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1. Introduction’

In this paper we review parts of the literature on optimal extraction of exhaustible resources. The
focus is on the impact of a global carbon tax on the petroleum wealth of fossil fuel producers, and
we want to study the effects of taxation under different assumptions about the cost functions and

market power of the fossil fuel producers. The resource wealth is defined as the discounted net
revenue flow from extraction.

The survey is motivated by the development of a numerical model for the global markets of fossil
fuels which is documented in Berg ez al. (1996). Our starting point is to examine the impact of a
global carbon tax on the petroleum wealth of fossil fuel producers under different market
assumptions. Some of the main results from Berg ez al. (1996) will be presented in the last section
of the paper.

In the first part of the paper we review some of the theoretical results from the literature. We start by
looking at the simple Hotelling model with constant unit costs of extraction and perfect competition.
However, when the simple Hotelling model is extended to take account of rising marginal
extraction costs, imperfect competition and the substitution in demand of different exhaustible
resources, it becomes increasingly difficult to derive unique theoretical results. This fact motivates
the development of numerical models such as the one in Berg et al (1996) to investigate the effects
on the petroleum wealth of an international carbon tax on fossil fuel consumption.

Taxation of exhaustible resources, like fossil fuels, has been examined theoretically in e.g. Burness
(1976) and Dasgupta and Heal (1979), who consider the traditional Hotelling model, and Heaps
(1985) and Lasserre (1991), who also examine more extended models. In general they find that
some tax systems, like a constant sales tax, may decrease the extraction rate, while other systems,
like franchise taxes, may increase the rate. A franchise tax, a licence fee or a fixed property tax is
independent of the rate of extraction (Lasserre (1991)). With a constant sales tax or unit tax,
Dasgupta and Heal (1979) found that the tax is shared between producers and consumers during an
initial interval. Furthermore, a constant profit tax, or eventually a constant ad valorem tax when
extraction costs are zero, has no effect on the depletion path, and the tax is born solely by the
producers.” As the depletion path in this case in unchanged, the tax will have no effect on carbon
emissions. Sinclair (1992) argued that the optimal ad valorem carbon tax rate should be falling over
time in order to reduce the depletion rate. However Sinclair’s argument has been criticised in Ulph
et al. (1991) who found that the issue of an optimal carbon tax is much more complex. The problem
of finding an optimal carbon tax will not be dealt with here. Instead we concentrate on the effects of
a constant carbon tax on fossil fuel consumption.

"I want to thank Kjell Arne Brekke, Sverre Grepperud, Snorre Kverndokk, Knut Einar Rosendahl and Stein Hansen for
comments on earlier drafts. This paper was financed by The Norwegian Research programme in Petroleum Economics
and Politics.

% An ad valorem tax is put on the value of production, not on the production volume in physical units.
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The remainder of the paper is organised as follows. We present the results in stages, starting in
section 2.1 with the simple Hotelling model with constant unit costs of extraction and perfect
competition. In sections 2.2 and 2.3 we extend the models to consider more complex cost
functions, and finally we introduce imperfect competition in section 3. In the last section we report
some results from two recent numerical studies of the effects of a global carbon tax on the
petroleum wealth of fossil fuel produsers.

2. Perfect competition

2.1 Constant extraction costs

Before we look at the effects of taxation we review some basic results from the literature on optimal
resource extraction. We start by looking at a simple Hotelling model for the oil market. Hotelling
(1931) viewed the problem of how to extract a fixed stock of a natural resource from the vantage
point of a social planner. He then showed that a competitive industry facing the same extraction
costs and demand curve as the goverment, having perfect information about resource prices, will
arrive at exactly the same extraction path for the resource, i.e., the efficient extraction path
determined by each firm acting independently in the competitive industry will yield the socially
optimal extraction path.

We look at the optimisation problem of a representative producer of the exhaustible resource in a
competitive market.

U)nme=IhK0—c—vk0kmdt
0

@) st A(t)=x()
A() <R

x(t)20

The representative producer maximises the discounted revenue flow (resource price minus the unit
costs of extraction and the tax), subject to the stock constraint. R is the total amount of the
resource.’ A unique extraction path can be derived with the help of the stock constraint in (2) and a
terminal condition, together with a specified demand function.*

3 There is a list of symbols at the end of the paper. All variables are functions of time, but the time notation may
sometimes be excluded for simplicity.

4 We do not consider uncertainty in this paper. A resource would be extracted more slowly by a monopolist or a
competitor, when the reserve base is not known with certainty, see Pindyck (1978).
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We assume that demand is represented by an isoelastic demand function as in (3).
3) p@)=x()"*

Demand is assumed to be zero above a maximum price ( 7). The existence of a maximum price or a

backstop price can be interpreted as the existence of a perfect substitute for the exhaustible resource.
This assumption implies that the entire resource stock will be exhausted in finite time (7). The final
period of extraction is thus defined by the equation A(7)=R, which says that at time 7 the
accumulated production is equal to the initial amount of the resource. After the price has reached
the backstop price, the price, and thus the scarcity rent (in the case with constant unit costs), remain
constant. Thus, there is no incentive for the producer to hold back reserves for production in the
following periods as this would lead to forgone interest earnings. Also, the price will always reach
the backstop level in the last period of production. Otherwise it would be optimal for the producer
to keep reserves for production immediately after this period when the price jumps to the backstop
price. The backstop price enters the technical problem as a terminal condition in (4).

