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Abstract:
A Vector Autoregression (VAR-) model is combined with a Gamma curve to predict confidence intervals
for age-specific birth rates by one-year age groups. The method is applied to observed age-specific
births in Norway between 1900 and 1995, and predictive intervals are computed for each year up to
2050. The predicted confidence intervals for Total Fertility (TF) agree well with TF-errors in old
population forecasts made by Statistics Norway. The method gives useful predictions for age-specific
fertility up to around 2030. For later years, the intervals become too wide. Methods which do not take
account of estimation errors in the VAR-model coefficients underestimate the uncertainty for future TF-
values. The findings suggest that the margin between high and low fertility variants in official
population forecasts for many Western countries are too narrow.
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1. The need for stochastic forecasts
It is easier to predict the main results of the next population forecast for a certain country, than to
predict the population itself. This is one of the main conclusions from analyses into the accuracy of
national population forecasts published by statistical offices of Western countries after the Second
World War. In other words: real developments for fertility, mortality and migration are much more
volatile than usually assumed in forecasts. When studying the population forecasts of Western
countries, one notes how strikingly similar the predicted values in a new forecast are compared to the
previous forecast. The actual variables, however, often show a very different development. While
forecasts are surprise-free, reality is not. The rapid fall in fertility in many Western countries in the
1970s came as a surprise for most population forecasters and other demographers. The result was too
high birth rates, and an overestimation of the number of young children. Other forecast variables with
large errors are the predicted numbers of elderly persons (in particular the oldest old), which were far
too low because of too pessimistic mortality assumptions, and the size of immigration, which is
determined by largely unforeseeable political, economic and legal factors.

The reason for those forecast errors is our limited understanding of demographic behaviour. Valid
behavioural theories that explain birth, death, or migration have not yet been found. Existing theories
have limited validity in time or space, or they are strongly conditional or partial, or both (Keyfitz
1982). When it is difficult to explain demographic processes, then it is even more problematic to
predict them. The current practice among forecasters is to study regularities and irregularities in the
historical developments of major demographic variables such as the TF and the life expectancy, to
understand observed trends, and to extrapolate them into the future.

Extrapolation, as next best to prediction on the basis of causal explanation, implies that population
forecasts are inherently uncertain. Any serious forecaster will attempt to include that uncertainty in
the forecast in such a way, that it will become clear to the user. The standard approach in national
population forecasts is to formulate two or more sets of assumptions for those key variables of which
the future development is difficult to predict. Examples are the Total Fertility, and the Life
Expectancy at Birth. This approach dates back to at least 1933, when Pascal Wheipton computed a
population forecast for the United States, in which he presented several fertility variants. But the use
of forecast variants is presumably much older, compare the intervals which Spengler (1935) reports
for the results of a number of forecasts for the US. Nowadays, statistical agencies in 15 of the 18
member countries of the European Economic Area (EEA, that is the EU- and EFTA-countries, except
Switzerland) produce forecasts with between two and four fertility variants (Eurostat 1997a, Table
35). In the forecasts made in the beginning of the 1990s in those countries, the low and high fertility
variants defined intervals of between 0.3 and 0.6 children per woman wide for a forecast duration of
approximately 10 years. Moreover, the first co-ordinated population forecast for all 18 EEA-countries
has a difference between the high and the low fertility variant of 0.5 children per woman in the year
2035 (Eurostat 1997b, Table 3).

In spite of the general use of forecast variants to express uncertainty, this approach is unsatisfactory
from a statistical point of view. For instance, Statistics Norway (1997) assumes in the current
Norwegian official population forecast that the period Total Fertility in the year 2010 will be between
1.7 (low variant) and 2.1 (high variant) children per woman. However, they do not give the
probability that the real TF in 2010 will have a value of 1.7-2.1, or perhaps fall outside that range.
Now take the example of an educational planner with an interest in nursery and primary school. For
this planner it must be of great importance to know whether the estimated probability of a TF between
1.7 and 2.1 in the year 2010 is 30, or 60, or perhaps even 90 per cent. In the former case, he should
incorporate much more flexibility into the school planning process, than in the latter.
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Because the traditional approach is so unsatisfactory, some statistical agencies have in recent years
attempted to compute stochastic population forecasts with predictive intervals. See for instance
Hanika et al. 1997 and Lutz and Scherbov 1998 for Austria, and Alders and De Beer 1998 for the
Netherlands. These methods have been inspired by earlier work on stochastic forecasts by for instance
Lee and Tuljapurkar 1994 and Alho 1990. The current paper is a contribution to the literature in this
area. Its purpose is to generate predictive intervals for age-specific fertility rates. It is part of a larger
project of which the aim is to compute predictive intervals for the future population of Norway,
broken down by age and sex.

2. The method - generalities
We assume that births are generated by a Poisson process. The intensity of that process depends
strongly on the age of the mother. Thus the parameter of the Poisson process, that is, the fertility rate,
varies by age. For a certain year, or a given birth cohort of women, we assume that the age pattern of
fertility follows a Gamma curve. This is a mathematical function which consists of a Gamma density
and a scaling parameter. The Gamma curve has four parameters: the Total Fertility (TF), the Mean
Age at Childbearing (MAC), the Variance in that age (VARG), and the minimum age. The four
parameters are estimated on the basis of annual Norwegian data from 1900 to 1995. This results in a
time series of parameter estimates. The series for three of the four parameters (TF, MAC, VARG) are
modelled by means of a multivariate time series model. The minimum age is kept constant at its value
as estimated for recent years. Predictions are made for the period 1995-2050 for all four parameters.
The Gamma curve is used to transform the parameter predictions back into future age-specific fertility
rates.

Since the ultimate purpose is to generate stochastic population forecasts, much attention is given to an
appropriate quantification of uncertainty. In the present approach, there are four main sources of
uncertainty attached to future birth rates:
1. Sample variation in the historical age-specific birth rates
2. Errors in the parameter estimates of the Gamma curve
3. Residual variance in the time series model

3. The age-specific fertility rate: The Poisson model
Assume that a group of Y(x) women aged x give birth to B(x) children in a certain year. Assume
further that the births are generated by a Poisson process. When f, represents the intensity of the
process, the probability of exactly B(x) births among the Y(x) women equals

exp {—fx .Y(x)}.{L.Y(x)} B(x)

B(x)!

This is also the likelihood of observing the data, given the model. The first and second derivatives of
the logarithm of the likelihood result in the following estimators for the intensity f and the
corresponding variance:

Fx = B(x)IY(x), and

(1)	 Var(Fx) = B(x)IY2(x) = Fx/Y(x)

The estimator Fx is the traditional age-specific rate. Its variance Var(Fx) is small when the rate itself is
small, or when the women at risk Y(x) are numerous, or both.
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We have used the Norwegian age-specific birth rates for the years 1900-1993 computed by Brunborg
and Mamelund (1994). These were supplemented with rates for the years 1994 and 1995. The age
range was from 16 to 44. When computing person years of exposure, we ignored mortality and
international migration, and used the population of women at the beginning of each year, broken
down in one-year age groups.

