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1. Introduction*

1.1. Background
Underlying much of the recent research on business cycles is a picture that the observed variation

in macroeconomic series consists of several components. The cyclic and seasonal variations are

considered as superimposed on a secular trend. Isolation of the various components is thus vital

before further analysis can be undertaken.

A fundamental problem in this context seems to be that the method of decomposition influences

the possible answers one can obtain when the analysis is pushed one step further; that is when the

isolated components are used as a basis for studying how different sectors of the economy interact.

Searching macroeconomic series for "stylized facts" is therefore problematic in the sense that what

one discovers may depend on the method which is chosen. It is essential to have an idea of what

the purpose of the investigation is, and also of the properties and limitations of the methods that

are employed.

The purpose of the present exposition is modest. We consider a couple of decomposition methods

and look at the result to discover what conclusion one can expect. At the same time we try to keep

in mind the problems outlined above and try to assess their importance.

The classical approach in business cycle research, due to Burns and Mitchell (1946), consists of

fitting moving averages of different lengths to the data. The smoothed time series is used to

classify the movements of the original series as a boom, recession, depression or recovery. The

localization of the turning points in the different series of interest can then be used to infer about

the propagation of cycles in the economy.

Another approach consists of viewing the cyclic behaviour of the series as a deviation from a

trend. The main issue is how other series of interest relate to the GDP, so that the focus is on the

relationship between the deviations of these series and the deviations of the GDP. This has been

carried out by fitting a smooth curve to the respective series and subjecting the residuals from

these fits to a closer scrutiny. In Kydland and Prescott (1990) and Blackburn and Ravn (1992), US

and UK series respectively, are treated, and the focus is on the covariances between the residuals

from the smoothed GDP and the other residuals. We shall carry out a similar investigation on

Norwegian data, but in addition to looking at the covariances, we shall also consider the spectra

and crosspectra of the residuals of the series.

We shall now give a few more details on how this is done. To smooth the series we use the

socalled Hodrick-Prescott (HP) filter, which can be defined as the solution to the minimization

problem

* The paper is prepared as a part of the Business Cycle History project at Statistics Norway, Research Department.
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wherey l , ... , yT are the observations suitably transformed and is a smoothness parameter. The filter

g l ,...,gT can be seen as a compromise between the first term controlling the fit to the series and the

second term which takes account of the smoothness of the filtered series. The extreme cases are

A,---0, which reproduces the original series and X-400 which is the same as fitting a linear trend.

Usually 2t,=1600. For some explanation of how one can compute g_ I ,go,g 1 ,...,gT see Appendix A.

The procedure has been designed for seasonaly adjusted data, so some sort of seasonal adjustment

may have to be applied first.

Once a smooth curve has been fitted the residuals

xt = yt - gt t =1,...,T

can be formed, and these can now be analyzed further. Any findings based on the residuals will of

course depend on how these residuals are formed, and it is therefore essential to investigate the

robustness of the choices that have been made.

The HP procedure is controversial and has been subjected to further investigation in a number of

recent studies. Harvey and Jaeger (1993) showed that the HP filter arises in a special case of a

more general structural time series model, where certain parameters are set equal to fixed values.

They estimated the general model without the imposed restrictions and found that for several of the

series they considered, the two sets of parameters were rather different. Furthermore, the cyclic

behaviour inferred from the estimated models and those where the HP filter were used for

detrending, differed substantially in some cases. They concluded that spurious cycles may be

created by mechanically applying the HP filter. This point has also been made by Cogley and

Nason (1992). King and Robelo (1993) also studied the HP filtering procedure and compared it

with the more traditional exponential smoothing filter. Their general conclusion was a warning

against relying on the HP filter as a unique method of trend elimination. Canova (1993) applied a

number of detrending techniques, among them two versions of the HP filter corresponding to

A,=.1600 and X=4 to some major US macroeconomic time series. He found that the "stylized facts"

varied across the detrending methods.

In addition to the approach of "fitting a smooth curve and looking at the residuals", we have also

tried another approach. While the procedure sketched above may be considered as a variation upon

the model of a linear deterministic trend, plus a stationary component, there have also been

considerable attempts to use a model where the first differences are taken as starting point. One

way to introduce this is to start with the fact that the first differences can be assumed to be a

stationary process, and hence under some regularity conditions have an infinite moving average

representation
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where 8„	 are uncorrelated random variables with mean zero and variance 02, and

E jak i < co. If quarterly or monthly data are considered, seasonal effects can be taken into
k4:1

account by introducing appropriate dummies.

Now, if the process has a decomposition into a random walk component, 4 and a stationary part,
ct, so that

yt= Zt + cr

(3)
AZt = igt + v t

C, = E bi Ot_i
1=0

where the correlation between v, and St are arbitrary, Cochrane (1989) has emphasized that the

value of the spectral density of Ayt at zero equals the variance of the random walk component

2

multiplied by 27t. In terms of the quantities above it means that a,
2
 = E aj a,

2
 = 2z f 0.1)

to
Ay Ay

where	 denotes the spectral density. The importance of this fact is that if a = 0, the model
reduces to

(4) 	 yt = 	 + ct

i.e. a linear trend plus a stationary component.