4 p(N)=p
The current value Hamiltonian of the optimisation problem presented in (1) is

(5) H=[p(t)~c—v]x(t) - n(®)x(r)

We define the scarcity rent or the resource rent (1) as the negative of the shadow value of the

optimisation problem, so that the rent is a non-negative number. The scarcity rent is thus the value
of increasing the fixed stock of the resource with one unit

One can establish the existence of an optimal solution by resorting to Theorem 15 in Seierstad and
Sydsater (1987), p. 237. We then assume that x(t)e U, where U is a fixed, non-negative subset of
R!. U is closed and bounded.

The Hamiltonian is concave in (A, x). As a consequence the necessary first order conditions
according to the maximum principle are also sufficient conditions for an optimal (interior) solution.
The first order conditions are

(6a) %g:p—c—v—-fczo
. oH

6b) T—-rr=—=0

(6b) m—rrm A

From (6b) we see that the resource rent along the optimal path will grow at the rate of the interest
rate.



Under the assumption of zero extraction costs (c=0) and no taxation (v=0), the scarcity rent of the
resource equals the price on the resource. We get the standard Hotelling rule which says that in a
competitive market for an exhaustible resource, the relative change in the price of the resource, i.e.,
the scarcity rent, must equal the interest rate. This is also called the fundamental principle of
exhaustible resources.

® L=r

p
With constant nonzero unit extraction costs and no taxation the producer price is equal to the sum
of the constant unit cost and the scarcity rent. The introduction of costs prolongs the extraction
period as does the introduction of taxes since taxes and constant unit costs are introduced
symmetrically into the optimisation problem.

With constant unit costs the relative change in the resource price will be less than the relative
change in the scarcity rent. The price path will then be modified according to

© £=r =
p c+=xm

The solution to the first order differential equation in (7) is the Hotelling rule that the resource rent
is growing exponentially with rate r until the resource is depleted.

(10) mw(#)=m(0)e” for x>0
Combining (10) and (6a) we then get the optimal time path of the resource price
(11) p(®)=c+v+m(0)e”

We substitute for the price from (11) into the demand function in (3) and solve for production to get
the optimal production profile of the representative competitive producer

1

(12) x(t)=[c+v+m(0)e"] ¢

Equations (11) and (12) describe the interior solution to the optimisation problem. We are, however,
interested in the effect of an increase in the carbon tax on the resource wealth of the producer. The
wealth of the resource is defined as the present value of the resource rent times the extraction at
each point in time. In the case of a finite amount of the resource and constant unit costs of
extraction, the value of the optimal resource wealth at time t=0 is equal to the initial resource rent
times the resource base.

T T T
(13) V*=[m(t)x(t)e"dt = [m©@x(t)dr = 7(0) [ x(t)dt = m(O)R
0 0 0

To examine the effect on the resource wealth of introducing a constant carbon tax, one can therefore

study the effect on the initial resource rent (7(0)).
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We know that the integral of the extraction over the entire period of production must be equal to the
initial amount of the resource.

1

(14) f[c+v+noe"] cdt=R
0

From the terminal condition in (4) and the optimal price path in (11) we have
(15) p=c+v+me”

Equations (14) and (15) determine the two unknowns; T and 7t(0). Differentiation of (14) and (15)

w.r.t. the carbon tax, v, will give us the effect of an increase in the carbon tax on the initial resource
rent and hence on the petroleum wealth, see (13).

T 1
e—rT{ x(T) + l“c +v+m(0)e” ]_;_1 e'Tdt}
dﬂ'(O) I‘TL'(O) €%
x n] e o
ol | AR OO R

From (16) we see that the effect on the initial resource rent is negative, since the expressions in both
the numerator and denominator are positive figures, but less than one in absolute value. Further,
dm(0)/dv is greater than e™T in absolute value since the term in the brackets in the numerator is
greater than the denominator. Thus the petroleum wealth of a fossil fuel producer is reduced when
the carbon tax is increased.

The effect on the period of extraction can be shown to be positive, so that an increase in the taxation
will prolong the period of extraction.

an L1 [e"T + d”(o)}o
dv rr(0) dv

Rosendahl (1996) models a global competitive fossil fuel market with constant unit costs of
extraction. He specifies an exponential utility function where the marginal utility is bounded above.
He shows that as the available amount of the resource, R, increases from zero to infinty, dm(0)/dv

increases monotonously from minus one to zero. Thus increasing R implies that the tax burden on
the producers decreases.

