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1. Introduction 
In this paper we are going to look at how to measure and estimate the uncertainty in the Norwegian 
Business Tendency Survey for manufacturing, quarrying and mining. We will disregard the effect of 
non-response, measurement error and coverage error, and focus on the uncertainty coming from 
estimating a population total based on a sample. This uncertainty is usually measured by the design-
based standard error, but we will also use a model-based measure. In addition to investigating the 
uncertainty of the estimator in use today (section 4-7), we introduce two alternative estimators for the 
existing one (section 8 and 9). 
 
The Norwegian Business Tendency Survey is a quarterly survey, and maps out the industrial 
management leaders judgement of the business situation and the outlook for a fixed set of indicators 
such as level of production, capacity utilisation and employment. We shall consider the diffusion 
index, which is a measure of the outlooks for the level of production in the next quarter. (Our analysis 
and the estimators we derive for this index will also hold for similar indexes in the Norwegian 
Business Tendency Survey).  
 
In section 2 we describe the population and the diffusion index, and in section 3 the sample design. 
The estimator of the diffusion index is introduced in section 4, and in section 5 and 6 we give a 
design-based and a model-based analysis of the estimator. The measurement of uncertainty these 
analyses give, are used to estimate the uncertainty in the Business Tendency Survey in the period 
1999, 2000 and 2002. The result of this estimation is presented in section 7. In section 8 and 9 we 
consider two alternative estimators of the diffusion index. Finally, a summary is given in section 10. 
 

2. Population 
The unit of analysis is the branch unit. The branch unit comprises all establishments within an 
enterprise belonging to the same 3-digit industry group (SIC94) - in the following referred to as the 
branch. The population covers all branch units within the industries Mining and quarrying (10,13-14) 
and Manufacturing (15-37), see the Standard of Industrial Classification 1994 (SIC94). The Business 
and Enterprise Register defines the population.    

2.1. Stratification 
Branch and number of employees stratify the population. The employment intervals are 0-99, 100-199, 
200-299 and 300-∞ . There are about 270 strata in the population.  

2.2. The diffusion index 
The diffusion index is a measure of how the branch units are judging the level of their productions in 
the next quarter compared to the current quarter. More precisely the diffusion index for a given quarter 
is given by  
 

 1
2

d S U= + , 

 
where  
 

 100sS
X

= ⋅          and           100uU
X

= ⋅ . 
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Here s  is the number of employees in branch units which expect that the production (to the branch 
unit) will be larger in the next quarter compared to the current quarter, u  is the number of employees 
in branch units which expect that the production (to the branch unit) will be more or less the same in 
the next quarter compared to the current quarter, and X  is the total number of employees for all 
branch units in the population. That is, d  gives the share of employees that are working in a branch 
unit that expects that its production will increase, plus half the share of employees that are working in 
a branch unit that expects that its production not will change. 
 
Because the expression 1 2S U+  is unsuitable for the analyses we are going to do, we define some 
new variables and use they to obtain a more suitable expression of the diffusion index. 
 
For branch unit i  in stratum h , we define the tendency variable  
 

 

if the branch unit expects its production to increase

if the branch unit expects its production to be unchang

if the branch unit expects its production to be smaller

       ,
1     ,
2
0          ,

hi

hi hi

x

y x=

  ,







 

 
where hix  is the employment of the branch unit.  
 
We now define the tendency variable of the stratum by 
 
 

h

h hi
i U

Y y
∈

= ∑ , 

  
where the subscript h  refers to the stratum label and hU  denotes the branch units belonging to the 
stratum. The tendency variable of the stratum is equal to the employment of the branch units (within 
the stratum) that expect their productions to increase, plus half the employment of the branch units 
(within the stratum) that expect their productions not to change. As more branch units expect the 
production to increase the larger hY  becomes. But the tendency variable could never exceed the 
employment in the stratum, that is, 
 
 h hY X≤  
 
where 

h
h hii U

X x
∈

=∑  is the employment in the stratum. 

 
Finally, we define the tendency variable of the population by 
 
 h

h

Y Y=∑ , 

 
where the sum 

h∑ is over all strata in the population. That is, the tendency variable of the 

population is equal to the employment of all the branch units that expect their productions to increase, 
plus half the employment of all the branch units that expect their productions not to change. Like hY , 
the tendency variable Y  is larger as more branch units expect the production to increase, but Y  will 
never exceed the total employment in the population.  
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With these definitions the diffusion index can be written  
 

(1) 

100

100 ,hh

hh

Yd
X

Y

X

= ⋅

= ⋅∑
∑

 

 
where hh

X X=∑  is the total employment in the population. In the rest of the paper we will be using 

this presentation of the diffusion index. 
 
Since 0 Y X≤ ≤ , the diffusion index will lie between 0 and 100. If 50d >  it means that the branch 
units that expect an increase in the production employ more people than the branch units that expect a 
reduction. The opposite situation, that is 50d < , means that the branch units that expect a reduction in 
the production employ more people than the branch units that expect an increase. We could say that 

50d >  indicates expected growth in the production while 50d <  indicates an expected reduction. 
 
The diffusion index (1) refers to the entire population. We are also interested in diffusion indexes for 
domains. A domain could for example be a branch, or a group of branches. The diffusion index for 
such a domain is also given by (1), but where the sum 

h∑ is only over the strata within the domain. 

 

3. The sample design 
A new sample is selected each year. If necessary, the sample is updated or rotated during the four 
quarters. The sample size is about 710. Branch units with more than 300 employees are included as a 
panel. Branch units with less than 10 employees are never included in the sample, that is, they have 
probability 0 of being selected.  
 
Proportional allocation is used to decide the size of the stratum samples. The allocation does not 
ensure that we get a sample form each stratum, so we might have strata without sample.  
 
The selections in the different strata are done independently. Within the stratum the sample is selected 
with probabilities proportional to size, where the size is the employment to the branch unit (branch 
units with less than 10 employees have probability 0 of being selected). 
 

4. Estimation of the diffusion index 
The estimator of the diffusion index (1) can be written as 
 

(2) 
ˆ

ˆ 100hh

hh

Y
d

X
= ⋅∑
∑

, 

 
where  
 

(3) ˆ h

h

s
h h

s

y
Y X

x
= ⋅  
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is a ratio estimator of the tendency variable 

h
h hii U

Y y
∈

=∑ .  Here, 
hsx  and 

hsy  are given by 

 

 1
h

h

s hi
h i s

x x
n ∈

= ∑        and        1
h

h

s hi
h i s

y y
n ∈

= ∑ , 

 
where hs  is the response sample from stratum h  and hn  is the size of hs . 
 
The estimator (2) requires a sample from each of the strata. As previously mentioned we can have 
strata with no sample. Such strata are probably removed from the population when d̂  is to be 
calculated, so that the sum 

h∑ is only over the strata with sample. 

 
The inequality 0 hi hiy x≤ ≤  implies that 0

h hs sy x≤ ≤  so that ˆ0 h hY X≤ ≤ . Hence, d̂  lies between 0 
and 100, which is a necessary property since the diffusion index lies between 0 and 100. In the next 
two sections we analyse d̂  further.   
 
The diffusion index for the domains is also estimated by (2), but again the sum 

h∑ is only over the 

strata within the group. 
 

5. Design-based analysis of the estimator 
This section presents a design-based analysis of d̂ . It means that we are looking at the tendency 
variables to the branch units as parameters, while the sample is stochastic. Thus in this section the 
variance, bias etc. will be derived under that situation. We assume a sample from each stratum, and 
take no account of non-response, measurement error or coverage error. 
 
A desired property of an estimator is unbiasedness. This means that the expectation of d̂  should equal 
d  for all possible values of the hiy 's, but this is not the case1. To see this we write the expectation as 
 

  
ˆEˆE 100hh

hh

Y
d

X
= ⋅∑
∑

, 

 
where ˆE hY  is the expectation of ĥY . Later on it is shown that ĥY  is generally not unbiased: The 
expectation of ĥY  can be both greater and smaller than ĥY , depending on the hiy 's. Hence, the 

expectation of d̂  can be both greater and smaller than d , and d̂  is thus not unbiased. 
 
Since we have independence between the strata, the variance of d̂  is given by 
 

 ( ) ( )
( )

2
2

ˆVˆV 100
hh

hh

Y
d

X
= ⋅
∑
∑

, 

                                                      
1 Even though d̂  is not unbiased, a simulation study shows that ˆEd d≈  for most of the configuration of the hiy 's. 
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where ( )ˆV hY  is the variance of ĥY . The standard error of d̂ , defined as the square root of the 

variance, is therefore 
 

(4)  ( ) ( )ˆV
ˆs.e. 100

hh

hh

Y
d

X
= ⋅
∑
∑

. 

 
 
The uncertainty of an estimator is usually measured by the standard error. But in a situation where the 
estimator is not unbiased, the mean squared error might be a better measure. The mean squared error is 
defined as the expectation of the square of the error, and equals the variance plus the square of the bias 
(the bias of an estimator is defined by the expectation of the error). That is, the mean squared error of 
d̂  is given by 
 

 
( ) ( )

( ) ( )

2

2

ˆ ˆMSE d E

ˆ ˆV d Bias d ,

d d = −  

= +

 

 
where ( )ˆ ˆBias Ed d d = −   is the bias of d̂ . 

 
Despite the fact that d̂  is not unbiased, we choose to measure the uncertainty of d̂  with the standard 
error. The reason for this choice is that we are not able to estimate the mean squared error of d̂ . (We 
give an upper and a lower bound of the bias of d̂  in subsection 5.1). 
 
