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Sammendrag 

Tidsserier fra Arbeidskraftsundersøkelsene (AKU) er av stor interesse for mange ulike etater og 

individer i Norge. De er konstruert fra bakenforliggende roterende paneldata for individer. Fra tid til 

annen skjer det endringer i utvalgsundersøkelsene som krever justeringer av tidsseriene for at en 

sammenligning over tid skal være informativ. Slike justeringer omtales som bruddjuste-ringer. I 

begynnelsen av 2021 skjedde flere endringer som ga opphav til behov for bruddjuste-ringer. En 

oversikt over disse gis i manuskriptet. 

Dataene er månedlige, og vi bruker data fra og med januar 2006 til og med oktober 2021. Vi ser både 

på sysselsatte og arbeidsledige, og vi modellerer ulike undergrupper som er delt inn etter kjønn og 

alder. For hver undergruppe betraktes 9 tidsserier hvorav 8 er de såkalte utvalgsbølgene fra AKU, 

mens den siste er en registervariabel. I en gitt måned vil utvalget på grunn av rota-sjonsdesignet være 

sammensatt av individer som er med før første gang, for annen gang osv. inntil åttende og siste gang.  

Vi gjennomfører bruddjustering innenfor rammen av såkalte (multivariate) strukturelle tidsse-

riemodeller der vi spesifiserer disse som tilstandsmodeller. I strukturelle tidsseriemodeller skiller en 

mellom ulike latente komponenter som har en klar fortolkning. Vi har med komponenter for trend, 

sesong og irregularitet. Disse komponentene er antatt å være de samme for de åtte utvalgs-bølgene, 

mens det er egne slike komponenter for registervariabelen. En viktig antagelse i analy-sen er at 

trenden for AKU-variablene og registervariabelen er korrelerte. Ved siden av disse tre komponentene 

har vi også med to komponenter som kun inngår for utvalgsbølgene og ikke for registervariabelen. 

Dette er bølgespesifikke latente effekter og en komponent som fanger opp en autokorrelasjonsstruktur 

i utvalgsfeilen som følger av rotasjonsdesignet. Selve bruddeffekten er modellert som et nivåskift som 

inntreffer januar 2021. Den tillates å variere mellom bølgene. Bruddeffekten berører ikke 

registervariabelen, og det er dette som gjør at en klarer å kvantifisere effekten av bruddet. 

Det at bruddet på grunn av redesign av AKU har funnet sted samtidig med en pandemi (Covid-19) er 

utfordrende. Vi har forsøkt å ta hensyn til dette ved å tillate at trendene, både til AKU-variablene og 

registervariabelen har vært mer volatile under pandemien. Dette har blitt gjort ved å innføre 

tidsvarierende hyperparametre i spesifikasjonen av trendene. Volatiliteten tillates å være sterkere fra 

og med starten av 2020. Vi har skilt mellom 2 underperioder der en tar hensyn til at volatiliteten var 

sterkere i første halvår 2020 enn i de etterfølgende måneder inntil oktober 2021, som er siste måned 

som er med i undersøkelsen. 

Vi finner at det å ta hensyn til endret volatilitet i trendkomponentene har noe å si for bruddesti-matet. 

Basert på bruddestimatene for de ulike undergruppene kan vi avlede et totalt bruddestimat for 

henholdsvis sysselsatte og ledige. For sysselsatte finner vi et bruddestimat for januar 2021 på i 

overkant av 24.000 individer. Det er imidlertid stor variasjon mellom de ulike undergruppene som 

utgjør totalen. Det er resultatene for kvinner som dominerer når det gjelder bruddestimatet for 

sysselsetting. Resultatene for menn er ikke signifikant forskjellige fra null. Det totale brudde-stimatet 

for arbeidsledige er på i underkant av 5.500 individer, men det er ikke signifikant for-skjellig fra null. 

Også for de arbeidsledige er det betydelig variasjon mellom undergruppene som til sammen utgjør 

totalen. Det er den yngste aldersgruppen, som utgjøres av individer mellom 15 og 24 år, for begge 

kjønn som trekker estimatet opp. Her finner en positive signifikante estima-ter, mens estimatene for 

den eldste aldersgruppen, som utgjøres av de mellom 25 og 74 år, begge er små, negative og ikke 

signifikante. 
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1. Introduction1 

Time series from labour force surveys (LFS) that describe the situation in the labour market are 

important for many users. These series provide essential information for fiscal and monetary policy 

and centralized wage bargaining in Norway, either directly or indirectly through the national accounts. 

Therefore, they must be defined consistently across time, as it is otherwise difficult to interpret them. 

From time to time, it is necessary to redesign the surveys, for instance, in connection with 

international regulations. Such changes require correcting time series to make them comparable over 

time. How best to quantify and implement such corrections depends on the information at hand: for 

instance, whether one has parallel surveys or auxiliary variables at one’s disposal.  

 

From the beginning of 2021, the Norwegian LFS went through a substantial redesign in accordance 

with the new regulation for integrated European social statistics (IESS). There is a modified 

questionnaire, where question sequences, formulations and answer alternatives have changed. The 

target population was changed from covering all registered residents aged 15-74 to registered residents 

aged 15-89 in private households. At the same time (and not required through IESS), Statistics 

Norway changed the sampling design. The sampling unit changed from nuclear family to person, and 

the sample is now stratified according to the characteristics of the persons. Due to the sampling unit’s 

change, Statistics Norway no longer allows other family or registered household members to answer 

on behalf of the person anymore. 

 

The current paper quantifies the structural breaks in the main LFS time series brought about by the 

substantial redesign of the Norwegian LFS. The analysis is carried out within a structural time series 

framework using state-space models on monthly data from January 2006 (2006M1) to October 2021 

(2021M10). The paper looks at persons aged 15-74, since they are the age group for which we have 

data both before and after the LFS redesign. We follow the tradition introduced by Pfeffermann (1991) 

and further developed by, e.g., van den Brakel and Krieg (2009, 2015).  

 

The Norwegian LFSs follow a rotating design, whereby each respondent participates 8 times over a 

two–year period, making it possible to divide the sample into 8 waves. The modelling strategy follows 

a disaggregated approach in that the modelling is conducted in different domains by modelling the 8 

waves jointly. The aggregated figures are derived from this disaggregated information. Using this 

approach, we account for the different domains being heterogeneous, which influences aggregate 

                                                      

1 A more extensive documentation of the structural break estimates in the Norwegian LFS is available in Hamre et al. (2022). 
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behaviour. We consider four domains by distinguishing between young men and women (15-24 

years), and ‘older’ people (25-74 years) of both sexes. 

 

We model time series for both employed and unemployed persons. Besides the wave information, we 

utilize auxiliary information from registers. This auxiliary information is essential for identifying the 

effect of the redesign of the LFS since the redesign does not influence the register data. We use a 

single auxiliary variable in conjunction with each estimation. Thus, we consider modelling a vector 

with 9 elements, where 8 are from the LFS, and 1 is from the register. 

 

The modelled time series depends on different components. The time series for the 8 waves are 

assumed to share a common trend component, a common seasonal component and a common irregular 

component. The auxiliary time series has separate trend, seasonal and irregular components. We allow 

for correlation between the two trend components but assume that the correlations between the 

seasonal and irregular components are zero. The assumption concerning the trend is essential because 

this is the only channel through which the auxiliary variables influence the estimated hyperparameters 

and extracted components that one ends up with for the LFS time series. The correlation must be 

sizeable, and the later empirical analysis shows that this is the case. 

 

We expect some persistence in the labour market status of a person. If a person was employed last 

time she was interviewed in the LFS, she is also more likely to be employed now. This persistence will 

lead to autocorrelation in the survey errors. Our analysis takes account of such autocorrelation in 

survey errors stemming from the survey's design. We pre-estimate the autocorrelation parameters 

using SURE models and plug them into the overall model. 

 

We also apply information from a small parallel survey carried out in the last quarter of 2020. This 

parallel survey produced a priori information on the effect of the structural break in the time series 

model. The time-invariant parameters related to the structural break are incorporated into the state 

vector. Whereas the structural break parameters related to waves 2-8 are initialized with a diffuse 

prior, the initial distribution of the structural break parameter related to wave 1 follows from the 

information from the parallel survey.  

 

This paper makes two contributions. First, it suggests symmetric treatment of time-varying wave-

specific effects (also referred to in the literature as rotating group biases). Second, we use time-varying 

hyperparameters in a model for quantifying structural breaks due to survey redesign.  
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In order to identify all components, we must impose some normalization on the wave-specific effects. 

In contrast to Statistics Netherlands, which measures the wave-specific effects relative to the first 

wave (see van den Brakel and Krieg, 2009, 2015), we follow Elliott and Zong (2019) and assume that 

the wave-specific effects sum to zero. However, in contrast to Elliott and Zong (2019), we do this in a 

symmetric way in which we do not treat one wave as residual, thereby placing less weight on it. 

 

The Covid-19 pandemic made estimating the effect of the new design more challenging. van den 

Brakel et al. (2022) consider a similar problem for generating monthly LFS statistics for the 

Netherlands based on a state-space model. They suggest allowing for higher hyperparameter values for 

the trend in order to counteract the effect of the shock represented by the pandemic. When estimating 

the effects of the structural break due to the redesign, we use the same approach in order to 

accommodate the large fluctuations in the labour market. Furthermore, we show how important this is 

by comparing the effects with those resulting when we fail to take account of the larger labour market 

fluctuations during the Covid-19 pandemic.  

 

In specifying the model, we emphasized having a simple model with relatively few hyperparameters. 

The modelling of the two trend components involves only three hyperparameters, and the two 

trigonometric seasonal components involve only two parameters. Also, the wave-specific effects 

involve only one variance.  

 

The remainder of this paper is organized in the following way: Section 2 describes the redesign of the 

Norwegian LFS and presents the data used in the analysis. This section describes how the monthly 

wave series are constructed to obtain estimates at population level. The section also presents the 

redesign of the survey in 2021. Finally, this section provides information about the register data used. 

Section 3 presents the time-series model we use to estimate the effects of the structural break due to 

the redesign. We comment on issues related to the state-space model used for estimation. This section 

also covers how we handle the redesign of the survey and how we take account of the extensive labour 

market fluctuations during the Covid-19 pandemic. In Section 4, we report our empirical results. Here, 

we also compare our empirical results with those from a model specification that does not take account 

of higher fluctuations in the labour market during the Covid-19 pandemic. Section 5 provides some 

conclusions. In one of the appendices, we provide a detailed specification of our state-space model.  
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2. About the data 

2.1. The Norwegian Labour Force Survey (LFS)  

The labour force survey (LFS) measures key labour market indicators in the population, such as 

employment and unemployment. For the time being, data collection in Norway is carried out by means 

of telephone interviews only.  

 

The Norwegian LFS has a rotating panel design where the same selected people are requested to 

respond for several quarters. Since 1996, participants have been requested to respond every 3 months, 

for a total of 8 consecutive quarters. In each quarter, 1/8 of the sample leaves the survey and an 

equivalent number of new interviewees are included for the first time. First-time interviewees 

constitute 1, those interviewed for the second time wave 2, and so on. Those interviewed for the last 

time are thus wave 8.2 

 

The responses from the LFS participants are assigned weights based on how representative they are of 

the total population. These weights are used to estimate the LFS variables. The estimation procedure 

for the Norwegian LFS is a one-step multiple-model calibration based on monthly LFS and register 

data. The method uses register data for employment status, age, sex, NUTS2 region, immigration 

background, education level, family size, and marital status. The method is described further in Oguz-

Alper (2018); see also Nguyen and Zhang (2020).  

 

Let 𝑤𝑖 be the calibrated weight for person i, and let 𝑧𝑖 be an indicator taking the value 1 if person i has 

a particular labour market status, e.g., is unemployed, and 0 otherwise.3 The estimate for the number 

of persons in a domain having this working market status, for example being unemployed, is then 

given as  

 

(1) 𝑦 = ∑ 𝑤𝑖𝑖∈𝑠 𝑧𝑖. 

                                                      

2 The non-response rate in the Norwegian LFS varied from 14 to 21 percent in the years 2016-2020, see Eurostat (2022). 

Eurostat (2022, Table 4.5) reports non-response rates of the member states of the Europen Union, three EFTA countries 

(including Norway) and four candidate countries. The rates are not comparable as the magnitude of non-response are based 

on household units for most countries. For Norway, like Denmark, Estonia, Luxembourg, Finland, Sweden, Iceland, and 

Switzerland, the figures are for non-response at an individual level. Of these countries, Norway has the lowest non-response 

rate, while Switzerland has the second-lowest non-response rate at around 20 percent. The majority of other countries that 

calculate the non-response rate in the same way as Norway have a non-response rates of 30-50 percent. 