2.2 Unit costs of extraction increasing in cumulative extraction

As we shall see, the specification of the cost function is crucial to the solution of the optimisation
problem. We now assume that the unit costs of extraction are increasing in accumulated production,
as for example in the specification below.



(18) c(A)=o0e™

7 is here the convextity factor of the cost function. In this case the unit costs of extraction will
increase over time provided there is a nonzero production level.

(19) 2:%}4 =%x=nc(A)x

No fixed quantity is assumed for the total availability of the resource, but in line with Farzin (1992),
only a limited total amount will be economically recoverable at a given price. This is due to the
assumption ¢ “(A)>0°, which means that increasingly large quantities of the fossil fuels can be
exploited only at increasing incremental costs, i.e. the unit cost is increasing and convex in A. It will
therefore be optimal to extract only a finite amount of the resource since the price is bounded above
by the existence of a backstop technology. In the previous section with constant unit costs and a
finite resource stock, we had physical exhaustion of the resource, whereas we now have economical

exhaustion of an infinite resource base.

The assumption of a backstop technology and an infinite resource base might be a more realistic
approach than assuming a given resource stock. Even in the later stages of resource use, there is no
really «fixed» reserve base to be extracted. Given the economic incentives, reserves can be
maintained or increased through further exploration even though the physical returns to exploration
activity decreases as «depletion» ensues. Pindyck (1978) therefore suggests it makes more sense to
think of resources like oil as being «nonrenewable» rather than «exhaustible».* We do not, however,
consider exploration activity in our model.

The optimisation problem of the producer can now be written as in (1), replacing the constant unit
costs with the cost function in (18) and disregarding the finite resource stock constraint, A(z) <R.

Existence of an optimum in partial equilibrium can be shown in line with Farzin (1992) by the use
of Theorem 15 in Seierstad and Sydsater (1987), as in the case with constant unit costs of
extraction. The first order conditions will also in this case be sufficient conditions for an optimal

solution to the maximisation problem of the representative producer.

> It is sufficient to assume that lim c¢(A)=cc and c’(A)>0.
—oo

¢ Since production costs rise as reserves decline, producers must simultaneously determine the optimal levels of
exploratory activity and production -resulting in an optimal reserve level- that balance revenues with exploration costs,
production costs, and the «user cost» of depletion (or the scarcity rent). Under perfect competition the price rises more
slowly than in the case of production without exploration. The pattern of optimal exploratory activity depends on initial
reserve levels and on rates of depletion. If the initial reserve endowment is small, the price profile will be U-shaped
rather than steadily increasing as in the Hotelling model and its variants. This helps explain the fact that the real prices
on many nonrenwable resources have fallen over the years. In later stages of resource use, or throughout if the initial
reserve is large, price will increase over time as in the Hotelling model. However the introduction of exploratory activity
has the effect of reducing the rate of increase of the price. Thus observed rates of growth of resource rents below market
interest rates need not be indicative of monopoly power, see Pindyck (1978).
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In the case with physical exhaustion the resource rent was exponentially rising over the entire
production period. The presence of Ricardian characteristics mitigates Hotelling’s prediction on a
rent rising at the rate of interest.” With increasing marginal costs, the resource rent will not increase
exponentially along the optimal path of the competetive producer. The resource rent is growing at a
slower rate because of the increasing costs of production as the best resources are depleted first and
one has to take account of the reduction in future extraction costs as a result of storing the marginal
unit of stock and hence keeping down accumulated production. From the first order condition we
now have

. dc
200 T—re=——
20) m—rm A

. c . . .
Depending on how % changes over time, the resource rent can increase or decrease monotonically

over time, remain constant or more generally change nonmonotonically over time.® The resource
rent will in this case approach zero as time goes to infinity. The fact that the resource rent can be
falling along an optimal path, means that we can have production after the price has reached the
constant backstop price. The relevant terminal condition is now that production stops when the unit
cost of extraction equals the backstop price minus taxes.

(21) p=c(A)+v

The resource is therefore economically exhausted when the resource rent equals zero.

The effect of taxation in this model of optimal extraction can be derived in the same way as in the
case with constant unit extraction costs. However, in this case it is more difficult to solve for the
optimal price and production paths and it is hence more difficult to derive theoretical results on the
effects of an increase in the carbon tax on the petroleum wealth. However, both the monopolist and
the competitor will be more «conservationist», that is, prices will be initially higher, but grow less
rapidly relative to the case of constant extraction costs, see Pindyck (1978).

Differentiation of the terminal condition in (21) w.r.t. the tax yields

dA _ 1
(22) E = —z<0
JA

" Lasserre (1991) contrasts the Hotelling and the Ricardian view of optimal resource extraction. To Hotelling (1931),
exhaustibility and non-renewablilty are the important characteristics to emphasize. In the Ricardian view, the resource
base is heterogeneous; supply sources differ in quality. Exhaustibility is not really an issue, although depletion may be
manifest in a drop in quality of supply sources. Heterogeneity of reserves can be accounted for by the assumption that
unit costs are increasing in accumulated production. In a modified Hotelling model with increasing unit costs and a
given initial amount of the resource, some rents will be Ricardian rents, not scarcity rents in the sense of Hotelling. Here
we assume increasing unit costs and an infinite amount of the resource initially, and strictly speaking all rents in the
model presented here are Ricardian rents. In this paper we refer to the rent in the model with increasing costs as the
resource rent.

