (x1,	 xi—ii	 xi+i,	 xp)-

i I x i , ..., x i- 1 , 	 xp) and 0(y, x) = 7r(xi ixi, 	 xi--1, xi+i, 	 xp)-

a(x, y) min{  (Y)0(Y
7(x)0(x, y)

, 1} —= 1.

In other words, the Gibbs sampler is a special case of the MH algorithm, with combined

component-wise transition kernels and unity acceptance probability.

Illustration The Gibbs sampling can be thought of as an application of the fact that conditional

distributions jointly determine the joint distribution, provided the latter exists. Take, for instance,

bivariate x = 	 x2)T , i.e.

= f ir(xi lx2)7x2 (x2)dx2

= f r(xi lx2)[f r(x21z)irx, (z)dzidx2

= f [f ir(x i lx2)71-(x2lz)dx2}rx , (z)clz

= f h(xi,z)rxi (z)dz.

This is known as the fixed point integral equation. It shows that the combined conditional kernels

lead to an invariant distribution with the desired marginal distributions, provided they exist. Since

conditional sampling is guaranteed by construction, we thereby obtain the joint target distribution.

As an example, consider bivariate Bernoulli random variables with joint and conditional distributions:

r(x) 	Poo Poi ) , 7r(x i 1x2 ) = 	 Poo+Pio
Pio P11 	

0 1

Poi+Pi i

It is a straightforward exercise to check, say,

Poo +Pio

Poi +Pi

702 1x1 ) =

	

( Poo 	pol_
Poo +Po i Poo +poi

pio  211___
pio+pii pio+pu

irxi (xi) =	 (xi)[7 (x2Ixi)7 (xi lx2)]	 where 7rx i (xi) = (Poo +Poi, Pio +Pii)-
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3.3.3 Metropolis-Hastings Acceptance-Rejection (M H-AR)

When direct sampling from the conditional distributions is not possible, we need to apply some
acceptance/rejection mechanism block-at-a-time, within each MH iteration. The following
Metropolis-Hastings Acceptance-Rejection (MH-AR) algorithm secures the reversibility of the
resulting Markov chain.

Let independence sampler

IP(x, Y) =

and a known constant c be such that ciP(x) does not necessarily dominate Ir (x) . Define

C = Ix; 7r (x) > c7P (x)} ,

which is not a probability-null set. At the current X i = x,

• generate u E Uni f (0, 1) independent of y 	 (y) ,

• let w(x) = 7r (x) I (x) , and

1 	 ifxs%C

a(x, y) = 	 (x) ir (x) 	 if x E C and y C

min{1, w (y) I w (x)} if x, y E C

• update X241 = y if u < a(x, y) and Xi+1 = x otherwise.

The MH-AR algorithm has been designed to secure reversibility. No where in the derivation did
we require that f 7r (x)dx = 1; and we only need to know 7r upto some proportionality constant.
In other words, we may apply the MH-AR algorithm to p, where 7r (x) = p(x) f p(x)dx

regardless of the unknown f p(x)dx.
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3.3.4 Understanding the MH-AR algorithm

Let A be the event

U r(Y)/citi)(17), with unconditional probability d = P[A].

The p.d.f. of Y conditional to A is given by

r(Y) q(y) =  (Y) 
clP (Y) 

}
(Y)
cd
(y) 
d

ify00C

if y E C.

To ensure reversibility, we adjust q(x) and q(y) with suitable a(x, y) and a(y,x) for each x
or y coming through such a pseudo-AR procedure, so that

(x)q(y)a(x , y) = (y)q(x)a(y, , x) •

We have,

• in case of x,y C,

(x)q(y) = (x)r (y) (cd) = 7r (y)ir (x) I (cd) = 7r (y)q(x) ,

i.e. a(x, y) = a(y, x) = 1;

• incaseofxECandyC,

(y)q(x) 	 (y)0(x) I d < 7r . (x)71- (y) / (cd) 	 (x)q(y),

since 0(x) < (x) c, i.e.

a(x, y) = (x) (x) and a(y, x) = 1 ;

• in case of x C and y E C,

a(x, y) = 1 and a(y, x) = citP(y) hr(x);

• in case of x, y E C,

a (x , y) — w(y) 1 w (x) if (X) (Y) > 7(01P(x)

1 	 otherwise.