Since the standard error (4) is unknown it has to be estimated. That is done by estimating the variance 
of the ĥY 's. There is no standard estimator of ( )ˆV hY , and we will use linearization to obtain an 

approximate variance that can be estimated (subsection 5.1). We have also considered using bootstrap 
to estimate the variance, but have not found any method suitable for our situation (subsection 5.2). 
 
Before we begin with the linearization in subsection 5.1, we introduce the inclusion probabilities, and 
use the explicit formula of these probabilities to obtain an upper bound of ( )ˆV hY  when 1hn = . 

 
The inclusion probability of a branch unit i  in stratum h  is denoted hiπ  and is the probability that the 
branch unit is included in the sample. Since branch units with less than 10 employees are excluded, 
these units have 0hiπ = . For the other branch units the inclusion probabilities are proportional to the 
employment (within each stratum). Using the notation   
 
 { }*  : 0h h hiU i U= ∈ π > , 
 

we have 0hiπ =  when *
hi U∉ , and ( )*/

h
hi h hi hii U

n x x
∈

π = ∑  when *
hi U∈  (provided that 

( )*/ 1
h

h hi hii U
n x x

∈
≤∑  for all *

hi U∈ , which is satisfied for most strata). 
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Now, let us consider the situation where 1hn = . Then it is impossible to estimate the variance of ĥY , 
and we shall use an upper bound as a conservative estimate of the variance. By writing 

( )ˆ /
s sh hi hi hY y x X=  and */

h
hi hi hii U

x x
∈

π = ∑ , where si  denotes the selected branch unit, the expectation 

can be written 
  

(5)  

*

*

* *

*

ˆE

.

h

h

h h

h

hi
h h hi

hii U

hi
i U

hi hi
hii U i U

i U

yY X
x

y

y x
x

∈

∈

∈ ∉
∈

= π

= +

∑

∑
∑ ∑∑

 

 
This expectation is generally not equal hY , unless *

h hU U= . That is, ĥY  is generally not unbiased. The 
variance of ĥY  can be written as 
 

(6) 
* *

* *

22
2

/
V s h h

s h h

hi hi hihi i U i U
h h

hi hi hii U i U

y x yy
X X

x x x
∈ ∈

∈ ∈

      = −           

∑ ∑
∑ ∑

. 

 
Using that hi hiy x≤ , gives  
 

 
* * * *

* * * *

2 22 2/ 1 1 1
2 2 4

h h h h

h h h h

hi hi hi hi hii U i U i U i U

hi hi hi hii U i U i U i U

y x y y y

x x x x
∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

        − ≤ − ≤ − =         

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

, 

 
and we get the inequality 
 

 21V
4

s

s

hi
h h

hi

y
X X

x

 
≤  

 
. 

 
That is, ( ) 2ˆV / 4h hY X≤  when 1hn = , and we use the bound 2 / 4hX  to estimate the variance. 

(Theoretically we could have found a better bound by maximizing with respect to the possible 
configuration of the hiy 's. But if hN  is large, the maximisations are impossible). 

5.1. Linearization 

Generally, assume we are going to estimate the variance ( )ˆV θ , where ( )ˆ gθ = y  is an estimator of 

( )gθ = Y . Here, ( ), ,1 pY Y= KY  and ( ), ,1 py y= Ky  are the vectors of population means and sample 

means, respectively. By doing a first order Taylor expansion of g  around the expectation 

( )1E E ,....,E py y=y , we obtain the approximation  
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 ( ) ( ) ( )
1

E E
p

j j j
j

g g a y y
=

≈ + −∑y y , 

 

where ( )Ej
j

ga
y
∂

=
∂

y . This approximation leads to the following approximation of the variance: 

 

 ( ) ( ) ( )2

1 1 1

ˆV V C ,
p p p

j j j i j i
j j i

i j

a y a a y y
= = =

≠

θ ≈ +∑ ∑∑ , 

 
where ( )C ,i jy y  is the covariance of iy  and jy . The variance of θ̂  is now estimated by estimating ja  

by ( )ˆ /j ja g y= ∂ ∂ y , and choosing suitable estimators of ( )V jy  and ( )C ,j iy y . 

 
In our situation we shall estimate the variance of ( )ˆ ,

h hh s sY g y x= , with ( ) ( )1 2 1 2, / hg y y y y X= . The 

approximation of ĥY  and ( )ˆV hY  becomes, respectively, 

 

(7) ( )
( )

( )2

E E1ˆ E E
E E E

h h

h h h h

h h
h

s s
h h h s s h s s

s s s

y y
Y X X y y X x x

x x x
≈ ⋅ + ⋅ ⋅ − − ⋅ ⋅ −  

 

 ( )
( )

( ) ( )
( )

( )
( )

( )
2

2 2 2
2 4 3

E E1ˆV V V 2 C ,
E E E

h h

h h h h

h h h

s s
h h s h s h s s

s s s

y y
Y X y X x X x y

x x x
≈ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ , 

 
and the proposed variance estimator of ĥY  is 
 

 ( )
( )

( ) ( )
( )

( )
( )

( )
2

2 2 2
2 4 3

1 ˆˆ ˆ ˆ ˆV V V 2 C ,h h

h h h h

h h h

s s
h h s h s h s s

s s s

y y
Y X y X x X x y

x x x
= ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅  

 
where ( )V̂

hsy , ( )V̂
hsx  and ( )Ĉ ,

h hs sx y  are estimators of ( )V
hsy , ( )V

hsx  and ( )C ,
h hs sx y , 

respectively. 
 
So we need to find estimators of ( )V

hsy , ( )V
hsx  and ( )C ,

h hs sx y . We begin with the variance of 
hsy , 

which can be written 
 

 

( ) ( )

( )( )

* *

* *

2

2

2

1V

1 1 .
2

h

h h

h h

s hi hj hij hi hj
h i U j U

hi hj hij hi hj
h i U j U

j i

y y y
n

y y
n

∈ ∈

∈ ∈
≠

= π − π π

= π π − π −

∑ ∑

∑ ∑
 

 
Here, hijπ  denotes the probability that branch units i  and j  will be included in the sample (second-

order inclusion probability), and hii hiπ = π . Two estimators of this variance are 
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 ( ) ( )
HT 2

1V̂
h

h h

hi hj hij hi hj
s

hiji s j sh

y y
y

n ∈ ∈

π − π π
=

π∑∑  

 
 and 
 

 ( ) ( )2
SYG 2

1 1V̂
2h

h h

hi hj hij
s hi hj

hiji s j sh
j i

y y y
n ∈ ∈

≠

π π − π
= −

π∑∑ . 

 
HT stands for Horvitz-Thompson and SYG stands for Sen-Yates-Grundy. Either estimator is unbiased 
if 0hijπ >  whenever 0hiπ >  and 0hjπ > 2. But unfortunately they might take negative values. 
 
To use the estimators ( )HTV̂

hsy  and ( )SYGV̂
hsy  we need to know the hijπ 's. When i j=  we have 

hij hii hiπ = π = π , and when i j≠  along with 1hiπ =  or 1hjπ =  we have hij hi hjπ = π π . So we know 
these hijπ 's since the hiπ 's are known. But we do not know the hijπ 's when i j≠  with 1hiπ ≠  and 

1hjπ ≠ . Thus, to be able to estimate ( )V
hsy  with ( )HTV̂

hsy  or ( )SYGV̂
hsy , we approximate the 

unknown hijπ 's with 
( )
( )

*

*

1
ˆ

1
h h

hij hi hj
h h

N n

n N

−
π = ⋅ π π

−
, where *

hN  is the size of *
hU .3 

 
With this approximation of the unknown hijπ 's, we get that 0hi hj hijπ π − π ≥  for all i j≠ . This ensures 

that ( )SYGV̂
hsy  always is positive. It can also be shown that if hijπ  is proportional to hi hjπ π  when 

i j≠ , *, hi j U∈ , then ( )SYGV̂
hsy  becomes larger if we use ˆ hijπ  instead of hijπ , while ( )HTV̂

hsy  

becomes smaller. For these reasons we choose to estimate ( )V̂
hsy  with ( )SYGV̂

hsy , that is, we 

estimate ( )V̂
hsy  with 

 

(8) ( ) ( )2
SYG 2

ˆ1 1V̂
ˆ2h

h h

hi hj hij
s hi hj

hiji s j sh
j i

y y y
n ∈ ∈

≠

π π − π
= −

π∑∑  

 
where 
 

                                                      

2 If 0hijπ >  when hiπ  and 0hjπ > , we can write ( ) ( )
* *

HT 2
1V̂

h

h h

hi hj hij hi hj
s hi hj

hijh i U j U

y y
y I I

n ∈ ∈

π − π π
= ⋅

π∑ ∑ . Here, 

1hiI =  if the branch unit i  is included in the sample and 0 otherwise. This gives ( )HT
ˆE V

hsy  =   

( ) ( ) ( )
* * * *

2 2
1 1E V

h

h h h h

hi hj hij hi hj hi hj hij hi hj
hi hj hij s

hij hijh hi U j U i U j U

y y y y
I I y

n n∈ ∈ ∈ ∈

π − π π π − π π
 ⋅ = ⋅ π = π π∑ ∑ ∑ ∑ . In a similar 

way it is shown that ( )SYG
ˆ ˆV hY  is unbiased. 

