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Abstract 

This paper introduces a novel multivariate composite estimator for the Labour Force Survey (LFS). 

Unlike the univariate composite estimators used in some countries, the multivariate estimator takes 

into account the different probabilities of transitioning between labour market categories, such as 

employment, unemployment, or non-participation in the labour force.  By directly estimating all 

categories, it avoids residual determination issues, where one category is estimated as the 

difference between the total population and the sum of others. The multivariate approach improves 

the accuracy of the population estimates for each category. Additionally, the paper introduces a 

method to account for time-varying biases associated with how long the respondents have 

participated in the survey, explicitly incorporating wave-specific effects and their evolution over 

time. 
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Sammendrag 

Artikkelen presenterer en ny multivariat sammensatt estimator for Arbeidskraftundersøkelsen 

(AKU). I motsetning til univariate estimatorer som brukes i enkelte land, tar denne multivariate 

tilnærmingen hensyn til de ulike overgangssannsynlighetene mellom arbeidsmarkedsstatusene: 

sysselsatt, arbeidsledig og utenfor arbeidsstyrken. Ved å estimere alle kategorier direkte, unngås 

problemer knyttet til residualbestemmelse, noe som forbedrer nøyaktigheten av populasjons-

estimatene. 

En viktig forbedring som foreslås i dokumentet er å ta høyde for potensielt tidsvarierende skjevheter 

i svarene fra respondenter, spesielt med hensyn til hvordan svarene varierer mellom ulike 

undersøkelsesbølger ("wave-specific effects"). Tidligere estimatorer har ofte oversett slike 

skjevheter. Ved å inkludere en metode for å justere for disse skjevhetene, gir den nye estimatoren 

mer pålitelige arbeidsmarkedstall. 

Empiriske resultater fra anvendelse på den norske AKU viser at en innføring av den multivariate 

estimatoren fører til relativt små endringer i arbeidsledighetstallene sammenlignet med en direkte 

estimator, men gir betydelige revisjoner av sysselsettingsestimatene. Særlig yngre aldersgrupper 

viser store avvik, noe som understreker viktigheten av å modellere sammenhenger mellom ulike 

arbeidsmarkedsstatuser eksplisitt. 

Den nye estimatoren bygger videre på tidligere forskning, men introduserer en mer fleksibel 

tilnærming som tillater tidsvariasjon i undersøkelsesbølgenes skjevheter. Dette gir statistiske 

myndigheter et verktøy for å forbedre nøyaktigheten i arbeidsmarkedsstatistikken. 

 



1 Introduction

The Labour Force Survey (LFS) provides essential data on the employment status of individuals,

including information on employment, unemployment, and non-participation in the labour force.

It also provides details into occupations, working hours, and the duration of job search for the

unemployed.

Many countries use a rotating panel design for the LFS, where participants are surveyed multiple

times and a portion of the sample is replaced in each round. Although this design offers several

advantages, it also introduces challenges, such as possible autocorrelation in the survey errors. If

not properly taken into account, autocorrelation can lead to misleading trends, as highlighted by

Mayer (2018) and Hausman and Watson (1985).

One approach to addressing this issue is to use a composite estimator, which combines a ’direct’

estimator with one that accounts for autocorrelation due to the rotating sample. While univariate

composite estimators are used for the employment and unemployment figures in the U.S. LFS,

they present certain limitations. Specifically, univariate frameworks often result in asymmetrical

treatment of a residual category. A multivariate composite estimator resolves this issue.

Another advantage of applying a multivariate composite estimator is that it takes into account

different transition probabilities between different categories. For instance, if employment levels

are low in a specific sub-group of the sample, a multivariate estimator can distinguish whether this

is due to higher unemployment or greater non-participation in the labour market. A univariate

estimator will ignore such information as it typically differentiates only between employed and

non-employed individuals.

Previous research has shown that different biases can arise depending on how long an individual

has been in the survey. For example, first-time participants often report higher unemployment

levels. Univariate composite estimators suggested in the literature have typically ignored these

biases. This paper introduces a multivariate composite estimator that allows for these biases,

referred to as wave-specific effects or wave-specific biases. Moreover, it presents a framework for

allowing these wave-specific effects to evolve over time. We derive a simple formula for updating

these wave-specific effects, which national statistical offices can easily incorporate into statistical

production.

To illustrate the usefulness of the multivariate composite estimator, we apply it to the Nor-

wegian LFS. Our empirical results show that revisions to unemployment estimates are relatively

small when switching from the direct estimator to the multivariate composite estimator. However,

significant revisions are observed for employment figures, especially for demographic groups with

younger individuals, reflecting the benefits of explicitly modelling interdependence between labour

market statuses.

The multivariate composite estimator proposed here shares several features with the estimator
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suggested by Merkouris (2024). While the estimator in Merkouris (2024) accounts for the weighting

of the survey respondents, it does not incorporate wave-specific biases. In contrast, the estimator

presented here explicitly accounts for the presence of wave-specific biases and allows these effects

to evolve over time. This distinction is a key feature of our approach, enabling more accurate

modelling of survey data.

The remainder of the paper is structured as follows. Section 2 reviews the related literature.

Section 3 describes the rotation patterns used in LFS surveys across various countries. Section 4

revisits the univariate composite estimator, while Section 5 introduces its multivariate counterpart.

Section 6 discusses how to estimate the parameters of the multivariate composite estimator. Section

7 addresses the potentially time-varying nature of the wave-specific effects. Section 8 applies the

proposed methodology to the Norwegian LFS. Finally, Section 9 concludes the paper.

2 Related literature

There is a long tradition of applying time series models to LFS data in order to improve population

estimates. Direct survey estimates can be decomposed into a population estimate and a survey

error. The foundation for composite estimators in repeated surveys is laid by Jessen (1942) and

Patterson (1950), who utilized generalized least squares methods. The primary objective of the

composite estimator is to correct for autocorrelation in survey errors that arise due to the rotating

panel design of the survey.

The composite estimator proposed by Hansen et al. (1955) accounts for the autocorrelation in

survey errors due to the rotating panel design. This estimator has been used in the U.S. Current

Population Survey (CPS), the U.S. variant of the LFS. Using information from previous survey

periods, the estimator improves the population estimates for the current period. The enhanced

version of this composite estimator, suggested by Gurney and Daly (1965) and evaluated by Breau

and Ernst (1983), remains the basis for the published U.S. labour force statistics at the federal

level (see U.S. Census Bureau, 2019).

Composite estimators can also be derived in conjunction with the weighting of survey partici-

pants. The early contributions of Fuller (1990) and Singh and Merkouris (1995) laid the foundations

for such estimators. These methods have been applied in the Canadian LFS, as demonstrated in

Singh et al. (1997, 2001), and Fuller and Rao (2001). Recently, Merkouris (2024) proposed a

multivariate composite estimator that incorporates individual weighting into the survey design,

advancing the methodological frontier.

Time series models have also been used to model population estimates directly, starting with

the foundational work by Scott and Smith (1974) and Scott et al. (1977). Pfeffermann (1991)

and Pfeffermann et al. (1998) further advanced this approach by introducing a structural model

that decomposes population estimates into trend, seasonal, and irregular components, while also
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accounting for autocorrelation in survey errors across waves caused by rotating panel designs.

These time series models can be improved through the integration of auxiliary information, as

demonstrated in studies by Harvey and Chung (2000), van den Brakel and Krieg (2016), and

Schiavoni et al. (2021, 2024).

The survey sample can be divided into different waves based on the length of time that inter-

viewees have participated in the survey. Studies by Stephan et al. (1954), Hansen et al. (1955),

and Bailar (1975) identified clear evidence of wave-specific biases in the U.S. CPS. Specifically,

they found that first-time participants (i.e., the first wave) tend to report higher unemployment

rates than those who participated in subsequent waves. To account for this, Pfeffermann (1991) in-

corporated time-invariant wave-specific effects into the structural model. However, Krueger et al.

(2017) showed that these biases can evolve over time, suggesting that structural models should

allow for time-varying wave-specific effects. This approach is used in van den Brakel and Krieg

(2009) and further developed in Hungnes et al. (2024).