8 This generalised Hotelling rule appears to have been first derived by Kay and Mirrlees (1975) in a general model with
fixed resource stock.
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Since C(A) is an increasing function of accumulated production, the total extracted amount must be
less after taxes are imposed.

2.3 Technological change

We now modify the cost function in (18) and assume that the unit extraction costs are decreasing in

time to reflect technological progress.
(23) c(A,1) = ™™

7 is the rate of technological change in production of the resource. The unit cost changes over time

according to
* dc* dc

(24) c=bj4-A+§=[nx—T]c

With sufficiently low production, the unit extraction cost is falling over time, i.e. when x<1/n.

The optimisation problem of the producer is the same as in (1), only now we replace the unit costs
with the cost function in (23). Existence of an optimal solution can be proved following Farzin
(1992), and the first order conditions from Pontryagin’s maximum principle are the same as in the
previous optimisation problems.

To have a finite time when one switches to the backstop technology in this model, one must have a
falling backstop price. In the case with a constant backstop price the extraction profile will not reach
zero production in finite time. The reason is that if the unit cost reaches the backstop price and
production stops, after some time with zero production, the technological progress will reduce the
unit cost of fossil fuel production and hence make production possible with a positive scarcity rent.
The solution in this case implies that the price path will remain constant equal to the backstop price
after some time 7~ and production will from then on follow a steady state extraction path given by

*

T . . . . .
x" = — where the unit costs are constant over time. A falling backstop price might be a more
n

realistic assumption as the costs of producing the non-polluting energy substitute decrease over time

because of technological progress. We therefore assume that the backstop price develops over time
according to (25).

(25) p=ke™

With a falling backstop price the optimal steady state production is zero as long as the relative

reduction in the backstop price is greater than the parameter for technological change in the cost
function, that is if > 7.

The effects of carbon taxation are even less clear in the case with technlogical change. We can not

solve the first order conditions to get explicit expressions for the optimal price and extraction paths



of the representative producer. Instead we look at the implications of taxation that can be observed
from the terminal condition.

In the case with a constant backstop price the steady state extraction path is independent of a
constant carbon tax, although the rate of extraction until the steady state is reached will be affected.

With a falling backstop price the unit costs reaches the backstop price minus the tax at time =T
and production ceases. T is defined by the equation

(26) ke —v=qe TP

The effect of an increase in the carbon tax on the total extracted amount of the resource is not
uniquely determined from this equation as was the case with no technological change. This is
because two endogeneous variables; the time T when production switches to the backstop
technology, and the accumulated production A, enter the expression in (26) and cannot both be
determined by this single equation.

Thus, under more realistic assumptions about the cost functions where the unit costs are increasing
in cumulative extraction and falling over time according to technological progress, it is difficult to
derive unique theoretical results. This fact motivates the development of numerical models. In
section 4.2 we report results from a numerical model where the cost function in (23) is applied.

3. Imperfect competition

So far the dynamics of the resource rent has been examined under competitive conditions. As in
static theory the market structure in a dynamic environment is also important. Perfect competition is
seldom a realistic assumption in markets for exhaustible resources. We will first look at the pure
monopoly case. Then we will discuss a Nash-Cournot model with a cartel and a competitive fringe.
In this section we will resume the assumption of constant unit costs of extraction to keep the models
simple and to concentrate on the effects of imperfect competition.

3.1 Monopoly

«Natural monopoly» is of particular importance in the energy sector, and in some markets the
extraction of fossil fuels can best be described as a monopoly. A monopolist that controls the entire
stock of a nonrenewable natural resource will act to maximise the discounted net revenue flow from
extraction. The monopolist will, however, take account of the fact that he is facing a falling demand
schedule. The focus of an optimising monopolist is therefore on marginal revenue rather than on the
price as in the competitive case. However compared to the static model, in an intertemporal model
there is limited scope for the monopolist to exercise his monopoly power, see Stiglitz (1976). When
a monopoly restricts supply in any given period, it raises the reserve stock it will hold during



subsequent periods, which amounts to increasing its supply in those periods. In a sense the resource
monopoly competes itself over time.

The monopolist must satisfy conditions for an intertemporal profit maximum that are very similar to
the Hotelling rule and the terminal conditions that were established for the competitive firm. In the

case with constant unit costs of extraction, the optimisation problem of the monopolist can be
written

(27) maxV = T [p(x) —c—vx(t)e™dt
0

where the producer is subject to the same restrictions as in the competitive case, see (2). The
difference is now that the monopolist is facing a downward sloping demand curve, given by the

demand function in (3), and will take account of this relation when choosing the optimal extraction
path over the time horizon.