4. The age pattern of fertility: The Gamma curve
The array of 29 rates for each year can be summarized by means of a parametric curve, which is a
function of age. Thanks to the regular shape of the age pattern of fertility, such a function contains
only a few parameters, usually 3-5. Various curves fit the data well: normal, lognormal, double
exponential, Coale-Trussell, Hadwiger, polynomial, gamma, and logistic curves, to name the most
important ones. Several authors have noted the attractive properties of the Gamma curve. The fit is
usually good, and the parameters can be interpreted, after an appropriate transformation, in a
straightforward way. See Bell 1997, Hoem et al. 1981, and Duchene and Gillet-De Stefano 1974.
Denote the fertility intensity for age x as fx, as before. The Gamma curve is usually defined as

(2)
1

fx = 
1"(a3)

ala2a'(x — a4 )"1-1 exp[— a2 (x — a4 )j+ex ,x

The four parameters a, are to be estimated from the data, Ex is a residual term, and F(.) is the Gamma
function defined by

00

r(p) = j uP-1 exp(—u)du.
0

a l represents the TF, whereas a4 is the minimum age at childbearing. The parameters a 2 and a3 have
no immediate demographic interpretation. However, Pa, is the Gamma density, with mean a4+a3/a2

and variance oc3/a22. Therefore we introduce the following transformation

p 1 = al

32 = a4 + ail a2

133 = 0C3/0C1 2

(3) 04 = a4

Hence parameters P i and 34 have the same interpretation as a l (TF) and a4 (minimum age). 132
represents the mean age at childbearing, while 13 3 is the variance in that age. The 13-parameters have
been estimated by means of non-linear regression, by minimizing the following weighted sum of
squares

(4) wx(Fx - fx)2

Fx is the estimated rate for age x as introduced in the previous section, f, is the underlying theoretical
intensity given by expressions (2) and (3), while wx is the inverse value of the variance of Fx , see
expression (1). The latter variance reflects the "measurement error" for the rate Fx : a small variance
indicates a precise estimate for the intensity, and vice versa. Hence ages for which the variance is
large get less weight in the regression than those with smaller variances. Weighted least squares
estimation is approximately equivalent with Maximum Likelihood estimation of the parameters p„
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with births B(x) and exposure time Y(x) as data (Van Imhoff 1991). Unweighted least squares (wx=1)
would imply that one regards the birth rates Fx as data. This would give relatively much weight to
imprecise rate estimates. In a similar curve fitting exercise for US fertility, Bell (1992, p. 192) used
weights equal to four for ages 18-32, and one for all other ages. His aim was to give more weight to
ages with high fertility. Note the difference with our approach: we give more weight to the ages where
the rate variance is low, usually ages up to 22 and beyond 33 for a country like Norway.

The four 13-parameters and the corresponding covariance matrix, together with their variances were
estimated on the basis of Norwegian birth rates for each of the years 1900-1995, see Section 3. We
used a recent update of Van Imhoff's program Profile (Van Imhoff 1991) for small scale experiments,
and the NLIN-procedure in SAS for the complete data set. In the SAS computations we selected the
Marquardt algorithm for minimization of expression (4), with appropriate non-negativity constraints
for the parameters. The symbolic program MAPLE computed analytical first-order derivatives. For
each year, the weights wx are U-shaped. For instance, in 1995 the minimum is 237,500 at age 28
(F,8=0.141, Y(28)=33,569). The left and right branches of the w x-curve increase rapidly to values
exceeding 1,000,000 for ages below 20 or above 38. At ages 16 and 44, the weights are 25.8E6 and
14.3E6, respectively. The consequence of these extremely high values is that the fit is very bad around
the top of the curve, since the curve is determined strongly by the estimated rates at young and old
ages. In order to avoid this effect, we have censored extreme weights. After some experimentation we
concluded that a maximum weight value of 3,000,000 gives a good fit around the top of the curve.
Therefore, all weights (for all ages and calendar years) exceeding this value were made equal to
3,000,000. For 1995 this was the case for ages 16, 17, and 42-44.

Figures 1-3 give estimates for 13 1 ,132, and 33 with corresponding 95-per cent confidence intervals. The
TF, mean age at childbearing, and variance in that age computed in the traditional demographic
manner (i.e. moment estimators TF=L Fx ,	 x.Fx/TF, and s 2=Ix (Fx-m)2/TF2) are also given. The
latter estimators are only influenced by Poisson variability, not by the fit of the Gamma curve. The
minimum age 34 is not included in these figures, because estimates in recent years were invariably
equal to the boundary value of zero (after initial values around 14-15 years of age in the first half of
the century).'

I Estimates for the minimum age 34 fell below 14 in 1975, and decreased further to reach zero in 1991. During
the same period, the estimates for the mean age at childbearing 13, rose from 26.6 to 28.3 years. Together with the
relatively low estimates for the Total Fertility f3, during these years (< 2), the predicted birth rates at ages below
16 are still negligible, in spite of the unrealistic estimate for the minimum age.
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Figure 1. Total Fertility (TF) estimates and 95 per cent confidence interval
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Figure 2. Estimates for mean age at childbearing, and 95 per cent confidence interval
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Figure 3. Estimates for variance in childbearing age, and 95 per cent confidence interval
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Similar to many other Western countries in this century, Norway had two periods with a strong
fertility decrease (Figure 1). The first one, which had begun around 1880, ended in the 1930s, whereas
the second one took place at the end of the 1960s and during the 1970s. The baby boom of the 1950s
and 1960s was to a large extent the consequence of a decrease in the mean age at childbearing for
women born in the years 1920-1945. This led not only to a fall in the period mean age (see Figure 2),
but also to high period-TF values (Figure 1). The period-TF attained its minimum in the years 1983
and 1984, when it was as low as 1.66 children per woman. After a rise towards 1.9 children per
woman in 1990, the TF has been rather constant. But in recent decades, women get their children at
increasingly higher ages, compare the strong rise in the period mean age at childbearing in Figure 2.
Facilitated by modern contraceptive methods, growing shares of young Norwegian adults postponed
the birth of their first child and took some form of education at the tertiary level during the 1970s and
early 1980s. Next they worked some years before they entered parenthood (Kravdal 1994). Much of
the fertility decrease during this century was caused by a reduction of higher-parity births, which
generally take place at high ages. Together with a reduction in childbearing at young ages, the births
were more and more concentrated around the mean age at childbearing - hence the fall in the variance
in Figure 3.