We mention in passing that if we require that shocks v t and 6, are identical, we get the famous

Beveridge-Nelson decomposition introduced by Beveridge and Nelson (1981). It can be computed

explicitely and thus the two components Z, and c, in (3) can be estimated and compared. A recent

application to business cycle analysis can be found in Nicoletti and Reichlin (1993).

The two formulations (2) and (4) are two major competitors as models of macroeconomic time

series. In a certain sense the approach based upon smoothing the series and analyzing the residuals

can be seen as a variation of (4). Hence looking at estimates of f6,3,4 in the vicinity of zero must be
of importance.

In addition spectral analysis is important for analyzing cyclic behaviour, so investigating the

spectral properties of the residuals after having smoothed the series may also provide valuable

information. Essentially the spectral density is a transformation of the variance/covariance structure
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of a (second order) stationary time series and vice versa. Hence information found in one

representation are in principle available in the other. However, they represent alternative views, and

hence must be regarded as complimentary.

We shall for the sake of completeness provide some of the central ideas behind spectral analysis.

These are well known and can be found in a lot of textbooks. We concentrate on the main points

and on the probabilistic aspects. The estimation is done by a standard procedure and a short

description can be found in the appendix.

Assuming that X 1 ,...,XT stem from a stationary process with mean their variance/covariance

structure is given by cxx(k) = E(X,--t.t)(X t+k-g),	 . The spectral density is defined as the

Fourier transform of the covariances.

ky((a) = 	 e—acxx(k).
27E k =

It always exists and is continuous provided E Icixml<cm, and can be inverted as

2N

qx(k) = f exp(icak)fxx(w)th o

In particular k=0 gives

2/E

VarX, = f fxx(ca)dca

which highlightes the idea of the spectral representation as a decomposition of the variance of a

stationary series.

In particular, values of fxx(0)) for small values of co will represent the lower frequencies which

correspond to the longer cycles and higher frequencies will represent the shorter cycles.

,	 a2
If X 1 	XT are uncorrelated with constant variance 0 2, fjor00) = f so that in this case all

frequencies contribute the same amount to the variance.

There is an important relation between the spectra of two stationary time series which are related

by a linear time invariant filter, i.e.
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Xr = E akYt-k
k=

00

where E lak i<oci. Then
k=-03

(5) fi,x( ) = IA(4)) Ffyy(6))

40

where A(co) is the socalled transfer function of the filter defined by A(6) = E akexp (ikoa) •
k=-.0

We have already seen an example of the use of this relation. In equation (2) Ay is a filter of ..., E_
1, Co, £1,... Hence fay6,y(0) = I A(c0)1 2 feE(c0). But the latter equals the constant a 2E/27c, since the
E's are uncorrelated with zero mean and constant variance. Furthermore, from the definition

co 	 2 	 )2

IA(0) I 2 = (IN apt) • Hence fiyAy (0) = 2z E ai
i=o

2
of • A further important illustration is provided

by the difference operator, which corresponds to a filter with weights a o=1, a 1=-1 and ai=0
otherwise. Hence the transfer function is A)) = 1-exp(io)), which is 0 at

From equation (5) it is evident that the cyclic behaviour after using a filter can be due to both an

effect in the original series and to the filter. This is an important problem. Often a preliminary

filtering of the data is performed before the analysis is undertaken. For example, the seasonal

pattern may not be of primary interest so a seasonal adjustment is carried out first. The spectral

density of the seasonally adjusted data will then be a product of the spectral density of the original

data and the squared modulus of the transfer function.

There are reasons to believe that problems of this kind are relevant for business cycle analysis.

What one is interested in is the low frequencies. Some prior transformation is inevitable to get rid

of the high frequency variation in the data, e.g. the seasonal variation. The question is then of

course whether any peculiarities that one discovers is a genuine feature of the data or due to the

particular filter that is employed.

The spectral density is a decomposition of the variance/covariance structure of a series. The

Cramer representation provides a similar decomposition of the actual process. {X,} which may be
written

271
Xt = f e ft"dZ((.0)

5



where {Z(oo): 05_co5_27c} is a right continuous process with orthogonal increments such that

EIZ(60) - Z(0) 1 2 = ffxx (1)(11.

Thus in a sense X t is decomposed into periodic functions with stochastic weights and the spectral

density at a particular frequency is the variance of the weight assigned to this frequency.

Thus spectral decompositions should be well suited for discovering features which are periodic and

repeated regularly. For the cyclic behaviour this means that it should be a valuable tool for

discovering periodicities. If the emphasis is on waves of irregular length the usefulness may be

more questionable, and a direct representation of the covariance structure may be preferable.

The same ideas carry over to the description of the relations between two stationary series X t and
Yt. If cxy(k), k=-1,0,1,... are the cross covariances i.e. E(X t+k-gx)(Yt-py) the cospectrum is defined

as

fxy00) =— E e-"cxygo.
276 k._.

Also under appropriate conditions

cxy(k) = f exp(kok)ixy(w)dca

While the spectral density is always a real function, the cospectrum is generally complex valued.

To describe it, it is usual to introduce a frequency dependent correlation, the socalled squared

coherency

Vxy(01 2
Yy.x(w)

A large value of iy .x at the frequency co denotes a measure of the strength between X and Y at

frequency (0.

