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1 Introduction

The quasi-option value of environmental preservation has been recognized since

the seminal works of Arrow and Fisher (1974) and Henry (1974), who studied

two-period models. Recently, the study of irreversible decisions under uncertainty

has made considerable progress through the theory of real options, using methods

from stochastic analysis, see Dbdt and Pindyck (1994). The methods developed

in this literature makes it possible to construct important extensions of the quasi-

option models.

The real option theory has been applied to environmental preservation in

several studies. Clark and Reed (1990) and Reed and Ye (1994) consider the

choice between land development and wilderness preservation, Reed (1993) and

Conrad and Ludwig (1994) consider the harvest of old-growth forest, while Conrad

(1992) study the accumulation of stock pollutants. In the current paper we will

present a model that generalizes many of these models from the literature, and

provide a general solution to this class of models. The optimal policy is to preserve

the natural capital until the marginal environmental benefits reaches some lower

trigger level. A striking feature of the optimal policy is that it is independent of

what is assumed about marginal benefits below the trigger level.

The paper is based on previous work by Kobila (1991,1993) who considered

the optimal increases in capital stock under uncertainty. In their model the

capital stock could only increase. Arntzen (1995) extended Kobila's model to

allow reduction in capital stock, without recovering all investment cost. Adding

some extra assumptions he was able to derive an extension of Kobila's result. In

this paper we will consider the case where the capital stock can only decrease.
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2 The model

Let Kt denote the stock of some environmental resource. This may be the stock

of remaining rain forest, the area of some type of wilderness or the atmospheres

remaining capacity of absorbing greenhouse gasses. Let O t denote the general

attitude toward this environmental resource. This attitude determines the valua-

tion of the benefits 7r(et, Kt ) from this resource. It is supposed that the marginal

benefit, with respect to the stock of the resource, is increasing in' 19 and decreas-
a2,	 82 ,

ing in k, i.e. -49T57, > 0 and -enc2 < 0. We also assume, given a K0 < oo, that 7r is

either bounded,

sup 7r (9 , k) < oo
ecR± ,k<K0

or linear in B ( at least for 0 sufficiently large)

71- (9 , k) =Balk) — (k)

In the case of Kt as remaining rain forest, A(k) will be the value of the environ-

mental amenity, whereas (k) is the opportunity cost, the value the same area

would have if developed e.g. for agriculture.

We model et as a geometric Brownian motion

det = ozetdt OetdBt

where Bt is a Brownian motion. The extraction u t > 0 of the resource is the

negative of the change in the stock, thus dKt = —utdt, Kt > 0. This extraction

will give some short term benefits P(Kt )ut , where P(Kt ) is interpreted as the

price of the extracted resource, e.g. the timber price, if the natural capital is a

forest. P(Kt ) is allowed to depend on the stock of capital, and we assume that

the most valuable resource is extracted first, thus P(k) > 0. The optimal total

1

We use capital letters (Kr , et etc.) to denote stochastic processes, while lower case letters
(k, 8 etc) are used to denote the possible values of these processes.
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benefits are thus

00
H(t, , = sup Et 'e ' k f (7(0 t , Kt ) ± P(Kt )ut )e-rt dt,

u.s >0,Ks >0
(1 )

where r > a is the discount rate.

We consider the case where resource extraction is irreversible, like harvest

of old-growth forest, development of waterfalls to hydro-electric power plants or

development in wilderness areas, etc. Thus Kt is non-increasing, or equivalently

ut > 0.

A similar problem was considered by Kobila (1991,1993) where K t were as-

sumed to be non-decreasing. Formally, a problem with non-decreasing capital

stock can readily be transformed into one with non-increasing capital stock,

since problems with non-increasing capital can be reformulated into one with

non-decreasing capital, simply by introducing X t = 1 — Kt as a new state vari-

able. Thus it may appear that problems with decreasing capital are included in

the previous solution. This in not true, since the properties of the benefits and

cost functions are changed in the process of reformulating the problem. As above,

if 7r(6), k) is increasing in k, the benefits will be decreasing in x 1— k. Kobila's

solution of the problem of optimizing (1) with Kt non-decreasing, assumed that

is increasing in k, thus Kobila's theorem does not cover this case. Still, their

approach generalizes to this problem as well. This generalization is the purpose

of the paper. A further purpose of the paper is to study how the solution depend

on the form of 7r.