3 To simplify the notation, we have omitted subscripts for time and domain in all variables included in (1) and (2). 
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We apply the same weights as for the overall estimates to make the wave-specific estimates for 

employment and unemployment used in this analysis. Let δ𝑖
𝑗
 be an indicator, where δ𝑖

𝑗
= 1 if person i 

is in wave j and δ𝑖
𝑗

= 0 otherwise. Then the estimate for the number of, say, unemployed persons in a 

domain based on the respondents in wave j only, is given by 

 

(2) 𝑦𝑗 =
∑ 𝑤𝑖𝑖∈𝑠

∑ 𝑤𝑖𝑖∈𝑠 δ𝑖
𝑗 ∑ 𝑤𝑖𝑖∈𝑠 𝑧𝑖δ𝑖

𝑗
. 

 

The first line in Table 1 reports the mean of the number of employed people according to the LFS 

given by (1) for two subperiods, i.e., for the period 2006M1-2019M12 and the remaining sample 

period 2020M1-2021M10. We also provide estimates for four domains. These domains are based on 

two age groups for both sexes. We distinguish between young persons aged 15-24 years and persons 

aged 25 years or older. Most of the employed individuals of both sexes are in the ‘older’ age group. 

This is no surprise, as these are also the two biggest domains in the population.  

 

Similarly, the first line in Table 2 reports the mean value of unemployed people given by (1) for the 

same time periods and domains are as used in Table 1. When considering the estimates for LFS 

unemployment, we also see that most are in the oldest age groups. However, the unemployed are more 

evenly distributed amongst the groups. Thus, the unemployment rate – which is not reported in the 

tables – is lower for the older age groups.   

 

Tables 1 and 2 also report the wave-specific estimates according to (2). The wave-specific effect is 

especially pronounced for wave 1 for all domains, with lower employment and higher unemployment 

than the average.  

 

In the lower parts of Tables 1 and 2, we report the empirical variance of the 12-month growth in LFS 

employment and unemployment for each wave and for the mean of the waves. The variance for a 

specific wave is substantially larger than for the variance of the mean of the waves. As noted for the 

means above, the variances of the register variables are less than those of the LFS variables.  
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Table 1 Descriptive statistics. Employed persons 

 All domains jointly Males 15-24 
years old 

Males 25-74 
years old 

Females 15-24 
years old 

Females 25-74 
years old  

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

𝑚𝑒𝑎𝑛(𝑦𝑡)/106 2.570 2.735 0.168 0.168 1.188 1.277 0.164 0.166 1.049 1.124 

𝑚𝑒𝑎𝑛(𝑦𝑡
1)/106 2.546 2.670 0.163 0.169 1.184 1.254 0.157 0.163 1.042 1.085 

𝑚𝑒𝑎𝑛(𝑦𝑡
2)/106 2.571 2.724 0.167 0.173 1.189 1.272 0.165 0.171 1.050 1.108 

𝑚𝑒𝑎𝑛(𝑦𝑡
3)/106 2.573 2.733 0.168 0.172 1.189 1.263 0.167 0.171 1.050 1.127 

𝑚𝑒𝑎𝑛(𝑦𝑡
4)/106 2.575 2.731 0.169 0.163 1.190 1.280 0.165 0.166 1.051 1.121 

𝑚𝑒𝑎𝑛(𝑦𝑡
5)/106 2.579 2.736 0.170 0.167 1.192 1.274 0.165 0.163 1.052 1.131 

𝑚𝑒𝑎𝑛(𝑦𝑡
6)/106 2.575 2.750 0.171 0.162 1.189 1.287 0.166 0.165 1.050 1.137 

𝑚𝑒𝑎𝑛(𝑦𝑡
7)/106 2.568 2.770 0.172 0.174 1.185 1.281 0.165 0.167 1.047 1.147 

𝑚𝑒𝑎𝑛(𝑦𝑡
8)/106 2.583 2.753 0.170 0.168 1.193 1.286 0.164 0.162 1.056 1.136 

𝑚𝑒𝑎𝑛(𝑥𝑡)/106 2.346 2.537 0.154 0.163 1.047 1.153 0.160 0.162 0.983 1.058 

𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑡−12)/109 1.873 3.557 0.079 0.111 0.409 0.661 0.095 0.165 0.274 0.371 

𝑣𝑎𝑟(𝑦𝑡
1 − 𝑦𝑡−12

1 )/109 9.745 11.720 0.844 1.020 3.145 5.875 0.779 0.829 3.267 5.416 

𝑣𝑎𝑟(𝑦𝑡
2 − 𝑦𝑡−12

2 )/109 10.718 13.147 0.792 1.166 3.399 4.172 0.709 0.920 3.640 5.249 

𝑣𝑎𝑟(𝑦𝑡
3 − 𝑦𝑡−12

3 )/109 9.671 7.682 0.823 0.639 2.702 3.722 0.847 0.798 3.427 3.897 

𝑣𝑎𝑟(𝑦𝑡
4 − 𝑦𝑡−12

4 )/109 9.755 12.831 0.784 0.742 2.786 5.343 0.837 0.856 3.348 2.914 

𝑣𝑎𝑟(𝑦𝑡
5 − 𝑦𝑡−12

5 )

/109 

9.121 20.019 0.943 1.127 2.970 5.428 0.694 1.093 3.033 2.172 

𝑣𝑎𝑟(𝑦𝑡
6 − 𝑦𝑡−12

6 )/109 9.898 18.650 0.992 1.910 3.045 3.467 0.936 0.712 2.863 3.877 

𝑣𝑎𝑟(𝑦𝑡
7 − 𝑦𝑡−12

7 )/109 8.017 24.922 0.714 1.348 2.837 4.546 0.719 1.138 3.065 6.120 

𝑣𝑎𝑟(𝑦𝑡
8 − 𝑦𝑡−12

8 )/109 8.773 8.495 0.777 1.898 2.915 1.571 0.756 0.861 3.158 2.288 

𝑣𝑎𝑟(𝑥𝑡 − 𝑥𝑡−12)/109 1.611 3.117 0.022 0.085 0.389 0.378 0.015 0.105 0.202 0.320 

 corr(𝑦𝑡 − 𝑦𝑡−12, 𝑥𝑡

− 𝑥𝑡−12) 
0.844 0.930 0.575 0.578 0.826 0.927 0.421 0.720 0.806 0.867 

Note: 𝑥𝑡 is the employment according to register. 
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Table 2 Descriptive statistics. Unemployed persons 

 All do-
mains/groups 
jointly 

Males 15-24 
years old 

Males 25-74 
years old 

Females 15-24 
years old 

Females 25-74 
years old 

 
Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

Until 
2019 

From 
2020 

𝑚𝑒𝑎𝑛(𝑦𝑡)/106 0.097 0.133 0.020 0.025 0.036 0.049 0.015 0.022 0.027 0.037 

𝑚𝑒𝑎𝑛(𝑦𝑡
1)/106 0.112 0.152 0.022 0.026 0.041 0.060 0.016 0.024 0.032 0.043 

𝑚𝑒𝑎𝑛(𝑦𝑡
2)/106 0.102 0.132 0.020 0.024 0.038 0.047 0.016 0.021 0.028 0.040 

𝑚𝑒𝑎𝑛(𝑦𝑡
3)/106 0.095 0.146 0.020 0.032 0.036 0.049 0.014 0.023 0.025 0.042 

𝑚𝑒𝑎𝑛(𝑦𝑡
4)/106 0.095 0.127 0.020 0.024 0.035 0.047 0.015 0.018 0.025 0.037 

𝑚𝑒𝑎𝑛(𝑦𝑡
5)/106 0.094 0.132 0.020 0.025 0.034 0.045 0.015 0.023 0.025 0.038 

𝑚𝑒𝑎𝑛(𝑦𝑡
6)/106 0.090 0.122 0.019 0.023 0.033 0.049 0.014 0.020 0.025 0.030 

𝑚𝑒𝑎𝑛(𝑦𝑡
7)/106 0.093 0.125 0.018 0.023 0.035 0.047 0.015 0.023 0.025 0.032 

𝑚𝑒𝑎𝑛(𝑦𝑡
8)/106 0.097 0.131 0.018 0.022 0.037 0.050 0.015 0.022 0.027 0.037 

𝑚𝑒𝑎𝑛(𝑥𝑡
𝐴)/106 0.067 0.120 0.006 0.009 0.033 0.059 0.004 0.007 0.024 0.046 

𝑚𝑒𝑎𝑛(𝑥𝑡
𝐵)/106 0.066 0.087 0.006 0.007 0.031 0.042 0.004 0.005 0.024 0.033 

𝑚𝑒𝑎𝑛(𝑥𝑡
𝐶)/106 0.066 0.087 0.006 0.007 0.031 0.042 0.004 0.005 0.024 0.033 

𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑡−12)/109 0.281 1.159 0.028 0.028 0.090 0.307 0.022 0.042 0.044 0.149 

𝑣𝑎𝑟(𝑦𝑡
1 − 𝑦𝑡−12

1 )/109 1.368 2.373 0.205 0.198 0.589 0.983 0.208 0.224 0.492 0.683 

𝑣𝑎𝑟(𝑦𝑡
2 − 𝑦𝑡−12

2 )/109 1.682 2.113 0.228 0.201 0.677 0.495 0.220 0.272 0.366 1.018 

𝑣𝑎𝑟(𝑦𝑡
3 − 𝑦𝑡−12

3 )/109 1.399 3.587 0.239 0.213 0.526 0.708 0.161 0.285 0.261 0.763 

𝑣𝑎𝑟(𝑦𝑡
4 − 𝑦𝑡−12

4 )/109 1.409 2.347 0.227 0.194 0.508 0.690 0.162 0.192 0.272 0.404 

𝑣𝑎𝑟(𝑦𝑡
5 − 𝑦𝑡−12

5 )/109 1.180 2.745 0.215 0.190 0.458 0.899 0.135 0.253 0.330 0.451 

𝑣𝑎𝑟(𝑦𝑡
6 − 𝑦𝑡−12

6 )/109 1.209 2.074 0.164 0.187 0.455 1.171 0.145 0.198 0.269 0.174 

𝑣𝑎𝑟(𝑦𝑡
7 − 𝑦𝑡−12

7 )/109 1.268 2.390 0.163 0.281 0.529 0.665 0.156 0.230 0.261 0.341 

𝑣𝑎𝑟(𝑦𝑡
8 − 𝑦𝑡−12

8 )/109 1.411 2.474 0.174 0.139 0.512 0.805 0.186 0.380 0.352 0.638 

var(𝑥𝑡
𝐴 − 𝑥𝑡−12

𝐴 )/109 0.117 9.810 0.002 0.059 0.042 2.190 0.000 0.077 0.009 1.304 

var(𝑥𝑡
𝐵 − 𝑥𝑡−12

𝐵 )/109 0.095 0.978 0.002 0.009 0.031 0.210 0.000 0.009 0.008 0.127 

var(𝑥𝑡
𝐶 − 𝑥𝑡−12

𝐶 )/109 0.096 0.882 0.002 0.008 0.031 0.191 0.000 0.007 0.009 0.115 

corr(𝑦𝑡 − 𝑦𝑡−12, 𝑥𝑡
𝐴

− 𝑥𝑡−12
𝐴 ) 

0.582 0.291 0.278 0.015 0.570 0.328 0.223 -0.116 0.333 0.355 

corr(𝑦𝑡 − 𝑦𝑡−12, 𝑥𝑡
𝐵

− 𝑥𝑡−12
𝐵 ) 

0.577 0.720 0.273 0.145 0.568 0.722 0.220 0.089 0.341 0.734 

corr(𝑦𝑡 − 𝑦𝑡−12, 𝑥𝑡
𝐶

− 𝑥𝑡−12
𝐶 ) 

0.562 0.804 0.254 0.226 0.558 0.773 0.213 0.115 0.340 0.830 

Notes: 𝑥𝑡
𝐴 is the register series for unemployed persons from  the Norwegian Labour and Welfare Administration (NAV), measured at the end of period t (typi-

cally the last Monday in the month): 𝑥𝑡
𝐵 is the register series for unemployed persons from NAV adjusted for temporary layoffs less than 90 days registered at 

NAV, i.e. 𝑥𝑡
𝐵 = 𝑥𝑡

𝐴 − 𝑥𝑡
𝑙𝑎𝑦𝑜𝑓𝑓𝑠

where 𝑥𝑡
𝑙𝑎𝑦𝑜𝑓𝑓𝑠

 is the number of temporary layoffs less than 90 days according to NAV; 𝑥𝑡
𝐶  is the average of 𝑥𝑡

𝐵 near the beginning 

and end of the month, i.e. 𝑥𝑡
𝐶 = (𝑥𝑡−1

𝐵 + 𝑥𝑡
𝐵)/2 . 