Also relevant is the angle of fxy(co) at frequency to, whose slope describes whether there is a lag or

lead between the series X and Y at frequency co. A positive slope denotes that the component of Y

lags the corresponding component of X.

fxx(60fyyN) •
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A feature that may have some importance in this connection is that if X and Y are stationary

series, the effect of a filter cancels in the expression for yy .x if A(0))#0.

There are some alternative ways to estimate the spectral density and the cospectra. We shall give

some indications in Appendix B. Here we shall confine us to some general remark. Since f xx(co) is

completely unspecified beyond satisfying some smoothness conditions such as continuity, the

procedure based upon estimating fxx is non-parametric in nature. Hence, few assumption are

imposed and more is demanded from the data. An alternative is to let f belong to some parametric

class. A natural class is the ARMA class, where

a: 'Ne in 1 2
ADA)) - 	

2z 1,(e in1 2

where 0 is the moving average polynominal, tp is the autoregressive polynominal and a is the

variance of the errors. This turns out to be a versatile and useful class. However, using it one is

faced with the traditional dilemma. If the unknown f )cx belongs to this class, more efficient use can

be made of the data. On the other hand if f a does not belong to this class, but is nevertheless

approximated by one, a bias is introduced.

1.2. The data
In the following we shall look at the twelve series. The data are taken from the KVDATA87 data

base of Statistics Norway, except the M2 series which are taken from the financial data base

TROLLS. All series are quarterly except the M2 series which is monthly. The range of definition

are given for each series, together with the technical denomination.

1. Total gross domestic product (qff, 1966:1-1993:4)

2. Gross domestic product, mainland (qf6, 66:1-93:4)

3. Total private consumption (c, 66:1-93:4)

4. Investments mainland (jk6, 66:1-93:4)

5. Traditional export of goods (a4, 70:1-93:4)

6. Traditional imports of goods (i4, 66:1-93:4)

7. Labour hours (1w, 66:1-93:4)

8. Nominal wages pr. hour (yww/lw, 66:1-93:4)

9. Consumption price (pc, 66:1-93:4)

10. Productivity (qf6/1w, 66:1-93:4)

11. Real wages pr. hour (yww/(pcxlw), 66:1-93:4)

12. M2 (m5000132, 60:1-92:12)
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2. Use of the HP-filter

2.1. The smoothed series
In figures 2.1.1-2.1.12 the logarithm of the data series are plotted. The smoothing is done as

follows. At the end og each series two additional observations are estimated by linear regression

including seasonal dummies. On the original series prolonged with the two estimated values at

each end, a five term centered moving average is run. This constitutes a simple seasonal

adjustment and the HP-filter provides an additional smoothing. The default value of 2i.=1600 of the

HP-filter is used for all the series.

The results are displayed in the upper part of the figures. In the lower part the residuals from

applying the HP-filter and the difference between the trend estimated by the HP-filter and the five

term centered moving average is displayed.

Since	 corresponds to fitting a linear trend, it is evident that the value of 2 will have a crucial

impact on the size of the residuals.
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Figure 2.1.1. The logarithm of total GDP. In the upper panel the logarithm of the series, the five term centered moving
average and the HP-filter with X=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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lx, smoothed & hpfil
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14 16

Figure 2.1.2. The logarithm of GDP mainland. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with 2t,=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.3. The logarithm of total private consumption.. In the upper panel the logarithm of the series, the five term
centered moving average and the HP-filter with X=1600. In the lower panel the residual from the HP-
filter, and the difference of the five term centered moving average and the HP-filter.
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lx, smoothed & hpfil
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Figure 2.1.4. The logarithm of investments mainland.. In the upper panel the logarithm of the series, the five term
centered moving average and the HP-filter with A.,=1600. In the lower panel the residual from the HP-
filter, and the difference of the five term centered moving average and the HP-filter.
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Figure 2.1.5. The logarithm of traditional export. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with 2.,=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.6. The logarithm of traditional import. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with X=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.7. The logarithm of labor hours. In the upper panel the logarithm of the series, the five term centered moving
average and the HP-filter with A,=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.8. The logarithm of productivity. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with 2t,=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.9. The logarithm of nominal wages. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with X.=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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Figure 2.1.10. The logarithm of real wages. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with X=1600. In the lower panel the residual from the HP-filter, and
the difference of the five term centered moving average and the HP-filter.
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Figure 2.1.11. The logarithm of consumer price. In the upper panel the logarithm of the series, the five term centered
moving average and the HP-filter with X=1600. In the lower panel the residual from the HP-filter, and
the difference of the five term centered moving average and the HP-filter.
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Figure 2.1.12. The logarithm of M2. In the upper panel the logarithm of the series, the five term centered moving
average and the HP-filter with k=1600. In the lower panel the residual from the HP-filter, and the
difference of the five term centered moving average and the HP-filter.
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2.2. Correlations based on the residuals
We first present a table of the cross-correlations between total GDP and the other series. Table

2.1.1 is based on the residuals between the observations and the series smoothed by the HP-filter.