Summarizing the four cases gives us a(x, y) as defined earlier.
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3.3.5 Example: Rat Growth Data

Gelfand et al. (1990) 1° applied the Gibbs sampler to a hierarchical model of "Rat Growth

Data". The data contain weights of 30 young rats measured at 5 different time points, i.e.

8, 15, 22, 29 and 36 days after birth. Let y ii denote the weight of the i-th rat at the j-th

measurement, and xi the time of measurement, for 1 < i < 30 and 1 < j < 5. We assume

and aiYii = ai -I- Axi + Eij where eii ti N(0, o-2 ) ana 	 ti N(( 	
(a,

Oi 	 fic)

Remark The model was motivated from an exploratory analysis of the data: the rats were born
weighing different amounts, and they grow linearly but at different rates, and the variation across
the rats appears to come from a symmetric distribution resembling the normal one.

Let j.z, (ac , fic)T and Oi = (ai , #07'. Let yi = (yii , yi5 )T and ei = (ea, fi5 )T . We have

(Yi — Zt/c) = Z(8i — /lc) + Ei where Z =

)T
( 1 1 1 1 1
xi x2 X3 X4 X5

In particular, Yi has normal distribution, whose first two moments are given as

E(Y) = Z pc 	and	 E = E(I — Z pc)(Yi Z pc )T = ZEZT 0-21.

The likelihood function is, let AT = (72 , ttT , E ) ,

L(A; y) oc roBs(A) = 1E1'1 - 15 exPI — —
2 

E(Yi — Zi/c) TEip1 (11 Zpc)}.
1 

30

1=1

Whereas if the O i were observed, the (latent) likelihood would have a simpler form, i.e.

30
LLAT(A; y, oc ircom(A, 0) = H a-5 	—	 — ZOO}

i=i

x 1E- 1 1 exP{-2(02 — 10TE- 1 (82 — /4)} ,

In particular, 19 = (91,...,030) augment the data (yii ) in the sense that

(A, 0) ircom 	iroBs, since roBs (A) = I rcom(A, 0)d8.   

1°Gelfand, A.E., Hills, S.E., Racine-Poon, A. and Smith, A.F.M. (1990). Illustration of Bayesian inference
in normal data using Gibbs sampling. J. Am. Statist., 85, 972-985.
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Conditional distribution upto a proportional constant To construct the Gibbs sampler, we

need to find the corresponding conditional distributions. Generally speaking, let A = (B, 6) where

is a scalar. To derive 74916) from the joint 7(9,e), we notice that

	7 - (0 eo) 	(0 60) 	ir 6)0916 ) = J' - (0 , 60)cle	 7(6)

	so that the distribution of 8 conditional on 6 = 	 is proportional to the joint 7(9, 6o), i.e. fixed at

= 60 . In particular, direct sampling is feasible provided 7r(0,60) is proportional to some familiar

and standard distribution functions.

The convoluted form of roBs leads to non-standard conditional distributions, and thus com-

plicates the Gibbs sampling. Whereas inspection of 7r = 7rcom gives us

i=1

7r(Oili/c, a2 , E) rz-d N (ZT Yia-2 E- 1 pc ) , D) where D = (ZT Z a-2 + E-1)-1

1
74(72 1pc , 0, E) a(1/(72 ) 75 exp{ 22 	(yi - ZOinyi ZOO}

i=1

G (75 —
1 

30
 v--N
2Jyi- zeinyi - zoo)

30
174E102 4 4, 0) «5 expIE —

 1 1 1 	qTr(E(Oi - µc)(9= - pc)TE-1 )}
i=i

30

W({E(61i — itc)(61i — itc7} -1 , 33),
i=1

where IG denotes the inverse-gamma distribution, and W(A, m) the Wishart distribution.

Implementation The Gibbs sampling consists now of iterations among these 4 conditional

distributions, except that the conditional distribution of E -1 has been modified into

30
(100 0)

W({E(9i µc) (9i Pc)T pR} -1 , 33 + p) where R = 	 and p = 2.
i=1 	 0 	 0.1

This is equivalent to introducing, for E-1 , the prior

(E -1 ) = W (1r. ,

Without it the algorithm will have a tendency towards generating E -1 that are close to being

singular, since its conditional distribution blows up around such matrices.