The 95%-confidence intervals for the 13 i are rather wide in the years 1900-25 and 1945-65, indicating
a relatively bad fit. After 1980, the fit is excellent. The traditional TF coincides with the estimates
from the Gamma curve from 1970 onwards, and it falls within the 95 per cent confidence bounds from
1940. However, it is much lower in the first half of the century, because of the bad fit of the Gamma
curve in those years. Figure 4 illustrates how the fit improves over the years.
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Figure 4. Age-specific birth rates, empirical values (xxx) and Gamma curve fit (solid line)

The smooth pattern of the empirical rates causes autocorrelation in the residuals. This systematic bias
can be seen very clearly for women older than 25 in the year 1900, but also in the other three years. It
means that the assumption of non-correlated residuals is not fulfilled. Thompson et al. (1989) and Bell
(1992, 1997) have suggested to account for the systematic deviations by including what they call a
"bias adjustment" in predictions of the age-specific fertility rates. In Section 5.2 we will come back to
this issue. Meanwhile we note that an assumption on zero correlation between residuals could have
been avoided by using non-parametric estimation, although resulting residuals still would have been
systematic.

5. A modified VAR-model for the parameters of the Gamma curve
The result of the curve fitting exercise in the previous section is a series of estimates for the four
parameters of the Gamma curve for each year between 1900 and 1995, and the corresponding
estimated covariance matrix for each year. A modified Vector Autoregression (VAR-) model has been
used to predict three of the four parameters: IL P2, and 133 . As noted earlier, the minimum age of

childbearing 134 fell from 14 in 1975 to zero in 1991, and remained at that level since. We predict that

04 will be zero in the future, too.
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5.1. The model
The expressions used here are standard in time series literature, for example Cryer 1986 and
Liitkepohl 1993. Let C17-- ( 1n01,/), in(13/,1), in(133,g be a column vector with the Gamma curve
parameters in year t in logarithmic form. First differences of C led to stationarity, and we found that a
multivariate ARIMA (1,1,0) model fitted the data well. The model is of the form

(5) Z = 014 + Cl ,

where Z1 =C1-C,_ 1 , (1) is a fixed 3x3-matrix of coefficients, and Et=(£1, 1, E2,1, £3,1)' is a multivariate normal

column vector with mean 0 and constant covariance matrix 	 The model contains no intercept, so

that we avoid predicting an indefinitely increasing or decreasing pattern in 	 An equivalent
expression for (5) is the non-stationary process

(6) C, = (I + (1))C1.-1 -0C1_2 + E,.

Least Squares estimates of (i) and 1, in (5) are the same as those in (6). So far, the model can be
considered as a VAR-model. In our case, the model was modified: the estimates of 4 and were
obtained from a version of expression (6) estimated by Weighted Least Squares (WLS), giving less
weight to years in which the estimated variances for the 13, parameters were high. Therefore, both C1 ,
C,_ 1 , and C1-2 in expression (6) were pre-multiplied with the inverse of the standard deviation of C 1. In
principle, we could also have used WLS of expression (5), with the inverse of the standard deviation
of Z, as weights. However, the latter weights are a complicated expression due to the covariance
between C, and C1. 1 .

Let S-2 fi , be the covariance matrix of the vector p t . Then, by the delta method, we find an approximate

value for the covariance matrix of C, as

	'fi-1 ,ti
	 0	 o

Qc,i	 0	 fi2!, 0

	o 	 0 X!,

0	 0

0fi2.1t
0	 fi-13,t0

Pre-multiplying C,, C, 1 , and C t..2 in expression (6) by (C2c 1) results in

(7)	 Yt = (1-+ OXI - OU, +

with YACIc,t) -1/2Ch X/=(K2c,t) 1/2C,I, and U1 =(5Iciy 1/2C,_2 . Ordinary Least Squares (OLS) estimation of (7)
is equivalent with WLS estimation of (6), with weights (J2 0)-1 (Draper and Smith 1981, p. 108). OLS

estimation of (7) results in estimates for the coefficients, and t, 7 for the covariance matrix of
1/2 	 / 	 \ V2

From the latter matrix we find an estimate for the covariance matrix of E, as I, =pc ) t ri p .)

where nc is a symmetric weight matrix to be discussed in Section 7.1.

The minimum Mean Squared Error predictor for C at forecast horizon / starting from forecast origin t

is

The forecast error is

C,(1)= E(C, +1 Cl , C, „C, 2 , •• •) •

10



1-1
e,(1)=	 —01(1) =li t, j e,, i_j ,

j=o
where the matrices xvi are coefficient matrices to be computed from

(I + v i B + W2B2 + v3B3 + vilid)(/ - (I + (134)B + 4 B 2) = I,

by equating powers of B, and xvo./. Given our assumption for the distribution of E„ we find

(8) e (1) N(0,	 tit e lfr
.J =0

For each individual component i=1,2,3 we have

(9) o. ;; (1) 
(1) 	N(0,1),

where	 (1) is the i-th diagonal element of the covariance matrix of e,(1) given in expression (8).

5.2. Results
We have limited the time series analysis to the years 1945-1995. On the one hand, a long series is
desirable on statistical grounds. On the other hand, there is little reason to believe that the
childbearing behaviour of women in the first half of the century was so similar to that in more recent
decades, that both can be captured by one model. Moreover, the fit of the Gamma curve was much
better in the second half of this century than in the first half. However, we have also investigated the
sensitivity of our predictions for choosing the shorter periods 1960-1995 and 1975-1995 (see Section
7.4). Post-war effects in 1946 and 1947 have been removed: new estimates for 13 and the
corresponding covariances in those years were computed by linear interpolation between 1945 and
1948.

Estimates for the elements of (1) and corresponding standard errors are listed in Table 1.

Table 1. Estimates of Oii

A 	 A 	 A 	 A 	 A

i1	 02	 03	 021	 '022	 23 	41	 42	 15_33

Estimate	 0.6694	 0	 0	 0	 0.8852	 0	 0.0909	 0	 0.3089

Standard Error 0.1044	 -	 -	 -	 0.0735	 -	 0.0419	 -	 0.1337

Diagonal elements are high and strongly significant. All but one ( 4 1 ) of the off-diagonal elements

turned out to be non-significant at the five per cent level in a trial calculation. Hence these were set
equal to zero, and the model was re-estimated with those restrictions, using Restricted Least Squares.
Predictions for P2 based on the unrestricted model showed unrealistically wide 95 per cent confidence
intervals, including mean ages well over 50 years already in the years 2020 and later. This is caused
by an unusually large value of the elements (3,2) and (2,3) of the symmetric weight matrix Sl c . By
restricting non-significant elements of (1) to zero, the confidence intervals for 13 2, as well as those for
r3 1 and 13 3 , became realistic.
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The estimated covariances for the non-zero 0,j -elements are given in Table 2, whereas Table 3

contains estimates for the residual covariances E E . Much of the uncertainty, relatively speaking,
concerns the TF, as witnessed by the high estimate of (T em This is caused by the large fluctuations in
the TF since 1945 (see Figure 1), whereas those in the mean age or in the variance were much smaller
(Figures 2 and 3).

