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Preface The present survey of small area estimation techinques contains three parts which, while
being dependent of each other, can be read separately. The first part provides an overview of a
number of techniques in the literature. The second part concentrates on models for continuous
survey variables, whereas the third part deals with categorical variables.





SMAREST (1): An overview

1 The growing demand on small area statistics for policy making, fund distribution, and local planning
has generated considerable research interest in the last twenty or so years at many national statistical
agencies, including Statistics Norway.

1.1 Review articles, bibliogrphical notes: Ghosh and Rao (1994) presented a review which was central in the

recent years. Earlier ones included, among others, Chaudhuri (1992), Rao (1986), Purcell and Kish (1979),
and Morrison (1971), which more or less covered the subject up to their respective time of appearance. Platek,

Rao, S5rndal, and Singh (1987) and Platek and Singh (1986), and Kalton, Kordos, and Platek (1993) brought
together contributions from two international symposia on small area estimation in 1986 and 1992. Whereas

Small Area Estimation Research Team (1983) contained a large reference list.

1.2 Experiences from international statistical agencies: On general practice there are, for instance, Singh,

Gambino, and Mantel (1993) for U.S., Brackstone (1987), Statistics Canada (1987) for Canada, and Ansen,
Hallen, and Ylander (1988) for Sweden. For empirical study, Drew, Singh, and Choudhry (1982) and Falorsi,

Falorsi, and Russo (1994) compared different methods for the Labour Force Survey (LFS) in, respectively,
Canada and Italy. Whereas Lundstrom (1987) and Decaudin and Labat (1997) dealt with demographical

statistics in Sweden and France. The debate on U.S. Census 1980 found Ericksen and Kadane (1985) and

Ericksen, Kadane, and Tukey (1989) on the one side, and Freedman and Navidi (1986, 1992) as the sharping
oppsite. A number of connected issues were discussed in Ericksen and Kadane (1987), Cressie (1989, 1992)

and lsaki, Schultz, Smith, and Diffendal (1987).

1.3 Some Norwegian experience: Research conducted in Statistics Norway often utilises data from the LFS.

Laake (1978, 1979) contained some early attempts at the synthetic estimator in combination with post-

stratification. The study was carried further in Heldal, Swensen, and Thomsen (1987) in connection with

Norwegian Census 1990. Spjotvoll and Thomsen (1987) concentrated on the composite estimator and proposed
an efficient empirical Bayes approach. Also Neural Network (e.g. Nordbotten, 1996) has been investigated in

more recent methodological works.

2 While earlier methods often appeared ambiguous in this respect, the metodological developement
on SMAREST has witnessed an increasing emphasis on modelling.

2.1 (Sample) regression-symptomatic method: The use of symptomatic variables have originated from the

so-called Symptomatic Accounting Technique (SAT) (Marker, 1983), which is one of the oldest small area

estimation methods. Basically, these should be known from various administration registers, and are correlated

with the survey variable. (Sample) regression-symptomatic method (Ericksen, 1974; Purcell and Kish, 1979,

1980; Zidek, 1982; Marker, 1983) generalises the SAT under the multiple regression framework.

2.1.1 Denote by y the survey variable, and x the vector of symptomatic variables. Let a be the index of small

area, and t the index of time. Let pa ,t(y) and ra ,t(y) Pa,t(Y)/Pa,t- 1(y) -Ya,t / Ea Ya,t Similarly, let

Pa,t (X) = Xa,tI Ea Xa,t, and ra , t (x) = pa ,t(x)/pa ,t_i (x). In particular, (t — 1, t) represent past census, so

that both ra , t (x) and ra , t (y) are known for the entire population. The multiple regression gives us, at t + 1,

ra ,t(y) = 00 + ra,t(x ) TO fa,t+1(Y) = ra,t+1 (x) T41

where t + 1 can be any time after the last census at t, and ra ,t+i are known from the updated registers, and

(i30 , 4) are based on census at t — 1 and t.

2.1.2 The sample symptomatic regression method assumes that sample based estimates of f a ,t+i (y) are

available for some, but not all, of the small areas. The multiple regression model is first fitted based on these

areas at (t, t + 1), i.e. a,t+1(y) = 00 ra ,t+i(X) 7 , and afterwards used on the rest small areas.

Remark One needs to balance the cost and uncertainty associated with sample based 7'a4+1 (y) against the
bias of (i3o, /3) based on past census.

2.2 SPREE: Purcell and Kish (1980) summarized the structure preserving estimation (SPREE) method, de-

veloped in Freeman and Koch (1976), Chambers and Feeney (1977), and Purcell (1979). The SPREE adjusts
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past simultaneous distribution of the survey variable and the auxiliary variable over the small areas, according

to the updated/present marginal distributions. In a way it can be viewed as a constrained raking method.

2.2.1 Assume categorical variables. Denote by Naxy (t) the a priori simultaneous distribution of (X, Y) over

small areas, which is called the association structure. (Typically, Naxy (t) can obtained from the last census.)

Denote by m. xy (t + 1) the updated marginal distribution (summed over all small areas), which is called the

allocation structure. The estimator for the updated Naxy (t + 1), which is said to preserve the association

structure while respecting the allocation structure, is defined as

Naxy (t + 1) = INaxy (t)/N.xy (t)}m.xy (t + 1).

2.2.2 Alternative association and allocation structures (Purcell and Kish, 1980), omitting index (t, t + 1),

include (i) {Araxy7(m-xy,nla--)} , (ii) {Naxy , (7n.xy , Max .)}, (iii) {Nas.,m.xy }, (iv) {Nax., (M-xy,Ma..)}, and

(v) {Nax ., (m.xy ,max .)}. These sometimes lead to iterative proportional fitting (1PF), or raking, if the

allocation structure contains more than one marginal distribution. Moreover, correspondence between these

procedures and their log-linear model-representations implies e.g. that Naxy can often be reduced to lower-

order interactions, without much loss of information.