The current value Hamiltonian in the monoply case is
(28) H=[p(x)—c—v]x(t) - m(t)x(2)

With a convex demand function the requirements for the Theorem 15 in Seierstad and Sydsater
(1978) to prove existence of an optimal solution will no longer necessarily be met. We can therefore
no longer prove the existence of an optimal solution. Neither will the Hamiltonian be concave in (A,
x), and the necessary first order conditions according to Pontryagin are not sufficient conditions for
an optimal solution as in the case of perfect competition. Instead we assume the existence of an
optimal solution. The necessary first order conditions are now

(29a) %I=%x+p—c—v—n'=0

. oH
29b) T—rr=—=0
(@90) =T =
(29a) can be rearranged to yield
(30) MR—c-v—m=0 where MR=p+%x=p[l—8]

MR is defined as the marginal revenue of the monopolist. (€ is the inverse elasticity of demand in

the demand function in (3).)

From the first order condition (29b) we see that the scarcity rent must increase at the rate of the
interest. In the special case with zero taxation and zero costs of production, the marginal revenue
increases at the rate of the interest rate.

ey MR_7_,
MR &
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From (30) it follows that if —fl—? =0, i.e., if the elasticity of demand is constant, the price rises at the

same rate as the marginal revenue, i.e., at the rate of the interest. Therefore, with constant elasticity
of demand and no extraction costs, if the monopolist and the competitive producer face the same
demand schedule and have the same initial reserves, then the price and output are identical under
monopoly and perfect competition. Both stop producing when the price of the resource reaches the
backstop price at time 7. Since the price and extraction paths will be identical, the petroleum wealth
of the producer is also the same under monopoly and perfect competition. However, for the
monopolist the total rent is split into a scarcity rent (1) and a monopoly rent (€p) which is due to the
fact that the monopolist can restrict demand and influence the price. The competitive producer in
the simple Hotelling model receives only scarcity rent.

The introduction of (constant) costs of production reinforces the general presumption that monopoly
ownership of a resource stock results in excessive conservation relative to the competitive case. The
initial price of the extracted resource is higher under monopoly than under a competitive extraction
programme, and the relative price increases more slowly, see Dasgupta and Heal (1979).

The optimal price and extraction paths of the monopolist can be found by solving the first order
conditions in the same way as under perfect competition. From (29a), (29b) and (3) we get

(32) p(t) =

1_£[c+v+7z:(0)e"]

1

1 i
(33) x(r)= 9[c +v+m(0)e” ]-; where 0= [__L:l €
l1-¢

Due to the assumption of a backstop price the resource will be depleted in finite time, 7. We then
have the following two equations to determine 7 and 7(0)

(34) fe[c +v+m(0)e” ]'i dt=R
0

1
1-¢

(35) p=——[c+v+7(0)e”]

The resource wealth of the monopolist is defined as the discounted value of the rent times extraction

at each point of time. The rent is now the sum of the scarcity rent and the monopoly rent.
T

(36) V*= [[x() + ep()) x()e " dt

0

By rearranging (36) we arrive at the following expression

@7y =g, £
l1-€ 1-¢

T
[c + v]j x(t)e " dt
0
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The effect on the petroleum wealth of an increase in the carbon tax can be found in the same manner
as earlier; by total differentiation of (34), (35) and (37) w.r.t. v. However in this case the
mathematical expressions are more complicated. To simplify the expressions we derive the results
in the case of a linear demand schedule.

(38) p(1)=p—bx(1)

This linear demand schedule implies that when the price reaches the backstop price at time T
production ceases so that we have x(7)=0. When we substitute for the linear demand function in

(38) into the optimimisation problem of the monopolist in (27), the resulting first order conditions
can be written as follows.

1
(392) x(t) —2—b[p —c—v-7(t)]
(39b) m(z)=m(0)e"

From (39a) and (38) we arrive at the optimal price path in the monopoly situation with a linear
demand schedule.

Ir_ n
(40) p(t):E[p+c+v+7r(0)e ]

To derive at the expression for the resource wealth in this case we substitute for the linear demand
function in the definition of the resource wealth and use (39a) which can be written as
P —bx(t) — c— v=m(t) + bx(t) . The optimal resource wealth of the monopolist with linear demand

is shown to be

T
(41) V*=rm(O)R + bj'x(zr)2 e dt
0

The resource wealth of the monopolist consists of two components as does the total rent he receives
from resource extraction. Thus, the first term on the right hand side of the equation is the discounted

value of the scarcity rent, while the second term is the discounted value of the monopoly rent.

We calculate the effects of taxation on the petroleum wealth as before. The equations (34) and (35)
with a linear demand are modified as follows.