Predictions for the TF, the mean age, and the variance have been computed on the basis of expression
(6), with C1.1 = 01995 and C1_2 01994 as starting values. Corresponding confidence intervals for these
three indicators can be found using expressions (8) and (9). However, these intervals only reflect
uncertainty around the predicted values provided that the matrix 4) is known. In practice, however, this

matrix is estimated, and each 0, has its own distribution (except for those elements which were fixed

to zero). Expressions for confidence intervals around future values of C, which take the distribution of
the 0-estimates into account are not known. Therefore we used simulation for the determination of
predictive intervals of the elements of C,, based on random draws of both the distribution for the (1)-
estimates and that for the residual vector E. Predictive intervals based on the assumption that (I) is
known, using expressions (8) and (9), are reported in Section 7.1.

Table 2. Covariance estimates for non-zero elements of

0„

x 1  3

	10.185	 0.011	 -0.354	 -0.000

	

0.011	 4.547	 0.023	 -0.130

	4,	 -0.354	 0.023	 1.644	 -2.484

	4,	 -0.000	 -0.130	 -2.484	 16.588

Covariances between other elements of 0 are zero.

Table 3. Estimates of Ee=(cre,0 1

411	 412 o&B

X10-3

0.703	 0.005	 0.105	 0.007	 0.015	 0.309

Only the upper triangular part of the symmetric matrix is given.

We simulated 10,000 sample paths for the vector each one from 1996 until 2050. For every sample
path we drew one value for the matrix 4), and 55 values for the vector E, one for each year. The

estimates of both 4) and E follow a multivariate normal distribution. The mean and the covariance of

0 are given in Tables 1 and 2. The mean of i is the null-vector, while its covariance estimates are

contained in Table 3. Multivariate normally distributed numbers were drawn from these two
distributions using Cholesky decomposition of the covariance matrices (Bratley et al. 1983).
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The predicted values C, J995 (/) follow a normal distribution. Transforming them back to predictions in

terms of the p, implies that the latter variables are unbounded from above. Therefore, draws that
resulted in too large values for the three parameters were rejected. By the middle of the next century,
the childbearing behaviour of Norwegian women may be very different from today's. Medical
technology may have made it possible to postpone childbearing to ages well beyond 50. But even
then, a TF of, say, 11 children per woman, or a mean age at childbearing of 55 years, or a variance in
the age at childbearing of 400, are clearly unrealistic. At the same time it is unrealistic to assume that
teenage fertility has become so important that the mean age falls below 20. Thus we used the
following, quite liberal, restrictions: O<TF<10, 20<MAC<50, and O<VAR<250. In addition, a
restriction was imposed on the elements of the matrix (I): each of those was required to lie between
minus one and one, in order to ensure stationarity. Almost 9 per cent of the simulations (967 of
10,967 simulations) had to be rejected on the basis of the restrictions for the elements of 4), or for the
three parameters. New sample paths were generated until we had obtained 10,000 paths with
admissible values. This resulted in 10,000 values for each of the three p i-parameters for every year
between 1996 and 2050. These were ordered by size, and the lowest and highest 250, 1000, and 1666
values were taken as the lower and upper bounds of the 95, 80, and 67 per cent confidence intervals,
respectively. Figures 5-7 illustrate these confidence bounds.

Figure 5. Total Fertility
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The average values for the three parameters in 2050 are 2.21 (TF), 30.9 (mean age) and 28.3
(variance), while the medians are 1.86 children per woman, 30.2 years, and 27.6 years'`, respectively.
The exponential transformation from C, back to 0., causes a relatively large difference between mean
and median for the TF, but much less so for the mean age or the variance. At the same time, the
transformation results in a-symmetric confidence intervals around mean values. This reflects the fact
that, say, a doubling of the TF (although a rare event) is much more probable than a drop to a level of
zero children per woman - the latter probability is zero. The odds are two against one that the TF in
2050 will lie between 1.1 and 3.3 children per woman, while the 95 per cent confidence interval is
(0.5, 6.1) in that year.

The expected probability that the TF will exceed 6.1 children per woman in 2050 is only 2.5 per cent.
Yet it is difficult to imagine such extremely high levels of childbearing in a country like Norway. The
highest TF ever recorded for Norway is (the moment estimate of) 4.8 in 1879, the highest value since
1845, see Brunborg and Mamelund 1994. With a TF of 6.1 children per woman or more, fertility
would exceed the historical maximum by more than one child, and it would exceed the current level in
many less developed countries. It would imply a rise by four children over a period of fifty years. One
may wonder under what circumstances women would get over six children on average. Activities
connected to bringing up those children would have major effects on labour market and educational
behaviour of these women and their partners. It is hard to imagine the kind of reasons couples could
have when they were to opt for so large families. Clearly, the model predictions for the middle of the
next century cannot be considered as realistic. If we somewhat subjectively assume that a fertility
level of more than four children per woman on the medium and long term should be rejected, even
when the probability of such a level is only a few per cent, we see that the model gives reasonable
results up to around 2020 or perhaps 2030. Beyond that, confidence intervals are too wide. One has to
take recourse to other methods when predictions so far ahead are required. The easiest one is to
assume that in 2030, say, uncertainty is already so large that it will not increase any more. In that case
confidence intervals are constant after 2030. A more sophisticated one is to assume that there is an
upper bound to fertility levels in Norway. Considerations of this sort led Lee (1993) to include an
upper (and lower) bound in his univariate ARIMA-based TF-predictions for the United States,
following a suggestion first made by Alho (1990). To that end, he transformed the annual TF into

g, = ln{ (13, - L)I(U - pi)),

where 13, is the TF in year t, g, is the fertility index to be modeled and forecasted, and U and L are the
upper and lower bounds for the TF. This logit transformation will produce a forecast for 13, which will
never exceed U or fall below L. However, as noted by Alho and Spencer (1997), such a model may
have undesirable consequences. They demonstrated that when g, follows a random walk process, then
p, will eventually be "absorbed" close to U or L for large enough t. This anomaly also showed up in
our case. We selected L=1.0 and U=3.1, and identified a univariate ARIMA (2,1,0)-process for the
logit transformed Norwegian TF. (The maximum TF-value in the period 1945-1995 was 3.02 in 1964.
Hence an upper bound of 3.0 would cause the transformation to break down in that year. Clearly, the
bounds must be strictly larger than the largest observed value, and smaller than the smallest one.)
Confidence intervals were computed analytically, assuming that the estimated coefficients of the
ARIMA-process are equal to the real ones. In 2050, the bounds of the 67 per cent confidence interval
(1.12, 2.86) were very close to those of the 95 per cent confidence interval (1.01, 3.08). In the long
run, the boundaries of any interval approach the upper and lower bounds U and L arbitrarily closely.
The conclusion is that the logit transformation cannot be used for constraining our confidence bounds.