Remark Before applying the SPREE one should consider whether it is appropriate to preserve the (associate)
structure in the first place.

2.3 Synthetic estimator: According to Gonzalez (1973), "An unbiased esetimate is obtained from a sample
survey for a large area; when this estimate is used to derive estimates for subareas under the assumption

that the small area have the same characteristics as the large area, we identify these estimates as synthetic

estimates."

2.3.1 In practice it is seldom to apply the mean of a large area directly to all the small areas. Synthetic estimates
are often formed in combination with post-stratification, the assumption being that the post-stratum mean
does not vary over some or all of the small areas, which usually cut across the post-strata (Laake, 1978; Heldal,

Swensen, and Thomsen, 1987). Let h be the post-stratum index. A synthetic estimator is given as

= E Nah( 17.hIN-h)
	

N.h = E Nah - and 	 = 	 Yalt-
a 	 a

2.3.2 Holt and Smith (1979) noted that the "post-stratified" synthetic estimator can be evaluated under the

group-mean model, i.e. for i j and h g,

	Yi,ah =	 ei,ah
	

Eki,ahj= 0 and Var(fi,ah) = (72
 

and Cav(fi,ah, ei,a g ) = 0.

Whereas Laake (1979) had a more general variance structure on Ei, ah, further extensions can e.g. be found in

Lui and Cumberland (1991).

Remark Holt and Smith (1979) studied sensitivity of the group-mean model under alternative models, such
as (i) 	 = p, 	 E[yi,ah] = 	 (iii) E[yi,ah] = 	 + Ph, or (iv) E[yi,ah] = Pah, etc.

2.4 Composite estimator: Composite estimator balances the potential bias of an indirect estimator against

the instability of a direct/local estimator from the small area in question.

2.4.1 In the literature, 	 indirect estimator is often set to be a synthetic estimator, and the composite

estimator, denoted by Vac, takes the simple linear form, i.e.

kac = wakaD ± (1 woka/ 7

where YD is the direct estimator, and kJ the indirect one.

2.4.2 In mean-square-error based approach, wa is continuous on (0,1). The MSE of kac is minimized at

wa = MSE(t1 )1{MSE(kai ) + Var(YD )}-
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In practice, though, it is often difficult to obtain stable estimates of w a , and several remedies were suggested
in Schaible (1978) and Purcell and Kish (1979).

2.4.3 Drew, Singh, and Choudhry (1982) proposed a sample-dependent estimator, where wa = 1 provided
Na > .5Na , and wa = Ars a / (8Na ) otherwise. In particular, Na is the direct, unbiased estimator of small area
population size Na , and (5 some preassigned constant. Whereas Sarndal and Hidiroglou (1989) suggested
wa = 1 provided Na > Na , and wa = (ga /Nar-1 otherwise. Notice that the two estimators coincide in
case = 1 and 7 2.
Remark The difficulty of the sample-dependent estimator lies in the choice of the 'cut-off' limit for wa .
Unless the total sample size is sufficiently large, kac can fail to borrow strength from related small areas, even
when E[na ] is actually not large enough to make YD reliable (Ghosh and Rao, 1994). In any case, due to the
discontinuity caused by the 'cut-off' limit, the composite estimator may behave unreasonably in those small
areas close to the chosen limit, depending on which side they happen to be.

2.5 Non-Bayesian predictive methods: Unless small area estimation is solely based on direct estimators,
modeling of the survey variable is necessary. This can be seen clearly once the model assumptions, which
underline the various estimators so far discussed, are made explicit — see e.g. Marker (1983) on the (sample)
regression-symptomatic methods, and Holt and Smith (1979) on the synthetic estimator. Both the random
area-effect model (e.g. Fay and Herriot, 1979) and the nested error regression model (Battese, Harter, and
Fuller, 1988) extend the group-mean model to incoorperate the between-area variation. While the former
introduces a random error at the area-level, the latter remains at the individual level.

2.5.1 The random area-effect model adds to the group-mean model a random error at the small area level,

	Y a = XTf3 za ea
	 Elea] = 0 and Var(ea ) = (72 .

Let ka be some unbiased direct estimator, we have

Ya = 	 Zaea ± Ea
	 Eka j = 0 and Var(E a IYa) = Ta,

where /-Z refers to the sampling error. Cressie (1992), Prasad and Rao (1990), and Ghosh and Rao (1994)
studied the random effect model under the variance component approach.

2.5.2 The nested error regression model assumes individual auxiliary information, and

Yi,a = xTa o + ea + Ei,a ,

where both ea and Ei, a are model effects, i.e. none of them depends on sampling. In particular, modeling at
the individual level implies the predictive approach. The best linear unbiased predictor (BLUP) depends not
only on the BLUE of (3, but also the predicted ea conditional to the realized sample. Battese, Harter, and
Fuller (1988), Fuller and Harter (1987) (the multivariate version), Prasad and Rao (1990), and Stukel (1991)
studied the model in details; whereas Holt and Moura (1993) extends it to allow for area-specific "slope".

Remark The between-area variation is introduced at the area-level through e a in both models, which is
meaningful for a particular small area only if it is represented in the sample.

2.6 Empirical and hierarchical Bayesian methods: Whereas empirical Bayes (EB) approach (Morris, 1983)
does not require explicit form of the prior distribution of the parameters, hierarchical Bayes (HB) approach
(Dana and Ghosh, 1991; Ghosh, Natarajan, Stroud, and Carlin, 1998), operates under full parameterization,
where the posterior distribution is obtained using the Bayes theorem.

2.6.1 With the empirical Bayes (EB) approach, one first derives the posterior distribution of the survey variable,
denoted by p(Ya Ika , 0), as if the model parameters 0 were known. To base prediction on p(Ya Ika , 6) alone
would obviously lead to underestimation of the posterior variance. Adjustments need to be made to account
for the uncertainty in ö (Laird and Louis, 1987; Kass and Steffey, 1989).