Kobila's result was later extended by Arntzen (1995) who considered a case

where Kt could both increase and decrease, but where decreasing K t were inter-

preted as selling capital equipment, and the selling price was assumed to be less

than the purchasing price. Letting the purchasing price go to infinity, this model

would provide a solution to the problem of this paper, but at the cost of adding

many assumptions not needed here.
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3 The optimal policy

The discussion in this section is heuristic. To make the discussion accessible also

for readers not familiar with stochastic analysis, all proofs are delegated to the

appendix. The technically inclined reader may want to confront Kobila (1993)

for a discussion to some of the problems left out in this paper.

The solution is stated in the next theorem, where 71 > 0 > 72 , are the roots

of the characteristic equation

1	 1
—r + — -2 02 )7 + -2 (07) 2 = 0 -

Theorem 1 Let Ot be a geometric Brownian motion as given above. Moreover,

assume that there exists M < oo such that

Fr , k) — (9 , k) < M

where Fr is defined by

Fr (0 , k) =

then the solution to

ir(t9 ,k) if k OM

7(9, OM) r f:(0) P (x) dx if k >
(2)

00
H(t, 9, k) = sup Et '9 'k f Wes , Ks) + P(Ks)u e-"ds

us >0,Ks >0

is given by H = h, where

2e'
h(t , 9, k) = 	

(71 — 72)2 
_eel[

The corresponding optimal control is

{oo if 9 0(k)
u* (t , 0 , k)

0 otherwise

where 0(k) is determined by the equation

co 7r;,(s , k) 
r P (k) =	 (kri f	 71+1 ds.ip(k) s

" (s' k ) ds + 972 fe li-(s'k ) ds .
J00 s11.+1 JO 5172+1

(3)
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These results also hold if

7(9,k) = 9A(k) — (k)
	

(4)

with A' (k) > 0, A"(k) < 0 and .'(k) > 0. In this case the (3) simplifies to

rP(k) = 717' 1 0(0Y(k) - C(k)

This solution implies that for each level of the natural capital stock there is

a reservation level 0(k), such that we do not extract the resource until ot fall

below this level. We extract the resource once we reach this level, and the stock of

capital is reduced to a level below k. With the given assumptions, the curve b(k)

will be increasing, hence when k is reduced, the reservation level ii)(k) reduced

too, and we should wait for a further reduction in e t to extract more of the

resource. Graphically, the solution can be illustrated by defining a 'extraction

area'

= 1(0 , k) : 0 < < 0(k), k > 0}

whenever the process (e t , Kt ) reaches the boundary of this area, K t is reduced

to keep the process outside the area, while the process et is unaffected.

The solution may be illustrated as in Figure 1. The area below the O(k) curve

is called the preservation area, where no development or extraction is optimal,

i.e. u* = 0. Above the 0(k) curve extraction is optimal, and we call it the

extraction area. If the process start in this area, the optimal policy will be

to reduce Kt immediately down to the curve. When the process starts in the

preservation area, the stock will be held constant, and the process (e t , Kt) will

`live' on a horizontal line until it reaches the 0(k) curve. At the curve the process

is reflected downward, and once it drops off the curve it starts living on a new

horizontal line, etc.
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Figure 1: Illustration of the optimal policy

For a complete solution of the problem, we need to determine the reservation

level *(k). This level is determined by the equation (3). Solving this equation

for 1/), may appear very complicated, but note that solving (3) for 0(k) is much

simpler than solving the original stochastic optimization problem. Actually, in

many cases it is possible to compute the integral analytically, which simplifies

the equation considerably. In the particular case of 7r linear, we see that a rather

explicit solution is possible. In more general cases, (3) may easily be numerically

solved k-vise for /P(k).

Note that (3) can be rewritten as

P(k) = Q(0(k), k).

where

Q(0, k)	 71 1011 1°° 711c (s k)  ds
r	 s'Y1+1

may be interpreted as a reservation price. Given k and 0 = 0, it is optimal
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to extract the resource only if the resource price P(k) exceeds the reservation

price. As stated below, and proven in the appendix, Q is non-decreasing in 0,

and strictly increasing unless 771,(9, k) is constant for 0 > .