Table 2.2.1. Correlations of the residuals of the GDP and the residuals of the other series after
detrending with HP-filter

Var x	 x(t-5) x(t-4) x(t-3) x(t-2) x(t-1)	 x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5)

C 	 0.01	 0.16	 0.02 -0.08	 0.00	 0.45	 0.08	 0.07	 0.18	 0.33	 0.08
JKS	 -0.01	 0.11	 0.04	 0.04	 0.05	 0.31	 0.13	 0.10	 0.10	 0.16	 0.16
A	 0.02	 0.21	 0.13	 0.06	 0.09	 0.32	 0.03 -0.06	 0.01	 0.00 -0.15
I 	 -0.02	 0.02 -0.05 -0.09 -0.01	 0.37	 0.08	 0.13	 0.13	 0.20	 0.11
LW	 0.04	 0.02 -0.02 -0.07 --0.07	 0.33 -0.09	 0.05	 0.15	 0.05	 0.14
PRD	 -0.06	 0.22	 0.06 -0.04	 0.05	 0.46	 0.13 -0.12 -0.07	 0.23 -0.12
WW	 -0.07	 0.38 -0.07 -0.27 -0.14	 0.30 -0.09 -0.27 -0.08	 0.44 -0.05
RWW	 -0.02	 0.22	 0.09	 0.03	 0.02	 0.26	 0.16	 0.00	 0.10	 0.30	 0.06
PC	 -0.09	 0.35 -0.16 -0.38 -0.21	 0.22 -0.24 -0.37 -0.18	 0.38 -0.10
M2	 -0.10	 0.43 -0.09 -0.28 -0.07	 0.50 -0.03 -0.20 -0.02	 0.51 -0.01

Since the comparable studies are usually done on seasonally adjusted data, we present in table

2.2.2 the correlations similar to those of table 2.2.1, but now based on the deviations between the

seasonally adjusted data and the series filtered by the HP-filter.

Table 2.2.2. Correlations between the difference of the seasonally adjusted GDP and the trend
estimated by the HP-filter, and similar differences in the other series

Var x	 x(t-5) x(t-4) x(t-3) x(t-2) x(t-1) 	 x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5)

C 	 0.06	 0.09	 0.14	 0.21	 0.30	 0.38	 0.44	 0.47	 0.47	 0.43	 0.36
JKS	 0.11	 0.13	 0.17	 0.24	 0.31	 0.37	 0.39	 0.39	 0.39	 0.39	 0.38
A	 0.13	 0.23	 0.34	 0.39	 0.39	 0.33	 0.22	 0.08 -0.06 -0.17 -0.23
I 	 -0.09 -0.08 -0.03	 0.07	 0.19	 0.30	 0.37	 0.38	 0.36	 0.30	 0.22
LW	 0.00 -0.01	 0.00	 0.03	 0.10	 0.18	 0.23	 0.27	 0.31	 0.32	 0.33
PRD	 0.15	 0.22	 0.31	 0.41	 0.48	 0.48	 0.40	 0.25	 0.10 -0.04 -0.15
WW	 0.14	 0.05 -0.03 -0.10 -0.14 -0.16 -0.12 -0.06	 0.03	 0.12	 0.19
RWW	 0.22	 0.25	 0.27	 0.31	 0.33	 0.35	 0.37	 0.38	 0.38	 0.36	 0.32
PC	 -0.03 -0.16 -0.29 -0.42 -0.50 -0.53 -0.51 -0.43 -0.32 -0.18 -0.04
M2	 0.00	 0.00	 0.02	 0.07	 0.14	 0.21	 0.27	 0.32	 0.36	 0.37	 0.36

The correlations are between the current value of GDP and the value of the other series as

indicated in the tables. Depending on whether the contemporous correlation is positive or negative

the series are considered as pro- or countercyclical. We see that except for the seasonally adjusted

values for the wages and prices all correlations indicate that the variables are procyclical. This
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countercyclical feature of prices for seasonally adjusted data is also found by Kydland and Prescott

(1990) in data from the US and by Blackburn and Ravn (1992) for data from the UK.

We also remark that for some variables there is a fairly large discrepancy between the impression

from the correlations of the two tables. The productivity seems thus to be fairly symmetrically

correlated with GDP, while based on the seasonal adjusted data there seems to be a tendency for it

to lead the cycle since the highest correlations are between the current value of productivity and

future values of GDP.

Also there may be some doubt about the significance. According to the figures computed by

Harvey and Jaeger (1993) it seems that a significant value at the 5% level is around 0.4 when there

are around 100 observations. This is based on a null hypothesis specifying two independent

random walks. However, the calculations are based on a normal approximation where the variance

involve the covariances in the series. Since these die slower in quarterly series, it is reasonable to

believe that they should be somewhat higher in the case we consider. Hence according to

traditional standards, most of the figures of table 2.2.1 and 2.2.2 are not significant taken

individually.

Table 2.2.3 and 2.2.4 below contain similar correlations but now the GDP of mainland Norway is

used.