Silva and Smith (2001) proposed a time series model for labour market categories (e.g., em-

ployed, unemployed, and non-participation) that allows for simultaneous modelling of mutually

exclusive categories. Their formulation ensures that it does not matter which labour market cate-

gory is determined residually.1

In situations with large fluctuations in the labour market, such as during the COVID-19 pan-

demic, it can be problematic to assume that the population variables follow a time-invariant pro-

cess. The sharp increase in unemployment during the beginning of the pandemic, for example,

underscored the need for flexible models. In response, van den Brakel et al. (2022) proposed a

flexible trend model to account for rapid population changes, applying it to the Dutch LFS. Sim-

ilarly, Gonçalves et al. (2022) employed flexible trend models to the Brazilian LFS, and Hungnes

et al. (2024) utilized such modells to estimate redesign breaks in the Norwegian LFS during the

pandemic.

Given that the process of population estimates can change over time —– particularly during

periods of economic shocks such as the recent COVID-19 pandemic —– using a composite estimator

can be advantageous. The composite estimator can be further refined by incorporating wave-

specific effects and by simultaneously modelling different labour market categories. This paper

proposes a multivariate composite estimator that addresses these ideas.

3 LFS around the world

Many countries employ a rotating panel design in their LFS. In the U.S. LFS, known as the Current

Population Survey (CPS), a 4-8-4 rotating panel system is used. Under this system, participants

are interviewed for four consecutive months, followed by an eight-month gap, after which they are

1A similar joint model is discussed in van den Brakel and Roels (2010).
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Table 1: The rotation pattern in the U.S. LFS (Current Population Survey, CPS)
first period t =
in sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
t = −14 w4
t = −13 w3 w4
t = −12 w2 w3 w4
t = −11 w1 w2 w3 w4
t = −10 w1 w2 w3 w4
t = −9 w1 w2 w3 w4
t = −8 w1 w2 w3 w4
t = −7 w1 w2 w3 w4
t = −6 w1 w2 w3 w4
t = −5 w1 w2 w3 w4
t = −4 w1 w2 w3 w4
t = −3 w1 w2 w3 w4
t = −2 w4 w1 w2 w3 w4
t = −1 w3 w4 w1 w2 w3 w4
t = 0 w2 w3 w4 w1 w2 w3 w4
t = 1 w1 w2 w3 w4 w1 w2 w3 w4
t = 2 w1 w2 w3 w4 w1 w2 w3 w4
t = 3 w1 w2 w3 w4 w1 w2 w3 w4
t = 4 w1 w2 w3 w4 w1 w2 w3 w4
t = 5 w1 w2 w3 w4 w1 w2 w3 w4
t = 6 w1 w2 w3 w4 w1 w2 w3 w4
t = 7 w1 w2 w3 w4 w1 w2 w3 w4
t = 8 w1 w2 w3 w4 w1 w2 w3 w4
t = 9 w1 w2 w3 w4 w1 w2 w3 w4

The first column indicates when the sample is included in the survey for the first time. The row shows which wave
and block the participants belong to in different survey periods. Yellow colour indicates that the participants are
in block 1, while green colour indicates block 2. ‘w1’, ‘w2’, ‘w3’, and ‘w4’ indicate that the participants belong to
waves 1, 2, 3, or 4 of this block in the relevant survey period.

re-interviewed for another four months. This system is displayed in Table 1, where the first set of

interviews is referred to as ‘Block 1’ (the initial four months of participation) and marked in yellow,

and the second set as ‘Block 2’ (the last four months) and marked in green. Within each block,

each interview period is referred to as a ‘wave’, labeled as ‘w1’, ‘w2’, ‘w3’, and ‘w4’, corresponding

to each of the four months in the block.

To illustrate this further, consider the row for t = 1 in Table 1, which shows the interview

schedule for participants entering the survey at period 1. Initially, these participants are classified

as wave 1 in block 1. Over the next three periods (2, 3, and 4), they progress through waves 2,

3, and 4 in block 1, respectively. After an eight-month absence from the survey, they rejoin in

period 13, now as wave 1 in block 2, with subsequent waves 2, 3, and 4 in periods 14, 15, and 16,

respectively.

Column 1 in Table 1 outlines the participants interviewed in each period. Those participating

for the first time are wave 1 in block 1. Those who participated in the survey for the first time in

period 0 constitute wave 2 in block 1 in period 1. In period 1, those who joined the survey for the

first time in period −1 and −2 now constitute wave 3 and wave 4, respectively, of block 1. The

breakdown for block 2 follows a similar pattern, with participants from periods −11, −12, −13,

and −14 forming waves 1-4 of block 2 in period 1.

This structure of the U.S. LFS, where survey participants are interviewed across two blocks,

highlights the necessity of a composite survey estimator that accounts for autocorrelation of survey

errors within each block. However, this study assumes that autocorrelation diminishes significantly

between blocks due to the time gap, and thus does not consider correlations across blocks.

The key information needed from the LFS designs of various countries is the number of blocks,

the number of waves per block, and the frequency of interviews within each block. For instance, in

the U.S., interviews occur monthly within each block, while in Eurostat countries, they take place
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Table 2: LFS in some non-Eurostat countries

Country
∑B
i=1 J

i l source
Australia 8 1 Zhang et al. (2019)
Brazil 5 3 Gonçalves et al. (2022)
Canada 8 1 Statistics Canada (2017)
Japan 4+4 1 Statistics Bureau of Japan (2023)
New Zealand 8 3 Stats NZ Tatauranga Aotearoa (2023)
United Kingdom 5 3 Eurostat (2014)
United States 4+4 1 U.S. Census Bureau (2019)

J i is the number of waves in each block; B is the number of blocks, so
J =

∑B
i=1 J

i is the overall number of waves over all blocks; l is the time
between re-interviewing (measured in months).

Table 3: LFS in the Eurostat countries

Country
∑B
i=1 J

i l
Austria 5 3
Belgium 2+2 3
Bulgaria 2+2 3
Croatia 2+2 3
Cyprus 6 3
Czechia 5 3
Denmark 2+2 3
Estonia 2+2 3
Finland 3+2 3
France 6 3
Germany 2+2 3
Greece 6 3
Hungary 6 3
Iceland 3+2 3
Ireland 5 3
Italy 2+2 3
Latvia 2+2 3

Country cont.
∑B
i=1 J

i l
Lithuania 2+2 3
Luxembourg 5 3
Malta 2+2 3
Netherlands 5 3
Montenegro 2+2 3
North Macedonia 2+2 3
Norway 8 3
Poland 2+2 3
Portugal 6 3
Romania 2+2 3
Serbia 2+2 3
Slovakia 5 3
Slovenia 3+2 3
Spain 6 3
Sweden 8 3
Switzerland 2+2 3
Türkiye 2+2 3

J i is the number of waves in each block; B is the number of blocks,
so J =

∑B
i=1 J

i is the overall number of waves over all blocks; l
is the time between re-interviewing (measured in months). Source:
Eurostat (2022).

every three months. These differences are crucial for constructing a composite estimator.

Table 2 summarizes the LFS design features of selected non-Eurostat countries, while Table 3

provides an overview of designs used in Eurostat countries.

In Eurostat countries, the LFS is covering all weeks within a quarter (see Eurostat, 2022).

Participants are surveyed every 13 weeks, as noted by Elliott and Zong (2019). Both quarterly

and monthly LFS statistics are produced. For monthly statistics, each month consists of four

or five survey weeks, and participants are generally interviewed once every three months. For

further discussion on the advantages and disadvantages of different rotation patterns, see Steel and

McLaren (2009).
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4 The univariate composite estimator revisited

In this section, we will consider the univariate composite estimator. In Section 4.1, we assume that

the LFS survey consists of only one block. The case where the LFS survey consists of multiple

blocks is considered in Section 4.2.

In the LFS, the population can be categorized into mutually exclusive groups. For instance,

it can be divided into categories such as unemployed, employed, and those outside the workforce,

with the sum of these categories constituting the total population.

4.1 One block

We assume here that the LFS survey has only one block, denoted B = 1. The observations in

this block can be divided into J waves. Let yjt (j = 1, 2, . . . , J) be the estimate of an LFS figure

(measured relative to the LFS population) based on the observations in wave j at time t.