T
42) jzib[p‘-c—v- m(0)e™ [t =R
0

@43) p(=p & n0)=e"[p-—c-V]

We differentiate (41), (42) and (43) w.r.t. v. The impact of an increase in the carbon tax on the
petroleum wealth of a monoplist is then shown to be

12



dv *

T
(44) =—[x(t)e"dt
4 0

We see that the petroleum wealth of the monopolist is reduced by an increase in the carbon tax as in
the competitive case. And in the special case with a linear demand schedule, the resource wealth of
the monopolist is reduced by the discounted value of the tax increase.

3.2 Nash-Cournot duopoly

In the previous section we discussed the case of pure monopoly. Although one may experience a
monopoly situation in certain regional markets, it is not a realistic assumption for e.g. the world oil
market. The oil market can more reasonably be modelled as an international market with a cartel,
corresponding to OPEC, and a competitive fringe on the supply side. While the fringe always
considers the oil price as given, the cartel regards the price as a function of its supply.

Salant (1976) was the first to model this situation as a dynamic Cournot duopoly between a
cartelized group of identical firms or countries on one hand and a fringe of identical firms or
countries on the other hand. All firms compete on a common market where demand chokes off
when the price exceeds a maximum price which can be interpreted as a backstop price.

By a Nash-Cournot game we mean that both the fringe producers and the cartel take the behaviour
of all other producers as given when deciding their own production profile. The competitive fringe
takes the price as given and adjusts production accordingly; the cartelized sector sets the price and
supplies whatever quantity is requested to meet demand, given the quantity supplied by the fringe.
Both actors play simultaneously. Any situation where each sector takes as given the optimal choice
of the other and where neither can, under that assumption, increase its profits by altering its own
strategy, is called a Nash-Cournot equilibrium.

We will look at the open loop Nash-Cournot equilibrium concept. In an open loop equilibrium, (in
contrast to a feedback equilibrium), the strategies are determined at the outset of the game when the
players only have initial state information. The strategies only depend on time, not on observations
about the state of the system. This implies that the period of commitment is equal to the entire
planning period, i.e., that the cartel can commit itself to the price path chosen at the initial time of
optimisation. Such commitment technology assumes that the institutional framework is one of
perfect future markets with no recontracting, or equivalently one of binding contracts, see Ulph
(1982). If this is not the case the only reason to suppose that players will not deviate from their
announced open-loop strategies is that these strategies are dynamically consistent. Dynamic
consistency means that players have no incentive to change their strategies along the optimal path if
they could observe the current state of the system. It can be shown that open loop Nash equilibria
are dynamically consistent. The problem of time inconsistency does not appear in a world of perfect
competition, or monopoly, but can appear in duopoly/oligopoly models. The strategy of a follower
must always be dynamically consistent since it takes the strategy of other players as given and is

13



hence left solving a standard dynamic optimisation problem. In monopoly, of course, the monopolist
is the sole player and is likewise facing a standard dynamic optimisation problem. In open loop

Nash-Cournot equilibrium all players are followers and thus the strategies are dynamically
consistent.

In a Stackelberg equilibrium the cartel recognises that the fringe’s output path will be a function of
the price path set by the cartel and takes this reaction into consideration when choosing its optimal
price path. It may be argued that the Stackelberg model is more realistic in the oil market, i.e., that
OPEC will in fact take into account the effect its actions have on the competitive fringe. However
the open loop Stackelberg equlibrium is in many cases dynamically inconsistent. The appropriate
solution concept then involves feedback Stackelberg strategies, which are dynamically consistent.
However these strategies are hard to compute. Ulph (1982) conludes that since Nash strategies make
naive behavioural assumptions, while for some parameter values the Stackelberg open-loop strategy
will be dynamically inconsistent, the solution concept should be endogeneous to the model since

one cannot establish a priori the superiority of one solution concept over another.

The open loop Nash equilibrium follows from solving jointly the first order optimality conditions
for the dynamic optimisation problems of the two players. This results in time dependent strategies
contingent on the initial conditions of the stock variables.

As we have seen above for the competitive producer and the monopolist, the maximisation of the
present value of their profits, given their reserve constraints, imposes restrictions on the price
trajectory over time. In the case with zero costs and no taxation the price must rise at the rate of
discount under perfect competition, while under monopoly it is the marginal revenue that must rise
at the rate of discount. (See equations (8) and (31).) While, in the previous discussion, these
dynamic constraints were developed and presented independently under alternative market structure
assumptions, they must now hold simultaneously, as long as both the cartel and the fringe are in
production. For the cartel, marginal revenue is now defined on the residual demand instead of the
entire demand schedule as under monopoly.

Some features of the equilibrium price path are known. With the existence of a backstop technology

we have that p(¢) < p for all t. Further, p(t) can never display a discontinuous increase at any point

of time, as we assume the players have rational expectations. The price must not rise faster than the
rate of discount, (in the absence of costs and taxes), even after the competitive fringe has exhausted

its reserves. More precisely; if the fringe stops producing at time T , then we must have
p(1)<e™ D p(T) for t=T.However, this does not exclude that the price can rise faster than the
rate of the interest in any interval [t; , t;] where t; , t;> T . The intuition behind this restriction is that
the fringe, along the equilibrium path, must not be in a position to wish it had kept reserves instead.