Another possibility is to assume that the likelihood of a drop in TF is larger the closer the predicted
TF approaches a pre-specified upper limit. While such a non-linear model is beyond the scope of the
current paper, it would be worthwhile to investigate the statistical properties in future research efforts.
For the time being we conclude that we can have confidence in the model up to around the years
2020-2030, but not for the more distant future.
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Figure 8 illustrates the volatility in the simulated TF. It shows four sample paths, namely the two
paths that came closest to the upper and lower bounds of the 95 per cent interval in 2050, and the
paths which hit the average and the median TF-values in 2050.

Figure 8. Four sample paths for the Total Fertility

We experimented also with 5,000 and 1,000 simulations, instead of 10,000, but in those cases the
upper bounds of the 95 per cent intervals looked a bit ragged, in particular those for the TF.

The predictions in Figures 5 and 6 are to be compared with the fertility assumptions used by Statistics
Norway in their 1996-based population forecast. In that forecast, the year 2010 was chosen as the so-
called target year for fertility, that is, the year after which no change was assumed for fertility
parameters. Table 4 shows that the TF and the mean age in the Medium Variant agree very well with
our median predictions. The constant TF is explained, at least qualitatively, by cohort developments.
The cohort TF in Norway decreased rapidly for women born between 1935 (2.57 children per woman)
and 1954 (2.05). After some fluctuations in the TF among women born in the second half of the
1950s, this indicator is assumed to fall slightly for women born after 1960, from 2.10 (generation
1960) to 1.97-2.05 children per woman (generation 1971). The decrease is the result of two opposite
forces. On the one hand, childlessness increases slightly, from 12 per cent for women born in the
1950s, to an assumed 15-20 per cent for the generations born 30 years later. This presses the cohort
TF downwards. At the same time there is an increased propensity among mothers with two children to
have a third one. Therefore Statistics Norway decided to opt for a constant period TF in the Medium
Variant of a little less than 1.9. But the upward slope in the mean age (26.8 years in 1980, and 28.8 in
1995) was extrapolated, so that a level of 30 years was reached in 2010.

The official forecast's High-Low gap in the TF in 2010 is 0.42 child per woman, and that for the mean
age is 1 year. These intervals are rather narrow, compared to the confidence intervals in Figures 5 and
6. For instance, the two-thirds confidence interval for the TF in 2010 is 1.0 children per woman wide,
and that for the mean age 3.4 years. Given the normal distribution in our model of log(TF) in 2010,
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we can conclude that the probability that the real TT in 2010 will lie between the values assumed in
the Low and the High Variant of the 1996-based forecast is only 29 per cent. For the mean age the
expected probability is no more than 23 per cent. In the concluding section we shall comment these
low probabilities.

Table 4. Fertility assumptions in Statistics Norway's 1996-based population forecast

TF (children per woman)	 Mean age at childbearing (yrs)

	

Low variant Medium	 High	 Low variant Medium	 High

	

variant	 variant	 variant	 variant

1995'	 1.86	 1.86	 1.86	 28.79	 28.79	 28.79

2000	 1.79	 1.86	 1.95	 29.34	 29.20	 29.03

2010 and
beyond	 1.68	 1.86	 2.10	 30.50	 30.00	 29.50

Values computed from births statistics.
Source: Statistics Norway 1997.

6. Predictive intervals for age-specific fertility
Figure 9 gives confidence bounds for predicted age-specific fertility rates in the years 2010, 2030 and
2050. They are based on the 10,000 simulations described in the previous section, assuming a
minimum age at childbearing equal to zero (compare footnote 2) and an age pattern which follows a
Gamma curve. Clearly, the 95 per cent confidence interval is so wide in 2030, that it is not very
informative. For the year 2050 it is useless to work with 95 per cent bounds. We have deliberately
chosen not to censor rates beyond age 50. Recent medical advances have led to an increased demand
for Assisted Reproductive Technology (such as in vitro fertilization) after age 30 in Western
countries. We cannot exclude the possibility that in the middle of the next century childbearing will
be an option for women older than 50. It has been suggested that frozen ova may taken from the
woman at age 22, say, and that these may be fertilized and implanted later (Beets 1996). The
predicted rates, however, are small. At the other end of the age scale, there are some very low rates at
ages below 15. These would be ignored in a cohort-component projection.

The Gamma curve fit in Section 4 resulted in deviations for women above age 25. Since these
deviations are systematic, they could be included in the predictions. Thompson et al. (1989) and Bell
(1992, 1997) describe such a bias adjustment. They took the residuals from the Gamma curve in the
last year of data, and extrapolated them forward as constant deviations of future age-specific rates
from the forecasted Gamma curves. They report improved accuracy for the first few forecast years,
but diminishing effects as the forecast horizon increased. The explanation is that the bias adjustments
were dwarfed by the errors in predicting the Total Fertility, the mean age, and the variance. We have
not applied any form of bias adjustment, for two reasons. First, the focus in our analysis is on long-
term uncertainty, and second, the fit of the Gamma curve was relatively good in recent years.
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7. Sensitivity analysis
The analysis in the previous sections differs from earlier studies in three respects. First, as Van
Imhoff (1991) has noted, curve fitting exercises almost invariably ignore the fact that a birth rate is
not an observed quantity, but an estimate of the parameter of an underlying model. See, for example,
Bell 1992, 1997; De Beer 1992; Duchene and Gillet-De Stefano 1974; Knudsen et al. 1993;
Thompson et al 1989; and the references they contain. (Note, however, Hoem (1976) and Hoem et al.
(1981) who make a similar point, and establish an interesting link between weighted least squares
estimation for the intensities Fx and minimum chi-square estimation for the counts of births Br .)
Second, ARIMA models for the TF or other summary indicators show the same defect, compare, for
example, Knudsen et al. 1993; Bell 1997; and Lee 1993. Finally, predictions on the basis of such
time-series models assume that the parameters of the model are given, whereas in reality these are
only estimates, with corresponding confidence intervals. How serious are these omissions and
assumptions? To what extent do they lead to smaller confidence intervals and predictive intervals?
We have opted for an empirical analysis of this question, and compared the results reported in the
previous sections with corresponding results based on traditional assumptions. In the next three
sections we look at predictions with known 0-matrix, at unweighted Gamma curve estimates, and at
unweighted VAR-model estimates. The final Section 7.4 contains predictions by a model that was
estimated for relatively short periods, i.e. 1960-1995 and 1975-1995.

7.1. Predictions with known 0-matrix
When the 0-matrix is known, simulation is unnecessary, and predictions for the TF, the mean age, and
the variance and corresponding confidence intervals can be computed analytically on the basis of
expressions (6), (8), and (9). To compute the latter intervals, one needs an assumption for the weight
matrix 52c which is contained in IE . (The predictions themselves are not influenced by n c.) For a

historical period, Ck, indicates the precision of the estimates of the vector Ci =1na3d. Future values of

no thus express our belief of how well the Gamma curve will fit age-specific birth rates. Since we

have annual estimates for the matrix S2c,„ we could have predicted future values by means of a
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multivariate time series model. Instead, we have simply kept it constant for future years (S2 cr.-110,

and experimented with four values: its most recent value nc1995, its average value for the years 1945-

1995, as well as the minimum and the maximum values (according to the I i-norm). The minimum and

the maximum gave unreasonably narrow or wide confidence intervals. The average value of Z: is
very close to the 1995-value, and these two choices for C2 c resulted in similar future values for the TF,

the mean age, and the variance. 52( -, 1995 has been used in the predictions. Hence we assume that the
future fit of the Gamma curve will be the same as that in 1995.