Each wave estimate yjt is decomposed into the overall estimate of the LFS figure at time t,

denoted µt, a wave-specific effect λjt , which may vary over time, and a wave-specific survey error

ujt .

yjt = µt + λjt + ujt for t = 1, 2, . . . , T. (1)

To identify the wave-specific effects, we impose a restriction on them. The general restriction

is formulated as
J∑
j=1

ωjλjt = 0 for all t with

J∑
j=1

ωj = 1, (2)

where the weights ωj are fixed. Typically, the wave-specific effects are assumed to have a mean of

zero, so the weights are set to ωj = 1
J for all j. However, alternative identification restrictions may

be applied. For example, in the LFS of the Netherlands, the first wave is assumed to be unbiased,

so the weights are specified as ω1 = 1 and ωj = 0 for j = 2, . . . , J .

The rotating panel design of the LFS introduces correlations between observations in one wave

at time t and those from the previous wave at time t− l, where l is the number of periods between

re-interviews. This correlation is absent for individuals in the first wave, as they are interviewed

for the first time in period t. The error process for each wave is given by

u1t = ε1t for t = 1, 2, . . . , T

ujt =

 εjt t = 1, 2, . . . , l

φuj−1t−l +
√

1− φ2εjt t = l + 1, l + 2, . . . , T
j = 2, 3, . . . , J (3)

with 0 ≤ φ < 0, εjt ∼ N(0, σ2
ε) for t = 1, 2, . . . , T and j = 1, 2, . . . , J,

where φ is the autoregressive parameter. The unconditional variance of ujt is equal across waves

and equal to σ2
ε . This is derived by taking the variance of both sides of the equation for ujt in (3).
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By combining (1) and (3), we obtain

yjt = µt + λjt + φ
[
yj−1t−l − µt−l − λ

j−1
t−l

]
1t>l&j>1 +

√
1− φ21j>1ε

j
t , (4)

where 1a denotes the indicator function taking the value of 1 if a is true, and 0 otherwise.

The composite estimator, derived by minimizing the residual variance across waves St =∑J
j=1(εjt )

2 with respect to µt (for t > l), is given by

µ̂t =(1− α̃)µ̂dirt + α̃

µ̂t−l +
1

J − 1

J∑
j=2

(
yjt − y

j−1
t−l

)+ β̃
1

J

y1t − 1

J − 1

J∑
j=2

yjt

+ γ̃t, (5)

where

µ̂dirt =
1

J

J∑
i=1

yjt . (6)

The the estimates of the parameters α, and β are defined as

α̃ = φ̃
J − 1

J − φ̃2
, (7)

β̃ = φ̃
(J − 1)(1− φ̃)

J − φ̃2
= (1− φ̃)α̃, (8)

where φ̃ is some estimate of φ. For these and other estimates, we use a tilde to indicate that

they are not necessarily based on minimizing of St. Finally, the estimate of γt is a function of

wave-specific effects that are allowed to be time-varying. In (5), α captures the relative weight of

the composite estimate from l months ago, β adjusts for deviations in wave-specific effects, and

γt accounts for any residual wave-specific bias. If the wave-specific effects are time-invariant, and

the weights are equal such that
∑J
j=1 λ

j = 0, we have γ̃ = φ̃

J−φ̃2

(
φ̃λ̃1 − λ̃J

)
where λ̃j is some

estimate of λj .

Note that the composite estimator in (5) is a weighted average of two components. The first

component is the direct estimate of the LFS figure, µ̂dirt , and the second component is the composite

estimate from l months ago, adjusted for changes in the sample overlap between periods. In

addition, the estimator depends on the correction between the first wave and the other waves, as

well as a term that captures the effects of the wave-specific effects.

To refine the composite estimator, we introduce the bias-corrected estimate yt(λ)j = yjt − λ̃
j
t .
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The estimator can then be reformulated as

µ̂t =(1− α̃)µ̂(λ)dirt

+ α̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

)
+ β̃

1

J

y(λ)1t −
1

J − 1

J∑
j=2

y(λ)jt

 for t = l + 1, l + 2, . . . , T, (9)

where µ̂(λ)dirt = 1
J

∑J
j=1 y(λ)jt . Assuming that the average of the wave-specific effects is zero, i.e.,

ωj = 1/J , we have µ̂(λ)dirt = µ̂dirt (as µ̂(λ)dirt = 1
J

∑J
j=1 y

j
t − 1

J

∑J
j=1 λ̃

j
t = 1

J

∑J
j=1 y

j
t ). For initial

observations (t = 1, 2, . . . , l), the composite estimator is simply the direct estimate:

µ̂t = µ̂(λ)dirt for t = 1, 2, . . . , l. (10)

Remark 4.1 The last term in (9) can be reformulated as

β̃
1

J

y(λ)1t −
1

J − 1

J∑
j=2

y(λ)jt

 = β̃
1

J

 J

J − 1
y(λ)1t −

1

J − 1

J∑
j=1

y(λ)jt

 = β̃
1

J − 1

[
y(λ)1t − µ̂(λ)dirt

]
,

which shows that this term adjusts for how the bias-corrected first-wave observation deviates from

the average.

Next, we reformulate the second term in (9) as

α̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

)
=α̃

[
µ̂t−l +

(
µ̂(λ)dirt − µ̂(λ)dirt−l

)
+

1

J − 1

[(
y(λ)Jt−l − µ̂(λ)dirt−l

)
−
(
y(λ)1t − µ̂(λ)dirt

)]]
.

Using β̃ = (1− φ̃)α̃, the two last terms in (9) can be combined such that

µ̂t =(1− α̃)µ̂(λ)dirt

+ α̃

[
µ̂t−l +

(
µ̂(λ)dirt − µ̂(λ)dirt−l

)
+

1

J − 1

[(
y(λ)Jt−l − µ̂(λ)dirt−l

)
− φ̃

(
y(λ)1t − µ̂(λ)dirt

)]]
,

consists of two terms.

Finally, combining all terms yields

µ̂t =µ̂(λ)dirt

+ α̃

[(
µ̂t−l − µ̂(λ)dirt−l

)
+

1

J − 1

[(
y(λ)Jt−l − µ̂(λ)dirt−l

)
− φ̃

(
y(λ)1t − µ̂(λ)dirt

)]]
,

where the last term expresses the difference between the composite estimator and the direct esti-
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mator. This difference consists of three terms; one expresses the difference between the composite

estimator and the direct estimator in period t − l; one depends on how wave J deviates from the

average across waves in period t− l; and one depends on how wave 1 deviates from the average in

period t, with a weight depending on the estimate of the correlation parameter φ.

4.2 Multiple blocks

Consider the case where there are B > 1 blocks, where block b consists of Jb waves (b = 1, . . . , B).

A composite estimator can be generated for each block, and these block-specific estimators can

be averaged to form an overall composite estimator. The weights in the average are based on the

number of waves in each block:

µ̂t =

B∑
b=1

Jb

J tot
µ̂
(b)
t , (11)

where J tot =
∑B
b=1 J

b and µ̂
(b)
t is the estimate of the LFS variable derived from block b. Equation

(11) assumes that the autocorrelation between blocks is negligible.

If the number of waves is the same across all blocks, all the blocks can be combined into one

block by averaging the wave-specific estimates across blocks. That is, yjt = 1
B

∑B
b=1 y

j,b
t , where yj,bt

is the estimate based on wave j in block b.

In the U.S. version of the LFS, the Current Population Survey (CPS), a composite estimator

similar to (5) is employed to compute various figures, as descibed in U.S. Census Bureau (2019).

In the CPS, the parameter γ = 0 for both unemployment and employment figures. For the unem-

ployment estimates, α = 0.4 and β 1
J = 0.3 are used. This value of α corresponds approximately

to φ = 0.5 when J = 4, but this φ value, according to (8), implies that β 1
J = 0.05, which is

substantially lower than the value used in the CPS. For employment figures, α = 0.7 and β 1
J = 0.4

are used, where α = 0.7 roughly corresponds to φ = 0.8. However, this value of φ suggests that

β 1
J = 0.14, less than half of the value used in the CPS.