3 This approximation is from a course in model based survey estimation (lectured by Ray Chamber).  
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( )
( )

*

*

                           , when 

1
ˆ   , when ,  1 and 1

1

                      , when  and  or 1 .

hi

h h
hij hi hj hi hj

h h

hi hj hi hj

i j

N n
i j

n N

i j

π =
 −π = ⋅ π π ≠ π ≠ π ≠

−

π π ≠ π π =

 

 
 
In a similar way as we derived the estimator (8) of ( )V

hsy , we have 

 

(9) ( ) ( )2
SYG 2

ˆ1 1V̂
ˆ2h

h h

hi hj hij
s hi hj

hiji s j sh
j i

x x x
n ∈ ∈

≠

π π − π
= −

π∑∑  

 
and 
 

(10) ( ) ( )( )SYG 2

ˆ1 1Ĉ ,
ˆ2h h

h h

hi hj hij
s s hi hj hi hj

hiji s j sh
j i

x y x x y y
n ∈ ∈

≠

π π − π
= − −

π∑∑  

 
of ( )V

hsx  and ( )C ,
h hs sx y  respectively. The variance estimator of ĥY  becomes  

 

(11) ( )
( )

( ) ( )
( )

( )
( )

( )
2

2 2 2
SYG SYG SYG2 4 3

1 ˆˆ ˆ ˆ ˆV V V 2 C ,h h

h h h h

h h h

s s
h h s h s h s s

s s s

y y
Y X y X x X x y

x x x
= ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ , 

 
where ( )SYGV̂

hsy , ( )SYGV̂
hsx  and ( )SYGĈ ,

h hs sx y  are given by (8), (9) and (10) respectively. It can be 

shown that this estimator always is positive. 
 
The estimator (11) applies to strata where 1hn > . When 1hn =  we will estimate the variance with the 

upper bound 2 / 4hX  as previously mention. So, since ( )ˆV 0hY =  when *
h hn N= , we get the following 

estimator of the standard error (4): 
 

(12) ( ) ( )ˆV
ˆŝ.e. 100

hh

hh

Y
d

X
= ⋅
∑
∑

%

 

 
where 
 

 ( )
( )

*

2 *

*

0           , when 
1ˆV     , when 1
4
ˆ ˆV    , when 1

h h

h h h h

h h h

n N

Y X n N

Y n N

 =


= = <

 < <

%  

 
and ( )ˆ ˆV hY  is given by (11). 
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We have seen that ĥY  is, in general, not unbiased when 1hn = , and are now going to show that this is 
the case when 1hn >  as well. We have no explicit expression of the expectation when 1hn > , but 
using the approximation (7) gives that 
 

(13) 
*

*

EˆE
E

 .

h

h

h

h

s
h h

s

hi hii U
h

hi hii U

y
Y X

x

y
X

x
∈

∈

≈ ⋅

π
= ⋅

π

∑
∑

 

 
This approximation is generally not equal to hY . For most values of hix 's, there exist configurations of 
the hiy 's that makes the approximation either larger or smaller than hY . E.g., assume there is a stratum 
where 5hN = , 2hn =  and the hix 's are 100, 120, 130, 130 and 170. If the respective values of the 

hiy 's are 0, 120/2, 130/2, 130/2 and 170, then ( )E / E 396
h hs s hy x X⋅ ≈  while 360hY = . That is, the 

approximate expectation is larger than hY . If, on the other hand, the respective values of the hiy 's are 

100, 120/2, 130/2, 130/2 and 0, then ( )E / E 255
h hs s hy x X⋅ ≈  while 290hY = . That is, the approximate 

expectation is now smaller than hY . Thus, assuming that the approximation (13) is good enough, ĥY  is 
generally not unbiased. 
 
Since ĥY  is not unbiased, the estimator d̂  is not unbiased. This means that the bias of d̂ , ( )ˆBias d , is 

not equal to 0 for all possible configurations of the hiy 's. We will now derive upper and lower bounds 
of the bias. 
 
It can be shown that 
 

 ( ) ( )ˆBiasˆBias 100
hh

hh

Y
d

X
= ⋅
∑
∑

, 

 
where ( )ˆ ˆBias Eh h hY Y Y = −   is the bias of ĥY . For strata where 1hn =  we have from (5) that 

 
 ( )ˆBias

h

h hi hi
i U

Y c y
∈

= ∑ , 

 
where * *

h h
hi hi hii U i U

c x x
∉ ∈

=∑ ∑  when *
hi U∈  and 1−  when *

hi U∉ . (When *
h hU U=  we get 

( )ˆBias 0hY =  as we should). For strata where 1hn >  we make use of the approximation (13) and find 

 

 
( ) *

*

ˆBias

,

h

h

h

hi hi
i U

h h h
hi hi

i U

hi hi
i U

y

Y X Y
x

b y

∈

∈

∈

π

≈ ⋅ −
π

=

∑
∑

∑
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where 

*

1

h

hi h
hi

hj hj
i U

Xb
x

∈

π
= −

π∑
. Since ( )ˆBias 0hY =  when h hn N=  we have 

 

(14) ( ) { } { }: 1 : 1ˆBias 100.h h h h h h

hi hi hi hi
h n N i U h n N i U

h
h

b y c y

d
X

< < ∈ = < ∈

   
+   

   
   ≈ ⋅

∑ ∑ ∑ ∑

∑
 

 
By using 0 hi hi hi hib y b x≤ ≤  when 0hib ≥ , 0hi hi hi hib x b y≤ ≤  when 0hib ≤ , and 

* *
h h h

hi hi hi hii U i U i U
x c y x

∉ ∈ ∉
− ≤ ≤∑ ∑ ∑ , we get the inequality  

 

 { } { }: 1 : 1L 100 Uh h h h h h

hi hi hi hi
h n N i U h n N i U

h
h

b y c y

X
< < ∈ = < ∈

   
+   

   
   ≤ ⋅ ≤

∑ ∑ ∑ ∑

∑
 

 
where 
 

 
{ } { } *: 1 : 1

L= 100
c

h h h hh h

hi hi hi
h n N h n Ni A i U

h
h

b x x

X
< < = <∈ ∉

   
   −
   
    ⋅

∑ ∑ ∑ ∑

∑
, 

 

 
{ } { } *: 1 : 1

U= 100h h h h h h

hi hi hi
h n N i A h n N i U

h
h

b x x

X
< < ∈ = < ∉

  
 + 

       ⋅
∑ ∑ ∑ ∑

∑
, 

 
{ }:  0h hiA i b= ≥  and { }:  0

h

c
hiA i b= < . Under the assumption that the approximation (13) is good 

enough we can, therefore, use L as a lower bound and U as an upper bound of the bias of d̂ , that is  
 
 ( )ˆL Bias Ud≤ ≤ . 

 
We note that the bounds L and U depend on the employment of the branch units and the hn 's. Thus the 
bounds may differ form one quarter to another if the population or the hn 's change. We emphasize that 
the bias depends on the actual values of the hiy 's. Even though the bounds L and U turn out to be 
large, the bias may be small.  
 
If the actual values of the hiy 's are so that the bias of d̂  is approximately 0, then we can derive a 
confidence interval of d . To do this we use that  
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( )

( ){ }
( )

ˆ ˆEˆ
ˆ ˆs.e. V

h h h hh

h hh

Y Y Y Yd d
d Y Y

 − − −−  ≈
−

∑
∑

 

 
when ( )ˆBias 0d ≈ . Thus under some conditions on the variance ( )ˆV h hY Y−  we get via the Lindeberg 

theorem that ( ) ( )ˆ ˆs.e.d d d−  is approximately standard normal. An approximate 95% confidence 

interval of d  is therefore given by ( )ˆ ˆ1.96 s.e.d d± ⋅ . Since ( )ˆs.e. d  is unknown it is estimated by 

( )ˆŝ.e. d , and the interval 

 
(15) ( )ˆ ˆˆ1.96 s.e.d d± ⋅  

 
is used as a 95% confidence interval for d . 

5.2. Bootstrap 
The basic idea of bootstrap is to resample a lot of samples form the original sample. The new 
estimates based on these samples are then used to estimate the variance of the original estimator. The 
clue is to choose a resembling method so that the bootstrap variance estimator converges to a desired 
estimator (when the number of resamples approaches infinity). 
 
We are interested in a bootstrap method to estimate the variance of ( )ˆ /

h hh s s hY y x X= ⋅ . There exist 

some methods for this type of estimator, but they are all based on a simple random sample. If we use 
one of these methods, we probably get an estimator that is not suited to estimate the variance of ĥY . It 
also exist some methods for unequal probability sampling (Rao and Wu, 1988, and Sitter, 1992). But 
these methods are not derived for the type of estimator we have.      
 

6. Model-based analysis of the estimator 
This section presents a model-based analysis of d̂ . It means that we consider the tendency variables 
of the branch units as random variables, and the analysis is done conditional on the observed sample. 
Since the hiy 's are random, then the hY 's and d  are random as well. This means that we shall predict 

the value of a random variable, and so ĥY  and d̂  are often referred to as predictors. As in the previous 
section we assume a sample from each stratum, and take no account of non-response, measurement 
error or coverage error.   
 
Since the sample usually is selected randomly, it might seem strange to treat the sample not randomly 
and instead assume a population model. But to assume a population model is not uncommon in 
surveys. The choice of sample design and estimator is very often based on assumptions on how the 
variable of interest is distributed in the population. In addition, in the Norwegian Business Tendency 
Survey the same sample is used for four quarters (or even longer). For each quarter it is observed new 
values of the hiy 's in the sample. For these reasons it is meaningful to derive an analysis where we 
treat the sample as given and the hiy 's as random variables. Another argument for the model-based 
analysis is the Likelihood Principle. The Likelihood Principle points out that two proportional 
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likelihood functions shall give the same statistical analysis, and leads to that the population must be 
modelled to do a informative analysis. (For more on the Likelihood Principle, see Bjørnstad, 1995).   
 