2.2. The most important changes in the 2021-redesign of the Norwegian LFS  

In the beginning of 2021, some changes were made in the Norwegian labour force survey. The main 

reason for the restructuring is new Eurostat requirements. The changes are intended to improve the 

quality of statistics, increase compatibility across countries, and improve comparability across 

domains in social statistics. Therefore, a similar restructuring of the LFS has taken place in all EU and 
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associated countries. The sampling design was also changed in the Norwegian LFS, even though this 

was not a requirement from Eurostat. The sampling unit was changed from nuclear family to 

individual person. 

 

The redesign also means that the target population was changed from covering all registered residents 

aged 15-74 to registered residents aged 15-89 in private households. This means that more age groups 

are included, but also that some persons are excluded from the target populations as they do not live in 

private households. The most important examples of the latter are persons enrolled in compulsory 

military service and persons registered as residents in institutions. Until the beginning of 2021, people 

in the same family could answer for other family members. Due to the change of the sampling unit to 

individual person, Statistics Norway has stopped using proxy interviewing. This change may have led 

to higher non-response, especially from younger people, but this should largely be compensated for by 

weighting. See Zhang et al. (2013) for a discussion of proxy interviewing in the Norwegian LFS.  

 

In the new questionnaire, several variables have changed in line with changes in the labour market. In 

addition, question sequences, formulations and response options have changed due to modernization 

of the language, increased international coordination and adapted self-reporting as a future data 

collection method. 

 

From 2021 on, involuntarily completely laid-off people will have the usual questions about job search 

and availability in the LFS for more than 90 days, thus potentially being classified as outside the 

labour force. Previously, individuals completely laid off for more than 90 days were automatically 

considered unemployed in the Norwegian LFS without being asked about active job search or 

availability. This change in the questionnaire, combined with the fact that the Norwegian labour 

market at the same time was facing a situation with many involuntarily laid-off in connection with the 

Covid-19 pandemic, reduces the number of unemployed when the new LFS design replaces the old 

one.  

 

This paper is concerned with calculating the possible structural breaks caused by changes in the data 

collection process for persons aged 15-74 in connection with the 2021 redesign of the LFS regarding 

the main indicators employment and unemployment. It is only the total effect we are trying to measure 

here, not partial effects caused by the different sources, which would be even more challenging. 
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2.3. Register data, harmonization and pre-adjustment for earlier structural 

breaks 

In the time series model for employed persons according to the LFS we utilize a time series for the 

number of registered employees in the domain.4 Similarly, the time series model for LFS 

unemployment in a domain utilizes an auxiliary register time series for that domain from the 

unemployed registered at the employment office (registered unemployment). The auxiliary register 

variable in time series models needs to be comparable over time and should not include structural 

breaks, at least not at the same time as the 2021 redesign.  

 

With respect to the LFS employment model, for the period before 2015, we use register information 

from the Employee Register. In January 2015, the Employee Register was replaced by the new A-

Scheme register for monthly reporting of employee and payroll information to the Norwegian Labour 

and Welfare Administration (NAV), the Norwegian Tax Administration and Statistics Norway. From 

the time of the transition from the Employee Register to the new A-Scheme register, the auxiliary 

variable has been corrected for changed seasonal patterns and level changes. We also include a level 

shift at the time of the transition in our state-space model to capture possible level changes when 

estimating the model. 

 

From Table 2 we see that there is a high correlation between LFS employment and registered 

employment. This correlation has been particularly high since 2020, with an estimated correlation 

coefficient of 93 percent for the full sample. The estimated correlation coefficients for the domains are 

somewhat lower but still exceeds 80 percent for the ‘older’ domains for both males and females. For 

young males, the correlation coefficient is estimated to be about 60 percent, and for young females, 

about 70 percent.  

 

In the unemployment model, we use figures for persons registered by NAV as unemployed. Due to 

different treatment of temporary layoffs, there is a large discrepancy in the observed relationship 

between LFS unemployed and the official registered unemployed figures for the first couple of months 

of the Covid-19 pandemic in Norway, starting in March 2020. Therefore, “layoff-harmonized” 

registered unemployed figures have been constructed by excluding temporary layoffs in the first 3 

months from the official NAV figures. This harmonization brings the definition more into line with the 

definition of LFS unemployment because the LFS treats temporary layoffs as employed temporarily 

                                                      

4 We refer to variables which are not LFS variables as auxiliary variables. 
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absent for the first 90 days. This harmonization of the register variables is designed to bring about 

higher correlation between the register and LFS variables. 

 

The official NAV unemployment figures indicate the number of registered unemployed close to the 

end of the month. For our auxiliary register variable to be more representative of the monthly average 

of unemployed according to the LFS, we use the average of the auxiliary register variables observed 

close to the end of the month in question and the end of the previous month. This averaging of our pre-

adjusted harmonized register unemployment variable is vital in months with large changes in 

unemployment, such as for the initial shut-down period of the Covid-19 pandemic in Norway in 

March 2020. 

 

Table 2 reveals the advantages of our adjustments of the registered unemployment series. When 

observations from January 2020 till October 2021 are considered for all domains together, the official 

NAV unemployment series shows a correlation of 29.1 percent with the LFS estimates. This 

correlation coefficient increases to 72.0 percent when we adjust for layoffs. When this adjusted 

register unemployment is measured as a two-month average, the correlation coefficient increases even 

further, to 80.4 percent. We see the same pattern for the domains we are considering, though the 

correlation coefficients are somewhat smaller. Due to our adjustments, the correlation coefficient for 

‘older’ males increases from 32.8 to 77.3 percent. The estimate for ‘older’ females increases from 35.5 

percent to 83.0 percent. For young males and females, the correlation between the register variables 

and the LFS variables is appreciably smaller. However, our adjustments increase the correlation for 

these domains, too.  

2.4. Information from parallel data collection in 2020Q4 

The results of a parallel data collection may help in a time series model to produce more precise 

estimates of the effect due to redesigning a survey. In the last quarter of 2020, a sample of 2,626 

people was interviewed using the new questionnaire. The people in this extra sample were only 

interviewed once. The results of these interviews can be compared with the results from wave 1 of the 

ordinary LFS interviews when using the old questionnaire. This will give an estimate of the effect of 

the structural break for wave 1 together with a corresponding estimate of the variance.  
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The extra sample is too small for the effects of the 2021 redesign to be estimated precisely. However, 

the information can still be combined with a time series model to model the effects of the 2021 LFS 

redesign. This approach is discussed in van den Brakel et al. (2020).5  

3. Time series model for estimating possible overall structural 

breaks due to the 2021 LFS-redesign 

In Section 3.1, we outline the basic model for the Norwegian LFS. Section 3.2 presents our first 

contribution, which is the symmetric treatment of wave-specific effects. In Section 3.3, the model is 

extended to include a structural break and an auxiliary variable. The paper's second contribution is 

presented in Section 3.4, where we allow for a time-varying hyperparameter for the trends in order to 

estimate the effects of a structural break. 

3.1. The basic state-space model of the Norwegian LFS 

In this section, we reasonably assume that all the eight waves follow the same trend, have the same 

seasonal pattern and irregularities, and have an autocorrelated survey error component because of the 

rotating design. Pfeffermann (1991) derives a model for such a repeated survey. 

 

We define 𝑦𝑡
𝑖, where 𝑖 = 1,2, … ,8, as the unemployment estimate (or the employment estimate) based 

on the observations in wave i of the LFS survey. Furthermore, let 𝑌𝑡 = (𝑦𝑡
1, 𝑦𝑡

2, … , 𝑦𝑡
8)′ be the vector 

of the estimates for all 8 waves. The model we use as a starting point is 

 

(3) 𝑌𝑡 = 18θt + λ𝑡 + 𝑒𝑡, 

 

where 18 is a column vector of 8 ones, θt is an estimate of the “true” LFS unemployment (or 

employment), the vector  λ𝑡 = (λ𝑡
1, λ𝑡

2, … , λ𝑡
8)′ represents the time-varying wave-specific bias, and 

𝑒𝑡 = (𝑒𝑡
1, 𝑒𝑡

2, … , 𝑒𝑡
8)′ is the vector of wave-specific survey errors. Furthermore, the “true” LFS 

estimate is decomposed as 

 

(4) θ𝑡 = 𝐿𝑡 + 𝑆𝑡 + 𝐼𝑡, 

                                                      

5 Because the sample is small, a simplified version of the calibration model is used for deriving weights. A more detailed 

description of this model is given in Hamre et al. (2022). 
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where 𝐿𝑡 is the level, 𝑆𝑡  the seasonal, and 𝐼𝑡 the irregular component. Below, we describe the 

processes for these three components and the wave-specific survey errors. The process for the wave-

specific effects is presented in the next section.  

 

The level is generally assumed to follow a local level model, a local linear trend model, or a smooth 

trend model; see e.g., Harvey (1989) and Durbin and Koopman (2012). We follow van den Brakel and 

Krieg (2009) and apply the smooth trend model 

 

(5) 𝐿𝑡 = 𝐿𝑡−1 + 𝑅𝑡−1,   𝑅𝑡 = 𝑅𝑡−1 + 𝑤𝑡, 𝑤𝑡~𝑁(0, σ𝑅
2 ) 

 

The seasonal component, 𝑆𝑡, is often modelled as a deterministic seasonal model, a dummy seasonal 

model, or a trigonometric seasonal model; see among others Harvey (1989, pp. 41-43), Durbin and 

Koopman (2012), and Hindrayanto et al. (2013). With monthly data, the trigonometric seasonal model 

is given as6 

 

(6) 𝑆𝑡 = ∑ γ𝑗,𝑡
6
𝑗=1  

 γ𝑗,𝑡 = γ𝑗,𝑡−1 𝑐𝑜𝑠(π𝑗/6) + γ𝑗,𝑡−1
∗ 𝑠𝑖𝑛(π𝑗/6) + ω𝑗,𝑡 ω𝑗,𝑡 ∼ 𝑁(0, σω

2 ) 

 γ𝑗,𝑡
∗ = γ𝑗,𝑡−1

∗ 𝑐𝑜𝑠(π𝑗/6) − γ𝑗,𝑡−1 𝑠𝑖𝑛(π𝑗/6) + ω𝑗,𝑡
∗  ω𝑗,𝑡

∗ ∼ 𝑁(0, σω
2 ) 𝑗 = 1,2, … ,6. 

 

The first frequency of π/6, i.e., the fundamental frequency, corresponds to a period of 12 months, 

whereas the five other frequencies are harmonics. We note that this process depends here on only one 

parameter, as the variance 𝜎𝜔
2  is common to all disturbance terms. This is a restriction commonly used 

for these hyperparameters; see e.g., Harvey (1989). 

 

The irregular component 𝐼𝑡 is assumed to be white noise, independently and identically distributed:  

 

(7) 𝐼𝑡~N(0, σ𝐼
2).          

 

The interviewees in the first wave are interviewed for the first time, whereas the interviewees in the 

other waves have been interviewed before. The variance of the wave-specific survey errors is also 

                                                      

6 Note that 𝑐𝑜𝑠(π) = −1 and 𝑠𝑖𝑛(π) = 0. Therefore, for 𝑗 = 6 we have γ6,𝑡 = −γ6,𝑡−1 + ω6,𝑡 and the process for γ6,𝑡
∗  is 

redundant. 
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time-dependent, partly due to variation in the number of people interviewed each month. Let 𝑘𝑡
𝑗
   =

√𝑉𝑎�̂�[𝑦𝑡
𝑗
] be an estimate of the standard error of the survey error. The survey errors are modelled as: 

 

(8) 𝑒𝑡
𝑗

=  𝑘𝑡
𝑗
 �̃�𝑡

𝑗
  where �̃�𝑡

1 = ε𝑡
1 with 𝜀𝑡

1  ∼ 𝑁(0, 𝜎𝑒1
2 )  

   and �̃�𝑡
𝑗

 =  𝜙 �̃�𝑡−3
𝑗−1

+ 𝜀𝑡
𝑗
 with 𝜀𝑡

𝑗
 ∼ 𝑁(0, 𝜎𝑒

2) for 𝑗 = 2,3, … ,8 

 

If 𝑘𝑡
𝑗
 is a ‘good’ estimate of the standard error of the survey error, �̃�𝑡

𝑗
 will have an estimated variance 

of close to one. We do not impose such a restriction here. However, we impose that 𝑉𝑎𝑟(�̃�𝑡
2) = ⋯ =

𝑉𝑎𝑟(�̃�𝑡
8), from which it follows that 𝜎𝑒2

2 = 𝜎𝑒3
2 = ⋯ = 𝜎𝑒8

2 , which are restrictions we impose on the 

system.7 

 

A rough approximate estimate of the variance of the wave-specific monthly LFS-estimates is  

 

(9) 𝑉𝑎�̂�[𝑦𝑡
𝑗
] = 𝑁𝑡

2�̂�𝑡(1 − �̂�𝑡)/𝑛𝑡
𝑗
, 

 

where 𝑛𝑗 is the net LFS sample size in wave j, 𝑁𝑡 is the population size; and �̂�𝑡 = (1

8
∑ 𝑦𝑡

𝑗8
𝑗=1 )/𝑁𝑡 is the 

estimated proportion for an LFS variable based on information from all 8 waves. 