Notably, the values of α and β 1
J in the CPS are not derived from the model above. According

to U.S. Census Bureau (2019, p. 77), these values were selected after extensive review of multiple

series to minimize the variance of month-to-month changes in unemployment and employment

estimates (see also Gurney and Daly, 1965; Breau and Ernst, 1983). Additionally, the U.S. CPS

does not explicitly account for wave-specific effects, which may explain the higher values of β 1
J

used in the CPS.

Finally, the number of people not in the labour force is computed residually in the CPS.
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5 The multivariate composite estimator

In this section, we extend the composite estimator to an estimator of multiple labour market

categories. Consider an LFS population divided into I mutually exclusive categories. For example,

if the categories are unemployed, employed, and those outside the workforce, then I = 3. The

LFS figures in each category are measured as fractions of the total population. Therefore, the sum

across all categories equals 1. Consequently, we can express the last category as a function of the

others, reducing the problem to a system of I − 1 categories.

Define the following vectors for j = 1, 2, . . . , J :

yjt =


y1,jt

...

yI−1,jt

 ,µt =


µ1
t

...

µI−1t

 ,λjt =


λ1,jt

...

λI−1,jt

 ,ujt =


u1,jt

...

uI−1,jt

 , εjt =


ε1,jt

...

εI−1,jt

 , (12)

where yjt is the vector of observations for the j’th wave, and the other vectors represent the

corresponding parameters and errors for each wave.

The values for the last category can be calculated residually since they sum to either 0 or 1

across categories; yI,jt = 1−
∑I−1
i=1 y

i,j
t , λI,j = −

∑I−1
i=1 λ

i,j , uI,jt = −
∑I−1
i=1 u

i,j
t (j = 1, . . . , J), and

µIt = 1−
∑I−1
i=1 µ

i
t.

The multivariate generalization of the univariate model in (1) and (3) is given by

yjt =µt + λjt + ujt for t = 1, 2, . . . , T (13)

ujt =

 εjt t = 1, 2, . . . , l or j = 1

Φuj−1t−l +Kεjt t = l + 1, l + 2, . . . , T and j = 2, 3, . . . , J,
(14)

where Φ is the (I − 1) × (I − 1) matrix of autoregressive coefficients. The noise vector, εjt , is

Gaussian with variance matrix Ω. For j > 1, K is implicitly determined by the variance-covariance

structure of ujt and εjt , which is described by the equation Ω = ΦΩΦ> +KΩK>, such that Ω is

the variance-covariance matrix of both ujt and εjt and does not vary with j, and > is the transpose

symbol.

The composite estimator is obtained by minimizing the sum of squared errors, St =
∑J
j=1 ε

j
tε
j>
t ,

as detailed in Appendix A. This yields the following multivariate composite estimator

µ̂t = (II−1 − α̃) µ̂(λ)dirt

+ α̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

)
+ β̃

1

J − 1

[
y(λ)1t − µ̂(λ)dirt

]
for t = l + 1, l + 2, . . . , (15)
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where y(λ)jt = yjt − λ̃
j
t . The term µ̂(λ)dirt is the direct estimator, defined as

µ̂(λ)dirt =
1

J

J∑
j=1

y(λ)jt . (16)

Additionally, by using KΩK> = Ω − ΦΩΦ>, the estimate of the parameter matrices α and β

are given by

α̃ =
[
JII−1 − Φ̃Ω̃Φ̃>Ω̃−1

]−1 [
(J − 1) Φ̃

]
(17)

β̃ =
[
JII−1 − Φ̃Ω̃Φ̃>Ω̃−1

]−1 [
(J − 1) Φ̃

(
II−1 − Ω̃Φ̃>Ω̃−1

)]
(18)

=α̃
(
II−1 − Ω̃Φ̃>Ω̃−1

)

where In being the identity matrix of dimension n; see Appendix A.

As for the univariate model, we have

µ̂t = µ̂(λ)dirt for t = 1, 2, . . . , l. (19)

If the survey consists of multiple blocks, a multivariate version of (11) can be applied.

Remark 5.1 Using β̃ = α̃
(
II−1 − Ω̃Φ̃>Ω̃−1

)
, the two last terms in (15) can be rewritten as

α̃

[
µ̂t−l + µ̂(λ)dirt − µ̂(λ)dirt−l +

1

J − 1

[(
y(λ)Jt−l − µ̂(λ)dirt−l

)
− Ω̃Φ̃>Ω̃−1

(
y(λ)1t − µ̂(λ)dirt

)]]
.

Combining terms yields a vector autoregressive process of order 1 of the difference between the

multivariate composite estimate and the direct estimate, given by

[
µ̂t − µ̂(λ)dirt

]
= α̃

[
µ̂t−l − µ̂(λ)dirt−l

]
+ ξ̃t, (20)

where the vector

ξ̃t = α̃
1

J − 1

[(
y(λ)Jt−l − µ̂(λ)dirt−l

)
− Ω̃Φ̃>Ω̃−1

(
y(λ)1t − µ̂(λ)dirt

)]

captures innovation effects, representing deviations of wave 1 and wave J from the direct estimates

in periods t and t− l, respectively.

6 Estimates of the parameters

We need estimates of the coefficient matrices α and β as well as the coefficient vector λjt (for all

j) to apply (15) to get the composite estimates. The estimates of α and β will depend on the

estimates of Φ and Ω. In this section, we derive pseudo panel-survey errors in Section 6.1 and
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apply these to obtain estimates of Φ and Ω in Section 6.2.

If the wave-specific effects, λjt , are time-invariant, the estimates of these are provided in Section

6.1. The estimation of λjt when it is allowed to vary over time, is considered in Section 7. In that

case, the estimates of Φ and Ω can still be obtained by following the approach outlined in Section

6.2.

6.1 Estimates of time-invariant wave-specific effects

Here, we outline the procedure for estimating the time-invariant wave-specific effects, λj . To

proceed with the estimation, we apply the concept of pseudo panel-survey errors, which provides

preliminary insights into the survey errors (see Pfeffermann et al., 1998). These pseudo-errors are

applied to estimate the parameter matrices such as Φ and Ω.

The vector of pseudo-errors, denoted ũjt , is defined as

ũjt = yjt − µ̃t − λ̃j . (21)

Here, µ̃t represent initial estimates of the overall mean, obtained through averages. Specifically,

the estimates can be given by µ̃t = yt and λ̃j = yj − y; where yt, y
j , and y are averages accross

the J waves, the T observations, and both, respectively.

Alternatively, weighted averages can be used when the weights in (2) are assigned to each wave

j (j = 1, 2, . . . , J). In this case, the estimates are given by

µ̃t = y
(ω)
t , t = 1, 2, . . . , T (22)

λ̃j = yj − y(ω), j = 1, 2, . . . , J (23)

where

y
(ω)
t =

J∑
j=1

ωjyjt , yj =
1

T

T∑
t=1

yjt , and y(ω) =
1

T

T∑
t=1

J∑
j=1

ωjyjt .

The weighted averages provide more accurate preliminary estimates of λj since the weighted

averages correspond more closely to the underlying definitions. For instance, if we assume that the

first wave is unbiased by setting ω1 = 1 and ωj = 0 for j = 2, . . . , J , the preliminary estimate of

the wave-specific effect for wave 1 will be zero: λ̃1 = y1 − y(ω) = y1 − y1 = 0.

6.2 Autocovariance and autocorrelation matrices

In this section, we derive the estimates of the autocorrelation matrix Φ, which is key to under-

standing the relationships between variables at different time lags. We also provide the estimation

procedure for the variance matrix Ω, which reflects the model’s overall variability. To do so, we
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need to define the estimates of the autocovariance matrices Γ0 and Γ1.

Γ̃0 =
1

T

1

J

T∑
t=1

J∑
j=1

ũjt ũ
j>
t and Γ̃1 =

1

T − l
1

J − 1

T−l∑
t=1

J−1∑
j=1

ũj+1
t+l ũ

j>
t

We apply the Yule-Walker equation to derive the estimate of Φ. The univariate version was

described in Yule (1907), and the multivariate approach was derived in Whittle (1963). The

multivariate Yule-Walker equation imply Γ̃1 = Φ̃Γ̃0. Therefore, using the Yule-Walker equation,

we derive an estimator for Φ as follows:

Φ̃ = Γ̃1Γ̃
−1
0 . (24)

Finally, the variance matrix Ω is estimated as the autocovariance matrix at lag 0, reflecting

the model’s overall variance structure:

Ω̃ = Γ̃0. (25)

7 Time-varying wave-specific effects

In this section, we derive a simple formula for updating the estimates of the wave-specific effects

in case they are time-varying. To do so, we first need to remove the dependencies between the

wave-specific effects, which is done in Section 7.1. In Section 7.2, we estimate the signal-to-noise

ratio and derive the updating formula based on this estimate.