The variable hiy  is now a random variable that can take the values hix , / 2hix  and 0 with probabilities 

sp , up  and mp , respectively. That is, sp  is the probability that the branch unit expects its production 
to increase ( hi hiy x= ), up  is the probability that the branch unit expects its production to be 
unchanged ( / 2hi hiy x= ), and mp  is the probability that the branch unit expects its production to 
decrease ( 0hiy = ). With this notation the expectation and variance of hiy  can be expressed as   
 
 E hi hixy β=  
  
and 
 
 2 2V( )hi hiy x= σ , 
 
where ( )1/ 2s up pβ = +  and ( ) ( )( )22 1/ 4 1/ 2s u s up p p pσ = + − + . 
 
The values of sp , up  and mp  may vary with the branch unit. But since branch units within the same 
stratum are in the same branch, it is not unreasonable to assume that these probabilities are 
approximately the same for all branch units in the stratum. Hence, β  and 2σ  are the same for all 
branch units in the stratum, say hβ  and 2

hσ  for stratum h . The model, denoted by ξ, is therefore given 
by 
 
 E    ,   stratum hi h hiy x i hβ= ∀ ∈  
 
 2 2V( )  ,   stratum hi h hiy x i h= σ ∀ ∈ . 
 
 
In the rest of this section we shall assume this model. We shall also assume that the hiy 's are 
independent of each other. 
 
Some branch units have employment 0hix = , that is 0hi hiy x= = . This means that 1s u mp p p= = = , 
and these probabilities are not equal to the probabilities for the other branch units in the stratum. Thus, 
the assumptions that led to the model ξ  dose not hold for branch units with 0hix = . But since 
E 0hi h hiy xβ= =  and 2 2V( ) 0hi h hiy x= = σ  when 0hix = , the model is still valid for these branch units.  
 
The fraction /

h hs sy x  can be interpreted as an estimator of hβ , and so we use the notation 
 

 ˆ h

h

s
h

s

y
x

β = , 

 
and get 
 
 ˆ

ĥ h hY X= β . 
 
By using that the sample hs  is given, we find that 
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 ˆE h hβ β=  
 
so that 
 
 ˆE 0h h h h h hY Y X Xβ β − = − =   

 
and 
 

 

( )ˆ
ˆE E 100

ˆE
100 0 .

h hh

hh

h hh

hh

Y Y
d d

X

Y Y

X

 −
  − = ⋅   
 

 − = ⋅ =

∑
∑

∑
∑

 

 
Since this is valid for all hs , hβ  and hσ , ĥY  and d̂  are unbiased.  
 
Since we are doing a model-based analysis, we are interested in the prediction variance ( )ˆV d d−  

instead of the variance ( )ˆV d  ( d̂ d−  is called the prediction error). By using the independence 

between the tendency variables we find that 
  

 

( ) ( )

( )
( )

2
2

ˆ
ˆV V 100

ˆV
100 .

h hh

hh

h hh

hh

Y Y
d d

X

Y Y

X

 −
 − = ⋅
 
 

−
= ⋅

∑
∑

∑
∑

 

 
The uncertainty of d̂  is now measured by the standard error 
  

(16) 

( ) ( )
( )

ˆ ˆs.e. V

ˆV
100 .

h hh

hh

d d d d

Y Y

X

− = −

−
= ⋅
∑
∑

 

 
 
Two arguments for choosing the prediction variance instead of the variance when measuring the 
uncertainty of a predictor are: 1) Assume that we are able to predict d  exactly, that is, we have a 
predictor d d=% . Then the measure of uncertainty should be zero since d  is predicted exactly. But if 
we measure the uncertainty with the variance of d%  ( ( ) ( )V Vd d=% ), we have a measure that indicates 

large uncertainty if the variance of d  is large. If we instead measure the uncertainty with the 
prediction variance ( ( ) ( )V V 0 0d d− = =% ), we have a measure that indicates that it is no uncertainty, 

as we wish. 2) Now, assume we know the expectation of d . If d  is predicted with this expectation, 
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that is Ed d=% , the measure of uncertainty should indicate large uncertainty if the variance of d  is 
large. This is satisfied with the prediction variance of d%  ( ( ) ( )V Vd d d− =% ), while the variance of d%  

always is zero. 
 
We estimate the standard error (16) by estimating the prediction variance ( )ˆV h hY Y− . Since 

ˆˆ
h h

h h h hi hii r i r
Y Y x y

∈ ∈
β− = −∑ ∑ , we find that   

 

(17) ( )
2

2 2 2ˆV h

h hh

hii r
h h h hi hi

i s i rhii s

x
Y Y x x

x
∈

∈ ∈∈

    − = σ +     

∑
∑ ∑∑

,   

 
where hr  is the number of non-sampled branch units in stratum h .   
 
From regression theory we have that   
 

 ( )22
2

1 1ˆ
1

h

h hi h hi
h i s hi

y x
n x∈

βσ = −
− ∑

% , 

 
where 
 

 1

h

hi
h

h hii sn
y
x∈

β = ∑% , 

 
is an unbiased estimator of 2

hσ . Hence, 
 

 

2

2 2 2ˆ h

h hh

hii r
h hi hi

i s i rhii s

x
x x

x
∈

∈ ∈∈

    σ +     

∑
∑ ∑∑

 

 
is an unbiased estimator of  (17) (provided that 1hn > ).  
 
When 1hn = , the prediction variance becomes  
 

 ( )
2

2 2ˆV
h h

h h h hi hi
i r i r

Y Y x x
∈ ∈

   − = σ +      
∑ ∑ , 

 
and is estimated with  
 

 
2

2 2

h h

h hi hi
i r i r

x x
∈ ∈

   σ +      
∑ ∑%  

 
where 
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 ( )22
2

1 1

l

h li l li
g l g i s li

y x
n g x∈ ∈

βσ = −
− ∑∑ %% . 

 
Here, g denotes the group of strata that have the same employment interval as stratum h , gn  is the 

number of selected branch units in this group, and g  is the number of strata in the group. (The 

estimator 2
hσ%  is an unbiased estimator of 2

hσ  if all 2
lσ , l g∈ , are equal).  

 
The estimator of the standard error (16) is   
 

(18) ( ) ( )ˆ ˆV
ˆŝ.e. 100

h hh

hh

Y Y
d d

X

−
− = ⋅

∑
∑

 

 
where 
 

(19) ( )

2

2 2 2

2

2 2

ˆ ,   if 1

ˆ ˆV

               ,   if 1 .

h

h hh

h h

hii r
h hi hi h

i s i rhii s

h h

h hi hi h
i r i r

x
x x n

x
Y Y

x x n

∈

∈ ∈∈

∈ ∈

      σ + >        − = 
    σ + =        

∑
∑ ∑∑

∑ ∑%

 

 
 
In addition to estimating d  with the estimator d̂  we can give a confidence interval for d . We have 
that 
  

 
( )

( )
( )
ˆˆ

ˆ ˆs.e. V

h hh

h hh

Y Yd d
d d Y Y

−−
=

− −

∑
∑

. 

 
Under certain conditions on the variance we get from the Lindeberg central limit theorem that 

( ) ( )ˆ ˆs.e.d d d d− −  is approximately standard normal. An approximate 95% confidence interval of d  

is therefore given by ( )ˆ ˆ1.96 s.e.d d d± ⋅ − . Since ( )ˆs.e. d d−  is unknown it is estimated by 

( )ˆŝ.e. d d− , and the interval   

 
(20) ( )ˆ ˆˆ1.96 s.e.d d d± ⋅ −  

 
is used as a 95% confidence interval for d . 
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7. Illustration 
In this section we shall use the uncertainty measures from sections 5 and 6 to estimate the uncertainty 
of d̂  in 1999, 2000 and 2002. The uncertainty measure from section 5 is the design-based standard 
error ( )ˆŝ.e. d , given by (12), and the uncertainty measure from section 6 is the model-based standard 

error ( )ˆŝ.e. d d− , given by (18).  

 
In 1999 we have data from 2., 3. and 4. quarter, in 2000 we have data from all four quarters, and in 
2002 we have data from 1. and 2. quarter. Since the population data from 1999 and 2000 are on an 
aggregate level, and we need population data on micro level to calculate the model-based measure 

( )ˆŝ.e. d d− , this measure is only calculated for 2002.  

 
In 1999 and 2000 the sample size is about 720. The non-response in this period varies from 125 to 158 
branch units. In 2002 the sample size is about 660, and the non-response is 84 branch units in 1. 
quarter and 97 branch units in 2. quarter. Hence, the non-response is about 19% in 1999 and 2000, and 
about 14% in 2002. 
 
The population consists of about 30000 branch units, spread over about 270 strata. For about 50 of 
these strata, the sample equals the total stratum. These are the strata with branch units that have 300 or 
more employees. For the other strata, a proportional allocation is used to decide the sample size of the 
strata. As mentioned before, this allocation does not ensure that we get a sample from each stratum, 
and we have about 70 strata with no data. If we in addition count the strata where all branch units are 
non-response, we have about 85 strata with no data. 
 
When the diffusion index d̂  and the standard errors ( )ˆŝ.e. d  and ( )ˆŝ.e. d d−  are calculated, we have 

removed from the population strata that have no sample. Properly speaking this means that d̂  is an 
estimator of the diffusion index of the domain defined by the strata with samples. It also means that 

( )ˆŝ.e. d  and ( )ˆŝ.e. d d−  are measures of the uncertainty of this estimator, and not of the diffusion 

index of the entire population.  
 