1 30
7r(pc 10, (72 , E) oc exp{ - 

2
- 	 (60i - p,c )11-1 (0i - pc)} N(6, E/30)

30

I))
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Sample autocorrelations of a, with the Gibbs sampler

Diagnostic plots We have run the Gibbs sampling with five different starting points. Multiple
starting points are helpful in assessing the convergence of the Markov chain. It also gives a
more complete picture of the likelihood surface e.g. in case of multi-modality. With the same
number of total iterations, multiple-chains are more likely to visit the different areas of the
target distribution than a single chain.

The first 100 iterations for a, from 5 different starting points.

The sample paths of the other parameters are similar. It is clear that even though the algorithm
has been started at 5 very different points, the Markov chains arrived at the same area of the
parameter space within about 20 iterations. Convergence towards the invariant distribution
does not take a long time.

Likewise, the sample autocorrelations of the different parameters provide valuable information
on the mixing of the chain, i.e. how fast it forgets its past. Quick mixing often implies quick
convergence, as well as high efficiency. It was evident from figures like the one below (for ac)
that the autocorrelations decay quickly and the chain mixes well, which is consistent with the
impression from the sample-path plot above.

MKS ■No. w■ • gwo. ow. 	 IC 	 < 	 .C.2, 17. .112 (11:7, 41=10 •CS. > 3

Histograms of the same parameter from different chains is also a useful device. Needless to
say, convergence of the algorithm implies that these histograms should resemble each other.
To save space we have not included the relevant plots. However, inspection of these showed
similarity across chains.

SU

WiN
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Approximate profile log- likelihood Suppose we are interested in parameter 0, and con-
tains the rest parameters. We compare the profile log-likelihood /p(6) with l(tP,), where
denotes the m.l.e. of e. Notice that the curvature of /(//), 	 gives the variance of the normal
approximation of 0, and its mode the m.l.e. 	 1.). Two plots are given below.

The approximate profile log-likelihood (the wider curve) of a,
and 1(a,;) where 4" is the m.Le. of the rest parameters.

3.0 	 m0 	 60 	 45.0

xx.z

The approximate profile log-likelihood (the wider curve) of o -2

and 1(o-2 , 4") where 4-% is the m.Le. of the rest parameters.

The profile log-likelihood of a, is somewhat wider than 1(a,;4), where 6 denotes the rest pa-
rameters. Whereas the two curves are closer to each other in the case of o -2 . The approximate
profile log-likelihoods appear smooth, which indicate their numerical accuracy. Now that /p
was based on 1000 sampled parameter values, the smoothing process required 1 million eval-
uations of the likelihood, which would be burdensome in Spit's. However, the same amount
of calculation took only about 7 minutes in C.
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Generic Spius code of the Gibbs sampler

# Data is a 150*1 column vector consisting of the weight measurements

# & Z = design matrix & v = Sigma & s2 = sigma -2 & mu = mu_c.

# Furthermore: c2 is a 60*2 matrix consisting of 30 2*2-identity matrices

# stacked on top of each other & c5 of 30 5*5-identity matrices

# & id30 = 30*30-identity matrix & id5 = 5*5-identity matrix.

gibbs.rat <- function(m = 1000) 	 # m = number of iterations

{

for(k in 2:m) {

# conditional sampling of theta

h1 <- solve(t(Z) %eh Zis2[k - 1] + v[k - 1„ ])

h2 <- kronecker(id30, h1 %eh t(Z)) 7.*% data/s2[k - 1]

+ c2 701 C hi 7. ,0% v[k - 1, 	 ] 7.30% t(muCk - 1, ]))

h3 <- t(rmultnorm(1, nu1160, kronecker(id30, hi)))

theta[k„ ] <- matrix(h2 + h3, ncol = 2, nrow = 30, byrow = T)

# conditional sampling of mu

hi <- solve(v[k - 1„ ])/30

h2 <- cbind(mean(theta[k„ 1]), mean(theta[k„ 2]))

mu[k, ] <- rmultnorm(1, h2, hi)

# conditional sampling of sigma -2

hi <- (data - kronecker(id30, Z) %eh matrix(t(theta[k„ ]),

ncol = 1, nrow = 60))

s2[k] <- (0.5 * (t(h1) %*7. h1))/rgamma(1, 74)