Table 2.2.3. Correlations of the mainland GDP and the residuals of the other series after
detrending with HP-filter

Var x	 x(t-5) x(t-4) x(t-3) x(t-2) x(t-1)	 x(t) x(t+l) x(t+2) x(t+3) x(t+4) x(t+5)

C 	 0.09	 0.19	 0.09	 0.06	 0.13	 0.60	 0.18	 0.13	 0.17	 0.26 -0.02
JKS	 0.04	 0.18	 0.13	 0.16	 0.18	 0.45	 0.27	 0.25	 0.21	 0.23	 0.20
A	 0.10	 0.26	 0.21	 0.17	 0.09	 0.27 -0.04 -0.09 -0.06 -0.13 -0.25
I 	 0.10	 0.11	 0.08	 0.03	 0.09	 0.44	 0.11	 0.17	 0.11	 0.11	 0.00
LW	 0.07	 0.02	 0.07	 0.04 -0.01	 0.46 -0.04	 0.17	 0.27	 0.09	 0.17
PRD	 -0.08	 0.22	 0.02 -0.04	 0.06	 0.44	 0.09 -0.17 -0.18	 0.15 -0.18
WW	 -0.11	 0.31 -0.06 -0.21 -0.10	 0.29 -0.02 -0.21 -0.04	 0.44	 0.02
RWW	 -0.05	 0.19	 0.09	 0.04	 0.03	 0.26	 0.20	 0.00	 0.09	 0.30	 0.09

PC	 -0.11	 0.29 -0.14 -0.32 -0.16	 0.20 -0.18 -0.29 -0.12	 0.38 -0.03
M2	 -0.09	 0.36 -0.05 -0.18	 0.00	 050	 0.02 -0.13	 0.00	 0.45 -0.03
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Table 2.2.4. Correlations between the difference of seasonally adjusted mainland GDP and the
trend estimated by the HP-filter, and similar differences in the other series

Var x	 x(t-5) x(t-4) x(t-3) x(t-2) x(t-1) 	 x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5)

C 	 0.24	 0.28	 0.35	 0.45	 0.55	 0.63	 0.62	 0.55	 0.43	 0.28	 0.14

JKS	 0.21	 0.29	 0.39	 0.50	 0.60	 0.67	 0.69	 0.65	 0.59	 0.51	 0.42

A	 0.32	 0.41	 0.47	 0.46	 0.38	 0.25	 0.08 -0.10 -0.25 -0.34 -0.36
I 	 0.23	 0.23	 0.26	 0.32	 0.40	 0.45	 0.44	 0.38	 0.26	 0.12 -0.01

LW	 0.12	 0.16	 0.23	 0.30	 0.40	 0.50	 0.54	 0.56	 0.55	 0.49	 0.42

PRD	 0.03	 0.10	 0.21	 0.32	 0.37	 0.35	 0.22	 0.04 -0.14 -0.25 -0.29
WW	 -0.07 -0.06 -0.05 -0.05 -0.05 -0.03	 0.03	 0.11	 0.21	 0.30	 0.36

RWW	 0.08	 0.14	 0.20	 0.26	 0.31	 0.35	 0.37	 0.39	 0.39	 0.39	 0.36

PC	 -0.16	 0.20 -0.26 -0.31 -0.35 -0.36 -0.31 -0.22 -0.10	 0.03	 0.14

M2	 0.01	 0.05	 0.13	 0.23	 0.33	 0.40	 0.42	 0.41	 0.37	 0.32	 0.27

2.3. Spectral analysis of the residuals from the HP filter
As explained in the introduction, spectral analysis is a representation of the correlation structure

that is particularly valuable for detecting fixed cycles in a stationary time series. We shall in this

section present the results from a spectral analysis from fitting a standard HP filter to the twelve

chosen series. A fixed seasonal pattern is removed by regressing the residuals on a set of seasonal

dummies. Since there is a break in the seasonal pattern in 1978:1, separate sets of dummies are

used before and after this period. The logarithm of the spectral densities and the coherence and

phase with respect to the series for GDP are then estimated.

The results are presented in figures 2.3.1-11. The grid in the figures showing the spectral densities

are at the frequencies 0, 7c/8, 27t18,...,n. The cycle corresponding to ir/8 is 16 quarters or four

years, to 2/c/8 two years, and to It/2 one year. The only expectation is the M2 series, which is

monthly. Here the grid indicates the values n/12, 27r1 12,...,n, so that the first grid corresponds to a

2 year cycle and the second to a yearly cycle. In these figures a 95% confidence interval is also

indicated based on the assumption that the time series consisting of the residuals are stationary.

In most of the series there is a fairly strong seasonal component despite the fact that the fixed

pattern has been removed. Also in most of the series there seems to be a pike in the specter

corresponding to around five or six years. The exception is traditional export where movements are

more frequent, a fact that is fairly evident by looking at the residuals plotted in figure 2.1.5. As

mentioned in the introduction, there is a problem with interpreting these frequencies since these are

exactly those induced by the HP filter when it is applied to data having a root at unity, cfr. Cogley

and Nason (1993), Harvey and Jaeger (1993) and King and Rebelo (1993). The possibility that

these cycles are spurious must therefore be kept in mind.

The lower panel of figures 2.3.2-11 are the coherence of the phase with the mainland GDP series.