2.6.2 The past twenty years have witnessed enormous development in Markov Chain Monte Carlo (MCMC)
methods, which made the HB approach more feasible than ever before. Whereas Ghosh and Larihi (1987),
Raghunathan (1993) and DeSouza (1992) contained approximate, or modified, EB or HB methods.
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2.6.3 Ghosh (1992) established, under rather general settings, that the Bayesian posterior estimates, denoted
by YaB, contain less variation than that among the true Ya . A general method was proposed (Ghosh, 1992),
which leads to the constrained hierarchical Bayes (CHB) approach. Earlier the problem was dealt with by
Louis (1984) and Spjotvoll and Thomsen (1987) under alternative EB frameworks, i.e. the CEB approach.

Remark Similar problems exist also in the non-Bayesian predictive approach, which call for similar development
of constrained approach.

3 To make use of indrect data, modelling of small area statistics must contain structural features
which are common to the population; whereas to allow for between-area variation, it must also deal
with area-specific deviation from these common, baseline, synthetic features.

3.1 Let be the mean-parameter of the survey variable from area a, i.e. 11 a = E[ya]. The synthetic features
common to the population can often be summarized in the following manner, i.e.

h(pa ) = ea = g(e, xa)

Notice that h(), 6 and g() are independent of a. The model is specified at the area-/domain-level if y a is a
scalar, in which case auxiliary x a is a vector in general; whereas the model is specified at the individual-level
if ya is a vector, i.e. ya = , in which case x a is a matrics in general.

Remark Typically g() is of the linear form which, through the link function h(), leads to generalized linear
models. We have retained the general form which, among others, allow for non-parametric approach as well.

Remark The group-mean model (which motivates the synthetic estimator based on post-stratification) can
be expressed in this way, where stands for the post-stratum mean across the areas, and x a the known
post-stratum proportions within the relevant small area, and g = xa 'e.

3.2 The deviation part can similarly be summarized in another parameter, denoted by ri a = 7/(za , ea ), where
za contains relevant auxiliary information, and e a are random errors with prior distribution OP) — though
often OP) is only specified up to the first two moments of ea .

Remark In the random area-effect model we have 77a = Zaea, whereas in the nested error regression model,
we have 77a = ea and za = 1.

3.3 Combining synthetic feature with local deviation, we have, for ea and 77a defined as above,

h(Pia) = ea + 71a = 9(67 xa) + 71(z a ea).

We call ea the synthetic-parameter, and na the deviation-parameter, and 6a + 77a the linear predictor of the
mean-parameter which is obtained through a transformation defined by the link function hO.

Remark Let g = xaT 6, we obtain the standard linear model if h(p a ) = fia and 7a = 0; the variance-
component model if h(pa) = and ria = ri(za, e a ); the generalized linear model if h(p a ) = h(pa ) and
77a = 0; the generalized linear mixed model if h(pa ) = h(pa ) and na = ri(za , e a ). Whereas in non-parametric,
or semi-parametric, approach, g() can be left unspecified.
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SMAREST (II): Models for continuous survey variables

1 In small area estimation, the finite population is divided into a number of sub-groups, i.e. domains.

1.1 Denote by U the population, which is divided into H domains, denoted by Uh, such that U = U 11,1,_ 1 (1h
where U9 n Uh = 0 for g h. Denote by s the sample, and by sh the h-th domain in the sample, and so on.

Example In a business survey conducted by the Norwegian Fishing Directory in 1996, the sample contained
394 fish boats (from 1283 in the population). Classified according to (i) the length of the boat (4 classes),
(ii) the type of lisence granted (22 types), and (iii) the county in which the boat was registered (9 counties),
there were altogether 166 non-empty domains in the population, of which 109 were represented in the sample.

1.2 Denote by y the survey variable. Let Yh = E jEuh Yi, and Y = E h Yh. Let yh = E iEsh yi , and

Ys = Eh yh. In particular, let yh = 0 if sh = 0.
Example (cont'd) Let the amount of fished catched be y, such that 31, is the mean Catch in domain h, etc..

The Catch is in fact known for all the fish boats in the population, so the various methods of prediction can
be checked against the true vaules.

1.3 Denote by x the auxiliary variable, which may be (column) vector-valued. Let Xh = EiEUh Xi, and
=E Xh.E h 	Let Xh = EjEs h xi, and xs = Eh Xh-Lt

Example (cont'd) Based on monthly report to the Directory, a yearly fishing income, denoted by x, is
available for each boat, which will be used as the auxiliary variable.

2 The random (domain-) effect model (Fay and Herriot, 1979; Cressie, 1992; Prasad and Rao, 1990;

Ghosh and Rao, 1994) accounts for the between-domain variation at the domain level. Whereas
the (one-fold) nested-error model (Battese, Harter, and Fuller, 1988; Prasad and Rao, 1990; Stukel,

1991) further introduces a random error at the individual level. Variance Components approach

(Harville, 1977; Robinson, 1991) is applied in both cases.

2.1 Let vh be the random domain-effect, such that

Yh = Xh ,(3 ZhV h 	 E[vh] = 0 and Var(vh) = c 	 Cov(vg ,vh) = 0

for some domain-related constant zh. Let Yh be some unbiased direct estimator of Yh, we have

	XiTt ± ZhVh ± eh
	

E[eh] = 0 and Var(ehlYh) =

Notice that while vh is introduced by the model, eh is the sampling error which is independent of the model.

2.1.1 Under the random effect model, Yh of different domains are uncorrelated, and the variance of Yh is
given as 74 = 	 + 7-12,. The transformation

17h1011 = (Xh NO T 13 Uh

achieves constant variance in uh. In other words, estimating /3 under the random effect model is the same as
applying the ordinary least square (OLS) technique to the regression of YON on Xh /2'h , i.e.