Table 5 shows that the three parameters level off to values of 1.87 (TF), 30.3 (mean age) and 27.8
(variance) in 2050, close to the medians in Figures 5-7. The 95 per cent predictive intervals in 2050
are somewhat narrower: by 0.5 child for the TF, by 3.9 years for the mean age, and by 1.6 years'` for
the variance. Thus assuming the 0-matrix as given leads to 95 per cent bounds for the TF and the
mean age in 2050 that are too narrow by 8 per cent and 18 per cent, respectively. The 95 per cent
bounds of the variance are very little affected.

Table 5. Predictions and predictive intervals for the TF, the mean age, and the variance,
assuming known 0-matrix'

TF
	

Mean age	 Variance

1995 2010 2030 2050	 1995 2010 2030 2050	 1995 2010 2030 2050

Prediction	 1.87	 1.87	 1.87	 1.87	 28.97 30.06 30.25 30.27	 27.92 27.79 27.79 27.79

67% Low	 -	 1.42	 1.19	 1.05	 28.50 27.13 26.10	 24.94 23.42 22.38

67% High	 -	 2.46	 2.94	 3.33	 -	 31.70 33.74 35.10	 30.97 32.99 34.52

95% Low	 -	 1.09	 0.77	 0.60	 27.08 24.43 22.64	 -	 22.48 19.87 18.18

95% High	 3.21	 4.53	 5.79	 33.36 37.47 40.47	 -	 34.36 38.88 42.50

Values for 1995 are Gamma curve estimates.

7.2. Unweighted Gamma curve estimates
In the weighted case, one takes account of the fact that low birth rates at young and old ages have
small variances, and thus these rates get more weight than high rates at intermediate ages. In the
unweighted case, rate variances are ignored, and all weights wz in expression (4) are chosen equal to
one. Then it is assumed that birth rates are observed, instead of parameter estimates for the Poisson
model of Section 3. The consequence is that the estimated TF becomes higher compared to the
weighted case, since the fitted curve follows the high rates more closely. To what extent the mean age
and the variance are influenced, is an empirical matter.

We fitted the Gamma curve using unweighted least squares to the data for the years 1945-1995, and
found that estimates for all three parameters are lower than in the weighted case in almost every year.
The difference is very small after 1970, but larger between 1945 and 1970, when the fit of the Gamma
curve was somewhat less (see Section 4). Table 6 compares weighted and unweighted parameter
estimates in those years in which differences were smallest and largest. The results indicate that
weighting has only had minor impact on the estimates for the TF and the mean age, and a bit more for
the variance in the first two decades after the war. However, the estimated parameter variances for the
three parameters are relatively small in the unweighted case. This results in narrow confidence
intervals for many predicted age-specific rates (see for instance Figure 10 for the year 1995). During
the ages of high childbearing, the confidence intervals around the predicted age-specific rates are
nearly half as large in the unweighted case compared to the weighted case. For younger and older ages
the differences are much smaller - at certain ages the confidence intervals become even larger when

one does not weight.
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Year	 Unweighted	 Weighted	 Difference	 Difference
estimate	 estimate	 (1)-(2)	 (1)-(2) as a

( 1 )	 (2)	 % of (2)

TF-largest	 1952	 2.73	 2.66	 0.07	 2.6

TF-smallest	 1985	 1.69	 1.68	 0.01	 0.4

MAC-largest 	 1956	 29.24	 28.79	 0.45	 1.6

MAC-smallest	 1979	 26.90	 26.90	 0.00	 0.0

VAR-largest	 1956	 57.90	 49.37	 8.53	 17.3

VAR-smallest	 1984	 26.98	 26.80	 0.18	 0.7

Figure 10. Age-specific birth rates, 1995
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Table 6. Comparison of parameter estimates in the unweighted and the weighted case. Years in
which differences were largest or smallest

7.3. Unweighted VAR-model estimates
When we base the VAR-model on the assumption that the weights wX are equal to one, and that
C2,,, equals the identity matrix I, we ignore the fact that the birth rates and the three parameters of

interest are estimates, each with their own variance. Table 7 gives the predictive intervals for an
unrestricted multivariate ARIMA (1,1,0) model that was estimated for the three log-transformed
parameters of interest. The intervals are computed analytically on the basis of expressions (8) and (9)
assuming that the estimated 0-matrix is the real one. Therefore these intervals should be compared
with those in Section 7.1.

21



Table 7. Predictions and predictive intervals for the TF, the mean age, and the variance,
assuming wx=1 and fl, = / 1

TF
	

Mean age	 Variance

1995 2010 2030 2050	 1995 2010 2030 2050	 1995 2010 2030 2050

Prediction	 1.870 1.877 1.876 1.876	 28.97 30.86 31.30 31.36	 27.92 30.84 31.27 31.32

67% Low	 1.501 1.301	 1.177	 29.34 28.14 27.05	 -	 25.54 23.18 21.45

67% High	 -	 2.348 2.704 2.991	 -	 32.45 34.82 36.36	 37.23 42.18 45.75

95% Low	 -	 1.211 0.916 0.752	 27.96 25.40 23.47	 -	 21.32 17.39 14.91

95% High	 2.910 3.841 4.680	 -	 34.05 37.58 41.90	 44.60 56.22 65.82

Values for 1995 are unweighted Gamma curve estimates.

Whereas the predicted TF in 2050 is almost the same as that in the weighted case, the mean age, and
particularly the variance increase to higher equilibrium levels. This is explained by the high estimates
for On (0.986, for the mean age) and Op (0.804, for the variance) that we obtained. The 95 per cent
interval for the TF is much narrower than in the weighted case (by 1.7 child in 2050), and that for the
mean age a little so (by almost 4 years). The interval for the variance, however, has become much
wider, by no less than 25 years 2 in 2050. The reason is the fact that the estimate for the corresponding
residual variance Ge,33 is 0.000769, which is more than twice as large as in the weighted case, compare
Table 3. The consequence of ignoring weights thus is that we are too optimistic about the future TF in
the sense that the predictive intervals are too narrow. At the same time we are too pessimistic
regarding the future variance in the age at childbearing. In traditional cohort-component forecasting
an error in the TF is more important for the number of births, and hence for the population at young
ages, then an error in the variance. If we would have ignored the sample variation in the historical
age-specific birth rates in this particular empirical application, and also ignored the errors in the
parameter estimates of the Gamma curve, we would have put too much confidence in subsequent
births predictions.