# conditional sampling of Sigma

h2 <- cbind(0, 0)

h3 <- cbind(theta[k„ 1] - mu[k, 1] , theta[k„ 2]

- mu[k, 2 ])

hi <- solve(t(h3) %**4 h3 + 2 * R)

h4 <- rmultnorm(35, h2, h1)

v[k, 	 <- t(h4) 7.*% h4

# the log-likelihood

h1 <- data - c5 701, (Z 7.* 7. t(mu[k, ]))

h2 <- solve(Z %*'/ solve(v[k, 	 ]) 701. t(Z) + id5 * s2[k])

h3 <- t(h1) %eh kronecker(id30, h2) 701. h1

like[k, 1] <- Re((15) * log(det(h2)) - 0.5 * h3)
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3.4 Convergence diagnostics

General, practical bounds on the convergence rate of the MH algorithm, or the Gibbs sampler,
are rare in practice. A number of methods have been proposed to monitor the behavior of
the Markov chain(s) using the sample outputs, sometimes together with other information
available. When MC sampling is terminated based on such techniques, they are called the
convergence diagnostics, which can be divided into two categories, depending on whether they
are applied to single, or multiple chains.

Some of the simple single-chain techniques include e.g. plot of the sample path, sample au-
tocorrelations of the same parameter, sample cross correlations between different parameters,
etc.. Common to these methods is their largely visual character. As such they do not provide
precise numeric assessments, but can be useful in detecting slow mixing of the chain. For
instance, if the sample autocorrelations decrease slowly, or if there exist high cross correlations
between different parameters.

In the remaining part of this section, we shall describe several more sophisticated single- as
well as multiple-chain convergence diagnostics.
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3.4.1 Geweke-Z

The following method is due to Geweke (1992) 11 . Suppose real-valued function f (x):

• Divide the chain into two windows, the first of which contains the first 100a% of the

sample, and the second the last No".

• Calculate the sample average within each of the two windows, denoted by :6 and 12,
and estimate their respective asymptotic variances, denoted by r and 72.

• We have, for sufficiently large 1 — a — fl , i.e. approximately independent A. and f2 ,

z =  , 	 NO, 1).
V Ti + T2

(3.2)

• Tail values of z suggests, at least, that the chain was not convergent in the first window.

Remark Sometimes a = 0.1 and 13 = 0.5 are used as the default setting. If the test statistic Z = z
leads to rejection of convergence, one may throw away the first window and repeat the test for the

remaining sample, and so on. This is also one of the reasons why a is chosen to be smaller than i3

Splus script

geweke.z <- function(f, alpha = 0.1, beta = 0.5, ini = 1, max.lag = 100)

{

n <- length(f) # the sample size

w.1 <- f[1:round(n * alpha)] 	 # the first window

tau .1 <- sigma . ini (w . 1 , max . lag) [ini]

# ini = which initial sequence estimator?

w . 2 <- f [round (xi * beta) n] 	 # the second window

tau . 2 <- sigma . ini (w . 2 , max . lag) [ini]

z <- Omean(w.1) 	 mean(w.2))/sqrt(tau.1 + tau.2)

list(Test.Z = z, F.z = pnorm(z))

11 Geweke J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior mo-
ments. In Bayesian Statistics 4, (ed. J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith). Clarendon
Press, Oxford, UK.
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3.4.2 Raftery-Lewis-N

The Raftery-Lewis-M 2 method attempts to calculate the required number of iteration, denoted
by N, such that, for a real function Y(x),

P[F(yc,) E (a — Tol, a + Tol)] = p where P[17 < yec,1 = a. 	 (3.3)

In other words, the culmulative distribution of the a-quantile of Y is estimated to within an
error bound of Tol with probability p. The triplet (a, Tol, p) determines the output of the
Raftery-Lewis-N diagnostic, and has to be supplied by the user.

1. Thinning parameter Define process (Z7z ) as

11 if Yn < Ya
Zn =

0 otherwise

which is not necessarily a Markov chain though it has been derived from one. By taking every
k-th state from (Zr,), denoted by

= Z1+(n-1)1c7

we thin out the chain. The thinned chained becomes approximately Markov for sufficiently
large k. The first step in Raftery-Lewis-N is, therefore, to determine the thinning parameter

k.