(Exhxvoliri(Exhkog).
	h 	 h

Remark Given univariate auxiliary variable, this reduces to i3 = (Eh X h I 04) I (Eh Xh /0h).
2.1.2 The best linear unbiased predictor (BLUP) of Yh is .X17:+ zhi)h, where XITS is the regression synthetic
predictor, and zhi)h = (f7h, )(171:)1'h the predictor of the domain-effect conditional to Yh — X iT ia and

'Yh = (z4o-2 )/q. The BLUP of Yh is thus seen to be

Yh = X774 + (fth — XTM'Y = PYITh + (1 — -y)X iT ifj,

In particular, let xh = 0 if sh = 0.
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and it turns out to be the weighted sum of a direct estimator and a synthetic estimator.

Remark Due to historical reasons, estimators of the random effects are referred to as predictors.

2.1.3 The empirical best linear unbiased predictor (EBLUP) is obtained from replacing a v2 in the BLU.P with
any asymptotically consistent estimator er v2 . Since E[E h (Yh XT4') 2 /01t] = H — dimCL3), a method of
moments estimator, which does not depend on normality of vh, is given by max(er v2 , 0), where

E(i-h—xV)2/(4.6-v24-7D= H — dim(83).

Remark The mean square error (MSE) of the EBLUP is often estimated by replacing u t,2 in the MSE of the
BL UP with ei-v2 . However this may leads to serious underestimation, and an additional term accounting for the
uncertainty in 13-v will be needed (Prasad and Rao, 1990). The authors there also gave an alternative moment
estimator of a v2 .

2.2 Let uh,i be the random effect in yi for i E Uh. The (one-fold) nested-error model assumes decomposition
uh,i = vh + ei, where vh is the random domain-effect as under the random effect model, so that, for i E Uh,

T
Yi = xi + vh + ei E[e i j = 0 and Var(e i ) = ol and Cov(e i , ej) = 0.

Through e i the random effect is now modeled directly at the individual level. Notice also that the nested-error
model here contains no variance-inflating constants, such as zh under the random effect model.

Remark Fuller and Harter (1987) contains the multivariate extension of the nested-error model; whereas Holt
and Moura (1993) discusses mixed models which allow for domain-specific /3.

2.2.1 The simple within-domain-deviation transformation gets rid of the domain effect vh such that, for i E sh,

Y2 — yh = (xi	 h)7' + ( ei — eh)
	

Var(e i — Eh ) = (1 — nh— l )o-! and Cov(ei — eh, ei — eh ) = 0.

Regressing the y-deviations on the x-deviations gives us, for i E sh where nh > 1,

ei = (yi —gh) — (xi— ±h)Tf[ E (xi — feh)(xi — ±h)27(1—n,v)i -- 1[ 2_, (xi — ±h) (yi — gh)i},
h;nh>1 	 h;nh>1

and 6 i = 0 for i E sh where nh = 1. The method of moments estimator of o is given as

= (E 1 {Enh — 1 — dim(j3)} .

iEs

Remark Applying simple OLS technique to obtain alternative estimates of e i — eh is equivalent to ignoring
the variation in the sample domain size nh.

Example (cont'd) Among the 109 domains represented in the sample, 66 have more than one observation.
Based on these, we obtain 6,e2 = 6.456 x 1011 . Whereas the OLS technique gives us erl = 6.449 x 10 11 .

2.2.2 To estimate av2 the method of mements is often applied. Starting with the OLS regression of y on x,
one may derive the second moment of the resulting residuals, denoted by ii, as a weighted sum of o and
One such estimator, obtained from substituting or e2 with Ore2 , is given as max(0, O-v2 ), where

	= {(2 	 — [7.-t — dim(0)]61}/{n — Tr[(E xixT) -1 (E xIxh)1}-
	i 	 h

	
h

Example (cont'd) With univariate auxiliary variable the denominator above reduces to n— (E h 42 )/(> i

and we obtain "6-! = 6.316 x 1012 .

2.2.3 Given the variance components, the following transformation, i.e. for i E sh,

yi = yi — ahgh and -X i = x i — ahxh and ei = yi — ±7,3 and ah = 1 — [ae2 1(nhor .;), +
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makes ê i uncorrelated with constant variance ol (Fuller and Battese, 1973). In other words, estimating

under the nested-error model is the same as applying the OLS technique to the regression of y on "X, i.e.

The EBLUP is obtained by replacing (6l,cr2 ) with their respective estimates.

Example (cont'd) In this case /3EBLUP = 0.260, whereas I3OLS = 0.272 based directly on y and x. Also,

R = (E i th)/(E i = 0.306, and R = (E i yi)/(E i x i ) = 0.293. In other words, the choice between ratio

estimation and regression estimation appears to make a bigger difference than the assumptions about the

variance structure.

2.2.4 The BLUP of 17-h is the sum of the regression synthetic estimator .5-C9, and the conditional expected

domain effect 	 where Uh = gh - 473, and is given as

Yh = 	 + (gh 	 4)77h = rmsh +	 - rihgt ,

where im 	 0. v2/ ( 0. ;27 + ovnh \) The EBLUP is obtained by replacing the variance components with their

respective asymptotically consistent estimators.

Remark In case the between-domain variation is much larger than the remaining individual variation, i.e.
0-2 >> al so that nh ti 1, the EBLUP becomes approximately the same as the survey regression predictor
under the nested-error model, i.e.

'EBLUP (gh — ±-Th EBLUP) = gh+(
XT

 4:)4EBLUP-

Example (cont'd) The estimated random domain-effect is about 10 times as large as the remaining individual

effect, the EBLUP is therefore practically the same as the survey regression predictor. Comparsion between

the predicted mean Catch and true population vaules is given below for all the 166 domains.