3.1 Irrelevant marginal environmental benefits in A

A striking feature of the optimal policy, is that the equation determining 1P(k)

is independent of 7(0 , k) for 8 < 0(k). The only restriction on 7 in this area

is that 'Trio'', > 0, and hence that the marginal environmental benefits 7r;,(9, k) for

< 0(k) , are restricted above by 771(0(k), k). Whether the benefits from the

environment cannot fall lower, (71k (0 , k) = 0 for 0 < 0(k)), or the benefits are

likely to fall rapidly if O t is declining, (41,(0, k) is very large for 8 < 71)(0) has no

effect on the optimal preservation of the next marginal unit of environment. The

reason for this independence is that the process never enters the extraction area,

and if it happens to start there, we will immediately leave the area. If we decide

to preserve a particular acre of forest only as long as e t > 0, we will never get

any environmental benefits from this forest when et < 'b.

Still, the independence is striking, as the future environmental benefits forgone

by extracting the resource when O t = IP depends on also for o t < On the

other hand, the alternatives are not to extract the resource now or newer, but

now or later — perhaps never. If we restrict the attention to the class of trigger

price strategies, the alternatives are to extract it at ot = 0, or at some other

level 'zp, i.e. when et = 17). Since 771 is a continuous function of 0 (we even assume

that 710 exist), the effect of a marginal shift in 0, will be determined by 77 -;,(0, k).

Given the assumptions on P and 7r, the first order conditions actually gives the

optimal solution.

3.2 Uncertainty and irreversibility

To study the effect of irreversibility and uncertainty and to further explain why

only 7r;, outside the area A matters, consider the case of full certainty. We have
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to treat a > 0 and a < 0 separately. First the case that r > a > 0. In this

case the environmental benefits are nondecreasing over time. If it is not optimal

to extract the resource now, it certainly will not be optimal in the future. The

extraction is thus optimal if and only if the resource price exceed present value

of environmental benefits.

We first show that this rule is consistent with the optimal policy given in

theorem 1. At the state 0 = 0(k), the present value of future benefits from the

marginal capital at stock k is

fo 
00 

711(0 (k)eat , k)e-7' dt.

Changing the variable of integration to s = 11)(k)eat we find that extraction is

optimal if the resource price exceed the reservation price

k)	, 	 f	 7ric\s' 	ds.+ 1
00

74,01)(k)e't,k)e-rt	
1

dt = -
ra(k) S

Letting [3 0 we find that --+ , and thus the reservation price is identical to

the one in the theorem.

As stated in the next proposition, with uncertainty, the requirement that

the present value should be positive, is strengthened. We will not extract the

resource unless the price is as least as high as the reservation price, and where

the reservation price is strictly higher than the forgone environmental benefits.

Note that this result also applies for all a < r.

Proposition 2 Q is non-decreasing in 0, and strictly increasing unless 7;,(0,k)

is constant for 8 > Moreover, if the process starts at 00 = 0, for 8 < 0(k),

the present value of future marginal environmental benefits must be strictly less

than the reservation price. That is, for 0 < 0(k),

Q (9, k) > Ee()=9 {f °° 7ric(0t, k)e-rt dt}

How much should the reservation price exceed the present value of forgone

benefits? Remember that the reservation price only depends on the marginal
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benefits for 0 > 11) . On the other hand, the expected future benefits from a

unit of environmental capital obviously depends on 7r;,(9, k) for all B. It follows

that the reservation price cannot exceed the expected benefits by some constant

mark-up factor.

To further characterize the reservation price, we rewrite it as

( op)	 21r	 ) ryl 7r;c ( Ss k )  ds

It is easy to verify that

10° ( OV1 ( 71 - 1 ) ds 1,

and hence )7i 1„2-7-7 1 ) defines a probability density over the interval {0, oo). Let

E denote the expectation operator with respect to this density. Then we get

rQ(k,O) =  rb.	 17;c(5 k)1
- 1	 L s

Changes in the uncertainty will both affect the probability density, and hence the

expectation, but also the coefficient - 2-7, The effect of increasing on E prirk-92---c)s

depends on the function 7r. In the linear case 7(9 k) e A(k), this expectation

is independent of 0. In general it may be both increasing and decreasing. The

coefficient -21-, is well-known from the real option literature, and is increasing in

O. The dependence between and is illustrated in Figure 2.

Let us return to the case of full certainty, and consider the case a < 0.