 

The autocorrelation coefficient in (8), φ, is estimated in a system with a panel of pseudo errors, which 

was also the starting point of Pfeffermann et al. (1998). However, instead of applying the approach in 

Pfeffermann et al. (1998), we estimate the autocorrelation coefficient of the survey errors directly by 

treating the system as a vector autoregressive system with cross-equation restrictions. The procedure 

for estimating the autocorrelation coefficient is outlined in Appendix A. The estimate obtained is 

plugged into our state-space model when the remaining parameters are estimated. 

3.2. Symmetric treatment of the wave-specific effects 

Investigating the responses from the US current population survey (which corresponds to the LFS in 

many other countries), Bailar (1975) shows that the number of people reporting as unemployed is 

much higher for those participating in the survey for the first time. Similar results for the US current 

                                                      

7 By imposing the restrictions 𝑉𝑎𝑟(�̃�𝑡
1) = ⋯ = 𝑉𝑎𝑟(�̃�𝑡

8), i.e. by also including the variance for the first wave, it also follows 

that σ𝑒1

2 = σ𝑒
2/(1 − ϕ2), so we could also impose this restriction on the variance of the survey error in the first wave. 

However, this restriction depends on a good estimate of 𝜙, so to take account of the fact that our estimate of 𝜙 might be 

biased, we do not impose this restriction. 
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population survey are also found in Stephan et al. (1954, p. A-80) and Hansen et al. (1955, p. 710), 

and in Kumar et al. (1983) for the Canadian LFS. Pfeffermann (1991) takes account of this in his 

model for repeated surveys by including wave-specific effects. However, the model only takes account 

of time-invariant wave-specific effects (although he mentions that the model can be extended to allow 

for time-varying wave-specific effects). van den Brakel and Krieg (2009) extend the model to include 

time-varying wave-specific effects. Bailar (1975) and Krueger et al. (2017) show that the time-varying 

wave-specific effects are not time-invariant. 

 

For both the level component in θ𝑡 and the wave-specific effects to be identifiable, a restriction must 

be imposed on the wave-specific effects. van den Brakel and Krieg (2009) assume that the estimate of 

the unemployment rate from the first wave is unbiased. Thus, they apply the restriction 𝜆𝑡
1 = 0.  

In contrast, we apply the restriction 18
′ λ𝑡 = 0, i.e., the sum of the wave-specific effects is zero in every 

period. It is usually imposed by restricting one of the components in 𝜆𝑡, for example, the last one, to 

being equal to the negative sum of the others, and allowing the remaining ones to follow independent 

random walks (see, e.g., Elliot and Zong, 2019). However, this will often lead to a large variance in 

the wave-specific bias for the wave that ensures that the restriction holds. For example, if we have 

λ𝑡
𝑗

= λ𝑡−1
𝑗

+ η𝑡
𝑗
 with ηt

𝑗
  ∼ iid𝑁(0, σλ

2) for 𝑗 = 1,2, … ,7, and λ𝑡
8 = − ∑ λ𝑡

𝑗7
𝑗=1 , then 𝑉𝑎𝑟(λ𝑡

𝑗
− λ𝑡−1

𝑗
) =

σλ
2 for 𝑗 = 1,2, … ,7 but 𝑉𝑎𝑟(𝜆𝑡

8 − 𝜆𝑡−1
8 ) = 7σλ

2. 

 

To avoid the process of one of the wave-specific effects having a higher variance than the other, we 

apply a symmetric approach; 

 

(10) λ𝑡 = λ𝑡−1 + η𝑡  ηt  ∼ 𝑁 (08,   (𝐼8  −  
1

8
1818′)  σλ

2),     18
′ 𝜆0 = 0 

 

where 𝐼8 is the identity matrix of dimension 8. Note that ηt has a singular covariance matrix. The 

formulation in (10) ensures that 18
′ 𝜆𝑡 = 0. The representation in (10) is similar to the representation 

for seasonal effects in Harrison and Stevens (1976); see also Proietti (2000) and Harvey (2006). 

Proietti (2000) discusses the similarity between the trigonometric seasonal model in (5) and a seasonal 

model in the form of (10). 

 

The formulation of the wave-specific effects in (10) might not be easy to implement in a software 

program for state-space models. The restriction 18
′ 𝜆𝑡 = 0 implies that there are 7 independent 

variables in 𝜆𝑡. Therefore, we introduce the 7 times 8 matrix 𝐽∗ and the 7-dimensional vector λt
∗ of the 
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7 independent variables in 𝜆𝑡, such that we have λ𝑡 = 𝐽∗λ𝑡
∗. The process of these 7 independent 

variables can be formulated as 7 independent random walks; 

 

(11) λ𝑡
∗ = λ𝑡−1

∗ + η𝑡
∗, ηt

∗ ∼ 𝑁(07,  𝐼7 σλ
2). 

 

Note that if we premultiply (11) with 𝐽∗, we get (10) if 𝐽∗𝐽∗′ = 𝐼8 −
1

8
1818

′ . This will be the case if we 

choose 𝐽∗ = J(𝐽′𝐽)−1/2 with 𝐽′ = (𝐼7, −17).8 

3.3. Structural break and auxiliary variables 

We now extend our model to allow for a possible structural break following Harvey and Durbin 

(1986). When a structural break is included, (3) changes to 

 

(12) 𝑌𝑡 = 18θt + λ𝑡 + β1t≥2021M1 + 𝑒𝑡. 

 

In (12), 1t≥2021M1, is a dummy variable that changes from zero to one when the survey changes from 

the old to the new design in January 2021. The 8-dimensional vector with regression coefficients, β =

(β1, β2, … , β8)′ represents the effect of the structural break for each wave.9 

 

We include auxiliary variables in the models to improve the discontinuity estimates. If Xt is such a 

variable (e.g., unemployment information from a register, or employment information from a register): 

 

(13) 𝑋𝑡 = θ𝑡
𝑋 = 𝐿𝑡

𝑋 + 𝑆𝑡
𝑋 + 𝐼𝑡

𝑋, 

 

where 𝐿𝑡
𝑋, 𝑆𝑡

𝑋, 𝐼𝑡
𝑋 are scalars and denote the level, seasonal, and irregular components of the auxiliary 

variable. They are modelled similarly to the corresponding components of the LFS variables in (5)-(7). 

van den Brakel and Krieg (2015) suggest constructing a model in which the vector Yt and the scalar Xt 

are modelled jointly. This joint system can be formulated as 

 

                                                      

8 Note that 𝑆 = 𝐽′𝐽 is both symmetric and positive definite. A symmetric matrix can be decomposed using eigen-

decomposition as 𝑆 = 𝑉Λ𝑉′, where Λ is a diagonal matrix holding the eigenvalues and 𝑉 a matrix with the corresponding 

eigenvectors. As S is also positive definite, we have 𝑆𝑛 = VΛn𝑉′ when n is any real number. Here we apply this for 𝑛 =
−1/2. 

9 In the estimation we also include a break in 2015M1. This break accounts for a possible level shift due to a less informative 

auxiliary register variable before 2015 being applied in the LFS weighting procedure. In 2015, Norway got the new high-

quality A-Scheme register, which is a register of pay slips submitted to the tax authorities. Up until 2014 Norway had the Aa-

register of change notifications (with delays) regarding employers’ hiring and firing which were submitted to NAV. 
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(14) (
𝑌𝑡

𝑋𝑡
) = (

18θ𝑡
𝐿𝐹𝑆

θ𝑡
𝑋 ) + (

λ𝑡

0
) + (

β
0

) 1t≥2021M1 + (
𝑒𝑡

0
). 

 

For it to be advantageous to model the LFS variable (LFS unemployment or LFS employment) and the 

register variable jointly, there must be a correlation between them. When a smooth trend model is 

applied, the most important component in θ𝑡 is the slope component. Therefore, we allow the slope 

components of the LFS variables and the auxiliary variable, the X-variable, to be correlated. The 

covariance between the slopes of LFS variable trend and the register variable trend is given by  

 

(15) Cov(𝑤𝑡
𝐿𝐹𝑆, 𝑤𝑡

𝑋) = ρ𝑅
𝐿𝐹𝑆,𝑋𝜎𝑅

𝐿𝐹𝑆𝜎𝑅
𝑋, 

 

where 𝜎𝑅
𝐿𝐹𝑆 is the square root of σ𝑅

2  in (5), which is the slope variance of the LFS variable trend, 𝜎𝑅
𝑋 is 

the square root of the slope variance of the register variable trend, and ρ𝑅
𝐿𝐹𝑆,𝑋

 is the correlation 

between the two slope disturbances. 

3.4. Larger fluctuation in the trend during Covid-19 

The Covid-19 pandemic led to large fluctuations in the labour market. The model we have laid out 

above does not allow for large fluctuations in the labour market. The structural break estimates may be 

severely biased if this increased variation in the LFS and register time series is neglected. 

 

In the Netherlands, the Labour Force Survey estimates are improved by applying a state-space model; 

see van den Brakel and Krieg (2009). During the Covid-19 pandemic, they had to modify the state-

space model to account for the more rapid changes in the labour market; see van den Brakel et al. 

(2022). They did so by allowing for a time-varying hyperparameter for the slope. Here, we use similar 

modelling of both the LFS and the register trend.  

 

 (16) 𝐿𝑡
i = 𝐿𝑡−1

i + 𝑅𝑡−1
𝑖 ,  𝑅𝑡

i = 𝑅𝑡−1
i + 𝜓t

1/2
𝑤𝑡

𝑖,  𝑤𝑡
𝑖~N(0, (σ𝑅

𝑖 )2),   𝑖 = 𝐿𝐹𝑆, 𝑋 

 

The formulation in (16) implies that the hyperparameter for the slope-variance is time-varying and 

given by 𝜓t(σ𝑅
𝑖 )

2
.  

 

We have divided our sample into three parts. The first is the pre-corona part, defined as the period up 

to 2019M12. In this period, we apply 𝜓t = 1, such that σ𝑅
2  is the variance of the slope in the pre-
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corona period. The second is the initial shut-down part of the Covid-19 pandemic, with large 

fluctuations in labour force figures. This period is assumed to cover the first half of 2020, i.e., 

2020M1-2020M6. For this period we restrict 𝜓𝑡 to take the same value in all months, i.e. 𝜓𝑡 = 𝜓1 for 

𝑡 = 2020𝑀1, 2020𝑀2, … , 2020𝑀6. The last part, the recovery period, starts in mid-2020. In this 

period, there were still larger fluctuations than before the coronavirus (Covid-19) crises, but not as 

large as when the pandemic first hit the Norwegian economy. For this period, which applies to the 

remainder of our sample, we also restrict 𝜓𝑡 to taking the same value in all months, i.e. 𝜓𝑡 =

𝜓2  for 𝑡 = 2020𝑀7, 2020𝑀8, … , 2021𝑀10.  

3.5. Estimation and statistical inference 

We cast our (parsimonious) models in state-space form and estimate their hyperparameters by 

maximizing the diffuse loglikelihood function using the BFGS algorithm. The formal specification of 

the state-space model with all the underlying assumptions is given in Appendix B. Special features of 

our state-space models are that there are no measurement errors in the measurement (vector) equation, 

the transition matrices are always time-invariant, and the selection matrices of the transition equations 

are potentially time-varying. The main purpose of our paper is to investigate whether the redesign of 

the LFS survey impacts employment and unemployment. The intervention effects are assumed to be 

wave-specific and constant. Technically, they are represented by elements in the state vector that are 

without disturbances. Thus, after the intervention has taken place, there is no evolution of the 

intervention effects over time. 

 

The target function is given in Helske (2017, Section 2.1). As in the non-diffuse case, the innovations 

are utilized, i.e., the one-step-ahead prediction errors, an idea that goes back to Schweppe (1965). An 

essential part of the estimation algorithm is to run the Kalman filter during the recursions in order to 

update the state vector estimate. KFAS utilizes a complete univariate approach for filtering and 

smoothing provided by Koopman and Durbin (2003); see also Anderson and Moore (1979) for 

sequential processing. This constitutes a way of implementing so-called exact diffuse initialization. 