In addition to estimating the diffusion index of the entire population, we have estimated the diffusion 
index of three domains. The domains are called E1, E2 and E5. The domain E1 comprises 
intermediate goods, E2 comprises capital goods and E5 comprises consumer goods. 
 
The values of d̂ , ( )ˆŝ.e. d  and the design-based interval (15) are given in Table 1.4 If we compare the 

estimates of d  from one quarter to another, we see that the estimates have become larger from second 
to third quarter 1999, smaller from third to fourth quarter 1999, and so on throughout 2000. The only 
exception is domain E2 where the estimate has become larger from third to fourth quarter 2000 while 
the remaining estimates have become smaller. We also see that all estimates of d  for domain E1 are 
larger than 50. This indicates that the majority of branch units in domain E1 have expected growth in 
its production in this period. 
 

                                                      
4 We do not know if these intervals can be regarded as 95% confidence interval, since we do not know if the values of the 

hiy 's in the population are so that the design-bias of d̂  is approximately 0. 
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The estimates of the design-based standard error ( )ˆs.e. d  (Table 1) are smallest for the entire 

population and largest for the domain E2. For the entire population, ( )ˆŝ.e. d  varies from 1.43 to 1.56. 

This indicates small uncertainty when the diffusion index of the population is estimated. For domain 
E2, ( )ˆŝ.e. d  varies from 3.02 to 3.64 and indicates some uncertainty. For domain E1 and E5, ( )ˆŝ.e. d  

varies around 2.40 and 2.25, respectively. 
 
The estimates of the model-based standard error ( )ˆs.e. d d−  and the model-based confidence interval 

(20) are given in Table 2. The figures of ( )ˆŝ.e. d d−  for the population and the domains E1, E2 and E5 

are respectively 1.17, 1.91, 2.63 and 1.69 in 1. quarter 2002, and 1.28, 1.81, 2.79 and 2.17 in 2. quarter 
2002. Hence, the estimated uncertainty is smallest for the entire population and largest for domain E2.  
 
The design-based and the model-based standard error measure different kinds of uncertainty. The 
design-based standard error measures the uncertainty we have since a lot of samples that can be 
selected, while the model-based standard error measures the uncertainty coming from the assumption 
that the hiy 's are random variables that can take different values. If we compare the estimates, we see 

that the estimates of ( )ˆs.e. d d−  are smaller than the estimates of ( )ˆs.e. d . This could mean that the 

uncertainty measured with ( )ˆs.e. d d−  is smaller than the uncertainty measured with ( )ˆs.e. d . But 

since we have used a conservative estimate of ( )ˆV hY  ( 1hn = ) when ( )ˆs.e. d  is estimated, it is also 

possible that the two measures are of the same size. 
 
As mentioned, d̂  is not design-unbiased. To see how large the bias can be, we have calculated the 
lower and upper bound from subsection 5.1. We got the lower bound 19.23−  and the upper bound 
19.23 for 1. and 2. quarter 2002.5 (Since we need population data on micro level to calculate the 
bounds, they are only calculated for 2002). These bounds are huge, but it does not necessarily mean 
that the bias is large. It is possible that the hiy 's are so that the bias is small. 
 
To get an idea of the size of the bias with different configurations of the hiy 's, we have simulated 
10000 independent random configurations. For each of the configurations we have calculated the bias 
for 1. quarter 2002. This resulted in 10000 biases in the interval 1.664−  to 1.656. Only 106 of the 
biases were larger than 1 or smaller than 1− , while 8030 were in the interval 0.5−  to 0.5. This 
indicates that only a small proportion of all possible configurations of the hiy 's gives a large bias. If 
the actually hiy 's are not such a configuration the bias is small. 
 
 
 

                                                      
5 It is no coincidence that the absolute values of the bounds are equal. Using the notation from subsection 5.1 we have that 

0
h

hi hi
i U

b x
∈

=∑ . This gives 
c

hh

hi hi hi hi
i Ai A

b x b x
∈∈

= −∑ ∑ , and hence L U= − . 



20 

Table 1: Design-based standard error 
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Table 2: Model-based standard error and confidence interval 

 
 

 
 
 

8. An alternative estimator: Based on a corrected Horvitz-
Thompson estimator 

As we have seen, d̂  is not design-unbiased. We shall now introduce an estimator that have a smaller 
design-bias than d̂  for most of the configurations of the hiy 's, 
 

 100hh

hh

Y
d

X
= ⋅∑
∑

%
% , 

 
where 
  

 
*

h h

hi
h h hi

hii s i U

yY x
∈ ∉

= +β
π∑ ∑%%        and        1

h

hi
h

h hii s

y
n x∈

β = ∑% . 

 
 
When *

h hU U=  we have /
h

h hi hii s
Y y

∈
= π∑% , that is, the Horvitz-Thompson estimator. When *

h hU U≠ , 

hY%  can be read as a corrected Horvitz-Thompson estimator, where we correct with *
h

h hii U
x

∉
β ∑%  to 

reduce the design-bias. 
 
When 1hn = , we have ( )/

s sh hi hi hY y x X=% . Hence, we have ˆ
h hY Y=%  when 1hn = . 

 
We assume a sample from each stratum, and take no account of non-response, measurement error or 
coverage error when deriving the analyses of d% . 
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8.1. Design-based analysis 
We start this subsection by explaining why we choose to estimate hY  with a corrected Horvitz-
Thompson estimator instead of the Horvitz-Thompson estimator. 
 
The Horvitz-Thompson estimator /

h
hi hii s

y
∈

π∑  is unbiased when 0hiπ >  for all hi U∈ . That is, the 

Horvitz-Thompson estimator is unbiased when *
h hU U= . But when *

h hU U≠  the Horvitz-Thompson 
estimator is biased since 0hiπ =  for some hi U∈ . The bias is given by 
 

 
*

Bias
h h

hi
hi

hii s i U

y y
∈ ∉

 
= − 

 π 
∑ ∑ , 

 
and it is always negative. This means that the Horvitz-Thompson estimator systematically 
underestimates hY  when *

h hU U≠ . To reduce the bias, the sum *
h

hii U
y

∉∑  is estimated with 

*
h

h hii U
x

∉
β ∑%  and added to the Horvitz-Thompson estimator. This gives the estimator hY% .  

 
Even though this correction reduces the bias of the Horvitz-Thompson estimator for most 
configurations of the hiy 's, hY%  is still biased unless *

h hU U= . The expectation and the bias of hY%  are  
 

 
* * *

1E
h h h

hi
h hi hi hi

h hii U i U i U

yY y x
n x∈ ∈ ∉

  = + π  ∑ ∑ ∑%   

 
and 
 

 
( )

* * *

1Bias

 ,
h h h

h

hi
h hi hi hi

h hii U i U i U

hi hi
i U

yY x y
n x

b y
∈ ∉ ∉

∈

= π −

=

∑ ∑ ∑

∑

%

 

 
 where ( ) */

h
hi hi h hi hii U

b n x x
∉

= π ∑  when *
hi U∈  and 1−  otherwise. When *

h hU U=  we have 

* * 0
h h

hi hii U i U
x y

∉ ∉
= =∑ ∑  so that E h hY Y=%  and ( )Bias 0hY =% , as it should. But when *

h hU U≠  the bias 

of hY%  is not equal to 0 for all possible values of the hiy 's, that is, hY%  is not unbiased. 
 
Since hY%  is, in general, not unbiased, d%  is not unbiased. A simulation study shows, however, that the 

bias of d%  is approximately 0, and smaller than the bias of d̂ , for most of the configurations of the 
hiy 's (see subsection 8.3). 

 
We shall now derive bounds of the bias of d% . Since h hY Y=%  when h hn N= , we have 
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( )
( )

{ }

{ }

: 

: 

Bias

Bias 100

100 .

h h

h h h

h
h n N

h
h

hi hi
h n N i U

h
h

Y

d
X

b y

X

<

< ∈

= ⋅

= ⋅

∑
∑

∑ ∑
∑

%

%

 

 
By using ( )* *Bias

h h
hi h hii U i U

x Y x
∉ ∉

− ≤ ≤∑ ∑%  we get  

 
 ( )L Bias Ud≤ ≤% , 

  
where 
 

 { } *: L 100h h h

hi
h n N i U

h
h

x

X
< ∉

−

= ⋅
∑ ∑
∑

 

 
and 
 

 { } *: U 100h h h

hi
h n N i U

h
h

x

X
< ∉= ⋅
∑ ∑
∑

. 

 
Hence, L is a lower bound and U is an upper bound of ( )Bias d% . As will be shown in subsection 8.3, 

these bounds are significantly smaller than the bounds of ( )ˆBias d , but they are nevertheless large.  

 
The standard error of d%  is  
 

 ( ) ( )V
s.e. 100

hh

hh

Y
d

X
= ⋅
∑
∑

%
% , 

 

where ( )V hY%  is the variance of hY% . Since ( )( )*1/ /
h h

h hi hi h hi hii s i U
Y x n x y

∈ ∉
= π +∑ ∑%  we find that 

  

 ( ) ( )( )
* *

21V  
2

h h

h hi hj hij hi hj
i U j U

j i

Y v v
∈ ∈

≠

= π π − π −∑ ∑% , 

 

where ( )( )*1/ /
h

hi hi hi h hi hii U
v x n x y

∉
= π + ∑ . 
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The standard error of d%  is estimated by estimating the variance of the hY% 's. When 1hn =  it is 
impossible to estimate the variance. Then we shall use an upper bound as a conservative estimate. 
Since ˆ

h hY Y=%  when 1hn = , we have from section 5 that ( ) 2V / 4h hY X≤% , and this is the bound we shall 

use. 
 