Implementation Based on a test-run of the MC sampling, we may estimate y„ by the sample
a-quantile. We then fit the first- and second-order autoregressive (AR) model for (Ze )) at
k = 1, 2, ..., until we reach the smallest k, at which the first-order AR model is preferred to the
second-order one. This gives us the estimated thinning parameter. Let 6 -2 be the estimated
variance of the residuals under the AR model. Typically, non-Bayesian 13 model selection prefers
the AR model which yields the least Akaike's information Criterion (AIC), i.e.

AIC(k) = --
1
n-(-2Lk 2k) = log 52 ± 2k/n.

12 Raftery, A.E. and Lewis, S.M. (1995). Implementing MCMC. In Markov Chain Monte Carlo in Practice,
eds. W.R. Gilks, S. Richardson and D.J. Spiegelhalter. Chapman and Hall.

13 Raftery and Lewis (1995) suggested the Bayesian Information Criterion (BIC) as the method of model
selection.
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2. Burn-in length How many iterations does it take before the chain reaches the equilibrium?

The answer gives us the burn-in length, denoted by M. The calculation is based on (e ) .
Let the transition matrix of the two-state Markov chain (e) be

( 1 — a a
P =

b 	 1 — b
= (lro, 7ri) = (

a b' a +a 	 b ) '

where 7r is the invariant distribution. The in-step transition matrix is given as

Am 	 a —a
+ 

a + b( —b b

where A = 1— a — b is also the second, i.e. the smallest, eigenvalue of P. Suppose we require

that pii (m), for i,j = 0,1, be within € of 7ri . We have,

l eo = (1, 0)

el = (0, 1)

Rii(m) = ejPmeT

lAlm € 	 =
	+b) 	log ey(a, b,
	max(a,	

b, €) 	 M = k 
	log 1AI

Implementation Based on (4k) ), we estimate (a, b) by the corresponding sample frequencies.

This gives us estimate of A as 1 — a — b. The burn-in length M may then be estimated for

any user-supplied f.

3. MC sample size How many more iterations do we need to achieve the desired accuracy?

The answer gives us the sample size, denoted by N. Let (e ) be derived from the sample

a-quantile of Y, we have, given equilibrium of the chain,

9a] 21k) = 	 zgc)
n t.i

N(a, 	
(2 — a — b)a

n(a 	 b ) •

Let (D• denote the standard normal C.D.F., requirement (3.3) is satisfied if

N = k 
(2 — a —

(a + 
)ab

{Tor 1 (I)- 1 (-
1

2
(p 1))}2

Implementation As a reasonable routine practice, Raftery and Lewis suggested applying the

diagnostic to each parameter of interest twice, at a = 0.025 and a = 0.975. The tolerance

of error can be set at Tol = 2 min(a, 1 — a) = 0.0125, and p = 0.95.
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4. Convergence diagnostic in practice Having obtained a pilot sample, the Raftery-Lewis-N

yields convergence diagnostics, which can be used to modify the settings of the MC sampling.

Pilot sample size The sample size N would be minimized if (41) ) form an independent

sample. This minimum sample size, denoted by Nmin, can be used as the size of a pilot

sample. More explicitly, independence implies that

a = 1 — b = =1— a and M= 0 and k =1,

so that, at the routine setting a = 0.025, and Tol = 0.0125, and p = 0.95.

1
Nmin, 

a(

To12

1 — a) 
14) -1 (-2 ( 	 1))}2 = 600,

Relative efficiency of the MC sampling Let

M + N 
I

Nmin

which is 1 for independence sampling. The increment from the unity is due to the dependence

in the sample. The value of I therefore measures the efficiency of the MC sampling relatively

to the independence sampling. Low efficiency may be caused by high cross-correlations among

the components of X, or slow mixing of the sampler, or sometimes bad starting values. In

general, I > 5 indicates that the MC sampling is behaving poorly.
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Splus script 14

raf.lew.N <- function(y, thin = 5, alpha = 0.025, tol = 0.0125,

p = 0.95, err = 0.01)

phi <- qnorm(Cp + 1)/2) -2/to1 -2

N.min <- phi * alpha * (1 - alpha)