Such a procedure makes the results less prone to numerical error than when uninformative diffuse 

priors are used. In Appendix B, we provide the state-space form representation of the model we apply. 

An important aspect of our study is to compare model specifications with time-invariant 

hyperparameters with model specifications that allow for time-varying hyperparameters. To this end, 

we use likelihood ratio tests. 
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After obtaining the maximum likelihood estimates of our unknown hyperparameters, we obtain (final) 

smoothed estimates of the state vectors. Diagnostics related to the behaviour of the disturbances in the 

state vector can be derived from the smoothed estimates of the state vector. For instance, we calculate 

auxiliary residuals corresponding to the disturbances in the slope component of the trend. They can be 

used to assess the suitability of the model. 

4. Results 

This section presents the estimated hyperparameters, other model results, and the structural break 

estimates due to the 2021 LFS-redesign. The models are estimated on monthly data from 2006M1 to 

2021M10. The structural break estimates are allowed to vary across the four domains we consider. 

Apart from the pre-estimation of the autocorrelation parameters related to the survey error component, 

all other inference has been carried out using the R package KFAS, see Helske (2017).10 

 

Following Pfeffermann et al. (1998), we estimate the autocorrelation coefficient of the survey errors in 

a separate system; see Appendix A. By doing so, we can treat the coefficient as "known" when 

estimating the remaining parameters of the state-space model. 

 

We apply a grid search technique to estimate 𝜓1 and 𝜓2. We construct a two-dimensional grid for 𝜓1 

and 𝜓2 (where 1 ≤ 𝜓1 ≤ 𝜓2). For each pair of values for 𝜓1 and 𝜓2, we estimate the remaining 

parameters of the state-space model and calculate the log-likelihood value. The estimates of 𝜓1 and 

𝜓2 are given by the pair of values that lead to the highest log-likelihood value.11  

4.1. Estimated hyperparameters and other results  

Table 3 provides an overview of the maximum likelihood estimates of the hyperparameters for 

employment. In the table, we consider both the case with estimated parameters 𝜓1 and 𝜓2 and the 

case where the parameters are fixed a priori at 1. The former specification allows the variance of the 

disturbances of the slope component of the trend to be time-varying. 

 

The estimates of 𝜓1 and 𝜓2 are quite large. The estimate of 𝜓1 for the different domains ranges from 

16 to 49. This implies that the variance of the disturbances related to the slope of the trend component 

                                                      

10 https://CRAN.R-project.org/package=KFAS, Version 1.4.6 

11 After trying out a couple of different versions of the grid, we ended up using the following crude grid values in our search: 

𝜓1 = 16,25,49 and 𝜓2 = (𝜓1 + 𝜓𝑠𝑡𝑒𝑝 − 1), where 𝜓𝑠𝑡𝑒𝑝 = 2,4,6,8,12,24,48. See also Appendix C. 
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is 16 to 49 times as high during the first part of the Covid-19 pandemic, as in the pre-pandemic period. 

The estimates of 𝜓2 are smaller, as they cover the second part of the Covid-19 pandemic. The 

estimates range from about 3 to 13 across the different domains. 

 

Table 3 also reveals a high correlation between the disturbances of the slopes of the LFS- and register 

trends. For all domains, the estimated correlation between the disturbances of the two trend-slopes is 

equal or almost equal to 1. This strong correlation is advantageous for estimating possible structural 

breaks due to the 2021 LFS-redesign. A correlation equal to 1 implies that the LFS-variable and the 

register variable have a common stochastic trend and thus cointegrate; see Engle and Granger (1987). 

Due to normally more stable labour market status over time for persons aged 25-74 than for persons 

aged 15-24, we see from Table 3 that the estimated autocorrelation in the survey errors, ϕ̂, is higher 

for the oldest age group for both males and females. 

 

We have also tested the joint hypothesis of time-invariant hyperparameters, i.e., 𝜓1 = 𝜓2 = 1, using a 

likelihood ratio test. It is clearly rejected for all domains. All the p-values are less than 0.0001.  

 

Auxiliary residuals are smoothed estimates of the disturbances associated with the unobserved 

components. Harvey and Koopman (1992) show that the auxiliary residuals are useful for detecting 

outliers and structural changes. We concentrate on graphs displaying auxiliary residuals related to the 

slope component of the trend. Figures C.1 and C.2 in Appendix C illustrate the importance of allowing 

for a time-varying variance for the slope of the trend when modelling employment. Figure C.1 shows 

the above-mentioned auxiliary residuals when we allow for time-varying variance for the four 

domains. Figure C.2 shows the auxiliary residuals when we do not allow for time-varying variances of 

the slope disturbances. In the latter figure, we see that the volatility of the residuals is much higher in 

2020 and 2021 than in previous years. However, when allowance is made for stepwise time-varying 

variances for the two slope components (Figure C.1), the residuals seem to perform better than in the 

time-invariant case. We interpret this as evidence that our formulation of the stepwise shifts in the 

variances of the disturbances of the slope components of the trends captures quite well the excess 

employment fluctuations in the last part of the sample that are present in the case with time-invariant 

hyperparameters. 
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Table 3 Estimated hyperparameters. Employed persons 

 With allowance for time-varying variances for 

the disturbances of the slope components 

With allowance for time-varying variances for 

the disturbances of the slope components 

Hyperparameters Male 
15-24 

Male 
25-74 

Female 
15-24 

Female 
25-74 

Male 
15-24 

Male 
25-74 

Female 
15-24 

Female 
25-74 

𝜓 1 25 16 25 49 1 1 1 1 
𝜓 2 13 2.875 13 13 1 1 1 1 

(𝜎𝑅
𝐿𝐹𝑆)2/106  0.017 0.291 0.023 0.033 0.306 1.500 0.294 1.969 

(𝜎𝜔
𝐿𝐹𝑆)2/103 15.225 12.694 5.549 0.011 16.223 12.245 3.749 0.000 

(𝜎𝐼
𝐿𝐹𝑆)2/106 1.218 0.000 4.532 1.380 1.405 0.000 4.595 0.318 

(𝜎𝜆
𝐿𝐹𝑆)2 1.033 2.846 9.269 42.109 138.436 0.000 32.223 0.000 

(𝜎𝜀
1)2 1.150 1.181 1.058 1.314 1.151 1.177 1.048 1.309 

(𝜎𝜀
2)2 = (𝜎𝜀

3)2 
=. . . = (𝜎𝜀

8)2 
0.713 0.538 0.694 0.455 0.713 0.541 0.689 0.455 

(𝜎𝑅
𝑋)2/106 0.023 0.453 0.036 0.047 0.441 2.666 0.680 2.495 

(𝜎𝜔
𝑋)2/103 5.531 0.013 4.465 2.958 5.104 0.023 5.869 0.000 

(𝜎𝐼
𝑋)2/106 0.211 0.730 0.062 0.365 0.264 0.701 0.018 0.453 

ρ𝑅
𝐿𝐹𝑆,𝑋 1.000 0.999 1.000 1.000 1.000 1.000 0.986 1.000 

𝜙 0.577 0.723 0.539 0.770 0.577 0.723 0.539 0.770 

 

Table 4 Estimated hyperparameters. Unemployed persons 

 With allowance for time-varying variances for 
the disturbances of the slope components 

With allowance for time-varying variances for 
the disturbances of the slope components 

Hyper-parameters Male 
15-24 

Male 
25-74 

Female 
15-24 

Female 
25-74 

Male 
15-24 

Male 
25-74 

Female 
15-24 

Female 
25-74 

𝜓 1 16  16  49  25  1  1  1  1  
𝜓 2 1.3125  2.25  5  4  1  1  1  1  

(𝜎𝑅
𝐿𝐹𝑆)2/106  0.004  0.105  0.001  0.036  0.033  0.411  0.000  0.355  

(𝜎𝜔
𝐿𝐹𝑆)2/103 1.059  0.059  1.252  6.053  0.935  0.024  3.097  5.281  

(𝜎𝐼
𝐿𝐹𝑆)2/106 0.000  0.000  2.380  0.000  0.006  0.016  2.786  0.001  

(𝜎𝜆
𝐿𝐹𝑆)2 0.000  14.698  0.069  6.013  0.122  68.734  385.470  36.661  

(𝜎𝜀
1)2 1.224  1.579  1.309  1.830  1.221  1.585  1.317  1.836  

(𝜎𝜀
2)2 = (𝜎𝜀

3)2 
=. . . = (𝜎𝜀

8)2 
1.148  1.350  1.142  1.118  1.147  1.342  1.145  1.115  

(𝜎𝑅
𝑋)2/106 0.007  0.158  0.002  0.046  0.048  0.560  0.156  0.421  

(𝜎𝜔
𝑋)2/103 0.003  0.003  0.000  0.006  0.024  0.316  0.007  0.203  

(𝜎𝐼
𝑋)2/106 0.000  0.000  0.000  0.000  0.001  0.374  0.000  0.232  

ρ𝑅
𝐿𝐹𝑆,𝑋 0.991  1.000  0.999  1.000  0.998  1.000  0.957  1.000  

𝜙 0.106  0.259  0.081  0.267  0.106  0.259  0.081  0.267  

 

Table 4 provides maximum likelihood estimates of the hyperparameters in the unemployment models. 

As for employment, we consider both the case where we allow for a time-varying variance for the 

disturbances of the slopes of the trend components and the case where we do not. When allowing for 

time-varying variances, we get estimates of 𝜓1 ranging from 16 to 49. The estimates of 𝜓2 range from 

about 1.3 to 5. Thus, the estimates of 𝜓2 are somewhat smaller for unemployment than for 

employment (in Table 3). 

 

As we did for employment, we formally test the joint hypothesis of time-invariant, i.e., 𝜓1 = 𝜓2 = 1 

against the alternative of time-varying hyperparameters using a likelihood ratio test. The hypothesis is 
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firmly rejected for all domains. Again, all p-values are less than 0.0001. This finding is not surprising 

when Figures C.3 and C.4 are compared. In these graphs, the auxiliary residuals of the slope 

components of the trends are shown for both the case where we allow for time-varying variances for 

the slopes of the two trend components (Figure C.3) and for the case where we assume that they are 

time-invariant (Figure C.4). As in the case of employment (in Figure C.2), we see clearly that the 

variance increases in 2020 and 2021 in Figure C.4. When we allow for stepwise shifts in the variances 

of the disturbances of the two slopes, Figure C.3 does not show any evident structural breaks in the 

volatility of the residuals. Therefore, as in the the case for employment, we interpret this as evidence 

that our formulation of the stepwise shifts in the variances of disturbances of the two slope 

components captures the time-invariance caused by the pandemic quite well. 

4.2. Level shift parameter estimates  

Table 5 reports the structural break estimates for employment in the four domains both when we allow 

for time-varying hyperparameters and when we do not. The estimated total effect of the structural 

break in employment is 21,864 persons when we allow for time-varying hyperparameters and 24,307 

when we do not. Measured relative to an LFS-population of 4 million, the estimated structural break 

represents about 0,6 percent of the LFS-population. From the table, we see that it is the structural 

break estimate for males aged 25-74 that is most affected by allowing for a time-varying 

hyperparameter: When assuming time-invariant hyperparameters, we obtain a structural break 

estimate for this domain of 5,002 persons, but this estimate changes to -381 when allowance is made 

for time-varying hyperparameters for the slopes. The structural break estimate for young females also 

changes when allowance is made for time-varying hyperparameters, from 5,442 to 8,115. 

 

When time-varying variances for the slopes are allowed for, the structural break estimates for males 

are small and insignificant, when measured either individually or jointly. The estimates for women are 

all positive and significant. Thus, our analysis implies that the redesign of the Norwegian LFS led to 

an increase in measured employment for women.     

 

Table 6 reports estimates of the effects of the structural break for unemployment in the four domains. 

When time-varying hyperparameters for the two slope parameters are allowed for, the total estimated 

effect of the structural break on unemployment figures is 5,371. This corresponds to just over 0.1 

percent of the LFS-population. When the hyperparameters of the two slopes are assumed to be time-

invariant for all domains, the estimated total effect of the structural break is 7,841 persons, or about 

0.2 percent of the LFS population. The estimates for unemployed females are virtually unaltered by 
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allowing for time-varying hyperparameters. Therefore, the change in the total structural break estimate 

when allowance is made for time-varying slope hyperparameters of the slopes is due to the change in 

the estimates for males. The overall structural break estimate for males is reduced by more than 2,000 

people (from 3,847 to 1,723) when time-varying variances are allowed for the slope parameters.  