We remark that the cyclic behavior at the frequencies corresponding to the long run behavior is
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much less pronounced than in the univariate specters. The most pronounced exception is

productivity, which is not so surprising taking the definition of the series into account. This

phenomenon should be compared with the fact mentioned in the introduction, that the coherence of

a stationary time series is invariant to the effect of a filter. In this case the HP filter is applied to

series which are non-stationary beyond any doubt, so the situations are not quite analogous.

However, the lack of marked frequencies corresponding to the usual business cycles in the plot for

the coherence does not exactly corroborate an assertion of strong comovements between the series.
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Figure 2.3.1. Estimated log-specter based on the residuals from smoothing with a HP filter. Total GDP in the upper
panel and mainland GDP in the lower panel. A 95% confidence band is indicated.
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Figure 2.3.2. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing total private
consumption with a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the
residuals from applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the
solid line), on the right hand side to the phase (the solid line with stars).
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Figure 2.33. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing total investments
in mainland with a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the
residuals from applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the
solid line), on the right hand side to the phase (the solid line with stars).
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Figure 23.4. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing traditional export
with a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals
from applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line),
on the right hand side to the phase (the solid line with stars).
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Figure 23.5. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing traditional import
with a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals
from applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line),
on the right hand side to the phase (the solid line with stars).

29



1.00.80

.40

.70 -

.60 -

.50-

- 0.75

- 0.50

- 0.25

0.00

.30 -

.20 -

.10 -

- -0.25

- -0.50

- -0.75

.00 	 -1.00

co . and ph . I og x and I og x2

Fk a

Figure 2.3.6. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing total hours with
a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals from
applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line), on the
right hand side to the phase (the solid line with stars).
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Figure 23.7. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing productivity with
a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals from
applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line), on the
right hand side to the phase (the solid line with stars).
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Figure 2.3.8. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing nominal wages
with a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals
from applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line),
on the right hand side to the phase (the solid line with stars).
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Figure 23.9. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing real wages with
a HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals from
applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line), on the
right hand side to the phase (the solid line with stars).
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Figure 2.3.10. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing prices with a
HP filter. A 95% confidence interval is indicated. In the lower panel the coherence and phase with the residuals from
applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line), on
the right hand side to the phase (the solid line with stars).
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Figure 2.3.11. In the upper panel the logarithm of the estimated spectral density based on the residuals from smoothing M2 with a HP
filter. A 95% confidence interval is indicated.. In the lower panel the coherence and phase with the residuals from
applying the HP filter on the mainland GDP. The scale on the left hand side refers to the coherence (the solid line), on
the right hand side to the phase (the solid line with stars).
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3. Analysing the first differences for a cyclical pattern

As mentioned in the introduction we have also considered the first differences of the twelve series

selected. As mentioned there, it is of particular interest to consider the value of the spectral density

at the value 0.

Figures 3.1.1-3.1.12 displays the logarithm of the estimated spectral densities after a fixed seasonal

pattern has been removed by regressing the first differences on a set of seasonal dummies. As

explained in the previous section we allow for a break in the seasonal pattern at 78:1. The grid are

on the frequencies TE/8, 21ri8,...x. Hence the first grid corresponds to a four year cycle and the

fourth to a yearly cycle. The M2 series is monthly and the grid are on the frequencies it/12,

2a/ 12,...,n. The first grid corresponds to a 24 month or 2 year cycle and the second to a yearly

cycle. Also a 95% confidence interval is indicated.

A rather strong seasonal component remains in many of the series indicating a shift in the seasonal

pattern over the period. Also we see that in most of the series the bulk of the variation can be

attributed to variation in the high frequencies. The exception is the investments in the mainland

and traditional import which contain some variation in the low frequencies. The same feature is

present in the series for the wages, especially the nominal, and in prices and M2.

Concerning the value of the spectral density at zero, in the rest of the series it is not especially

large. However, to neglect it does not seem to be warranted. Thus, in terms of Cochrane (1989),

models containing unit roots are not ruled out by the impression from figures 3.1.1-3.1.12.
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Figure 3.1.1. Total GDP. The upper panel shows the differences of the logarithm of the original data. The
lower is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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Figure 3.1.2. GDP mainland. The upper panel shows the differences of the logarithm of the original data.
The lower is an estimate with a 95% confidence interval of the logarithm of the spectral
density.
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Figure 3.1.3. Total private consumption. The upper panel shows the differences of the logarithm of the
original data. The lower is an estimate with a 95% confidence interval of the logarithm of the
spectral density.
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Figure 3.1.4. Investment mainland. The upper panel shows the differences of the logarithm of the original
data. The lower is an estimate with a 95% confidence interval of the logarithm of the spectral
density.
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Figure 3.1.5. Traditional export. The upper panel shows the differences of the logarithm of the original
data. The lower is an estimate with a 95% confidence interval of the logarithm of the spectral
density.
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Figure 3.1.6. Traditional import. The upper panel shows the differences of the logarithm of the original
data. The lower is an estimate with a 95% confidence interval of the logarithm of the spectral
density.
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Figure 3.1.7. Total hours. The upper panel shows the differences of the logarithm of the original data. The
lower is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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Figure 3.1.8. Productivity. The upper panel shows the differences of the logarithm of the original data. The
lower is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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Figure 3.1.9. Nominal wages. The upper panel shows the differences of the logarithm of the original data.
The lower is an estimate with a 95% confidence interval of the logarithm of the spectral
density.
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Figure 3.1.10. Real wages. The upper panel shows the differences of the logarithm of the original data. The
lower is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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Figure 3.1.11. Prices. The upper panel shows the differences of the logarithm of the original data. The
lower is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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Figure 3.1.12. M2. The upper panel shows the differences of the logarithm of the original data. The lower
is an estimate with a 95% confidence interval of the logarithm of the spectral density.
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4. Conclusion

We have in this report considered some major Norwegian macroeconomic series from two points

of view.