In this case the value of the environment will be non-increasing over time. If

extraction is not optimal now, it may become optimal in the future. The question

is whether it is optimal to delay investment for a period, At. The delay will give

environmental benefits irVe, k)At at the cost of the return to the value of the

resource, r P (k) At . Thus unless, r P (k) > 4(0 k) , delay is optimal, and we

will invest once 0 = where r P (k) = 7;,(0 k). (This is consistent with the

theorem, as t(7;,(s, k)/s) 7r;,(0, ON, when 13 -4 0 and a < 0.) Note also that

this rule would apply even under uncertainty, if the extraction of the resource is
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Figure 2: The uncertainty coefficient as a function of ,3

fully reversible. With reversible extraction, we can choose between environmental

benefits, 7ijk or return to the resource value rP during the period At, irrespective

of what happens at other points in time. Thus with certainty and a < 0 or if

extraction is reversible, we extract for ê t < b where rP(k) = it k (V) , k). The next

proposition shows that this rule to is strengthened in the case of uncertainty and

irreversibility, and again the result applies for all a < r.

Proposition 3 Suppose that rik is not independent of 0, and > 0. Then,

preservation is optimal whenever the marginal benefit stream from the environ-

mental resource is higher than the interest payment on the resource price would

be, or equivalently

rP(k) > 409,k) for all 0 < -0(k)

Note that the reverse is in general not true: even if rP(k) < 4(0, k) , preserva-

tion may still be optimal. The proposition above thus shows that we will be more
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prone to preserve the environment, when the destruction of it will be irreversible,

than when it is reversible.

As the uncertainty increases, we would expect the option value to increase,

that is increasing uncertainty should increase the cost of taking an irreversible

action. In the present model, this would imply that the boundary of the preser-

vation set, 0(k), should move to the left as the uncertainty increase. This turns

out to be true:

Proposition 4 0(k) decreases as /3 increases.

3.3 Lower bond on natural capital

The stochastic process O t may eventually take very small values. As et is a

geometrical Brownian motion, it is known that if 2a < /32 , then, with probability

1, et 0 as t oo. What happens to the natural capital under the optimal

strategy, as e t 0? Under what conditions will it be optimal to keep a fraction

of the natural capital even when the marginal benefits are at the lowest?

Note first that the reservation price Q(0, k) is increasing in 0. Hence, if

development is not optimal for low values of et it never will be optimal. Given

a capital stock k, further reduction in the stock will not be optimal if P(k) <

limip,o k) . Since lim,0 Q , k) = lim,p,0 k) = !7r-;,(0 , k) , further

development will not be optimal when r P (k) < 4(0 , k) . Moreover, 7;:k < Pi(k),

and hence the next proposition follows

Proposition 5 There is an lower bound k on the optimal natural capital stock,

such that further development will not be optimal if k E [0, k] even if e t 0.

The lower bound is determined as

k = max{k : r P (k) < ir;,(0 , k)}

Note that the lower bound may be zero. If P(k) > 7;,(0, k) for all k > 0, then

the optimal stock of natural capital will approach zero as et -+ 0.
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We note that this lower bound on the natural capital is independent of the

parameters in the stochastic process, and hence not influenced by the degree

of uncertainty. The intuitive explanation of this result is that since et is a

geometrical Brownian motion de t is proportional to et , and hence if e t reaches

a low value, it will change very slowly, and thus essentially become stuck if it

reaches low values. As O t 0, the problem approaches a deterministic problem

with constant future marginal environmental benefits equal 7;,(0, k). Preservation

is optimal if the present value of these benefits, 7r;,(0, k)Ir, exceeds the value of

the resource P(k).

4 Conclusions

In this paper we have solved a quite general model of optimal environmental

preservation under uncertainty. The generality allows us to study the effect of

different assumption about marginal environmental benefits RI. A striking feature

of the optimal solution is the independence of the marginal benefits for values of

the stochastic parameter below the reservation value, i.e. for 61 < 0(k).