EBLUP under one-fold, nested-error model     

population (solid) prediction (dashed) 

..... .	
........ . ......

..........

0.8
	

1.00.0 0.2 0.4 	 0.6

Empirical quantile of the domain means

EBLUP under one-fold, nested-error model

population (solid) prediction (dashed)

f. A

0. 0
	

0.2
	

0.4 	 0.6
	

0.8
	

1.0

Empirical gumtile ot the population domain mean

EBLUP under one-fold, nested-error model

Population domain mean

a
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Remark In the predictive approach the EBLUP is only applied to the rest population outside of the sample.

3 Generalized regression model with LINearized AREa-effect (LINARE) postulates a linear structure
of the area-/domain-effect. Inference is based on the faimiliar generalized regression techinuques.
Remark The random domain-effect of both the random effect and the nested-error model is trivial and can
not be 'predicted', unless the relevant domain is represented in the sample. This causes often problems in
unanticipated, or badly planned, production of small area statistics — "In general the approach involving
components of variance has arisen from the need to take account of the between-small-area components of
variance. However a much more rewarding approach is to seek to explain why small areas differ." (Holt and
Moura, 1993).

3.1 Consider the case with univariate auxiliary variable. The regression model which fully takes account of

the between-domain effect would allow the parameter to differ from one domain to another, i.e. for i E Uh,

yi xi/3h + ei 	 .E[ei] = 0 and Var(e i ) = v(xi)02 .

The LINARE postulates a linear structure of 13 = (th, i3H)T through a constant (design) structure-matrix
BH", and correspondingly a parameter vector of p components, such that

,3 = B.

The univariate within-domain regression model is thus replaced by a synthetic multiple regression with linearized

domain-effect. (Obviously setting B to be the H x H identity matrix recovers the complete model.) In
particular, the structure-matrix B can arise from dummy-indexing in the same way calibration arises from
post-stratification.

Remark Given the corresponding structure matrices, the LINARE can be extended to include domain-
dependent intercepts, as well as multivariate auxiliary variables, while the linear predictor remains additive.

Illustration Suppose that the domains arise from post-stratification according to Sex and Age with, say, 3
age-groups. Suppose calibration w.r.t. marginal totals of both variables. The dummy indices for the post-
stratification, denoted by I, and the calibration, denoted by B, and the linearization of the domian effect,
involving /3 = (01, --,136) T and = (6, ..., 5 ) 7', can be expressed as

I=

/1 o 0 0 0 o\
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

and B =

/1 o 1 o o\
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0

\ 0 1 0 0 1

and 	 = f3 = Be.

3.2 Let Q = (qij ) be the n x p (sample) structure-matrix, defined according to the design structure matrix,
where the i-th row corresponds to i E s. Let Qz be such that its (i, j)-th element is given by xiq ii . The

sample can thus be rewritten as

y = 	 y = 	 yn)T and e =

Standardize the data so that y i = yi/ViTi, and x i = xi/037, and define "O x based on x similiarly to Qz on x.
Generalized regression (GREG) of y on x is the same as the OLS regression of y on 	 i.e.

= (C2IC2x) -1 (C25) = (QTV —1 Q x) -1 (QTV'y) and diag(V) =

Typically the variance inflating constant vi takes the form vi = 	 for some fixed r. The standardized -6 has

constant variance a 2 , whose method of mements estimator is thus given as

6'r2 = 	 'è") I In — rank(C2 x )}.
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Remark The sample structure-matrix Q is usually not of the full rank, in which case deletion of the redundant
columns are necessary.

3.3 If normality of e holds, the scaled log-likelihood and its derivatives are given as, let 7 = o2 and e	 ET 6. ,

21 = —n log T — el7

	avia=201.617-	 a207= —n17 + e/72

a2 1 /ae =	 0.)/T	 a221/a72 n/72 — 2e/7-3 .

Since ae/ae E 0 whenever evaluated at = 4, the variances of and T can be estimated separately, i.e.

liar (4) =(QT x) -11"
	

Var('r) = 2i-2 /{n 2rank(C2x )}.

3.4 More important, however, is the estimation of the MSE of 17h. Under the model, the BLUP is unbiased.
Let 0 = (,o-2 ) and ignoring the sampling fraction, we have

E[Yh 1O] = XhBh, 	 and 	 Var(kh1O) = 5-2(E 	 = 6 2 VZ,
iE Uh

where Bh is the h-th row of the design structure-matrix which corresponds to domain h, i.e.

V ar(i>i,) = cr 2 11 + (XhBh)Var()(XhBh) T

Remark These variance estimates, as well as those derived under any other model, depends on the validity
of the model, and should be treated with caution. For instance, it is probably unwise to base the choice of
predictor on variances derived under their respective models alone. In fact one of the greatest challanges in
small area estimation is to develop robust and sensible measures of error and uncertainty.

Example (cont'd) In applying the LINARE to the present data, we first compared the choice of the variance
inflating constant r.

BLUP under LINARE (r=0) of domain-effect, without intercept

population (solid) prediction (dashed)

0.0
	

0.2 	 0.4 	 0.6
	

0.8
	

1.0

Empirical quanta. of the population domain mean

BLUP under LINARE (r,0.5) of domain-effect, without intercept

population (solid) predict. (dashed)

0.0
	

0.2
	

0.4
	

0.6
	

0.8
	

1.0

Empirical qua.. of the poputabon dom. mean

BLUP under LINARE (r=1) of domain-effect, without intercept

population (solid) prediction (dashed)

0.0
	

0.2
	

0.4	 0.6
	

0.8
	

1.0

Empirical wangle of the population domain moan
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population (solid) prediction (dashed)

••

population (solid) prediction (dashed)

•

Next we investigated whether intercept, in constant or linearized form, is necessary.