   

Table 5 Structural break estimates for employed persons, by sex and agea 

  Optimal time-varying 
hyperparameters 

 
Time-invariant 

hyperparameters 

Sex and age  Parameter 
estimate 

Standard 
error 

  Parameter 
estimate 

Standard 
error 

Males aged 15-24  -1,608  2,252   -1,925 2,249 

Males aged 25-74  -381  4,025   5,002  3,697 

Females aged 15-24  8,115  2,145    5,442  2,389 

Females aged 25-74  15,738  3,709    15,788 3,566 

      
Total: aggregate of the 4 domains  21,864  6,295    24,307 6,095 

Total for those aged 15-24: aggregate of the 2 sex groups 6,507  3,110    324 5,943 

Total for those aged 25-74: aggregate of the 2 sex groups 15,357  5,473    20,790 5,137 

Total for males: aggregate of the two age groups -1,989  4,612    3,077 4,327 
Total for females: aggregate of the two age groups 23,853  4,285    21,230 4,292 

a The period of the analysis is 2006M1-2021M10. The uncertainties for the 2021-redesign level shift parameter estimates measured with the standard error re-

ported are based on the case that 𝜓1, 𝜓2, and 𝜙 are known. 

 

Table 6 Structural break estimates for unemployed persons, by sex and agea 

  Optimal time-varying 
hyper-parameters 

  Time-invariant hyper-
parameters 

Sex and age  Parameter 
estimate  

Standard 
error  

  Parameter 
estimate  

Standard 
error  

Males aged 15-24  3,275  1,670   4,799 1,475 

Males aged 25-74  -1,552  2,346   -952 2,198 

Females aged 15-24  4,940  1,442    5,163 1,342 
Females aged 25-74  -1,292  1,736     -

1,169 
1,739 

      
Total: aggregate of the 4 domains  5,371  3,659    7,841 3,440 

Total for those aged 15-24: aggregate of the 2 sex groups  8,215  2,206    9,962 1,994 

Total for those aged 25-74: aggregate of the 2 sex groups  -2,844  2,918    -2,121 2,803 

Total for males: aggregate of the two age groups  1,723  2,880    3,847 2, 647 
 

Total for females: aggregate of the two age groups  3,648  2,257    3,994 2,197 
aThe period of analysis is 2006M1-2021M10. The uncertainties for the 2021-redesign level shift parameter estimates measured with the standard error reported 

are based on the case that 𝜓1, 𝜓2, and 𝜙 are known. 

5. Conclusions  

In 2021, the Norwegian LFS underwent a substantial redesign in accordance with the new regulation 

for integrated European social statistics. To ensure coherent labour market time series for the main 
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indicators, the redesign's impact is modelled to enable back-calculated estimates to be adjusted for 

possible structural breaks due to the 2021 LFS redesign. 

 

We pursued a structural time series approach in the tradition of Pfeffermann (1991), van den Brakel et 

al. (2009, 2015) and Elliott and Zong (2019). Structural breaks were estimated for the numbers of 

employed and unemployed persons in different domains. 

 

In addition to the 8 waves of monthly LFS data for the numbers of employed and unemployed persons, 

we also included auxiliary time series for registered numbers of employed and unemployed, in the 

model specifications.  

 

The structural time series model used contains unobserved components for trend, seasonality, and 

irregularity, all of which are assumed to be the same for all waves. A smooth trend model is used. In 

addition, we take account of wave-specific effects and the autocorrelation structure of the survey error 

component brought about by the rotating panel design. 

 

The auxiliary time series were also decomposed into trend, seasonality and irregularity components. 

Information from the auxiliary variables was used to obtain more precise structural break estimates by 

allowing the disturbances of the slopes of the two trend components to be correlated. 

The large labour market fluctuations due to the Covid-19 pandemic affected the structural break 

estimates following the redesign of the LFS. To counteract this contamination, we allowed the trend 

hyperparameters to be higher during the pandemic. 

 

The effect of the redesign was modelled as separate level shifts for each wave. The structural break 

estimates were based on modelling time series for the period 2006M1-2021M10. The structural time 

series model also utilized information from a parallel survey with the new questionnaire carried out in 

the last quarter of 2020 on a small sample.    

 

We considered models for four main domains: females aged 15-24, females aged 25-75, males aged 

15-24 and males aged 25-75. The domain-specific structural break estimates are given as the average 

of the estimates of the structural break parameters for the 8 waves.  

 

We obtained a positive structural break estimate of about 22,000 employed and 5,000 unemployed 

persons aged 15-74 when allowing for a time-varying hyperparameter for the slopes of the two trend 
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variables. When no such allowance was made, the estimated breaks for employment and 

unemployment were about 2,000-3,000 higher. Both likelihood ratio tests and examination of the 

auxiliary residuals indicate that the hyperparameters for slopes are time-varying with higher variances 

during the Covid19 pandemic. 

 

The structural break estimates identified here for Norway are of the same sign as found in the 

Netherlands; see van den Brakel (2022). However, our estimates are much smaller. van den Brakel 

(2022) identifies a structural break estimate in employment that corresponds to more than 1.5 percent 

of the population in the LFS, and a structural break estimate in unemployment that exceeds 1 percent 

of the LFS-population. For Norway, the estimates of the structural break imply a positive shift in the 

employment figure of slightly less than 0.6 percent and for unemployment of just over 0.1 percent, 

measured in relation to the LFS population.  



28 

References 

Anderson, B.D.O. and Moore, J.B. (1979): Optimal Filtering. Prentice-Hall, Englewood Cliffs. 

Bailar, B. A. (1975): The Effects of Rotation Group Bias on Estimates from Panel Surveys, Journal of 

the American Statistical Association, 70(349), 23– 30, doi: 10.1080/01621459.1975.10480255 

van den Brakel, J. A. (2022) ‘Monthly Labour Force Figures during the 2021 Redesign of the Dutch 

Labour Force Survey’, Discussion Paper, Statistics Netherlands. 

van den Brakel, J. A. and Krieg, S. (2009): Estimation of the monthly unemployment rate through 

structural time series modelling in a rotating panel design. Survey Methodology. 35. 177– 190. 

van den Brakel, J. A. and Krieg, S. (2015): Dealing with small sample sizes, rotation group bias and 

discontinuities in a rotating panel design. Survey Methodology, 41, 267– 296. 

van den Brakel, J., Souren, M. and Krieg, S. (2022): Estimating monthly labour force figures during 

the COVID-19 pandemic in the Netherlands, Journal of the Royal Statistical Society. Series A: 

Statistics in Society, (March 2021), pp. 1–24. doi: 10.1111/rssa.12869. 

van den Brakel, J. A., Zhang, X. (M)., and Tam, S.-M. (2020): Measuring Discontinuities in Time Se-

ries Obtained with Repeated Sample Surveys. International Statistical Review, 88, 155–175. 

https://doi.org/10.1111/insr.12347. 

Durbin, J., and Koopman, S. J. (2012): Time Series Analysis by State Space Methods. 2nd edition. Ox-

ford University Press. 

Elliott, D. J. and Zong, P. (2019): Improving timeliness and accuracy of estimates from the UK labour 

force survey, Statistical Theory and Related Fields, 3(2), 186–198. doi:  

10.1080/24754269.2019.1676034   

Engle, R. F. and Granger, C. W. J. (1987) ‘Co-Integration and Error Correction: Representation, Esti-

mation, and Testing’, Econometrica, 55(2), 251–276. doi: 10.2307/1913236. 

Eurostat (2022). Quality report of the European Union Labour Force Survey 2020. Available at: 

https://ec.europa.eu/eurostat/documents/7870049/14455112/KS-FT-22-003-EN-N.pdf  

Hamre, J. I., Hungnes, H., Jansen, X. C., Pham, D. Q., Sandvik, O. and Skjerpen, T. (2022) ‘Break es-

timation in the Norwegian LFS due to the 2021 redesign Documentation of the methods and 

some results’, Documents 2022-03, Statistics Norway. Available at: https://www.ssb.no/arbeid-

og-lonn/sysselsetting/artikler/break-estimation-in-the-norwegian-lfs-due-to-the-2021-rede-

sign.documentation-of-the-methods-and-some-results. 

https://doi.org/10.1111/insr.12347
https://ec.europa.eu/eurostat/documents/7870049/14455112/KS-FT-22-003-EN-N.pdf
https://www.ssb.no/arbeid-og-lonn/sysselsetting/artikler/break-estimation-in-the-norwegian-lfs-due-to-the-2021-redesign.documentation-of-the-methods-and-some-results
https://www.ssb.no/arbeid-og-lonn/sysselsetting/artikler/break-estimation-in-the-norwegian-lfs-due-to-the-2021-redesign.documentation-of-the-methods-and-some-results
https://www.ssb.no/arbeid-og-lonn/sysselsetting/artikler/break-estimation-in-the-norwegian-lfs-due-to-the-2021-redesign.documentation-of-the-methods-and-some-results


29 

Hansen, M. H., Hurwitz, W. N. and Nisselson, H. (1955) ‘The Redesign of the Census Current Popu-

lation Survey’, Journal of the American Statistical Association, 50(271), 701–719. 

Harrison, P. J. and Stevens, C. F. (1976) 'Bayesian Forecasting', Journal of the Royal Statistical Soci-

ety: Series B (Methodological), 38(3), 205–228. doi: 10.1111/j.2517-6161.1976.tb01586.x. 

Harvey, A. C. (1989): Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge 

University Press. 

Harvey, A. C. (2006): Seasonality and Unobserved Component Models: An Overview, Conference on 

seasonality, seasonal adjustment and their implications for short-term analysis and forecasting. 

Available at: https://ec.europa.eu/eurostat/web/products-statistical-working-papers/-/KS-DT-06-

019. 

Harvey, A. C. and Durbin, J. (1986): 'The Effects of Seat Belt Legislation on British Road Casualties: 

A Case Study in Structural Time Series Modelling', Journal of the Royal Statistical Society. Se-

ries A, 149(3), 187–210. doi: 10.2307/2981553. 

Harvey, A. C. and Koopman, S. J. (1992) Diagnostic Checking of Unobserved- Components Time Se-

ries Models', Journal of Business and Economic Statistics, 10(4), 377–389. doi: 

10.1080/07350015.1992.10509913. 

Helske, J. (2017): KFAS: Exponential Family State Space Models in R. Journal of Statistical Soft-

ware, 78(10), 1–39. doi: 10.18637/jss.v078.i10 

Henningsen, A. and Hamann, J. D. (2007): Systemfit: A Package for Estimating Systems of Simulta-

neous Equations in R. Journal of Statistical Software, 23(4), 1–40. doi: 10.18637/jss.v023.i04  

Hindrayanto, I., Aston, J. A. D., Koopmans, S. J. and Ooms, M. (2013): Modelling Trigonometric Sea-

sonal components for Monthly Economic Time Series, Applied Economics, 45(21), 3024–3034. 

doi: 10.1080/00036846.2012.690937. 

Koopman, J. (1997): Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series 

Models. Journal of the American Statistical Association, 92(440), 1630 –1638. doi: 

10.2307/2965434 

Koopman, S. J. and Durbin, J. (2000): Fast Filtering and Smoothing for Multivariate State Space Mod-

els, Journal of Time Series Analysis, 21(3), 281–296. doi: 10.1111/1467-9892.00186. 

Koopman, S.J. and Durbin, J. (2003): Filtering and Smoothing of State Vector for State-Space 

Models.Journal of Time Series Analysis, 24(1), 85–98. doi: 10.1111/1467-9892.00294 

https://ec.europa.eu/eurostat/web/products-statistical-working-papers/-/KS-DT-06-019
https://ec.europa.eu/eurostat/web/products-statistical-working-papers/-/KS-DT-06-019


30 

Krueger, A. B., Mas, A. and Niu, X. (2017): The Evolution of Rotation Group Bias: Will the Real Un-

employment Rate Please Stand Up?, The Review of Economics and Statistics, 99(2), 258–264. 

doi: 10.1162/REST_a_00630 

Kumar, S. and Lee, H. (1983) 'Evaluation of Composite Estimation for the Canadian Labour Force 

Survey, Survey Methodology, 9(2), 178–201. Available at: 

https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X198300214342. 

Nguyen, N. D. and Zhang, L.-C. (2020): An Appraisal of Common Reweighting Methods for Nonre-

sponse in Household Surveys Based on the Norwegian Labour Force Survey and the Statistics 

on Income and Living Conditions Survey, Journal of Official Statistics, 36(1), 151–172. doi: 

10.2478/jos-2020-0008. 