When 1hn >  the variance is estimated with 
 

(21) ( ) ( )2
SYG

ˆ1V̂
ˆ2

h h

hi hj hij
h hi hj

hiji s j s
j i

Y v v
∈ ∈

≠

π π − π
= −

π∑∑% , 

 
where 
 

 
( )
( )

*

*

                            , when 

1
ˆ   , when ,  1 and 1 

1

                       , when  og  or 1 .

hi

h h
hij hi hj hi hj

h h

hi hj hi hj

i j

N n
i j

n N

i j

π =
 −π = ⋅ π π ≠ π ≠ π ≠

−

π π ≠ π π =

 

 
 
Hence, the standard error of d%  is estimated by 
 

(22) ( ) ( )V̂
ŝ.e. 100

hh

hh

Y
d

X
= ⋅
∑
∑

%
% , 

 
where 
 

 ( )
( )

*

2 *

*
SYG

0                 , when 
1V̂           , when 1
4
V̂    , when 1

h h

h h h h

h h h

n N

Y X n N

Y n N

 =

= = <

 < <

%

%

 

 
and ( )SYGV̂ hY%  is given by (21). 

 
If the values of the hiy 's are such that the bias of d%  is approximately 0, then we can derive an 
approximate 95% confidence interval of d . This is done in a similar way as in subsection 5.1, and 
gives the interval 
 
(23) ( )ˆ1.96 s.e.d d± ⋅% % . 

 
 
Since the bias of d%  is smaller than the bias of d̂  for most of the values of the hiy 's, we will prefer d%  

to d̂  if the standard error of d%  is smaller than the standard error of d̂ . Unfortunately we are not able 
to compare the standard errors. Instead we have compared the estimates of the standard errors, and 
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find that they are quite similar (subsection 8.3). This indicates that ( )s.e. d%  and ( )ˆs.e. d  is more or less 

the same. Hence, it does not seem to be any large gain by replacing d̂  with d% . 

8.2. Model-based analysis 

This subsection presents a model-based analysis of d%  under model ξ . That is, the sample is treated as 
given while we assume that 
 
 E    ,   stratum hi h hiy x i hβ= ∀ ∈ , 
 
 2 2V( )  ,   stratum hi h hiy x i h= σ ∀ ∈  
  
and that the hiy 's are independent of each other. 
 
From these assumptions we have 
 
  E 0h hY Y − = 

%  

 
and 
 

 
E

E 100 0h hh

hh

Y Y
d d

X

 −  − = ⋅ = 
∑
∑

%
% . 

 
That is, hY%  is an unbiased estimator of hY  and d%  is an unbiased estimator of d .6 
 
As argued in section 6, the uncertainty of a predictor is measured by the standard error of the 
prediction error. Thus, the uncertainty of d%  is measured with the standard error of d d−% ,  
 

 ( ) ( )V
s.e. 100

h hh

hh

Y Y
d d

X

−
− = ⋅

∑
∑

%
% . 

 
 

                                                      
6 To see that E 0h hY Y − = 

%  for strata where */
h

hi h hi hii U
n x x

∈
π = ∑  * hi U∀ ∈ , we write 

( )/ /
h

h h h hi hii s
Y X n y x

∈
= ∑% . From this it follows that E 0h hY Y − = 

% . For strata where */ 1
h

h hi hii U
n x x

∈
>∑  

for some i , say 1hi s∈ , we have 1hiπ =  for 1hi s∈ , and ( ) * \ 1
1 /

h h
hi h h hi hii U s

n s x x
∈

π = − ∑  for * \ 1h hi U s∈ . 

Then we can write ( ) ( ) *

1

1 \ 1 \ 1
1 /

h h h h h
h hi h h hi hi hii s i s s i U s

Y y n s y x x
−

∈ ∈ ∈
= + − +∑ ∑ ∑%  

( ) *
1 /

h h
h hi hi hii s i U

n y x x−
∈ ∉∑ ∑  (because 1h hs s⊂ ). From this it follows that E 0h hY Y − = 

% .   
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We estimate this standard error by estimating the variance ( )V h hY Y−% . By using that 

*1 1h

h h

hii U
h h hi hi

hi h hii s i r

x
Y Y y y

n x
∉

∈ ∈

 
 − = + − −
 π
 

∑
∑ ∑% , we find that  

 

 ( ) *

2

2 2 21V 1h

h h

hii U
h h h hi hi

hi h hii s i r

x
Y Y x x

n x
∉

∈ ∈

    − = σ + − +  π   

∑
∑ ∑% . 

 
So we need to estimate 2

hσ . Since we use the same model as in section 6, we can use the estimators 
from that section. That is, we estimate 2

hσ  with 
 

 ( )22
2

1 1ˆ
1

h

h hi h hi
h i s hi

y x
n x∈

βσ = −
− ∑

%  

 
when 1hn > , and  
 

 ( )22
2

1 1

l

h li l li
g l g i s li

y x
n g x∈ ∈

βσ = −
− ∑∑ %%  

 
when 1hn = . (Here g denotes the group of strata that have the same employment interval as stratum 
h , gn  is the number of selected branch units in this group, and g  is the number of strata in the 

group). As previous mentioned 2ˆ hσ  is an unbiased estimator of 2
hσ , while 2

hσ%  is unbiased if 2
lσ , l g∈ , 

are equal. 
 
The estimator of the standard error becomes 
 

(24) ( ) ( )V̂
ŝ.e. 100

h hh

hh

Y Y
d d

X

−
− = ⋅

∑
∑

%
% , 

 
where 
 

 ( )

*

*

2

2 2 2

2

2 2 2

1ˆ 1 ,   when 1

V̂

1 1 ,   when 1 .

h

h h

h

h h

hii U
h hi hi h

hi h hii s i r

h h

hii U
h hi hi h

hi h hii s i r

x
x x n

n x
Y Y

x
x x n

n x

∉

∈ ∈

∉

∈ ∈

      σ + − + >   π     − = 
      σ + − + =   π    

∑
∑ ∑

∑
∑ ∑

%

%

 

 
 
An approximate 95% confidence interval of d  based on d%  is given by  
 
(25) ( )ˆ1.96 s.e.d d d± ⋅ −% % . 
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Since both the estimators d%  and d̂  are model-unbiased, we will prefer the estimator that have the 
smallest standard error of the prediction error. If we do a comparison of ( )V h hY Y−%  and ( )ˆV h hY Y− , 

we find that ( )V h hY Y−%  can be both smaller and larger than ( )ˆV h hY Y−  (depending on the sample and 

the employment in the population). Hence, it is possible that ( )s.e. d d−%  can be both smaller and 

larger than ( )ˆs.e. d d−  (this will also depend on hσ ). Based on the estimates we have for 1. and 2. 

quarter 2002 (see Table 4), it seem like ( )s.e. d d−%  is a slightly smaller than ( )ˆs.e. d d−  for these two 

quarters. 

8.3. Illustration 

To calculate the estimator d%  and its uncertainty measures ( )ŝ.e. d%  and ( )ŝ.e. d d−% , given respectively 

by (22) and (24), we have used the same data as in section 7. Thus, we can only calculate ( )ŝ.e. d d−%  

for 2002, since we need population data on micro level to calculate this standard error. The values of 

( )ŝ.e. d%  and the confidence interval (23) are given in Table 3, while the values of ( )ŝ.e. d d−%  and the 

confidence interval (25) are given in Table 4. (To make the comparison of d%  and d̂  easier, we have 
given the values of d̂ , ( )ˆŝ.e. d  and ( )ˆŝ.e. d d−  in brackets after the values of d% , ( )ŝ.e. d%  and 

( )ŝ.e. d d−% , respectively). 

 
If we compare the values of d%  and d̂  we see that they are relatively equal. Some times d%  is a little 
larger than d̂ , other times a little smaller. But usually d%  is larger than d̂  (28 of the 36 estimates with 
d%  are larger than the corresponding estimate with d̂ ). We have the largest difference between the 
estimates in 4. quarter 2000, where 43.95d =%  and ˆ 42.13d =  for domain E5. 
 
The values of the design-based standard error ( )ŝ.e. d%  are smallest for the population and largest for 

the domain E2. The estimates vary around 1.45, 2.40, 3.20 and 2.20 for the population and the 
domains E1, E2 and E5, respectively. Based on these figures we may say that the uncertainty of d%  is 
small for the population and large for the domain E2. 
 
The estimates of ( )s.e. d%  are almost equal to the estimates of ( )ˆs.e. d . Some times ( )ŝ.e. d%  is smaller 

than ( )ˆŝ.e. d , other times larger. This suggests that the design-based standard errors ( )s.e. d%  and 

( )ˆs.e. d  are almost equal. 

 
In Table 4 we see that the values of the model-based standard error ( )ŝ.e. d d−%  in 1. quarter 2002 

equal 1.11, 1.81, 2.49 and 1.61 for respectively the population, domain E1, E2 and E5. The 
corresponding estimates in 2. quarter 2002 are 1.23, 1.72, 2.66 and 2.10. Again we have the smallest 
estimates for the population and the largest for the domain E2. 
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Comparing the estimates of ( )s.e. d d−%  with the estimates of ( )ˆs.e. d d− , we find that ( )ŝ.e. d d−%  is a 

little smaller than ( )ˆŝ.e. d d− . This could indicate that ( )s.e. d d−%  is a little smaller than ( )ˆs.e. d d−  

in these two quarters. 
 