The presence of a competitive fringe thus imposes severe constraints on the monopoly power of the

cartel. It is therefore in the interest of the cartel to set a low price initially so as to encourage rapid
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depletion of the fringe stock. With a low price initially the demand is high, and given that the price
will rise no faster than the interest rate, the fringe has no incentive to keep reserves for later periods.
But since the presence of the fringe restricts how fast the price can rise in the future, the cartel
stands to lose profits in the short and medium run if its sets the initial price too low. The optimal
initial price from the cartel’s point of view is a balance between these two considerations, see
Dasgupta and Heal (1979).

The equilibrium will consist, in general, of three phases; one in which only the fringe produces; one
in which the cartel produces alone; and one where there is simultaneous production, see Ulph
(1982). There are a number of cases that can occur, depending on the specific assumptions made
about cost functions of the two groups of producers and about the demand schedule.

When the Nash-Cournot duopoly model of resource depletion was first analysed by Salant (1976),
his focus was not on technological, but behavioural differences. Salant (1976) therefore assumed
identical cost functions of the two groups of producers. In the simple case with zero marginal costs
of extraction he shows that the sole possible pattern of equilibrium behaviour is one where the cartel
and the fringe produce simultaneously in an initial phase, and the cartel produces alone in a final
phase. No matter how small its supplies compared to those of the competitive industry as a whole,
the cartel restricts its sales so as to take over the market after the fringe has exhausted its reserves. A
sufficient condition for this result is that the consumer demand curve have a point of unit elasticity

(p) and that elasticity along the curve increase strictly with price. This condition is satisfied for all

linear or concave demand curves and many convex demand curves.

If demand is isoleastic (and there are no costs of production), the cartel and the fringe will produce
together over the entire period until their resources are exhausted at the time when the price reaches
the backstop level.

In Salant’s model the industry reserves last longer than under competitive exploitation, but
exhaustion occurs earlier than under monopoly. The value of the firms in the cartel is raised by the
exercise of market power, but not as much as under full monopoly. The formation of the cartel
raises the discounted sum of profits, i.e., the resource wealth, of the competitive fringe at even
greater percentage than that of the cartel, since the fringe enjoys the benefits from a higher price,
due to the market power of the cartel, without having to restrict its supply.

Salant’s model can be generalised to firms with rising, although identical, marginal costs. It retains
the prediction that the cartel’s market share increases over time until, in a final phase, it controls the
totality of the market.

Ulph (1982) studies a similar model to Salant (1976), but adds the assumption that the fringe and
the cartel may have different, but constant marginal costs of production. He shows that the
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conclusion in the Salant model, that the cartel always keeps some reserves to produce alone in a last
phase, may not hold in the case when the costs of the cartel and the fringe differ. When the cartel
has a substantial cost advantage over the fringe, i.e., the costs of production is much lower for the
cartel than for the fringe producers, and initial cartel reserves are sufficiently abundant, the last
phase to occur will be one where only the high cost fringe depletes. The cartel produces alone in an
initial phase. When the price reaches a certain level, it becomes optimal for the fringe to enter the
market, and in a second phase the cartel and the fringe produce simultaneously with the fringe
increasing its market share. When the cartel exhausts its reserves, the fringe produces alone in a
final phase.

If on the other hand the fringe has a cost advantage over the cartel and the fringe also has significant
reserves, it is now the cartel that will produce alone in the last phase.

The particular equilibrium outcome will depend on the parameter values of the model, and Ulph

(1982) presents the full set of solutions for Nash and Stackelberg equilibria in terms of the various
cost conditions.

We have not been able to derive unique theoretical results on the effects of taxation on the
petroleum wealth in the duopoly model. We will therefore in the Nash-Cournot case refer to some
numerical results presented in the next section.

4. Numerical models-some results from recent studies

We have seen that even small modifications of the Hotelling model make it difficult to derive
theoretical results about the impacts of taxation on the petroleum wealth. In this section we report
some numerical results from two recent studies of optimal extraction of an exhaustible resource.
First we briefly present the numerical results of Rosendahl (1996), then we look at the results from
the more extended model of the global fossil fuel markets in Berg et al. (1996).

4.1 Rosendahl (1996)

Rosendahl (1996) presents one of the first numerical analyses on the impacts of CO, taxes on the
petroleum wealth within an intertemporal energy model. He studies a simple, dynamic model of a
competitive fossil fuel market, assuming constant unit costs of extraction and a limited initial
amount of the resource. He concentrates on a single fossil fuel, oil, and studies the consequences for
the oil wealth of an average oil producer and for Norway of three different international carbon
taxes. According to his study, an international carbon tax of $10/barrel of oil may reduce the
petroleum wealth of the average oil producer by 33-42 per cent. The Norwegian petroleum wealth

may decrease even more than this, by 47-68 per cent, due to higher unit costs, i.e., lower initial
resource rent.