In the case of full certainty, we distinguished between the cases a > 0, and

a < 0. In both cases only 7r;,(0, k) for 8 > V), matters, but the preservation

criterion were different. When a > 0, we invest when the price is higher than or

equal to the present value of future benefits, while with a < 0, we invest once the

environmental benefits are less than the return to the value of the resource. With

uncertainty both these rules applies simultaneously, but they are strengthened.

The reservation price is higher than the present value of marginal environmental

benefits and the next proposition shows that the reservation price also gives a

return strictly higher than the marginal benefits of the environment.

A Proofs and Lemmas

The proof of theorem 1 requires the following lemma.
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Lemma 6 Suppose there exists a continuous function k = 	 > 0 and a func-

tion h(t, 0, k) which is C l in t and k, and C2 in 0, and such that

{
sup[Luh, + (r + Pu)e-71 = 0 if k OM
u>o	 < 0 if k >

and

Oh _ Pe-rt 1> 0 if k < OM

ak	 = 0 if k _?_ 09)

Moreover, suppose that there exists M < oo such that for all v > 0, t > 0 and

k > OM

Ly , B, k) + (B, k) + P (k)v)e-rt > —M

and that for all t,O,k and all controls u > 0

lim Et ' e ' k [h(Y7t-,)1 = 0
T-400

where Yt is the state of the system, defined by Yt = (t, et, Ks).

the optimal policy is

Then h = H, and

u* , o, k)
{Do if k

0 if k <

Proof. The proof of this theorem follows Kobila (1991) closely. The proof in

Kobila (1991) requires an upper bound on the capital extension, in our model

the corresponding condition is automatically satisfied as we have assumed that

Kt > O. 0

Proof.	 of theorem 1. (a sketch) As in Kobila (1991) we write G(8, k) :=

H(t,c9,k)er t , and find, using the H-J-B equation (5), that G has to satisfy

aG 1	 2 2G
—rG + at9	 + (13' 0)	 =	 (t 9 , k)

with boundary conditions G(0,k). Fr(0, k)/r and G(oo, k) =	 , k)/r where

r , k) if k <
FrO 9 , k) = 1	 (A.6)

71(9, OM) + r 41;050 P (x) dx if k >

(A.5)
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P(k) [1 + 
	2r 2

Irk(s,
 k)

 ds
(71 — 72)027P 

(k)11-	
(k) s'714-1'Y2(71 — 72)0

The solution to this differential equation can be derived by Lemma 1 in Kobila

(1991), as

2	 9 Fr (s ,)Ic
	 ds 072	

Fr (s , ) 
d

k
G(9 , k) = 	 \ 9 [ 9'71 	f e  s,y2+1 es] ,

72),u - 	f. 87+1

where 71 > 0 > 72, are the roots of the characteristic equation given by

1	 1
—r + (a 2 02)ry ± -2 (07) 2 = 0

At this point is more convenient to specify the boundary of A using the inverse

of the function c5, thus let 0(k) = 0-1 (k), and note that at this boundary

Ck (0(k) , k) — P(k) = 0.

Inserting the explicit solution above, and using the definition of Fr, we find

P(k) = G'k (itP (k) , k)
	yy2 	 (k) r P (k) 

(7142)02 	71 0) 71 fot(k) 744(4+ dS 1/0 f1 s^(2+1

r
= (,,_

2 „ )02 0(0' fot(k)	 ds rP41c)]

Collecting the P(k) terms we find

Rearranging we get

272 	
P (k) =	 '11) (0 71 f 

rik(s , k) 
ds

72VY1 720` + 2r	 ip(k) sen+1 	 •

Using the equation 72710 2 = —2r, this simplifies to

7;c(s
 , k)

 dsr P (k) = 710(kIY1 fo(k) s -yi +1

This proves the theorem. D
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Proof.	 of Proposition 3: A formal proof of the claim can be derived from

applying Dynkin's formula. Suppose that r P (k) < 7r;c ( 9 , k) at some point (B, k) E

A. We claim that we can find an open neighborhood 0 C A such that r P (k) <

7r;,(9 , k) for all (B, k) E 0 and the line-segment from (B, k) to (9, 0(0)) is in the

closure of O. To see this, consider first the case that zP(k) < oo. Since tofk- > 0,

the inequality r P (k) < 7;,(9 , k) continues to hold as 9 increases. Thus we may

extend the neighbourhood 0 to include 0(k). Next suppose that 7P(k) = oo,

then r P (k) < 7r;c ( 9 , k) continues to hold as k decreases, and we may extend 0

downwards to the boundary of A. This proves the claim.