Oguz-Alper, M. (2018): New estimation methodology for the Norwegian LFS. Documents 2018/16, 

Statistics Norway. Available at: https://www.ssb.no/en/arbeid-og-lonn/artikler-og-pub-

likasjoner/_attachment/346996?_ts=162d85820c8 

Pfeffermann, D. (1991): Estimation and seasonal adjustment of population means using data from re-

peated surveys. Journal of Business and Economic Statistics, 9(2), 163–175, doi: 

0.1080/07350015.1991.10509840 

Pfeffermann, D., Feder, M. and Signorelli, D. (1998): Estimation of autocorrelations of survey errors 

with application to trend estimation in small areas, Journal of Business and Economic Statistics, 

16(3), 339–348. doi: 10.1080/07350015.1998.10524773. 

Proietti, T. (2000) ‘Comparing seasonal components for structural time series models’, International 

Journal of Forecasting, 16(2), 247–260. doi: 10.1016/S0169-2070(00)00037-6. 

Schweppe, F.C. (1965): Evaluation of Likelihood Functions for Gaussian Signals. IEEE Transactions 

on Information Theory, IT-4, 294–305. 

Stephan, F. F., Frankel, L. R. and Teper, L. (1954) 'The Measurement of EMPLOYMENT and UN-

EMPLOYMENT by the BUREAU OF THE CENSUS in its CURRENT POPULATION SUR-

VEY', Report of the Special Advisory Committee on Employment Statistics. Available at: 

https://books.google.no/books/about/The_Measurement_of_Employment_and_Un-

empl.html?id=uWfuRtR9c60C. 

Zhang, L.-C., Thomsen, I. and Kleven, Ø. (2013): On the Use of Auxiliary and Paradata for Dealing 

With Non-sampling Errors in Household Surveys. International Statistical Review, 2013, 81(2), 

270–288. doi: 10.1111/insr.12009   

https://www.ssb.no/en/arbeid-og-lonn/artikler-og-publikasjoner/_attachment/346996?_ts=162d85820c8
https://www.ssb.no/en/arbeid-og-lonn/artikler-og-publikasjoner/_attachment/346996?_ts=162d85820c8
https://books.google.no/books/about/The_Measurement_of_Employment_and_Unempl.html?id=uWfuRtR9c60C
https://books.google.no/books/about/The_Measurement_of_Employment_and_Unempl.html?id=uWfuRtR9c60C


31 

 Survey errors 

Because of the survey design, which implies that the respondents are asked questions 8 times over 2 

years, i.e. each quarter for two years, the derived time series will be subject to autocorrelation. 

Neglecting the survey error component will cause bias when it comes to other components. To 

simplify the numerical calculations, we pre-estimate the autocorrelation parameters related to the 

survey errors. Thus, the estimates of these parameters are plugged in when the remaining parameters 

are estimated. 

 

Construction of pseudo errors 

Let 𝐸𝑡
𝑖 and 𝑈𝑡

𝑖 denote the total number of employed and unemployed, respectively, according to wave i 

(i =1,…,8) in period t. Let the time-specific means of the waves be �̄�𝑡 =
1

8
∑ 𝐸𝑡

𝑖
𝑖=1  and �̄�𝑡 =

1

8
∑ 𝑈𝑡

𝑖8
𝑖=1 . 

Furthermore, let the time index vary from 1 to T. The wave-specific means are then given by �̄�𝑖 =

1

𝑇
∑ 𝐸𝑡

𝑖𝑇
𝑡=1  and 𝑈𝑖 =

1

𝑇
∑ 𝑈𝑡

𝑖𝑇
𝑡=1  (i=1,…,8). The pseudo errors are now calculated as follows 

 

(A.1) 𝜀𝑢,𝑡
𝑖 = 𝑈𝑡

𝑖 − �̄�𝑡 − �̄�𝑖 ; 𝑖 = 1, … ,8 ; 𝑡 = 1, … , 𝑇                                               

 

and 

 

(A.2) 𝜀𝑒,𝑡
𝑖 = 𝐸𝑡

𝑖 − �̄�𝑡 − �̄�𝑖;  𝑖 = 1, … ,8 ; 𝑡 = 1, … , 𝑇.                                               

 

Model specification 

For each domain, we estimate, separately, the following sets of regression models. 

 

(A.3) 𝜀𝑢,𝑡
𝑗

= 𝜙𝑢𝜀𝑢,𝑡−3
𝑗−1

+ 𝜉𝑢,𝑡
𝑗

, 𝑗 = 2, … ,8                                                                  

 

(A.4) 𝜀𝑒,𝑡
𝑗

= 𝜙𝑒𝜀𝑢,𝑡−3
𝑗−1

+ 𝜉𝑒,𝑡
𝑗

, 𝑗 = 2, … ,8                                                                  

 

Each of the two systems is characterized by only one parameter in the systematic part, i.e. the 

autocorrelation parameters 𝜙𝑢 and 𝜙e , respectively. 𝜉𝑢,𝑡
𝑗

 and 𝜉𝑒,𝑡
𝑗

, where j=2,…,8, are error terms. We 

define the following vectors with errors.        
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(A.5) 𝜉𝑢,𝑡 = [𝜉𝑢,𝑡
2 , 𝜉𝑢,𝑡

3 , 𝜉𝑢,𝑡
4 , 𝜉𝑢,𝑡

5 , 𝜉𝑢,𝑡
6 , 𝜉𝑢,𝑡

7 , 𝜉𝑢,𝑡
8 ]

/
                  

 

and 

 

(A.6) 𝜉𝑒,𝑡 = [𝜉𝑒,𝑡
2 , 𝜉𝑒,𝑡

3 , 𝜉𝑒,𝑡
4 , 𝜉𝑒,𝑡

5 , 𝜉𝑒,𝑡
6 , 𝜉𝑒,𝑡

7 , 𝜉𝑒,𝑡
8 ]

/
.                                

 

We assume that  

 

(A.7) 𝜉𝑢,𝑡 ~ 𝑁 𝐼𝐼𝐷(0, 𝛺𝑢)∀𝑡,                                                            

 

and 

 

(A.8) 𝜉𝑒,𝑡 ~ 𝑁 𝐼𝐼𝐷(0, 𝛺𝑒)∀𝑡,                                                            

 

where both 𝛺𝑢and 𝛺𝑒 are full covariance matrices. The two models are estimated by the SURE 

procedure in the r-package Systemfit; see Henningsen and Hamann (2007).12 In Table A1, we report 

the estimates of the autocorrelation parameters. 

 

Table A.1 Estimates of the autocorrelation parameters (𝝓). 

 Employment  Unemployment 

Domain Estimate Std. err.  Estimate Std. err. 

Females 15-24 0.539 0.023  0.081 0.027 

Females 25-74 0.770 0.017  0.267 0.025 

Males 15-24 0.577 0.022  0.106 0.027 

Males 25-74 0.723 0.019  0.259 0.027 

 

Robustness 

In our modelling, we have placed emphasis on employing a parsimonious model. The approach can be 

extended in different directions. One involves operating with wave-specific autocorrelation 

parameters. Unreported results show that the above implicit homogeneity assumptions are rather 

innocent. Another extension involves extending the lag length, for instance by adding variables at the 

sixth lag. It is not entirely clear which lag length to apply, so we have settled for the most 

parsimonious specification with respect to lag length. We have also looked at specifications in which 

                                                      

12 https://CRAN.R-project.org/package=systemfit  

https://cran.r-project.org/package=systemfit
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we model the pseudo-errors for employed and unemployed simultaneously. Under this more general 

model, we can for instance specify that 𝜀𝑢,𝑡−3
𝑗−1

 influences 𝜀𝑒,𝑡
𝑗

. However, although it is easy to estimate 

such a model in Systemfit, it turned out to be more difficult to handle this extension in the overall 

model. Finally, we also looked at more parsimonious specifications of the covariance matrices 𝛺𝑢and 

𝛺𝑒, but the results seemed fairly robust with respect to this type of change of the specification. 
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 The state-space model in detail 

We specify the model in state-space form. To derive the explicit state-space form of the system, we 

apply some new symbols for different operations. Let Diag create a diagonal matrix from the elements 

in parentheses, and BlockDiag create a block diagonal matrix from the elements in the parentheses. 

Let ⊗ express the Kronecker product. The measurement vector equation is given as   

 

(B.1) 𝑦𝑡 = 𝑍𝑡α𝑡, 

 

where 𝒚𝑡 = (𝑦𝑡
1, 𝑦𝑡

2, … , 𝑦𝑡
8, 𝑋𝑡)′ is a vector of all 8 waves of the LFS variable plus an auxiliary 

variable, where the state vector 𝛂𝒕 is a vector of unobserved components for level (R and L), season (𝛾 

and 𝛾∗), irregular component (I), wave-specific effects (the λ’s), and survey errors (�̃�𝑠
𝑗
, for 𝑗 =

1,2, … ,8 and 𝑠 = 𝑡, 𝑡 − 1, 𝑡 − 2) for the LFS variables. In addition, it includes similar components for 

level, season and the irregular part of the auxiliary variable. Finally, the structural break parameters for 

all LFS waves are included in α𝑡. Hence, the full state vector can be written in the following 

partitioned form 

 

 (B.2) 𝛼𝑡 = (𝛼𝑡
𝐿′

, 𝛼𝑡
𝑆′

, 𝛼𝑡
𝐼′

, 𝛼𝑡
𝑒′

, 𝛼𝑡
𝜆′

, 𝛼𝑡
𝑏′

)
′
. 

 

The vector 𝛼𝑡
𝐿′

 consists of four elements. The first two are the level and slope of the LFS waves, the 

last two are the level and slope of the auxiliary variable. Further, the vector 𝛼𝑡
𝑆′

 consists of 24 

elements. The first 12 relate to the seasonality of the LFS waves, and the last 12 to the seasonality of 

the auxiliary variable. (However, since sin 𝜋 = 0, we can exclude columns 12 and 24 from 𝑍𝑡
𝑆, and 

both rows and columns 12 and 24 from the remaining matrices). The vector 𝛼𝑡
𝐼′

 consists of 2 elements, 

where the first is the irregular component of the LFS waves and the last is the irregular component of 

the auxiliary variable. The vector 𝛼𝑡
𝑒′

 consists of 24 elements, all related to the LFS waves. The first 8 

are the survey errors for the 8 waves, the next 8 are the survey errors lagged one period, and the last 8 

are the survey errors lagged 2 periods. (However, we can exclude columns 12 and 24 from 𝑍𝑡
𝑒, and 

both rows and columns 12 and 24 from the remaining matrices). The vector 𝛼𝑡
𝜆′

consists of 7 

components for the wave-specific biases. Finally, the vector 𝛼𝑡
𝑏′

consists of 8 components with the 

effects of the structural break in each of the 8 waves. 
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The matrix 𝒁𝒕 contains only known values, primarily 0 and 1, but also 𝑐𝑜𝑠(π𝑗/6) , 𝑠𝑖𝑛(π𝑗/6), and 𝑘𝑡
𝑗
. 

In addition to including the time-dependent variables 𝑘𝑡
𝑗
, 𝒁𝒕 is also time-varying, as it includes values 

of the structural break variable 1t≥2021M1. It may be partitioned as  

 

(B.3) 𝑍𝑡 = (𝑍𝑡
𝐿 , 𝑍𝑡

𝑆, 𝑍𝑡
𝐼 , 𝑍𝑡

𝑒 , 𝑍𝑡
𝜆, 𝑍𝑡

𝑏), 

 

where 

 

(B.4) 𝑍𝑡
𝐿=(

18(1 0) 0802
′

02
′ (1 0)

), 

 

(B.5) 𝑍𝑡
𝑆 = (

16
′ ⊗ (1,0)18 08012

′

012
′ 16

′ ⊗ (1,0)
), 

 

(B.6) 𝑍𝑡
𝐼 = (

18 08

0 1
), 

 

(B.7) 𝑍𝑡
𝑒 = (

𝐷𝑖𝑎𝑔(𝑘𝑡
1, 𝑘𝑡

2, 𝑘𝑡
3, 𝑘𝑡

4, 𝑘𝑡
5, 𝑘𝑡

6, 𝑘𝑡
7, 𝑘𝑡

8) 08016
′

08
′ 016

′ ), 

 

(B.8) 𝑍𝑡
𝜆 = (

𝐽∗

07
′ ) 

 

and 

 

(B.9) 𝑍𝑡
𝑏 = (

1t≥2021M1 𝐼8

08
′ ). 