7.1 Interdependence of time-varying wave-specific effects

In Section 6.1, we assumed that the wave-specific effects for each category were time-invariant.

However, this assumption may be overly restrictive, cf. Krueger et al. (2017). To address this,

we explore models that incorporate time-varying wave-specific effects, building on the approaches

of van den Brakel and Krieg (2009) and Hungnes et al. (2024). These models allow for greater

flexibility and more accurate representations of survey error structures.

van den Brakel and Krieg (2009) assume that the first wave of each category is unbiased, i.e.

λi,1t = 0 for all t and i. Furthermore, they assume that subsequent waves follow random-walk

processes.

Elliott and Zong (2019) further develop this for the case where it is assumed that the sum of the

wave-specific effects is zero, i.e.
∑J
j=1 λ

i,j
t = 0 for all t. They then assume that the wave-specific

effect of one of the waves (e.g., the last) is given as the negative sum of the others, while the

remaining wave-specific effects follow independent random-walk processes.

Hungnes et al. (2024) further argue that this framework leads to greater variance in the wave-

specific effect of the residually determined wave. To address this, they propose a specification
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where the innovations in the wave-specific effects are negatively correlated. They also consider the

case where the sum of wave-specific effects is zero, implying that the weights ωj are equal, i.e.,

ωj = 1
J for all j.

There is a dependency between the J wave-specific effects through the one restriction in (2)

between these effects. This implies that J−1 independent processes can describe the wave-specific

effects. We define the matrix W to derive these independent processes. In the definition below,

this matrix is given as orthogonal to an arbitrary vector v; and in Remark 7.1, we show how it

can be derived:

Definition 7.1 Let v be a column vector of dimension n. Define W v as an n×(n−1) matrix whose

columns are orthogonal to v, i.e., (W v)>v = 0n−1, and normalized such that (W v)>W v = In−1.

Remark 7.1 We can partition v into two components: the first element, v1, and the remaining

elements, v−1, so that v =
(
v1, v

>
−1
)>

. If v1 is non-zero, an orthogonal matrix to v can be

constructed as

W ∗v =

−(v1)−1 · v>−1

In−1

 .

This matrix can be normalized by

W v = W ∗v ((W ∗v)>W ∗v)−1/2 ,
as this ensures (W v)>W v = In−1.

Note also that S = (W ∗v)>W ∗v is both symmetric and positive definite. A symmetric matrix

can be decomposed using an eigen-decomposition as S = V ΛV >, where Λ is a diagonal matrix

holding the eigenvalues and V a matrix with the corresponding eigenvectors. As S is also positive

definite, we have Sn = V ΛnV > when n is a real number. Here, we apply this for n = −1/2.

We can now define the process for J − 1 wave-specific effects in the absence of interdependence

across waves as

λi,∗t = λi,∗t−1 + ηi,∗t , ηi,∗t ∼ N
(
0J−1, IJ−1σ

2
λ

)
. (26)

Pre-multiplying both sides of (26) by Wω, an orthogonal matrix to the vector of weights ω =

(ω1, ω2, . . . , ωJ)>, and using λit = Wωλi,∗t and ηit = Wωηi,∗t , yields

λit = λit−1 + ηit, η
i
t ∼ N

(
0J ,
(
IJ − ω

(
ω>ω

)−1
ω>
)
σ2
λ

)
, ω>λi0 = 0, (27)

where the covariance structure reflects the residual variability in the wave-specific effects after

accounting for the weighted sum constraint, ensuring that the effects sum to zero under the given

weighting scheme, i.e. ω>λit = 0 given that this condition is met in period 0.
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Equation (27) models the evolution of wave-specific effects under the weighting scheme given

by (2), capturing both interdependence across waves and the constraints imposed by the weights.

This framework generalizes earlier approaches by van den Brakel and Krieg (2009) and Hungnes

et al. (2024), allowing for more flexible modeling of wave-specific effects in survey data. For a more

compact notation, we define ab as a column vector of b a’s.

Remark 7.2 The process in (27) can recover the specific cases of earlier models:

• For equal weights, ω = 1
J 1J , the term for the covariance matrix, given by IJ−ω

(
ω>ω

)−1
ω>,

reduces to IJ − 1
J 1J1>J , as in the model by Hungnes et al. (2024).

• If we assume that the first wave is unbiased, ω> =
(
1,0>J−1

)
as in van den Brakel and Krieg

(2009), we get the covariance

IJ − ω
(
ω>ω

)−1
ω> = IJ −

 1 0>J−1

0J−1 0J−10
>
J−1

 =

 0 0>J−1

0J−1 IJ−1


combined with the restriction λi,10 = 0 for the initial values. This implies that λi,1t = 0 for

all t and the wave-specific effects for the remaining J − 1 waves follow independent random

walks as in (26).

It is also important to account for the fact that within each wave, the wave-specific effects must

sum to zero across categories, i.e.,
∑I
i=1 λ

i,j
t = 0 for all j. This implies, e.g. that if unemployment

is usually measured too high in wave j, those employed and/or those outside the labour market

must be measured too low in the same wave (since all must be assigned to one of the mutually

disjunctive categories). This means that we also have a dependency between the LFS categories

for the wave-specific effects within wave j. Equation (28) captures this dependency structure,

ensuring consistency across categories.



λ1,jt

λ2,jt
...

λI,jt


=



λ1,jt−1

λ2,jt−1
...

λI,jt−1


+



η1,jt

η2,jt
...

ηI,jt


,



η1,jt

η2,jt
...

ηI,jt


∼ N

(
0I ,

(
II −

1

I
1I1

>
I

)
σ2
λ

)
,

I∑
i=1

λi,j0 = 0. (28)

By pre-multiplying both sides of (28) with (W v)> where v = 1I , we obtain I − 1 independent

random walk processes with equal variance:

(W 1I )>





λ1,jt

λ2,jt
...

λI,jt


−



λ1,jt−1

λ2,jt−1
...

λI,jt−1




∼ N

(
0I−1, II−1σ

2
λ

)
.
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Hence, in modeling time-varying wave-specific effects, we must consider dependencies both

between waves and across categories. One way to deal with this is to study a subset of these

wave-specific effects. For each category, we analyze the J − 1 independent wave effects, as in (26);

for each wave, we consider the I − 1 independent categories, as in (28). This approach collectively

examines (I−1)(J−1) independent processes, each of which follows an independent random walk.

Let λdept represent the vector of all I · J dependent wave-specific effects across categories and

waves:

λdept =



(λdep)1t

(λdep)2t
...

(λdep)It


, where (λdep)it =



λi,1t

λi,2t
...

λi,Jt


for i = 1, 2, . . . , I,

represents the wave-specific effects for category i.

The (I − 1)(J − 1) independent processes can be derived by pre-multiplying λdept by:

(W 1I )> ⊗ (Ww)> = (W 1I ⊗Ww)>,

where ⊗ indicates the Kronecker product.

7.2 State-space formulation and application of the Kalman filter for

wave-specific effects

In this section, we derive a simple formula for updating the time-varying wave-specific effects. Ac-

curately updating time-varying wave-specific effects is essential for maintaining reliable population-

level estimates, especially if there are substantial changes in them. By formulating the model in

state-space form, we derive a steady-state updating rule where the weights, independent of time,

are governed by the signal-to-noise ratio.

Let xdept be the vector of dependent observed deviations from the preliminary estimate of the

population level for each wave and each category at time t, given as

xdept =



y1
t − µ̃1

t1J

y2
t − µ̃2

t1J
...

yIt − µ̃It1J ,


where µ̃it is some estimate of µit, for example µ̃it = J−1

∑J
j=1 y

i,j
t . Let xindt represent the vector of

independent observations of xdept ;

xindt = (W 1I ⊗Ww)>xdept .
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This transformation isolates independent components of the observed deviations for subsequent

analysis.