n <- length(y) 	 # obtained sample size

if(n < N.min) {

cat(" Not big enough pilot sample to diagnostics!\n")

break

}

y.a <- sort(y)[round(n * alpha)] 	 # sample alpha-quantile

z <- 1 * (y <= y.a)

k <- 0

goon <- T

while(goon & k < thin) {

k <- k + 1

# deriving (0,1)-process Z

# thin = upper limit of k

# z.s = thinned (0,1)-process

z.s <- array(z[1:trunc(n/k)], c(k, trunc(n/k)))[1, ]

est <- ar.yw(z.s, aic = F, order = 2)

goon <- est$aic[2] > est$aic[3] 	 # AIC-selection
}

if(goon) {

cat(" Failed to obtain the first-order-Z!\n")

break

}

s.1 <- z.s[ - length(z. ․)] == 1
s.2 <- z.s[-1] == 1 	 # the successive states

a <- sum(s.1 & !s.2)/sum(s.1) 	 # a = p(1,0)

b <- sum(!s.1 & s.2)/sum(!s.1) # b = p(0,1)

pi.0 <- b/(a + b)

pi.1 <- a/(a + b)

lambda <- 1 - a - b

gamma <- (err * (a + b))/max(a, b)

M <- trunc((k * log(gamma))/log(abs(lambda)) + 0.5)

N <- trunc((k * phi * (2 - a - b) * a * b)/(a + b) -3 + 0.5)

list(k = k, M = M, N = N, I = (M + N)/N.min)

'There exist several public programs for implementing the Raftery-Lewis-N convergence diagnostic.
A Fortran program gibbsit can be obtained by sending e-mail message 'send gibbsit from general' to
statlib@stat.cmu.edu. An S version may be obtained by sending the message 'send gibbsit from S' to the
same address. An XLISP-STAT version is available at the URL http://ftp.stat.ucla.edu ..
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3.4.3 Gelman-Rubin-R

This multiple-chain method was first proposed by Gelman and Rubin (1992) 15 . The basic

idea is to detect when the Markov chains have 'forgotten' their starting points, by comparing

several independent chains with overly dispersed starting points.

Let y = Y(x) be a summary statistic for which convergence is desired. Suppose m parallel,

independent Markov chains each of the size n, giving us

Yll ,12 	 ••• Yin

	

Y21 Y22 ••• Y2n 	
„ n 	 m

and A = — E	 and -g = — A,
n 

=1

Yml Ym2 -- • Ymn

and the between-sequence variance B and the within-sequence variance W as

m	 m
	1 	 1

B= m	 (y2— y-)g)2 	 and W = 
m 

E 4, where cs? = 	 --

	

n — 1 	 0 2 -
j.i

Remark The number of chains is usually set at 2 < m < 10. Some considerations are necessary in

choosing overly dispersed starting points, i.e. (yii, 	 ymi), especially in high-dimensional problems.
It is often helpful in this respect to locate as many local maximums as possible, if not all.

Unless the finite chains have covered all parts of the state space, W is likely an underestimate

of Var(Y), whereas the following estimator likely an overestimate, i.e.

n — 1 	 1
V = 	 W —B.

	n 	 n

Define the estimated potential scale reduction as

p
	R=	 -4 1, as n oo.

Remark In calculating ft, the first half of the obtained chains is routinely discarded as burn-in.

However, it is certainly possible to apply the single-chain convergence diagnostics here in order to

-make choices which are more precise and, possibly, economic. Values of R larger than 1.2 are taken

to indicate that more simulations are needed.

15 Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with
discussions). Statistical Science, 7, 457-511.
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Splus script

gel.rub.R <- function(y, burn = 0.5)
{

n <- dim(y)[2] 	 # n = length of the chain

y <- y[, round(n * burn + 1):n] # possible burn-in

m <- dim(y) [1]

n <- dim(y)[2]

y.i <- c(y 	 rep(1/n, n))

s.2 <- diag(var(t(y)))

W <- mean(s.2)

B <- n * var(y.i)

✓ <- (W * (n - 1))/n + B/n

# m = number of chains

# updating n

# within-sequence means

# within-sequence variances

# underestimate of Var(Y)

# between-sequence variance

# overestimate of Var(Y)

list(R = V/W, V = V, W = W, B = B
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