7.4. Estimation periods 1960-1995 and 1975-1995
Figures 1-3 show that Norwegian fertility was far from stable during the post-war period, when both
the mean age and the TF show major trend shifts. The model estimates in Tables 1-3 were obtained on
the basis of data for the years 1945-1995, and hence those estimates as well as the predictions in
Figures 5-7 reflect these rather turbulent years. We have re-estimated the model on the basis of two
shorter periods, namely the years 1960-1995 and 1975-1995. Would a model estimated for these
periods lead to different predictions? The predicted levels for the TF, the mean age, and the variance
are probably hardly affected, since the ARIMA-model tends to pick up the trends for the most recent
period. Whether the confidence intervals become wider or smaller is an empirical issue. On the one
hand, fertility is less volatile during the shorter periods than in the years 1945-1995. This would lead
to narrower intervals. On the other hand, when the estimation period is reduced, the estimated residual
variance increases (other things remaining the same), and the intervals widen.

Identifying an ARIMA-model on the basis of less than fifty data points is problematic. Therefore we
assumed that the (modified) ARIMA-(1,1,0) model for the vector C, used in Section 5 would also be a
good candidate for the periods 1960-1995 and 1975-1995. The results in Table 8 are computed
analytically, i.e. assuming known 0-matrix. Thus they should be compared with those in Table 5.

The predicted values for the three variables of interest are very similar to those obtained earlier,
except for the mean age extrapolated from the years 1975-95. In this case the predictions are up to two
years higher, caused by a relatively high estimate for 022 (0.96, rather than 0.89 in Table 1). However,
since the 67 per cent confidence intervals for the mean age show a great deal of overlap with those in
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Table 5, we cannot give much weight to this difference. The confidence bounds for the TF based on
the period 1975-1995 are relatively narrow. By 1975, the fall in birth rates had almost come to an end,
and fertility was more or less back to normal levels again. The rather small fluctuations in the last two
decades increase the predictability of the TF, and this effect is stronger than the fact that the period is
only 21 years long. When the TF-bounds based on the shortest period are compared with those
starting from 1960-1995, one is struck by the dramatic impact the rapid fall in the TF between 1965
and 1975 has had. Uncertainty is so large (reflected by a large residual variance), that already in 2030
the confidence interval (0.6-5.6 children per woman with 95 per cent probability) is not very
informative.

Table 8. Predictions and predictive intervals for the TF, the mean age, and the variance,
estimation periods 19604 995 and 1975-1995

TF	 Mean age	 Variance

2010 2030 2050	 2010 2030 2050	 2010 2030 2050

1960-1995
Prediction	 1.87	 1.87	 1.87	 30.00 30.17	 30.18	 27.92 27.92	 27.92

67% Low	 1.34	 1.07	 0.92	 28.30 26.82 25.75	 25.29 23.70 22.68
67% High	 2.61	 3.26	 3.81	 31.81	 33.93	 35.37	 30.94 32.90 34.38
95% Low	 0.97	 0.63	 0.46	 26.76 23.96 22.11	 22.83 20.24 18.57
95% High	 3.59	 5.55	 7.54	 33.64 37.99 41.19	 34.15 38.51	 41.98

1975-1995
Prediction	 1.87	 1.87	 1.87	 30.81	 32.04	 32.57	 27.92 27.92	 27.92
67% Low	 1.52	 1.32	 1.21	 29.14 27.63 25.85	 25.86 24.83 24.10
67% High	 2.30	 2.63	 2.90	 32.57 37.15 41.05	 30.16 31.41	 32.36

95% Low	 1.24	 0.95	 0.79	 27.63 23.97 20.71	 24.02 22.18 20.92
95% High	 2.81	 3.66	 4.40	 34.36 42.83 51.25	 32.47 35.16 37.27

The mean age gives a completely different picture. In this case, intervals based on the period 1960-
1995 are very similar to those in Table 5, whereas the intervals are much wider when extrapolations
are made from the period 1975-1995. In the latter case, the model just picks up the more or less linear

increase since 1975 (see Figure 2). The result is the relatively high estimate for 022 of 0.96, as

mentioned earlier. It is much higher than that based on the period 1960-1995 (0.88), when initially the

trend was downwards. An increase in 022 leads to an increase in the corresponding covariance of the

forecast error 6 22 (/) in expression (9), and hence to wider confidence intervals, other things being
equal.

We conclude that the predicted levels for the TF, the mean age, and the variance are not significantly
affected when we base the extrapolations on the shorter periods 1960-1995 or 1975-1995. As to the
confidence intervals, the picture is somewhat mixed. In three of the six cases the intervals are
comparable width those based on the period 1945-1995. The TF-intervals are sensitive for the choice
of estimation period. It seems as if opting for the period 1945-1995 strikes a good balance between a
high residual variance (1960-1995), and an imprecise estimate for the autoregressive coefficient
(1975-1995).
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8. Comparison with historical TF-errors
Confidence intervals determine the expected errors in the current forecast. An independent check of
these errors can be provided by investigating observed errors in historical forecasts. We have looked
at the errors in the TF-forecasts that Statistics Norway has published between 1969 and 1993. (Errors
in the mean age or in the variance have not been computed, because the assumed values for these
indicators in historical forecasts have not been documented.) There have been eleven of such
forecasts, with jump-off years 1969, 1970, 1972, 1975, 1977, 1979, 1982, 1985, 1987, 1990, and
1993. We have omitted the 1996-forecast because it is of too recent date. For the other ten we have
compared assumed TF-values for each forecast from the jump-off year until 1995 with "observed"
values (moment estimators). We have updated the data originally assembled by Texmon (1992), who
collected, among others, TFR errors for the forecasts of 1969-1987 during the years 1969-1989. Most
forecasts had more than one fertility variant, often two or three. In that case we included all variants
in the data, because none of the forecasts, except one, contained a clear advice as to which of the
variants was considered by Statistics Norway as the most probable one at the time of publication.
Hence it was left to the user to pick one of the variants. The exception was the 1993-based forecast,
for which it was clearly indicated that the Medium fertility variant was considered as more probable
than the High or the Low variant (Statistics Norway 1994, p. 14). However, users were also advised to
investigate the consequences of choosing the other two variants as an input to their own plan or
analysis. Only in case the user's conclusions depended little on the choice for the two extreme
variants, the user was advised to employ the Medium variant. Thus we may assume that all variants
have been used for the forecasts published between 1969 and 1993, although the middle one probably
more often than the high or the low one (in case there were three variants).