First we have applied the Hodrick-Prescott filter on the levels. It is evident that this cannot be used

mechanically. The default value leads in some cases to an oversmoothing of the series, while the

result for others seems to be more reasonable. Thus choosing a value depending on the series in

question seems necessary.

This can be problematic when a further analysis is undertaken, since the results may depend on the

chosen value to smooth the series.

When analyzing the residuals from using the HP filter, there are some indications of cyclic

behavior in the individual series. However, this is not confirmed from the estimates of the cross

correlation structure with the smoothed GDP. Most of the crosscorrelations are insignificant, and

the coherencies show no particular pattern. The possibility that the appearant cycles are spurious

can therefore not be ruled out.

Secondly we considered the spectra of the first differences. In the majority of the series, the high

frequency variation is most pronounced. It may therefore be difficult to extract the variation

associated with the low frequencies from the differenced series.
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A_1 = -21 •

.0 1 -2 1

0 0 0 0 . .	 0\

1 -2 1 0 . . . 0

. 0

0

•

• . 1 -2 1 0

0 	 . 0 0 0 Of

Appendix A

Computing the Hoderick-Prescott filter
The filter series is determined as the values g.. 1 ,g0,...,gT minimizing

E RgT-gtf l(gt- 2&_141,2)1.

The first order conditions consist of solving a system of linear equations. Carrying out the

necessary differantiation and defining the (T+2)x(T+2) matrices

/1 -2 1 0 .• 0\

0 1 -2 1 . . . 0

A -2 =

0 . 	 . . 1 -2 1
0 . 	 . . 0 0 0

\CI • 	 . . 0 0 0/

i.e. the i'th row of A.214, consists of the values 1, -2, 1 in the i, 41 and i+2'th column, respectively
i =	 T and otherwise zeros, the two last rows only consists of zeros;

i.e. the first row of A l/(-2X) consists of only zeros, the i'th row consist of 1, -2, 1 in the i-1, i and

i+l'th column and otherwise zeros, i = 	 T+1, the last row consists of zeros only;
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000 0 	 0 . . 	 .0

0 	 . . 	 0
1 -21 1+1 . 	 . 	 0

Ao = •

0 	 . 1l -21 1+1 1

i.e. the two first rows consists of zeros only while the i'th row consists of X, -2X, -2 in the i-2, i-1

and i'th coloumns, respectively, i =	 T+2. Also define the Tx2 vectors

g	 ?-14091•19ST1!

y (0,0071,•••,YTY

the first order conditions may be written

0-2 +A -1 +AO* = y•

For large values of T, this can be a huge system. It may therefore be easier to explorit a recursive

method for determining g_ 1 , go,..., gT which is essentially the dynamic programming algorithm

taking into account the simplification due to the fact that the minimization problem is quadratic in

this case. We shall present the details. The algorithm is implemented in the routine of the

econometric estimation package RATS computing the HP filter. The following definitions will be

used

xt (gegt-1,1)/ 	 1,...,T

ut gt - 2gt_ 1 + gt _2 t=1,...,T

Then

(Al)
	

xt = Axt_ i + But

where
l2 -1 01

A= 1 0 0
1:) 0 1
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and	 B = (1,0,0)x .

With these notations the minimization problem consists of finding the minimum of

(A2)
TE fictxd2 + u=1

t.1

where ct = (1,0 -yey .

The idea is now to express the value of gT corresponding to a minimum of (A2) as a function of

gT_ i , gT_2, ..., go, g_ 1 and	 Substituting in (A2) we can find the value of g T_ 1 corresponding

to a minimum as a function of g T_2 ,	 g_ 1 and {M. Continuing in this way lead to a minimization

problem in two variables where the minimizing value can be computed explicitely in terms of

{yt } 1 ,...,T. Then we can use the expression (Al) to compute the other {g t}„,,T in terms of vt I
Here are the details. Since g T is only appearing in the last term of the sum in (A2) we minimize

/ / 	 2XTCTCTXT + " UT

with respect to gT. The first order conditions express the optimal g T in terms of gT4 and gT_2 as

(1 4- 1)gT 2gT-1 + ET-2 YT

or

	YT	 2A
-174718T-2

	7'  1+1	 1+1

which can be written

UT = -B 1 cr4AxT_d(1+1) = zrf

Now consider the minimization w.r.t. gr., and gT. Then only the two last terms in the sum (A2)

will be involved. They can be expressed as

(A3) rr_i CT- 1 CT-1 XT-1 4. "' UT-1) + IATCTCTXT + Uri
2\2 \

*

	Now we use the expression of the optimal 	 value of gT in terms of gT_ 1 ,	 g_ 1 , to get

XT = AXT_ i + BUT = (A. + BZ X71 T-1
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which means that the relevant part of (A2) can be written as

2 	 2
XT-11CT-1 CT-1 + IA -TI z 13)cTc7r+ B4) + z7.4x7.4 + AuT_1= XT-1 -L' T-1."'

n 
T-1XT-1

where DT4 can be expressed in terms of A, B and cT. Minimizing this expression in terms of g T_ 1

parallels the minimization of (A2) in terms of gT and leads to

Ur_i Zr_1XT_2

for	 expressed as an updating of zT.