BLUP under LINARE (r=1) of domain-effect, with linearized intercept

population (solid) prediction (dashed)

0.0
	

0.2 	 0.4	 0.6
	

0.8
	

1.0

Empirical quartile of the population domain mean

BLUP under LINARE (r=1) of domain-effect, with constant intercept

0.0
	

0.2 	 0.4 	 0.6
	

0.8
	

1.0

Empirical quartile of the population domain mean

BLUP under LINARE (r=1) of domain-effect, without intercept

4
3

2

2
4

0.0
	

0:2
	

0.4 	 0.6
	

0.8 	 1.0

Empirical quartile of the population domain mean

Fixing the LINARE at r = 1, we compare it with the nested-error model, first, for all the 109 domains which
were represented in the sample - also shown is the direct within-domain ratio predictor.

Direct within-domain ratio predictor

population (solid) prediction (dashed)

2
	

domains which are represented in the sample

	0.0
	

0.2
	

0.4 	 0.6
	

0.8
	

1.0

Empirical quartile of the population domain mean

BLUP under LINARE (r=1) of domain-effect, without intercept

population (sad) prediction (dashed)

domains which are represented in the sample

3
3

	0.0
	

0.2
	

0.4 	 0.6
	

1.0

Empirical quarttile of the population domain mean

EBLUP under one-fold, nested-error model

popi.dation (solid) prediction (dashed)

2
	

domains which are represented in the sample

2
4

0.0
	

0.2
	

0.4 	 0.6
	

0.8
	

1.0

Empirical quartile of the population domain mean
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population (solid) prediction (dashed)
domains which are NOT represented in the sample

.---*** ........... 	
• • •

. .. . . ..... ... . . .... . ...... .. . .
.......................................

C

E
C

-Ft-s

0
-c)

a)
0
Ca
E
C

C
Ca

E
C

0

a)
0
Ca
E
C

C
as

E
C

E
0

-a
-0a)
0

2

C
a)
E

CaE
0
0

a)
0
as
2

We next compare the two methods for the 57 domians which were not represented in the sample.

BLUP under LINARE (r=1) of domain-effect, without intercept

population (solid) prediction (dashed)
domains which are NOT represented in the sample

0.0 	 0.2 	 0.4 	 0.6
	

0.8
	

1.0

Empirical quantile of the domain means

EBLUP under one-fold, nested-error model

0.0 	 0.2 	 0.4 	 0.6
	

0.8
	

1.0

Empirical quantile of the domain means

BLUP under LINARE (r=1) of domain-effect, without intercept

population (solid) prediction (dashed)
domains which are NOT represented in the sample

0.0
	

0.2
	

0.4
	

0.6
	

0.8
	

1.0

Empirical quantile of the population domain mean

EBLUP under one-fold, nested-error model

population (solid) prediction (dashed)
domains which are NOT represented in the sample

0.0 	 0.2 	 0.4 	 0.6
	

0.8
	

1.0

Empirical quantile of the population domain mean

The conclusion seems clear: both the LINARE and the nested-error models account adequately for the between-
domain variation for the domains which were represented in the sample; however the nested-error model is
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:42

O

O

unsuitable for those which were not represented in the sample, as compared to the LINARE.

Remark It is interesting to notice that the variance inflating constant has very little effect on the result. Now
a key condition for the OLS estimator to be consistent is the constant variance of the residual. (Appropriate
variance specification affects mostly the efficiency of the estimator.) Often this is questioned if one observes
a fan-shaped plot of the estimated residuals against the predicted, or true, values of the response variable,
which is easily confirmed by a further qq-plot against the standard Normal distribution. However, while the
qq-plot requires normality of the residual, the fan-shapeness does not. Situations may arise in which a simple
remodelling of the residuals, i.e. without the normality assumption, may reveal that the fan-shapeness is not
strong enough to have much effect on the inference. In other words, approximate constancy of variance is
maintained under some other non-normal distribution of the residual.

Illustration Having fitted the LINARE with r = 0, i.e. constant variance of the residual, we transformed
the estimated residuals to the log-scale, separately for the positive and the nagative ones. We then used the
qq-plot to check separately the positive and the negative transformed residuals.

514; • ••	 •
: 	 .

5 . 10.6
	

10.7
	

1.5.10.7
	

2.5.10.7

...

.3
	

.2

Quartiles of Standard Normal

....... ......

• • • • • ............. 
•

-2 	 -1
	

0

Ouantiles of Standard Normal

The approximate normality in both cases suggest that the residuals might be considered to approximately
follow a mixed log-normal distribution, independent of the size of the auxiliary variable, under which the
approximate constancy of the residual remains valid, which could be why the OLS estimator works! (The
mean of the transformed residuals, i.e. the horisontal dashed line in the first plot, suggests symmetry of the
residuals around zero.)
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SMAREST (III): Models for binary survey variables

1 Apply post-stratification to the Labour Force Survey (LFS) based on auxiliary information of (i)
Register-Status, (ii) Sex and (iii) Age. Let the LFS-Employment within each municipality be the
interest of the survey.

1.1 Let h, where 1 < h < H, be the post-stratum index. Let a, where 1 < a < A, be the municipality index.

Let Yah be the total LFS-Employment within munipicality a and post-stratum h. Let Pah = Yah/Nah be the

corresponding LFS-Employment Rate, where Nah is the corresponding sub-population total. Similarly, let yah

be the observed LFS-Employment in the corresponding sub-sample. Let ijah Yahinah provided nah > 0 and

Yah = 0 otherwise, where n ah is the size of the sub-sample.

1.2 The complete group-mean model allows {paid, i.e. A x H of them, to be entirely free, i.e.

Pah = Ph + ea
	 where ph 7-= (E NahPah)/ (E Nah)-

	 (1)
a 	 a

2 While the synthetic estimator assumes that the post-stratum mean has null variation across the
municipalities, empirical Bayes (EB) and generalized linear mixed models (GLMM) allow for random
area-effects. Whereas EB leads towards a constrained approach (Spjavoll and Thomsen, 1987),
estimation under the GLMM is based on the penalized quasi-likelihood (Green, 1987).