To see how large the design-based bias of d%  can be, we have calculated the bounds L and U from 
subsection 8.1. We got the lower bound 11.00−  and the upper bound 11.00 for 1. and 2. quarter 2002. 
These bounds are much smaller than the bounds 19.23±  of ( )ˆBias d . The bounds are nevertheless 

large. Fortunately, a simulation study suggests that only a few of all possible configurations of the 

hiy 's give a large bias. We have simulated 10000 configurations of the hiy 's, and calculated ( )Bias d%  

for 1. quarter 2002. The resulting 10000 values of the bias all fall in the interval 0.479−  to 0.428. 
 
We have also compared ( )Bias d%  and ( )ˆBias d  with randomly chosen configurations of the hiy 's. 

This showed that ( )Bias d%  can be both larger and smaller than ( )ˆBias d , but that ( )Bias d%  usually is 

smaller than ( )ˆBias d . (Since we do not know the exact bias of d̂ , we have used the approximation 

(14)).   
 
 
 

Table 3: Design-based standard error 

The figures in brackets are d̂  and ( )ˆŝ.e. d  from Table 1. 
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Table 4: Model-based standard error and confidence interval 

The figures in brackets are d̂  and ( )ˆŝ.e. d d−  from Table 2. 
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9. An alternative estimator: Based on best linear unbiased 
predictor 

The estimator d%  was motivated from a design-based point of view. We shall now present an estimator 
that is motivated form a model-based point of view. The estimator is 
 

 
ˆ̂

ˆ̂ 100hh

hh

Y
d

X
= ⋅∑
∑

, 

 
where 
 

 ˆ̂

h h

h hi h hi
i s i r

Y y x
∈ ∈

= +β∑ ∑%         and          1

h

hi
h

h hii s

y
n x∈

β = ∑% . 

 
 

It can be shown that ˆ̂
hY  is the best linear unbiased predictor of hY , under model ξ  (Bjørnstad, 1995). 

That is, among all linear and unbiased predictors of hY , ˆ̂
hY  is the predictor that has smallest prediction 

variance. 
 

When 1hn = , we have ( )ˆ̂ /
s sh hi hi hY y x X= . Hence, we have ˆ̂ ˆ

h h hY Y Y= = %  when 1hn = . 

 
We assume a sample from each stratum, and take no account of non-response, measurement error or 

coverage error when deriving the analyses of ˆ̂d .   

9.1. Design-based analysis 

We are not able to find exact expressions of the design-based expectation and variance of ˆ̂
hY  (except 

when 1hn = ). For this reason we write ˆ̂
hY  as 

 

 ˆ̂ 1
h

hh

h
h hi h s

h hi si s

X yY y n x
n x x∈

   = + ⋅ −   
  

∑ , 

 
where  ( ) ( )/ 1/ /

h h
h hi his i s

y x n y x
∈

= ∑ , and do a first order Taylor expansion of the last term. That is, 

we do the approximation 
   

 ( )E E E -E E -E
h h h h h

h h h h h

h s h s h s h s s
s s s s s

y y y y yn x n x n x n x x
x x x x x

          ≈ + +                     
, 

 
and obtain 
 

(26) ( )ˆ̂ 1 E E E -E E -E
h h h h

h h h hh

h
h hi h s h s h s s

h hi s s s si s

X y y y yY y n x n x n x x
n x x x x x∈

          ≈ + ⋅ − − −                     
∑ . 
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From this we have  
 

 
* * *

ˆ̂E E 1 E E

11

,

h

hh

h h h

h

h
h hi h s

h hi si s

h hi
hi hi hi hi hi

h hi h hii U i U i U

h
h hi hi hi

hi U

X yY y n x
n x x

X yy x
n x n x

YY y x
X

∈

∈ ∈ ∈

∈

    ≈ + ⋅ −    
    

 
= + π − π π 

 

 
= + − π 

 

∑

∑ ∑ ∑

∑

 

 

where the last equality refers to strata where ( )/hi h hi hn x Xπ =  for all hi U∈ . The bias of ˆ̂
hY  is now 

approximated with 
  

(27) 

*

* *

ˆ̂Bias 1

 ,

h

h h

h

h hj hjj U
h hi hi hi hi

h hii U i U

hi hi
i U

X x
Y y y

n x

b y

∈

∈ ∉

∈

 − π   ≈ π + ⋅ π − −    
 

=

∑
∑ ∑

∑
 

 

where 
*

1h
h hj hjj U

hi hi hi
h hi

X x
b

n x
∈

− π
= π + ⋅ π −

∑
 when *

hi U∈  and 1−  elsewhere. This approximation is in 

general not equal to 0. 
 

When 1hn =  we have an exact expression of ˆ̂Bias hY 
 
 

. From section 5 we have that 

 

 

*

* **

ˆ̂Bias

 ,

h

h hh

h

hii U
h hi hi

hi i U i Ui U

hi hi
i U

y
Y x y

x

c y

∈

∉ ∉∈

∈

  = − 
 

=

∑
∑ ∑∑

∑
 

 

where * *
h h

hi hi hii U i U
c x x

∉ ∈
=∑ ∑  when *

hi U∈ , and 1−  elsewhere (because ˆ̂ ˆ
h hY Y=  when 1hn = ). This 

bias is in general not equal to 0, unless *
h hU U= .  

 

The bias of ˆ̂d  is given by  
 

 

ˆ̂Biasˆ̂Bias 100
hh

hh

Y
d

X

 
    = ⋅ 

 

∑
∑

. 

 

Since ˆ̂
hY  in general is a biased estimator, ˆ̂d  is a biased estimator. To derive upper and lower bounds 

of the bias, we use the approximation (27) and find that 
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(28) { } { }: 1 : 1ˆ̂Bias 100h h h h h h

hi hi hi hi
h n N i U h n N i U

h
h

b y c y

d
X

< < ∈ = < ∈

   
+   

        ≈ ⋅ 
 

∑ ∑ ∑ ∑

∑
. 

 
By using 0 hi hi hi hib y b x≤ ≤  when 0hib ≥ , 0hi hi hi hib x b y≤ ≤  when 0hib ≤ , and 

* *
h h h

hi hi hi hii U i U i U
x c y x

∉ ∈ ∉
− ≤ ≤∑ ∑ ∑ , we derive the inequality 

 

 { } { }: 1 : 1L 100 Uh h h h h h

hi hi hi hi
h n N i U h n N i U

h
h

b y c y

X
< < ∈ = < ∈

   
+   

   
   ≤ ⋅ ≤

∑ ∑ ∑ ∑

∑
, 

 
where 
 

 
{ } { } *: 1 : 1

L= 100
c

h h h hh h

hi hi hi
h n N h n Ni A i U

h
h

b x x

X
< < = <∈ ∉

   
   −
   
    ⋅

∑ ∑ ∑ ∑

∑
, 

 

 
* s.a. 1  s.a. 1

U= 100h h h h h h

hi hi hi
h n N i A h n N i U

h
h

b x x

X
< < ∈ = < ∉

  
 + 

       ⋅
∑ ∑ ∑ ∑

∑
, 

 
{ }:  0h hiA i b= ≥  and { }:  0

h

c
hiA i b= < . Under the assumption that the approximation (28) is good 

enough we can, therefore, use L as a lower bound and U as an upper bound of the bias of ˆ̂d , that is 
  

 ˆ̂L Bias Ud ≤ ≤ 
 

. 

 
As will be seen in subsection 9.3, these bounds are large. But again, a simulation study shows that 
most of the configurations of the hiy 's give a relatively small bias. 
 

From (26) we find that the variance of ˆ̂
hY  can be approximated with 
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( )

( )( )
*

2

ˆ̂V V 1 E E

V E E

V

1
2

h h

h hh

h

hh

h

h

h
h hi h s h s

h hi s si s

h hi
hi hi s hi

h hi hi si s

hi
i s

hi hj hij hi hj
i j U

j i

X y yY y n x n x
n x x x

X y yy y x x
n x x x

z

z z

∈

∈

∈

∈
≠

          ≈ + ⋅ − −                    
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. When 1hn =  we do as for ĥY  and estimate the variance 

with the upper bound 2 / 4hX . 
 

The standard error of ˆ̂d  is given by  
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and estimated by 
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and SYG
ˆˆ ˆV hY 

 
 

 is given by (29). 

 
An approximate 95% confidence interval of d  is 
  

(31) ˆ ˆˆ ˆˆ1.96 s.e.d d ± ⋅  
 

, 

 

provided that the hiy 's are so that the bias of ˆ̂d  is approximately 0. 
 

To determine if ˆ̂d  is a better estimator than d̂ , we have to compare both the standard errors and the 
biases. Unfortunately we are not able to compare the standard errors, but based on the estimates they 

seem to be quite similar. Regarding the biases, a simulation study shows that ˆ̂Bias d 
 
 

 can be both 

smaller and larger than ( )ˆBias d . Therefore, we cannot say that one of the estimators always is better 

than the other one.  

9.2. Model-based analysis 
In this subsection we shall again treat the sample as given and assume that the hiy 's are distributed 
according to model ξ . That is, we assume that 
  
 E    ,   stratum hi h hiy x i hβ= ∀ ∈ , 
 
 2 2V( )  ,   stratum hi h hiy x i h= σ ∀ ∈  
  
and that the hiy 's are independent of each other.  
 

From these assumptions we have ˆ̂E 0h hY Y − =  
 so that  
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Y Y
d d
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∑
∑

. 

 

That is, ˆ̂d  is unbiased. 
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By using ( ) ( )ˆ̂ 1/ /
h h h

h h h hi hi hi hi
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∈ ∈ ∈

− = −∑ ∑ ∑  we find that the prediction variance of ˆ̂
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From this expression it is seen that the prediction variance of ˆ̂
hY  is smallest when the branch units 

with the largest employment are sampled. 
 