Let 0(0, k) be the value of a strategy where, if starting at (B, k) E O, the

investment is delayed until To where To denote the first exit time of O. Then by

Dynkin's formula

( 9 , k) = E°,k [Kr° 7r(et, k)e- r t dt + G (0 „ , k)e-rr°1

= G (0 , k) +	 ' k [f(T° (7r (0 , k) — fic(et,k))e-rtdt] .

where L is
2a	 a

—r a0 + (oe) 2ao 2	 ao2
Remember that ((8, k) E 0)

LG (0 , k) = Fr (t9 , k) = (0 , OM) r f:(0) P (x) dx

< (0 , OM) + f l,;(0) 7C,(0 , x) dx = (t 9 , k)

We conclude that G > G in O, contradicting the optimality of G. Thus we

conclude that r P (k) > 7;,(0 , k) in A.

To prove that the equality must be strict, suppose otherwise that rP(k)

71,(0(k) k) . According to the observations above, we may change 7 for 0 <

without altering the solution, thus let 7r;,(0 , k) = r P (k) for all (8, k) E A. In

this case the benefits from the environment will always be at least as high as

the interest payment on the value of the extracted resource. Moreover, since

feig, > 0, and irk is not independent of B, the value of the environment will exceed
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the return to the resource value for some values of B . Thus, in no case will the

returns from the environment be less than that from the value of the resource,

while in some cases it exceed it. This contradicts the optimality of extraction at

= 0(k). 0

Proof. of proposition 2: We first prove that the reservation price is increasing

in 0.

cig
k (P,	 = 2r1- ['wig' —1 r 72: Lc)

uS —	 712/ Oc i._Z2S1

T 	
o-Y1+1

27.17ric (V) k) [710111-1 il,c7ds — 1P-1 ]

= 0

with a strict inequality unless 7;,(0, k) is constant for 0 >

The expected benefits starting at an arbitrary state 8 and keeping the capital

intact can be found from Lemma 1 of Kobila (1991). Differentiating with respect

to k we find the value of a marginal unit of capital.

2	 1-0 .71 ie -„„ (s k)
 ds 072gic (t9 k) =  	 71k(s

 k ]
— ')12) 02 I. 	.100 s71+1	 s'Y2+

) 
ds .

1

Note that this is similar to Ck except that irik rather than rP(k) is used in the

area A. In particular, at the boundary

) — r P (k)  ds1 < 0	S)2	
C'k etP (k) , k) — CV/0 (k) k) = 	 /tP (k) 72 f

IP(k) 7r;c (,s

V71 72)	 [	 o

The last inequality follows from the conclusion of the props;s2i+tilon above, that

(k) k) < r P (k) . Since P (k) = Gk(/ (k) , k) the claim follows. 0

Proof. of proposition 4: Integrating by part gives the formula

assuming that

00
r P (k) = 7r►,(0(k) k) 	 f 7r:0(s k) ( IP (k) ds

0(k)

(s k)
lirn k 7 	=
--+ 00	 S 1

(A.7)

(A.8)
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The right hand side of (7) is increasing in the variable 1b (k) . Since 71 is increasing

when is decreasing, this implies that 'b (k) increases when (3 decreases.

To generalize to the case when (8) is not satisfied, note that if 71 1411's 	> a > 0,

the integral in (3) will diverge. Hence ii)(k) is well define only if there is a
(s s ,k)

sequence sn,	 Do such that -km--s 	-÷ 0. It follows that the second term in (7)

must converge too, i.e. that

sn

f 7rke (s , k)( 1P
 (k )yi ds --+ 0 ,

tp(k)

and that (7) is satisfied using the limit of this sequence. The rest of the proof is

as above. ❑
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