2.1 The synthetic, or post-stratified, estimator can be based on the following synthetic model, i.e.

Pah = Ph
	 ea = O. 	 (2)

Illustration Observed within-post-stratum LFS-Employment Rate yh = (E a nahvah)I(E 	 h)a na_, •

LFS Employment for (Register_Employment, Man)

Overall mean

E

Lij)
LL N

O
O
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4 	 6
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Age group

LFS Employment for (Register_Employment, Woman)

Overall mean
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4 	 6
	

8
	

10
	

12

Age group

LFS Employment for (Register_Unemployment, Man)

•
Overall mean

2
	

4 	 6
	

10
	

12

Age group

LFS Employment for (Register_Unemployment, Woman)

Overall mean

2
	

4
	

6
	

10
	

12

Age group

—cam o

I r,

.
O

O

-

O

O
O
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• • • • 	 •

O °

O

overall mean 0.968

Illustration Observed variation over municipalities within some collapsed post-strata.

Post-stratum (Register_Employment, Man, Age group 3-10)

0
	

20
	

40 	 60 	 80
	

100
	

120

Municipality with increasing number of observations (at least 10)

Post-stratum (Register Employment, Woman, Age group 11-12)

°

L2-., cc.),

overall mean = 0.546

0
	

10 	 20
	

30

Municipality with increasing number of observations (at least 2)

Post-stratum (Register Unemployment, Woman, Age group 3-9) 

• • • • • • • • 
• overall mean,  0.315 .      •                • • 	 •   • • • •

• • . . • • • • • •         
• •       
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20 	 40 	 60
	

80
	

100

Municipality with increasing number of observations (at least 5)

Post-stratum (Register Unemployment, Man, Age group 1-2)    

• . 	 •

overall mean s 0.338 • • • • ••            
• • • • •    

0
	

20
	

40
	

60
	

80

Municipality with increasing number of observations (at least 5)

Remark Notice that different post-strata have different dispersion.

2.2 The EB model allows for random area-effect with zero mean and a constant variance a priori, i.e.

Pah = Ph eah
	 where E[e ah] = 0 and Var(eah) =

	
(3)

In other words, we allow al to vary over different post-strata.

2.2.1 Spjotvoll and Thomsen (1987) considered estimators in the form of a linear adjustment of V ah. In

particular, the so-called optimal estimator, which minimizes E[(Pah — pah ) 2 ], is given as

Pah Wahgah + (1 Wah)Ph 	 where wah = naha2h1Rnah — 1)0i +ph(1 - ph)].

This in general results into over-shrinkage since E[E a (Pah —Pah)'/24] < 	 — see Morris (1983) and Ghosh

(1992) for similar/general results. The constrained EB estimator is such that (i) E [pah ]

V ar(Pah) = 	 zu Ia
'I, 

a
Within the class of linear estimators, this corresponds to choosing 	

;7_ Pwh /ii2aa nd th
e

i i

respective weights of gah and ph.

2.2.2 Often the variance a priori is unknown and needs to be estimated (Spjotvoll and Thomsen, 1987).

In general, however, this may again cause over-shrinkage of the constrained estimator. A general shrinkage
composite estimator motivated by the EB approach can therefore be defined as

Pah = Wa-Y hgah + ( 1 — W -Yah)Ph where Wah -7= nahah2 IRnah 1)01„ ph(1 — ph )},

and 7 , for 0 < 7 < 1, is the shrinkage factor which balances between y ah and ph. In particular, we recover

the optimal weighting at = 1, and the constrained EB at 'y = 1/2.
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..........................................

•..... 	
...............

Observed (solid) EB (dotted. sannkage_tactor = 0.1)

/ E a nah

711h — elh

71Ah eAh I

/ E a vah 	 Vlh 	 V2h

Vlh 	 1 + Vih 0
and 	 j =

0

VAh 	 0 	 • • •

VAh

0

0

1 + vAh /

• • •

u=

Illustration Over-shrinkage of the skrinkage composite estimator under the EB approach.

Post-stratum (Register_Employment, Man, Age group 3-9)

Observed (solid) EB (dolled. skrinkage_lactor . 1)

70 MATCHED municipalities (at least 10 can)

Post-stratum (Register Employment, Man, Age group 3-9)            

12,
ti O

O
	

Observed (solid) EB (dotted. sktinkage_tactor 0.5)      

70 MATCHED municipalities (al least 10 obs)

Post-stratum (Register Employment, Man, Age group 3-9)

70 MATCHED municipalities (at least 10 obs)

Remark It is quite clear that the constrained EB, with shrinkage factor 7 = 0.5, did not successfully adjust for
over-shrinkage. We believe that this is because o was estimated based on the sample. Further investigation
should therefore consider using known variance oh a priori, for instance, based on earlier Census results.

2.3 Generalized linear mixed models (GLMM) (Breslow and Clayton, 1993) are useful for accommodating

overdispersion in binomial data — a general discussion of hierarchical generalized linear model can be found

in Lee and Nelder (1996). Under the present setting, we have

logit pah = log pah — log(1 — Pah) = eh + eah 	 where Eleah] = 0 and V ar(eah) = 	 (4)

2.3.1 Without restrictions on eah, the maximum likelihood estimator (mle) results into over-fitting. A penalized

(quasi) log-likelihood (Green, 1987) can be defined here as

le(h,011,;Y) =[EYah(eh e ah)±71ahlOg(1 Pah)i — eah,

a 	 a

where the last term on the right-hand side is the penalty to be paid for non-zero random effects.