We decompose this vector of the (I−1)(J−1) independent observations of xdept into a permanent

and an irregular component. This decomposition separates the permanent wave-specific effects,

modelled as random walks, from irregular noise components, enabling a more robust estimation

of trends over time. The permanent component corresponds to the (I − 1)(J − 1) independent

wave-specific processes we get by pre-multiplying λt with (W 1I ⊗Ww)>. This vector of indepen-

dent wave-specific effects is therefore modelled as independent random walks. The random walk

assumption reflects the expectation that wave-specific effects evolve gradually over time:

xindt = Lt + Vt, Vt ∼ (0(J−1)(I−1), σ
2
V I(J−1)(I−1)) (29)

Lt = Lt−1 + et, et ∼ (0(J−1)(I−1), σ
2
LI(J−1)(I−1)), (30)

where σ2
V and σ2

L are the hyperparameters for the irregular component and the level-trend com-

ponent, respectively. Furthermore, Lt is the vector of the trend-level estimate of the wave-specific

effects. The diffuse initial value is given by

L0 ∼ (0, κI(J−1)(I−1)) (31)

with κ→∞. Based on this model, we can estimate the signal-to-noise ratio σ2
L/σ

2
V on the T first

observations (t = 1, 2, . . . , T ). We denote this estimate q.

Let lt be any element of Lt. Since the elements are independent, we analyze each element

individually. The Kalman filter for this element is given by (see Harvey, 1989, pp. 107–108)

lt+1|t = (1− kt)lt|t−1 + ktxt,

where xt corresponds to the element in xindt associated with lt in Lt, and the gain, kt, is

kt =
pt|t−1

1 + pt|t−1
,

with the estimate of the variance of lt+1|t in period t+1 based on observations up to period t given

by the discrete time Riccati difference equation

pt+1|t = pt|t−1 −
p2t|t−1

1 + pt|t−1
+ q =

pt|t−1

1 + pt|t−1
+ q.

Starting with p1|0 = κ with κ→∞, which corresponds to a diffuse initial value, we obtain

l2|1 = x1, p2|1 = 1 + q.

21



The steady state solution occurs when limt→∞ pt+1|t = p̄. In this case, the Riccati equation

simplifies to (see Harvey, 1989, p. 119)

p̄ =
p̄

1 + p̄
+ q,

which leads to the quadratic equation

p̄2 − qp̄− q = 0,

with the positive solution

p̄ =
q +

√
q2 + 4q

2
. (32)

Thus, the steady-state Kalman gain is

k̄ =
p̄

1 + p̄
. (33)

The update formula for any element in Lt is then

l̃t = (1− k̄)l̃t−1 + k̄xt, t = T + 1, T + 2, . . . , (34)

where l̃T is an estimate for the corresponding element of LT , where we can use either the estimate

provided by the Kalman filter or the smoothed estimate. This weighted combination balances prior

estimates and new observations, with k̄ controlling the influence of recent data. Since k̄ is the same

for all elements in Lt, we can express the update in vector form as

L̃t = (1− k̄)L̃t−1 + k̄xdept , t = T + 1, T + 2, . . . . (35)

where L̃t is the vector of all estimates in Lt.

For updating the wave-specific effects, we use the formula

λ̃t =
(
W 1I ⊗Ww

)
L̃t, t = T + 1, T + 2, . . . . (36)

Remark 7.3 For the widely used special cases where the weights ω are equal or where one wave

is unbiased for all categories, (36) combined with (35) can be simplified:

• For equal weights, ω = 1
J 1J (see Hungnes et al., 2024), we have

λ̃i,jt = (1− k̄)λ̃i,jt−1 + k̄
(
yi,jt − µ̃it

)
, (37)

which can be used for updating after period T for t = T + 1, T + 2, . . . , j = 1, 2, . . . , J , and

i = 1, 2, . . . , I.
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Table 4: Descriptive statistics
Males, 15–24 y.o. Males, 25–74 y.o. Females, 15–24 y.o. Females, 25-74 y.o.
unempl. empl. unempl. empl. unempl. empl. unempl. empl.

mean*100 5.96 50.97 2.32 75.50 4.88 52.41 1.77 68.73
st.d.*100 1.41 3.47 0.61 1.62 1.35 3.39 0.43 1.14

• If we assume that the first wave is unbiased, ω> =
(
1,0>J−1

)
(see van den Brakel and Krieg,

2009), we have λ̃i,jt = 0 for i = 1, while (37) applies to the remaining waves.

Remark 7.4 For relatively small samples, the steady state k̄ might deviate much from kt. In such

cases, one could consider using kt in the updating functions. In particular, if k̄ < 1/(T + 1),

where the right-hand side represent the weight of a new observation if the wave-specific effects are

time-invariant, one should at least put this weight on the new observation.

8 Application to the Norwegian LFS

This section applies the multivariate composite estimator to the Norwegian LFS. In Section 8.1,

we assume time-invariant wave-specific effects. In Section 8.2, we derive the changes in the LFS

figures for employment, unemployment, and non-participants (those outside the labour force) by

switching from a direct estimator to the proposed multivariate composite estimator. Section 8.3

investigates whether the wave-specific effects are time-varying or time-invariant.

We use monthly data from the Norwegian Labour Force Survey (LFS) covering the period from

January 2006 to December 2020. The start date aligns with that of Hungnes et al. (2024), while

the end date reflects a restructuring of the LFS across all Eurostat countries at the turn of the

year 2020/2021.

Norway’s LFS is characterized by a high response rate. The non-response rate during the

study period ranged from 14 to 21 percent (see Eurostat, 2022), with the response rate calculated

at the individual level. Among Eurostat countries that compute the individual-level response rate,

Norway has the lowest non-response rate. Switzerland has the second-lowest, while many other

countries with similar reporting methods have non-response rates in the range of 30-50 percent.

Following the approach in Hungnes et al. (2024), we analyze four distinct demographic groups,

also referred to as domains: (i) men aged 15-24, (ii) men aged 25-74, (iii) women aged 15-24,

and (iv) women aged 25-74. The distinction between younger and older workers is particularly

relevant given that young individuals often experience lower employment rates and greater job

instability. Additionally, although the gender gap in employment has narrowed over time, it

remains appropriate to differentiate between men and women. In our analysis, we categorize

individuals into three labour market categories: employed, unemployed, and outside the labour

market.
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Table 5: Estimates of the wave-specific effects

Males, 15–24 y.o. Males, 25–74 y.o. Females, 15–24 y.o. Females, 25-74 y.o.
unempl. empl. unempl. empl. unempl. empl. unempl. empl.

λ1 ∗ 100 0.64 -1.60 0.31 -0.26 0.43 -2.30 0.37 -0.54
λ2 ∗ 100 0.05 -0.46 0.08 0.08 0.27 0.27 0.10 -0.04
λ3 ∗ 100 0.29 -0.22 -0.01 -0.08 -0.18 0.82 -0.06 0.02
λ4 ∗ 100 0.08 -0.11 -0.04 0.06 -0.15 0.27 -0.08 0.09
λ5 ∗ 100 0.13 0.37 -0.13 0.12 0.04 0.31 -0.12 0.13
λ6 ∗ 100 -0.35 0.40 -0.18 0.01 -0.43 0.45 -0.13 0.02
λ7 ∗ 100 -0.37 1.00 -0.08 -0.22 -0.06 0.26 -0.12 -0.10
λ8 ∗ 100 -0.47 0.62 0.04 0.29 0.08 -0.09 0.03 0.42

Notes: Estimates of the wave-specific effects according to (23).

8.1 Estimates of the parameters needed for the composite estimator

Table 4 presents descriptive statistics for the labour market categories in the domains. These

statistics reveal significant differences in employment rates between age groups. For men, the em-

ployment rate is approximately 51 percent for those aged 15-24, compared to about 75 percent for

those aged 25-74. The unemployment rate is lower for the older age group, and the participation in

the labour force, defined as the sum of employed and unemployed individuals, is also higher among

older men, at 78 percent, compared to 57 percent for younger men. Similar trends are observed

for women, with the labour force participation rate for young women roughly matching that of

young men. However, the composition of the labour force differs slightly between domains, with

employed women in the older age group having an employment rate approximately 7 percentage

points lower than men in the same age group.