It can be shown that the prediction variance of ˆ̂
hY  is less than or equal to the prediction variance of all 

linear and unbiased predictors of hY . Since ĥY  and hY%  are linear and unbiased this means that ˆ̂
hY  has a 

smaller (or equal) prediction variance than ĥY  and hY% . Hence, the standard error  
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is smaller than the corresponding standard errors of d̂  and d% . 
 

We estimate the standard error (32) by estimating the prediction variance of ˆ̂
hY , and we estimate the 

prediction variance of ˆ̂
hY  by estimating 2

hσ . To estimate 2
hσ  we use the same estimator as in section 6 

and subsection 8.2, that is  
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− ∑∑ %%  

 
when 1hn = . (Here, g denotes the group of strata that have the same employment interval as stratum 
h , gn  is the number of selected branch units in this group, and g  is the number of strata in the 
group). The estimator of the standard error (32) is therefore  
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is a estimator of ˆ̂V h hY Y − 
 

. 

 

We note that ˆˆ ˆV h hY Y − 
 

 is smaller than ( )ˆ ˆV h hY Y−  and ( )V̂ h hY Y−% . This is because the prediction 

variance of ˆ̂
hY  is smaller than the prediction variance of ĥY  and hY%  for all 2 0hσ > , and that 2

hσ  is 
estimated with the same estimator in all prediction variances. From this it also follows that 

ˆ̂ŝ.e. d d − 
 

 is smaller than ( )ˆŝ.e. d d−  and ( )ŝ.e. d d−% . 

 

An approximate 95% confidence interval of d  based on ˆ̂d  is given by 
  

(34) ˆ ˆˆ ˆˆ1.96 s.e.d d d ± ⋅ − 
 

. 

 

This interval is narrower than the corresponding intervals based on d̂  and d% , since ˆ̂ŝ.e. d d − 
 

 is 

smaller than ( )ˆŝ.e. d d−  and ( )ŝ.e. d d−% . 

   

We have seen that all the estimators d̂ , d%  and ˆ̂d  are model-unbiased with model ξ . Since 
ˆ̂s.e. d d − 

 
 is smaller than ( )ˆs.e. d d−  and ( )s.e. d d−%  we may say that ˆ̂d  is a better estimator than 

d̂  and d% . However, whether or not d̂  should be replaced by ˆ̂d  depends on how much smaller 
ˆ̂s.e. d d − 

 
 is compared to ( )ˆs.e. d d− . (As will be seen in the next subsection, the estimates of 

ˆ̂s.e. d d − 
 

 are just a little smaller than the estimates of ( )ˆs.e. d d− ). 

9.3. Illustration 

We use the same data to calculate the uncertainty measures of ˆ̂d , as we used to calculate the 
uncertainty measures of the estimators d̂  and d% . Table 5 presents the values of the design-based 

standard error ˆ̂ŝ.e. d 
 
 

, given by (30), and the confidence interval (31). Table 6 gives the values of the 

model-based standard error ˆ̂ŝ.e. d d − 
 

, given by (33), and the confidence interval (34). 
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The values of ˆ̂d  and d̂ are quite similar. Usually ˆ̂d  is larger than d̂  (26 of the 36 estimates with ˆ̂d  
are larger than the corresponding estimate with d̂ ). We have the largest difference in 1. quarter 2002, 

where ˆ̂ 58.48d =  while ˆ 56.82d =  for domain E2. If we compare with the values of d%  as well, we 

find that ˆ̂d  falls between d̂  and d%  in 23 cases (and usually we have the relationship ˆˆ ˆd d d≤ ≤ % ).  
 

From Table 5 we have that the estimates of ˆ̂s.e. d 
 
 

 vary around 1.45 for the population, 2.40 for 

domain E1, 3.20 for domain E2, and 2.20 for domain E5. We may say that the uncertainty is small for 
the population, somewhat larger for domain E1 and E5, and largest for domain E2.  
 

The estimates of ˆ̂s.e. d 
 
 

 are almost equal to the estimates of ( )ˆs.e. d . Some times ˆ̂ŝ.e. d 
 
 

 is smaller 

than ( )ˆŝ.e. d , other times larger. In one case the estimates are (approximately) the same. This suggests 

that the design-based standard errors ˆ̂s.e. d 
 
 

 and ( )ˆs.e. d  are almost equal. (If we compare ˆ̂ŝ.e. d 
 
 

 

and ( )ŝ.e. d%  we find that they are (approximately) equal in 24 cases). 

 

In Table 6 we see that the model-based standard error ˆ̂ŝ.e. d d − 
 

 in 1. quarter 2002 equals 1.11, 1.80, 

2.47 and 1.59 for respectively the population, domain E1, E2 and E5. The corresponding estimates in 
2. quarter 2002 are 1.22, 1.72, 2.63 and 2.07. 
 

We know that ˆ̂s.e. d d − 
 

 is smaller than ( )ˆs.e. d d−  and ( )s.e. d d−% . We also know that 

ˆ̂ŝ.e. d d − 
 

 is smaller than ( )ˆŝ.e. d d−  and ( )ŝ.e. d d−% . From Table 4 and 6 we find that ˆ̂ŝ.e. d d − 
 

 

is almost equal to ( )ŝ.e. d d−% , and just a little bit smaller than ( )ˆŝ.e. d d− . This could indicate that 

ˆ̂s.e. d d − 
 

 is almost equal to ( )s.e. d d−% , and just a little bit smaller than ( )ˆs.e. d d− . 

 

We have calculated the bounds of ˆ̂Bias d 
 
 

 from subsection 9.1, obtaining the lower bound 12.59−  

and the upper bound 12.59 (for 1. and 2. quarter 2002). The corresponding bounds of d̂  and d%  are 

19.23±  and 11.00± , respectively. This means that the bounds of ˆ̂Bias d 
 
 

 are some smaller than the 

bounds of ( )ˆBias d , and a bit larger than the bounds of ( )Bias d% . 

 

To get a better picture of the design-based bias of ˆ̂d , we have simulated 10000 independent 

configurations of the hiy 's. For each of these we have calculated the bias of ˆ̂d . This gave 10000 
biases in the interval 0.708−  to 0.774, and 9903 of these were in the interval 0.5−  to 0.5. This 

indicates that the bias of ˆ̂d  is small for most of the configurations of the hiy 's. 
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We have also compared ( )ˆBias d  and ˆ̂Bias d 
 
 

 with randomly chosen configurations of the hiy 's. 

This showed that ˆ̂Bias d 
 
 

 can be both larger and smaller than ( )ˆBias d , but that ˆ̂Bias d 
 
 

 usually 

is smaller than ( )ˆBias d . 

 
 

Table 5: Design-based standard error 

The figures in brackets are d̂  and ( )ˆŝ.e. d  from Table 1. 
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Table 6: Model-based standard error and confidence interval 

The figures in brackets are d̂  and ( )ˆŝ.e. d d−  from Table 2. 

 
 

 
 
 
 

10. Summary  
In this paper we have seen how the uncertainty of d̂  can be measured by design-based standard error 
and model-based standard error. The design-based standard error measures the uncertainty arising 
from the fact that a lot of samples can be selected. The model-based standard error measures the 
uncertainty coming from the assumption that the hiy 's are random variables that can take different 
values. 
 
If we measure the uncertainty with the design-based standard error, the uncertainty is small when the 
diffusion index of the population is estimated (the estimates of the standard error vary from 1.43 to 
1.59). The uncertainty is a little larger when the diffusion index of domain E1 and E5 is estimated (the 
estimates of the standard error vary from 2.17 to 2.49 for domain E1 and from 2.06 to 2.40 for domain 
E5). For domain E2 the estimates of the standard error vary form 3.02 to 3.64 and indicates some 
uncertainty for this domain.  
 
When we measure the uncertainty with the model-based standard error, it seems to be a relative small 
uncertainty when the diffusion index of the population and the domain E1 is estimated (the estimates 
of the standard error for the population equal 1.17 and 1.28). The uncertainty is a little bit larger for 
the domain E5. We have the largest uncertainty when we estimate the diffusion index of domain E2 
(the estimates of the standard error are 2.63 and 2.79).  
 
Which of these measures we should use depends on which uncertainty we want to measure. The 
design-based measure is often used in survey sampling, but we believe that the model-based measure 
might be a better measure in the Business Tendency Survey. This is because the same sample is used 
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for several quarters, and for each quarter it is observed new values of the hiy 's in the sample. Hence it 
seems reasonable to think of the sample as given and instead treat the hiy 's as random variables. 
 
In addition to measuring the uncertainty of d̂  we have analysed two alternative estimators of the 

diffusion index ( d%  and ˆ̂d ). The reason for doing this was to see if the diffusion index can be 
estimated more accurately with one of these estimators (compared to d̂ ). Whether that is the case 
depends on whether we have a design-based or a model-based point of view.   
 
If we choose a design-based point of view, we cannot say that one of the estimators always is better 
than the others. It seems that each of the estimators could be better than the others for some 
configurations of the hiy 's, but not for all. 
 
On the other hand, if we believe it is more proper to look at the estimators from a model-based point 

of view, then ˆ̂d  is the best estimator. This is because ˆ̂d  has the smallest model-based standard error. 
(All of the estimators are unbiased under the assumed model). But the differences between the 
standard errors are probably quite small, based on the estimates of the standard errors. Hence, it does 
not seem worthwhile to replace the estimator in use today.  
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