One can continue in this way until the optimal value of g3 is expressed in terms of g 2, g i , go, g_ 1 .

Then it is necessary to take into account that g_ i and go can be choosen so that u 1 and u2 are equal

to 0. That means that one has to minimize

(A4)	.2 	 _
	0 71 -11) 	 (Y2 g2)

2 
+ E RYt-st)

2 
+ (gt 2gt -1 + gt-2)2]

1=3

By using the recursion explained above one can express the optimal value of the sum in (A2) as a

function of g 1 and g2 in the form 3q IN D2 x2, which is easily minimized with respect to g i and g2 .

This determines the optimal values at g 1 and g2 as functions of { y t } t=1 ,T. The optimal values for

g3 ,...,gT can now be determined by using u 3 = z3 x2 , x3 = Ax2+Bu3 etc.
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Appendix B

Estimating the spectral density
The estimation method for the spectral density and the crosspectral density is based on smoothing

the periodogram, which is the standard method. The periodogram is defined as

/xx(1) (co)
27E71

where X 1 ,...,XT are the observed value of a time series with spectral density f xx(o)). Consider the

127Evalues (.0• =	 j=0,...,T. Then we have the following results under some mild regularity

conditions.

Elly(coi) = faur(wi) +	 = 1,...,T-1

varil; ((oi) = fxx(wi) + 0(117)	 j = 1,...,T-1

cov(Ixx(wi),Ixx(w4 = 0(117)	 j,k = 1,...,T-1 *k *0,T

( 1The errors o -i, denote terms which tends to zero no slower than 1/T. This means that I xx is an

asymptotically unbiased estimator of fxx. It is not consistent since the variance is not tending to

zero. Also the estimates are asymptotically uncorrelated. This means that computing the estimates

IT;(x(o)i) j=1,...,T the estimates will fluctuate heavily. To obtain consistent estimates the usual

method is to smooth adjacent values of I,. There are several ways to do this. What is important is

that a bias is introduced if so many adjacent values are included that f, varies over the interval

used. On the other hand the variance is less when the smoothing includes many values. Hence

there is a tradeoff between unbiasedness and stable estimators and some compromise must be

found. We refer to textbooks on spectral analysis for more details.

In practice the periodogram is computed at more values than coi , j=1,...,T. The figures in this report

j•27;
are based on T'=432, except for the monthly series where T'=1536, and caj = 	 j=1,...,T'-1.

TI

These values are smoothed using a moving average of 21 for the spectral densities except for the

M2 series where there is no smoothing. When using these values for the crosspectra, the estimates

of the coherence showed large variations. Hence we used a moving average of length 71 width.

T-1

E
1=0
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The Business Cycle History Project

The Business Cycle History Project consists of a number of subprojects aiming at analysing (the

forces behind) business cycles in Norway in the period 1973-93, based on different, albeit

coordinated methologies. The project includes:

Time series analyses of macroeconomic variables (identification of cycles, turning points, plus

correlations between the variables).

Analyses of effects of "exogenous shocks" by means of contrafactual simulations on the

Statistics Norway's quarterly macroeconomic model (KVARTS), focusing on shocks from

world markets, from the oil sector and from domestic economic policy, plus supply side shocks

in the labour and commodity markets.

Analyses of internal Norwegian business cycle dynamics as described by the dynamic

properties of the quarterly model.

Reports from the project published so far:
Kjell Wettergreen: "Bestemmelse av konjunkturelle vendepunkter" (Identifying business cycle

turning points). Notater 93/16

Torbjorn Eika: "Hvorfor steg arbeidsledigheten sfi mye" (What caused the huge increase in

unemployment). Rapport 93/23. A summary published in "Faktorer bak Økningen i

arbeidsledigheten 1988-1991", Økonomiske analyser 2/93

Leo Andreas Griinfeld: Monetary Aspects of Business Cycles in Norway. An Exploratory Study

Based on Historical Data. Discussion Papers No 131. Oktober 1994

Anders Rygh Swensen: Simple examples on smoothing macroeconomic time series. Documents

95/1

Most of the remaining reports will be published during 1995.
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Issued in the series Documents

94/1 Haakon Vennemo (1994): Welfare and the
Environment. Implications of a recent tax
reform in Norway.

94/2 Knut H. Alfsen (1994): Natural Resource
Accounting and Analysis in Norway.

94/3 Olav Bjerkholt (1994): Ragnar Frisch 1895-
1995.

95/1 Anders Rygh Swensen (1995): Simple
examples on smoothing macroeconomic
time series.
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