In Table 5, we report the wave-specific effects under the assumption that these effects are

time-invariant. For unemployment, a positive wave-specific effect is observed for wave 1 across

all domains. It is well-established that a higher proportion of people are classified as unemployed

when they first participate in the LFS compared to subsequent waves (see also Section 2). For

men aged 25-74 years, this effect is the smallest. Specifically, the over-representation of unem-

ployed individuals in wave 1 for this group is 0.31 percent of the domain population. Given that

2.32 + 75.50 = 77.82 percent of this population participates in the labour force (see Table 4), this

translates into an unemployment rate in wave 1 that is 0.31/0.78 ≈ 0.4 percentage points higher

than the average across all waves.

For young men, the over-representation of unemployed individuals in wave 1 is 0.64 percent.

With a labour force participation rate of 5.96 + 50.97 = 56.93 percent for this domain, this implies

that the unemployment rate, relative to the labour force, is 0.64/0.57 = 1.1 percentage points

higher in wave 1 compared to the average of all waves.

For employed individuals, we observe a clear under-representation in wave 1 across all domains.

Additionally, there is a substantial over-representation of individuals outside the workforce in wave

1, though this is not directly reported in Table 5. It can be inferred residually, as the wave-specific

effects across categories must sum to zero.

24



Table 6: Other estimates

Males, 15–24 y.o. Males, 25–74 y.o. Females, 15–24 y.o. Females, 25-74 y.o.

Φ

(
0.11 −0.02
0.26 0.64

) (
0.20 −0.06
0.26 0.79

) (
0.04 −0.05
0.14 0.60

) (
0.26 −0.03
0.28 0.81

)
Ω ∗ 1002

(
7.94 −3.60
−3.60 35.86

) (
0.87 −0.77
−0.77 4.94

) (
7.19 −4.26
−4.26 34.63

) (
0.61 −0.44
−0.44 6.03

)
α

(
0.09 −0.02
0.24 0.59

) (
0.17 −0.06
0.25 0.74

) (
0.04 −0.05
0.13 0.54

) (
0.23 −0.03
0.27 0.77

)
β

(
0.08 −0.01
0.12 0.22

) (
0.15 −0.01
0.07 0.18

) (
0.04 −0.02
0.08 0.23

) (
0.17 −0.00
0.12 0.16

)
Notes: Estimation results when the first element of µ is unemployed people and the second
element is employed people, both measured as a share of the total population. Estimates
according to (24), (25), (17), and (18).

In Table 6, we report the estimates of the parameters needed for the multivariate composite

estimator. We note that for the estimate of α as given in (17), the term ΦΩΦ>Ω−1 is almost

negligible such that the estimate of α is essentially a down-scaled version of the estimate of Φ:

specifically, α̃ ≈ J−1
J Φ̃. Similarly, the effect of how wave 1 deviates from the direct estimate of

µt, i.e. the last term in (15), is almost negligible, as this effect is scaled down by the number of

waves (which is 8 for Norway), meaning that the impact of wave 1 on the overall average is given

by the estimate of β · 18 .

The first element of µt corresponds to the number of unemployed persons, expressed as a share

of the total population. The estimates for unemployment in the first row of α are most relevant

here. For both young men and women, they are close to zero: for young females, α̃1,1 = 0.04 and

α̃1,2 = −0.05; for young men, α̃1,1 = 0.09 and α̃1,2 = −0.02. Given these small estimates, the

composite estimator places almost full weight on the direct estimate. Hence, the direct estimate

provided by (16) will be a good estimate of the share of unemployed for young individuals.

For older individuals of both sexes, the estimate of α1,2 is close to zero, while the estimate

of α1,1 is positive. This implies that the multivariate estimator in (15) will produce estimates of

unemployment that are close to those of a univariate composite estimator (as in (9)). Therefore,

the benefits of using the multivariate composite estimator for unemployment may be limited in

this case.

The second element of µt corresponds to the number of employed persons, also expressed as a

share of the total population. For the estimates of employed persons, the estimates in the second

row of α are the relevant ones. These estimates are substantial: for all domains, α̃2,2 > 0.5,

and for most domains, α̃2,1 ≈ 0.25 (except for young females, where the estimate is about half

of that in other domains). These findings underscore two key insights: first, the persistence

of survey errors, particularly in employment estimates; and second, the necessity of considering

interrelationships between employment, unemployment, and labour market non-participation in

the composite estimator.

To interpret the implications of these estimates for the multivariate composite estimator, we
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apply the version of the multivariate composite estimator in (20), which in a system with the

groups unemployment and employment as modelled becomes

µ̂u,t − µ̂diru,t
µ̂e,t − µ̂dire,t

 =

α̃uu α̃ue

α̃eu α̃ee


µ̂u,t−l − µ̂diru,t−l
µ̂e,t−l − µ̂dire,t−l

+

ξ̃u,t
ξ̃e,t

 ,

where ´u’ and ´e’ indicate unemployment and employment, respectively. Later, we will use ´o’ to

indicate for those outside the labour force. Furthermore, for simplicity, we assume that y(λ)8t−l ≈

µ̂(λ)dirt−l such that we can treat ξt as innovations with expectation equal to zero.

Within this framework, we consider the case in which the composite estimate for employment is

lower than the direct estimate at the last time they participated in the survey, i.e. µ̂e,t−l−µ̂dire,t−l < 0.

The effect of this on µ̂e,t − µ̂dire,t will depend on whether the deviation between the composite and

direct estimate of employment is offset by a corresponding deviation in either unemployment or

for those outside the labour force:

• Consider first that the composite estimate for unemployment is equal to the direct estimate

in the previous period the participants are interviewed, i.e. µ̂u,t−l − µ̂diru,t−l = 0. From

this it follows that the composite estimate for those outside the labour force must exceed

the direct estimate in that period, such that
(
µ̂o,t−l − µ̂diro,t−l

)
= −

(
µ̂e,t−l − µ̂dire,t−l

)
>

0. The implication for the composite estimate of employment in the current period is

E
[
µ̂e,t − µ̂dire,t |µ̂u,t−l − µ̂diru,t−l = 0

]
= α̃ee

(
µ̂e,t−l − µ̂dire,t−l

)
. As the estimate of αee is typi-

cally large (from 0.54 to 0.77), this implies a high persistence in the deviation between the

composite estimate and the direct estimate of employment.

• Consider second that it is the composite estimate for those outside the labour force that

is equal to its direct estimate in period t − l, i.e. µ̂o,t−l − µ̂diro,t−l = 0. Then the deviation

between the estimates for employed in period t− l must be offset by a deviation between the

estimates for unemployed in the same period, i.e.
(
µ̂u,t−l − µ̂diru,t−l

)
= −

(
µ̂e,t−l − µ̂dire,t−l

)
.

The implication for the composite estimate for employment in the current period is now

that E
[
µ̂e,t − µ̂dire,t |

(
µ̂u,t−l − µ̂diru,t−l

)
= −

(
µ̂e,t−l − µ̂dire,t−l

)]
= (α̃ee − α̃eu)

(
µ̂e,t−l − µ̂dire,t−l

)
.

Since the estimate of αeu is positive (but smaller than αee), this implies a lower persistence

in the deviation between the composite estimate and the direct estimate for employment.

The illustration above highlights the value of using a multivariate composite estimator, which

distinguishes between various labour statuses. The multivariate estimator is particularly valu-

able for employment figures, as demonstrated by our empirical example, which underscores the

importance of differentiating between unemployed individuals and individuals outside the labour

force.