The error in the TF was simply defined as the assumed minus the "observed" value. Hence a positive
or negative error indicates a value that is too high or too low. We have 25 series of TF errors, with a
length of between three (the 1993 forecast) and 26 years (the 1970-forecast). The 1969-forecast
contained results up to the year 1990 only. Next all errors were ordered by forecast duration, where
the jump-off year was defined as duration 0. Hence we had 25 errors for each of the durations 0, 1,
and 2 years; 22 for the durations 3-5 years, 19 for durations 6-8, 18 for durations 9-10, and 15 for
durations 11-13 years. Errors for longer durations were so few that these were not analysed. For each
duration, the errors were ordered from low (including negative values) to high. Finally we selected, by
linear interpolation, if necessary, two error values, such that one-sixth of the errors for each duration
were lower, and one-sixth were higher than these values. Hence these two values can be interpreted as
the bounds of an empirical 67 per cent "confidence" interval. Two out of three errors are within these
bounds, and one-sixth of the errors are higher or lower.

Figure 11 shows the bounds of the 67 per cent interval for the TF errors, together with the mean error.
The lower bound is close to zero: the error was positive in five out of every six cases. This reflects the
fact that the strong fertility decline in the 1970s (see Figure 1) came as a surprise for Norwegian
population forecasters, as was the case for demographers in many other Western countries. The
distance between the mean and the upper bound is much larger than that between mean and lower
bound, indicating that large errors were much more frequent than small ones in the historical
forecasts. The width of the 67 per cent interval grows from 0.15 children per woman in the jump-off
year to 1.13 at duration 13. The historical errors in Figure 11 increase somewhat faster than the
expected ones do. The 67 per cent confidence interval in Figure 5 is 1.13 children wide after a
duration of 17 years, instead of 13 years, but the agreement between the two types of errors is striking.
Thus the analysis in this section supports the main findings concerning the width of the predictive TF-
intervals in Section 5.2, at least for a duration of 10-15 years.
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Figure 11. Mean error in historical TF-forecasts, and 67 per cent interval for those errors, by
forecast duration

0 	 1 	 2 	 3 	 4	 5 	 6 	 7 	 8 	 9 	 10 	 11 	 12 	 13
Forecast duration (years)

9. Conclusion and discussion
We have shown how statistical techniques can be used to quantify uncertainty connected to age-
specific fertility in the future. Unlike traditional analyses, the method takes due account of (1)
sampling variability in the birth rates, (2) errors in the parameter estimates of the Gamma curve used
for the fertility age pattern, (3) errors in the parameter estimates of the time series model for the
prediction of fertility, and (4) residual variance in the time series model. Previous studies have dealt
almost exclusively with the fourth source of uncertainty. The method was applied to data for Norway
during the period 1945-1995. We found that when error source 3 is ignored, the 95 per cent predictive
intervals for the TF and the mean age at childbearing in 2050 become too narrow by 13 per cent and
17 per cent, respectively. In case the first error source is not taken into account when fitting the
Gamma curve, confidence bounds around predicted birth rates at ages where fertility is high, may be
half as wide as they ought to be. When both the first and the second error sources were ignored, the
predictive interval for the TF in 2050 became 1.7 child per woman too narrow.

The predictive intervals for the TF, the mean age at childbearing, and the age-specific fertility rates in
this paper appear rather wide. For instance, around the year 2040 the 95 per cent interval for the TF is
between 0.6 and 5.4 children per woman on average. The interval for the mean age at childbearing
ranges from 23.3 to 41.7 years. These intervals are so wide, that the model gives no useful
information any longer. The method produces reasonable results up to the year 2020, or perhaps 2030.
In the latter year, the 95 per cent intervals for the TF and the mean age are (0.7, 4.7) children per
woman, and (24.4, 39.4) years, respectively. For the more distant future, the method cannot be used.

Meanwhile one should be aware that our confidence bounds, wide as they already are, may be too
narrow. After all, they are predicted intervals, and these are conditional upon the models that were
applied (Poisson model, Gamma curve, and time series model). There is no guarantee that the
childbearing behaviour of Norwegian women is in conformity with these models, in particular with
the time series model. If one were to take the probability of alternative models into account, the
confidence intervals may well become even wider. On the other hand, we cannot disregard the
possibility that information not included in the statistical models will imply narrower intervals. For
instance, if we are 100 per cent certain that Total Fertility in Norway in 2050 will not fall outside a
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range of, say, between 0.5 and 5 children per woman, this restriction can be included in the
simulations, instead of the more liberal restriction of 0-10 children used in Section 5.2 2 .

The computed 67 per cent interval for the TF in 2010 is 1.0 children per woman wide, and that for the
mean age is 3.2 years wide. In contrast, the gaps between TF and mean age values in 2010 in the High
and the Low variant of Statistics Norway's 1996-based population forecast are only 0.4 children per
woman and 1.0 years, respectively. On the basis of our model we must conclude that the chances are
no more than approximately one in four that the real TF and the real mean age in 2010 will lie
between the high and the low values assumed in the official forecast. This means that Norwegian
forecasters have been too optimistic when they assumed so narrow bounds between their High and
Low fertility variants. Our conclusion on wide bounds is supported, at least for the TF on the medium
term, by an independent analysis of historical errors in TF-forecasts since 1969.

The optimism (or self-confidence) among Norwegian population forecasters is not unique, we believe,
for two reasons.

First, forecasters in other Western countries do not have a much better record concerning the accuracy
of their births forecasts during the last thirty years (Keilman 1997). Fertility trends in those countries
appear to follow a more or less similar pattern. This pattern is characterized by high birth rates in the
1950s and in the first half of the 1960s, a steep fall in the 1970s, followed by smaller fluctuations
during the last fifteen years when postponement and catching up processes played their part. The
high-low gap between TF variants in those countries often amounts to 0.3-0.6 children per woman on
the medium term (approximately 10 years, see Cruijsen and Keilman 1994). These two facts together
make it rather improbable that the real future TF will lie between the levels assumed for the High and
the Low variant.

Second, forecast evaluations for other disciplines have shown that experts often are too confident
(Armstrong 1985, p. 143). Forecasters who state that they have confidence in their forecast, do not
predict more accurately than those who say they are uncertain. Furthermore, self-reported confidence
increases when a forecasting task is done more often. On the other hand, when forecasters are
informed about the accuracy of earlier predictions, they become less confident.

The overoptimism among population forecasters is strikingly illustrated by a recent stochastic forecast
for Austria (Hanika et al. 1997; Lutz and Scherbov 1998). The assumption in that forecast is that the
TF in the year 2020 will lie with 90 per cent probability between 1.2 and 1.8 children per woman.
This assumption is based on expert opinion, not on a statistical analysis. On the basis of the
experiences reported in this paper, we expect that the probability for an interval of only 0.6 children
per woman wide in 2020 should be in the order of magnitude of 50 per cent, instead of the assumed
90 per cent. The Austrian experts are far too optimistic, in our view.

2 When this was implemented in a trial simulation, we noted that the 67 per cent confidence interval for Total
Fertility in 2010 was still 0.9 children per woman wide (between 1.43 and 2.37), which is to be compared to the
1.0 children gap in Figure 5. In the long run, the difference with Figure 5 was somewhat larger, in particular for
the more extreme TF-values. For instance, the 95 per cent confidence bounds became (0.7, 4.3), instead of (0.5,
6.1) in Figure 5.
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