2.3.2 Estimation based on 1 e employs Fisher 

and
	For the present values of	 and eah,nd v

according to (4), and let rah Yah — nahPah	 = nahPah( 1— Pah), and

calculate pa h

g
°.21„2

,1)
O

Update 9 = 	 elh, 	 eAh) T as 0 + j — lu, and iterate till convergence, upon which estimate 	 based on

the estimated eah.
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....................... 	
......................

Observed (solid) GLMM (dotted)

................
.................................

Observed (solid) GLMM (dotted)

.........

................................

Observed (wild) GLMM (dotted)

1
2

2ea .

Illustration Fitting GLMM to some collapsed post-strata.

Post-stratum (Register Employment, Man, Age group 3-10)

81 MATCHED municipalities (at least 10 obs)

Post-stratum (Register Employment, Woman, Age group 11-12)

24 MATCHED municipalities (at least 2 obs)

Post-stratum (Register Unemployment, Woman, Age group 3-9)     

..... 	 ....................................
Observed (solid) GLMM (dotted)

................  

105 MATCHED municipalities (at least 5 obs)

Post-stratum (Register Unemployment, Man, Age group 1-2)

74 MATCHED municipalities (at least 5 obs)

3 The random area-effect model of the GLMM-type can be defined at the level of municipality. A
linear structure can be introduced to accommodate area-specific post-stratification, which allows for
better data usage. A similar linear structure can be introduced for the random area-effect to account
for difference between the sample and population configurations.

3.1 Let pa be the LFS-Employment Rate of municipality a, with auxiliary vector X a which, typically, arises

from calibrating post-stratification (Zhang, 1998). Based on the sample, we define, for t' a = xa/na,

	

logit pa = xa ± ea
	 where E[ea] = 0 and Var(e a )

	
(5)

In this way, within each municipality, there is only one random effect. Notice that, the usual GLM is obtained

from setting ea E 0. Estimation is, as under(4), based on the penalized quasi log-likelihood, defined as

(72 ; Y) = [E Ya (±7a' + e a ) + na log(1 — pa)] —
	a 	 a

Let na = Ya naPa and va = napa (1 —pa ). Let e = (e i ,..., eA) T , and 77 =	 , and V the diagonal

matrix with va as the ath element on the diagonal. Let B = (baj) be the A x q design matrix whose ath row

is given by -±a , and

g

t!

1°
!;

„,

O
O

O
O

BT 77 = 	
77

—e and
	B .	 TVB BTV

	

3 	 VB I +V

where I is the A x A identity matrix. Update 0 = 	 eq, et , ..., eA) T as 8 + j'u, and iterate till

convergence, upon which estimate cr2 based on the estimated ea .
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...............................

.........................
...... • .................

Observed (sdid) GLM (dotted)

..............

.......................................

Observed (solid) GLOM (dotted)

................. •

Observed (solid) Adjusted Register (dotted)

Illustration Fitting GLM and GLMM with random area-effect to random sub-sample of the LFS (I).

LFS-Employment Rate within 108 UNMATCHED municipalities

Municipality (at least 5 obs)

LFS-Employment Rate within 108 UNMATCHED municipalities

Municipality (at bast 5 obs)

LFS-Employment Rate within 108 UNMATCHED municipalities

Muniapality (at least 5 obs)

Illustration Fitting GLM and GLMM with random area-effect to random sub-sample of the LFS (II).

LFS-Employment Rate within 76 MATCHED municipalities

tr, 
°

ut.)
Observed (solid) GLM (dotted)

7E

Cu- ;

°

;

72,

Municipality (at least 25 obs)

LFS-Employment Rate within 76 MATCHED municipalities

• • „

Observed (sohd) GLMM (dotted)

Municipality (at least 25 obs)

LFS-Employment Rate within 76 MATCHED municipalities

••

Observed (solid) Adjusted Register (dotted)

;

Municipality (at least 25 obs)
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Illustration Fitting GLM and GLMM with random area-effect to random sub-sample of the LFS (Ill).

LFS-Employment Rate within 80 MATCHED municipalities with increasing number of observations

(solid) GLM (dotted)

Munsopabty (at least 25 obs)

LFS-Employment Rate within 80 MATCHED municipalities with increasing number of observations

(solid) GLMM (dotted)

Munsopabty (at least 25 obs)

LFS-Employment Rate within 80 MATCHED municipalities with increasing number of observations

Observed
	

Id) Adjusted Register (dotted)

Municipality (at Was' 25 obs)

Remark The Adjusted Register was obtained by multiplying the Register-Employment Rate, denoted by za ,
with a factor so that the average Rate across the municaplities is made the same as observed in the chosen
sub-sample, i.e. E a na fa => a nag..
Remark Model (5) can be useful w.r.t. overdispersion observed in the sample. However, it is likely inappro-
priate to apply the estimated ea as such to the rest population, due to the difference between ".±a, and fCa . As
it was shown earlier, different post-strata have different degrees of dispersion.

3.2 To account for the fact that different post-strata have different dispersion across the municipalities, we
can introduce a linear structure to the vector of random effect of the same dimension as that of i.e.

logit pa, 	
ga ea 	 where Ejfai = 0 and COV(Eaj, Eak) Ojkaj,

	 (6)

and Oik = 1 if j = k and Sik = 0 otherwise. The penalized quasi log-likelihood can be defined as

1E (e7 C12; y) = [E Ya( Ta e ±1 6a) na 100 Pa)] —
1 x- T

—2 1- Ea Ea.
a 	 a

Fisher scoring can be formulated similarly as before, though the design matrix has become much larger now.
Let 77 , V and B be defined as under (5), we have

	B t n
	 I BTVB

	
-±, -±T	 vAt- A±5.

	—
	

I +

f,
LL

7,

u=  and 	 j =
. 	 0 	 0

vAxAxA 	 0	 0 I + vAXAtTA )471A — EA I 

Notice that deletion of the zero-components in -±a is necessary for u and, likewise, deletion of the all-zero rows
and columns in -± a 2Ta is necessary for j.
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