 

The transition equation is given by 

 

(B.10) α𝑡+1 = 𝑇α𝑡 + 𝐺𝑡ν𝑡, with  ν𝑡 ∼ 𝑁(0, 𝑄),  

 

where the time-invariant transition matrix T contains mostly 0 and 1, but also the estimate of the 

autocorrelation parameter 𝜙 related to the survey error component. It has the following block-diagonal 

specification 

 



36 

(B.11) 𝑇𝑡 = 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑎𝑔(𝑇𝑡
𝐿, 𝑇𝑡

𝑆, 𝑇𝑡
𝐼 , 𝑇𝑡

𝑒 , 𝑇𝑡
𝜆, 𝑇𝑡

𝑏), 

 

where 

 

(B.12) 𝑇𝑡
𝐿 = (

1 1
0 1

) ⊗ 𝐼2, 

 

(B.13) 𝑇𝑡
𝑆 = (𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑎𝑔(𝑇𝑡

𝑆1 , 𝑇𝑡
𝑆2 , 𝑇𝑡

𝑆3 , 𝑇𝑡
𝑆4 , 𝑇𝑡

𝑆5 , 𝑇𝑡
𝑆6)) ⊗ 𝐼2 , 

 with 𝑇𝑡

𝑆𝑗 = (
𝑐𝑜𝑠(π𝑗/6) 𝑠𝑖𝑛(π𝑗/6)

− 𝑠𝑖𝑛(π𝑗/6) 𝑐𝑜𝑠(π𝑗/6)
) for j=1,2,…,6, 

 

(B.14) 𝑇𝑡
𝐼 = 0202

′ , 

 

(B.15) 𝑇𝑡
𝑒 = (

08×16 �̂� (
07

′ 0
𝐼7 07

) 

𝐼16 01608′
) , 

 

(B.16) 𝑇𝑡
𝜆 = 𝐼7 

 

and 

 

(B.17) 𝑇𝑡
𝑏 = 𝐼8. 

 

The (potentially) block-diagonal time-varying selection matrix, Gt, may be written as 

 

(B.18) 𝐺𝑡 = 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑎𝑔(𝐺𝑡
𝐿, 𝐺𝑡

𝑆, 𝐺𝑡
𝐼 , 𝐺𝑡

𝑒 , 𝐺𝑡
𝜆, 𝐺𝑡

𝑏), 

 

where  

 

(B.19) 𝐺𝑡
𝐿 = 𝜓t

1/2
(

0
1

) ⊗ 𝐼2, where 𝜓 is given in Section 3.4, 

 

(B.20) 𝐺𝑡
𝑆 = 𝐼24,  

 

(B.21) 𝐺𝑡
𝐼 = 𝐼2, 
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(B.22) 𝐺𝑡
𝑒 = (

𝐼8

016 08
′ ), 

 

(B.23) 𝐺𝑡
𝜆 = 𝐼7 and 

 

(B.24) 𝐺𝑡
𝑏 = 𝐼8. 

 

The time-invariant covariance matrix of the disturbances in the transition vector equation is partitioned 

as 

 

(B.25) 𝑄 = 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑎𝑔(𝑄𝐿, 𝑄𝑆, 𝑄𝐼 , 𝑄𝑒 , 𝑄𝜆, 𝑄𝑏), where 

 

(B.26) 𝑄𝐿 = (
(𝜎𝑅

𝐿𝐹𝑆)
2

ρ𝑅
𝐿𝐹𝑆,𝑋𝜎𝑅

𝐿𝐹𝑆𝜎𝑅
𝑋

ρ𝑅
𝐿𝐹𝑆,𝑋𝜎𝑅

𝐿𝐹𝑆𝜎𝑅
𝑋 (𝜎𝑅

𝑋)2
), 

 

(B.27) 𝑄𝑆 = 𝐼24𝜎𝜔
2 , 

 

(B.28) 𝑄𝐼 = (
(𝜎𝐼

𝐿𝐹𝑆)
2

0

0 (𝜎𝐼
𝑋)2

), 

 

(B.29) 𝑄𝑒 = (
𝜎𝑒1

2 07
′

07 𝜎𝑒
2 𝐼7

),13 

 

(B.30) 𝑄λ =  𝐼7 σλ
2  

 

and 

 

(B.31) 𝑄𝑏 =  0808
′ . 

 

                                                      

13 An alternative could be to use 𝐺𝑡
𝑒 = (

1 07
′

07 (1 − �̂�2)𝐼7

016 016 07
′

) and 𝑄𝑡
𝑒 = 𝜎𝑒

2 𝐼8, which implies estimating only one 

hyperparameter for the survey error. 
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It remains to clarify the initial conditions. The distribution of the initial state vector is given by 

 

(B.32) 𝛂𝟏 ∼ 𝑁( 𝝁, 𝚺), 

 

where 𝜇 and Σ denote the mean and the covariance matrix, respectively, of the initial state vector. 

We use diffuse initialization for most variables; see, e.g., Koopman (1997) and Koopman and Durbin 

(2000). In (B32), this implies setting the corresponding element in the covariance matrix 𝚺 equal to 

infinity. For the elements related to the structural break, we use diffuse initialization for waves 2-8. 

For wave 1, we utilize prior information for this break from the parallel run. 

 

The expectation of the initial state vector may be written in partitioned form as  

 

(B.33) 𝜇 = (𝜇𝐿′
, 𝜇𝑆′

, 𝜇𝐼′
, 𝜇𝑒′, 𝜇𝜆′

, 𝜇𝑏′
)

′
, 

 

where  

 

(B.34) 𝜇𝐿 = 04, 

 

(B.35) 𝜇𝑆 = 024, 

 

(B.36) 𝜇𝐼 = 02, 

 

(B.37) 𝜇𝑒 = 024, 

 

(B.38) 𝜇𝜆 = 07 

 

and  

 

(B.39) 𝜇𝑏 = (
𝜇𝑏1

07
), 

 

where  𝜇𝑏1 is the estimate of the effect of the structural break on wave 1 in the parallel survey. The 

covariance matrix of the initial state vector is block-diagonal and may be written as 
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(B.40) Σ = 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑎𝑔(Σ𝐿 , Σ𝑆 , Σ𝐼 , Σ𝑒 , Σ𝜆, Σ𝑏), where 

 

(B.41) Σ𝐿 = 𝜅𝐼4 with 𝜅 → ∞, 

 

(B.42) Σ𝑆 = 𝜅𝐼24 with 𝜅 → ∞, 

 

(B.43) Σ𝐼 = 𝜅𝐼2 with 𝜅 → ∞, 

 

(B.44) Σ𝑒 = 𝐼24,  

 

(B.45) Σ𝜆 = 𝜅𝐼7 with 𝜅 → ∞ and 
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 Graphs 

Figure C.1 Auxiliary residuals for slope disturbances for employed persons by sex and age with time-varying hy-

perparameters.1 

 

In Figure C.1,  the LFS line cannot be seen, because it is almost identical to  the register variable. The reason for this is that the correlation between auxiliary 
residuals of the slope components of the LFS and register trends is equal to or almost equal to 1. 
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Figure C.2 Auxiliary residuals for slope disturbances for employed persons by sex and age with time-invariant hy-

perparameters.1 

 

In Figure C.2, the LFS line cannot be seen, because it is almost identical to the register variable line. The reason for this is that the correlation between auxiliary 

residuals of the slope components of the LFS and register trends is equal to or almost equal to 1. 
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Figure C.3 Auxiliary residuals for slope disturbances for unemployed persons by sex and age with time-varying hy-

perparameters.1 

 

In Figure C.3, the LFS line cannot be seen, because it is almost identical to the register variable line. The reason for this is that the correlation between auxiliary 

residuals of the slope components of the LFS and register trends is equal to or almost equal to 1. 
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Figure C.4 Auxiliary residuals for slope disturbances for unemployed persons by sex and age with time-invariant 

hyperparameters.1 

 

In Figure C.4, the LFS line cannot be seen, because it is almost identical to the register variable line. The reason for this is that the correlation between auxiliary 

residuals of the slope components of the LFS and register trends is equal to or almost equal to 1. 
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 Some additional results 

Table D.1 Smoothed 2021-redesign level shift parameter estimates and standard errors (Std. err.) for employed per-
sons, by sex, age and wavea 

  Optimal time-varying hyperparameters  Time-invariant hyperparameters 

Age Wave 

Male   Female      Male   Female   

Estimate Std. err.  Estimate  Std. err.   Estimate Std. err.  Estimate Std. err. 

15-24  1 630 6,189  19,914 5,779    371 6,193  16,945 6,476 

2 13,227 6,050   10,912 5,819    12,967 6,058  8,199 6,532 

3 928 6,145   7,063 5,845    621 6,181  4,540  6,622 

4 -3,293 6,417   8,420 6,104    -3,639 6,502  5,999 6,757 

5 -6,381 6,337   2,624 6,194    -6,742 6,295  83 6,762 

6 -10,378 6,481   2,387 6,256    -10,741 6,424  -217 6,780 

7 148 6,516   2,350 5,998  -191 6,420  -286 6,802 

8 -7,745 6,791   11,251 6,510    -8,045 6,794  8,271 7,287 

Average  -1,608 2,252   8,115 2,145    -1,925 2,249  5,442 2,389 

             

25-74  1 -13,846 12,560   10,314 11,570    -10,449 12,291  10,706 11,553 

2  -7,963 11,754   18,648 10,481    -4,030 10,663  18,882 10,717 

3  -7,691 11,195   18,179 10,846    -3,219 10,435  18,236 9,767 

4  1,005 10,404   13,331 10,396    6,154 9,668  13,336 8,649 

5  -2,716 10,943   12,803 10,050    2,946 9,487  12,795 9,995 

6  7,821 11,453   9,761 10,178    13,840 9,920  9,742 9,855 

7  11,994 10,811   28,813 9,981    18,554 10,264  28,736 9,589 

8  8,351 11,809   14,051 10,333  16,224 10,669  13,874 10,323 

Average  -381 4,025   15,738 3,709    5,002 3,697  15,788 3,566 

a The period analysed is 2006M1-2021M10.  
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Table D.2 Smoothed 2021-redesign level shift parameter estimates and standard errors (Std. err.) for unemployed 

persons, by sex, age and wavea 

  Optimal time-varying hyperparameters  Time-invariant hyperparameters 

Age Wave 

Male   Female      Male   Female   

Estimate Std. err.  Estimate  Std. err.   Estimate Std. err.  Estimate Std. err. 

15-24  1 3,027  4,177   7,412  3,611   4,374 3,687  7,637 3,379 

2 238  4,589   -1,342  3,962   1,818 3,976  -1,128 3,661 

3 9,819  4,716   6,364  4,046   11,391 4,127  6,558 3,738 

4 195  4,793   1,267  4,168   1,743 4,233  1,485 3,882 

5 4,599  4,801   7,844  4,204   6,128 4,258  8,118 3,932 

6 5,248  4,876   3,907  4,173   6,772 4,344  4,139 3,883 

7 689  4,901   8,217  4,138   2,232 4,360  8,452 3,846 

8 2,385  4,898   5,847  4,298   3,929 4,355  6,040 4,013 

Average  3,275  1,670   4,940  1,442   4,799 1,475  5,163  1,342 

             

25-74  1 3,560  6,820   -2,915  5,733   4,044 6,538  -2,847 5,745 

2  -3,327  6,893   1,564  4,980       -2,772 6,514  1,693 4,984 

3  -4,527  6,711   3,576  4,852   -3,394 6,306  3,695 4,844 

4  -6,359  6,540   -1,746  4,692   -5,736 6,094  -1,625 4,703 

5  -4,878  6,492   2,077  4,663   -4,237 6,029  2,213 4,688 

6  5,650  6,540   -6,364  4,728   6,284 6,079  -6,228 4,738 

7  -3,375  6,540   754  4,770   -2,747 6,085  885 4,782 

8  842  6,542   -7,283  4,764   1,517 6,055  -7,139 4,768 

Average  -1,552  2,346   -1,292  1,736   -952 2,198  -1,169 1,739 

a The period of the analysis is 2006M1-2021M10.  
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 Additional graphs 

Figure E.1: LFS estimate and register variable for employed males aged 15-24 years, in thousand.  

 

Figure E.2: LFS estimate and register variable for employed males aged 25-24 years, in thousand. 
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Figure E.3: LFS estimate and register variable for employed females aged 15-24 years, in thousand.  

 

Figure E.4: LFS estimate and register variable for employed fmales aged 25-24 years, in thousand. 
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Figure E.5: LFS estimate and register variable for unemployed males aged 15-24 years, in thousand.  

 

Figure E.6: LFS estimate and register variable for unemployed males aged 25-24 years, in thousand. 
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Figure E.7: LFS estimate and register variable for unemployed females aged 15-24 years, in thousand.  

 

Figure E.8: LFS estimate and register variable for unemployed fmales aged 25-24 years, in thousand. 
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