So far we have only considered one market. Demand for oil in the models above will however
depend on the price on the competing fuels like natural gas and coal. The price path of a fossil fuel
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is then not only determined by the extraction profile of the same resource, but is also depending on
the extraction path of the substitute. To take account of this dependency, we should include all the
fossil fuel markets in the model.’ In such a model the imposed carbon tax can differ between the
energy resources according to their carbon content. Coal will then receive a larger tax than oil,
whose tax will again be higher than the tax on gas, which is the cleanest of the three fossil fuels.

4.2 Berg, Kverndokk and Rosendahl (1996)

This survey is motivated by the development of a dynamic multiregional model for the three fossil
fuels oil, gas and coal, documented Berg et al. (1996). The study follows up the work by Rosendahl
(1996) and it analyses the impacts on the petroleum wealth of fossil fuel producers of introducing an
international carbon tax. The analysis is made within an intertemporal general equilibrium model
for the global energy markets. While Rosendahl only studies one fossil fuel, Berg et al. (1996)
model the markets for natural gas, oil and coal. In addition they extend the Rosendahl study by
introducing market power and extraction costs as functions of accumulated production and
technological change. In particular, they are interested in the impacts on the oil wealth of average oil
producers of a global carbon tax, under different assumptions about the market power of OPEC.
Here we will quite briefly present the results for the oil market only.

Berg et al. (1996) present an intertemporal global general equilibrium model for the fossil fuel
markets. In contrast to simple Hotelling models, which often are characterised as unrealistic, the
model includes several important aspects, such as cost functions increasing with cumulative
production and decreasing with technological change, and market power in the oil market. No fixed
quantity is assumed for the availability of the resources, however, the unit costs of extraction for oil
and natural gas are increasing in accumulated production. The world is divided into three demand
regions: OECD-Europe, Rest-OECD and Non-OECD. Berg et al. (1996) assume that gas is
produced and traded within competitive markets corresponding to the demand regions. The
international coal market is also modelled as a competitive market, but due to the huge reserves of
coal, it is not modelled intertemporally.

Two different models corresponding to different assumptions about the market power of OPEC in
the international oil market are studied. In the cartel model the oil market is modelled as an
international market with a cartel (corresponding to OPEC) and a competitive fringe on the supply
side. To determine optimal production under the cartel assumption, the producers are modelled as a
Nash-Cournot duopoly. In the competitive model there is perfect competition in the oil market

® To our knowledge Manne and Rutherford (1994) present the first dynamic multiregional model of the optimal
extraction of more than one fossil fuel. They employ a five-region general equilibrium model to examine three issues
related to carbon emission restrictions. First, they investigate the possible impact of such limits upon future oil prices.
Second, they analyse the problem of «leakage» which could arise if the OECD countries were to adopt unilateral limits
upon carbon emissions. And third, they quantify some of the gains from trade in carbon emission rights. However, gains
and losses in the Manne and Rutherford study do not refer to the effects on the petroleum wealth of oil and gas
producers which are the main focus here. Rather, Manne and Rutherford (1994) calculate the effect on GDP and
macroeconomic consumption over time.
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where there are two kinds of firms; low cost producers (OPEC) and high cost producers (Non-
OPEC).

The results indicate that OPEC behaviour is crucial when analysing the impacts on petroleum
wealth of carbon tax. When OPEC acts as a cartel, the crude oil price is almost unchanged initially
by a global carbon tax. Moreover, over the first 40 years the tax burden is born mainly by the
consumers, as OPEC reduces its production in order to maintain a high price level. This implies that
the oil wealth of the fringe is reduced by merely 8 per cent, whereas OPEC’s wealth is reduced by
23 per cent. With perfect competition in the oil market, low cost producers (OPEC countries)
increase their production significantly in the beginning of the time horizon, which lowers the oil
price and makes oil production unprofitable in the first period for high cost producers (Non-OPEC).
In this case, the oil wealth of Non-OPEC will be reduced significantly, with more than 70 per cent,
compared to the reference case in the cartel model. In addition to this, a tax will have a much greater
impact on the Non-OPEC oil wealth in the competitive model compared to the cartel model, as
nobody will act to maintain the price under perfect competition. The Non-OPEC wealth will now be
reduced by 39 per cent, while OPEC wealth is reduced by 25 per cent as a result of introducing a
carbon tax on fossil fuels.
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consumer price of the resource

backstop price

carbon tax

resource wealth

unit cost of extraction

production of the exhasutible resource

accumulated production

discount rate

given initial amount of the resource

last period of production

resource rent

convexity parameter in the cost function

rate of technological change in production of the exhaustible resource
rate of technological change in production of the backstop technology
the absolute value of the inverse elasticity of demand

initial backstop price

marginal revenue for the monopolist producer

initial unit costs

constant in the linear demand function
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