26



Table 7: Fraction of absolute deviations between the estimates of the multivariate composite

estimator and the direct estimator (µ− µdir) that exceeds a particular percentage point

Males, 15–24 y.o. Males, 25–74 y.o. Females, 15–24 y.o. Females, 25-74 y.o.
u e o u e o u e o u e o

> 2 pp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 1 pp. 0.00 0.15 0.14 0.00 0.01 0.00 0.00 0.09 0.07 0.00 0.03 0.01
> 0.5 pp. 0.00 0.53 0.50 0.00 0.15 0.10 0.00 0.39 0.36 0.00 0.36 0.34
> 0.4 pp. 0.00 0.67 0.64 0.00 0.24 0.20 0.00 0.51 0.47 0.00 0.47 0.45
> 0.3 pp. 0.00 0.74 0.74 0.00 0.40 0.32 0.00 0.63 0.58 0.00 0.61 0.60
> 0.2 pp. 0.00 0.80 0.81 0.00 0.62 0.55 0.01 0.75 0.75 0.00 0.74 0.72
> 0.1 pp. 0.02 0.91 0.88 0.04 0.81 0.79 0.10 0.86 0.85 0.01 0.88 0.87
> 0.05 pp. 0.25 0.95 0.97 0.29 0.92 0.88 0.37 0.92 0.91 0.16 0.94 0.95
> 0.04 pp. 0.38 0.97 0.97 0.40 0.93 0.90 0.48 0.93 0.92 0.23 0.95 0.95
> 0.03 pp. 0.51 0.98 0.98 0.54 0.94 0.93 0.58 0.93 0.92 0.39 0.97 0.97
> 0.02 pp. 0.69 0.99 0.98 0.68 0.94 0.95 0.73 0.96 0.96 0.56 0.97 0.98
> 0.01 pp. 0.81 0.99 0.99 0.82 0.97 0.96 0.90 0.98 0.97 0.78 0.98 1.00

Notes: A row in the table shows the proportion of monthly LFS figures for the period April
2006 – December 2020 (as the figures with the multivariate composite estimator equals the direct
estimator the three first months of the sample) that are revised more than indicated in the left
column. ‘u’ indicates ‘unemployment’; ‘e’ indicates ‘employment’; and ‘o’ indicates ‘outside labour
force’.

8.2 Effect of using the composite estimator

We can assess the impact of using the multivariate composite estimator instead of the direct

estimator using (20). Table 7 compares the revisions that would result in the LFS figures for the

unemployed, employed, and those outside the labour market across different domains using the

multivariate composite estimator instead of the direct estimator.

The differences in LFS figures for the unemployed, calculated with the multivariate composite

estimator instead of the direct estimator, are minimal. For historical data, only one monthly obser-

vation (representing 0.01 or 1 percent in Table 7) shows a revision exceeding 0.2 percentage points,

specifically for young females. Only a few months see a change in the estimated unemployment

rate greater than 0.1 percentage points with the multivariate composite estimator: 2 percent for

young men; 4 percent for older men; 10 percent for young women; and 1 percent for women in the

oldest age group.

The transition from a direct estimator to a multivariate composite estimator will result in

notable revisions for the employment figures. For example, 15 percent of monthly figures for young

men will be revised by more than 1 percentage point, highlighting the estimator’s capacity to refine

estimates for this demographic group. For older men, only one monthly figure will be revised by

at least 1 percentage point. For women, 9 percent of the monthly figures for young women and

3 percent for older women are revised by one percentage point or more. Most of the monthly

employment figures see revisions of at least 0.1 percentage points: 91 percent for young men; 81

percent for older men; 86 percent for young women; and 88 percent for older women.

Revisions for those outside the labour force are somewhat smaller than for employment figures.

This is because revisions in unemployment figures partly offset changes in employment figures,
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Table 8: Estimation results regarding time-varying wave-specific effects.

Males, 15–24 y.o. Males, 25–74 y.o. Females, 15–24 y.o. Females, 25-74 y.o.
σ2
V ∗ 102 0.38 0.05 0.035 0.06
σ2
L ∗ 1012 0.52 0.11 0.06 0.08
q ∗ 1010 1.38 2.24 0.17 1.24
p̄ ∗ 105 1.17 1.50 0.41 1.11
k̄ ∗ 102 1.17 1.50 0.41 1.11

Notes: The table reports estimates of σ2
I , see (29); σ2

L, see (30); q = σ2
L/σ

2
V ; p̄, see (32); and k̄,

see (33).

resulting in generally somewhat smaller impacts on figures for those outside the labour market.

8.3 Time-varying wave-specific effects?

When constructing the (I − 1)(J − 1) = 14 independent processes for the wave-specific effects and

estimating the hyperparameters σ2
V and σ2

L in (29) and (30), we find that the signal-to-noise ratio

(q = σ2
L/σ

2
V ) is below 10−9 for all domains; see Table 8. This corresponds to an estimate of k̄ less

than 10−4, strongly suggesting that the wave-specific effects are effectively time-invariant.

Consequently, if estimates of wave-specific effects are updated with new observations, the appro-

priate weighting factor should be 1/(180 + 1). This represents the weight assigned to an individual

observation when estimating a time-invariant wave-specific effect.

9 Conclusions

This paper has introduced a multivariate composite estimator for the Labour Force Survey (LFS),

which accounts for autocorrelation in the sampling errors across various labour market categories.

By addressing this autocorrelation, the estimator enhances the accuracy of population estimates.

While the population estimates produced by the proposed estimator are not seasonally adjusted,

they are free from autocorrelated sampling errors. This property ensures that these estimates can

be reliably used to generate both seasonally adjusted time series and trend estimates without the

risk of introducing spurious trends.

The multivariate composite estimator proposed in this paper shares several similarities with the

estimator introduced by Merkouris (2024). While the estimator in Merkouris (2024) incorporates

the weighting of survey respondents, it does not account for wave-specific biases. In contrast, the

estimator presented here explicitly incorporates wave-specific biases and allows these effects to

evolve over time. This key distinction enhances the flexibility and accuracy of our approach. By

modelling wave-specific effects, our estimator also helps mitigate potential distortions caused by

changes in survey design, such as those resulting from the restructuring of the LFS in 2020/2021.

An important practical contribution of this study is the demonstration of the estimator’s im-

pact on real-world LFS data from Norway. Our empirical results illustrate that revisions to un-

employment estimates are relatively small when transitioning from the direct estimator to the
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multivariate composite estimator. However, significant revisions are observed for employment fig-

ures, particularly for younger demographic groups, reflecting the benefits of explicitly modelling

interdependencies among labour market statuses. These findings emphasize the ability of the mul-

tivariate composite estimator to improve the reliability of employment statistics, especially for

smaller subgroups that are more prone to sampling variability.
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A Appendix

The appendix provides a detailed derivation of the multivariate composite estimator in (15). The

system in (13) and (14) for t > l can be written as:

y1
t (λ) = µt + ε1t for j = 1

yjt (λ) = µt + Φ
(
yj−1t−l (λ)− µt−l

)
+Kεjt for j > 1

(A.1)

The first order condition can be found by premultiplying this system with the estimates of the

covariance matrix given by Ω−1 for j = 1 and
(
KΩK>

)−1
for j = 2, . . . , J , and then taking the

sum of the expectations (over j):

Ω̃−1y(λ)1t +
(
K̃Ω̃K̃>

)−1 J∑
j=2

y(λ)jt

=

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1]
µ̂t +

(
K̃Ω̃K̃>

)−1
Φ̃

J∑
j=2

(
y(λ)j−1t−l − µ̂t−l

)
.

Moving the term involving µ̂t to the left-hand side yields:

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1]
µ̂t

=Ω̃−1y(λ)1t +
(
K̃Ω̃K̃>

)−1 J∑
j=2

y(λ)jt

+ (J − 1)
(
K̃Ω̃K̃>

)−1
Φ̃

µ̂t−l − 1

J − 1

J∑
j=2

y(λ)j−1t−l


=Ω̃−1y(λ)1t +

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

) J∑
j=2

y(λ)jt

+ (J − 1)
(
K̃Ω̃K̃>

)−1
Φ̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

) . (A.2)
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By using y(λ)jt = µ̂(λ)dirt + y(λ)jt − µ̂(λ)dirt in the first term in the last equality, we have

Ω̃−1y(λ)1t +
(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

) J∑
j=2

y(λ)jt

=Ω̃−1
(
µ̂(λ)dirt + y(λ)1t − µ̂(λ)dirt

)
+
(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

) J∑
j=2

(
µ̂(λ)dirt + y(λ)jt − µ̂(λ)dirt

)
=

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

)]
µ̂(λ)dirt

+ Ω̃−1
(
y(λ)1t − µ̂(λ)dirt

)
+
(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

) J∑
j=2

(
y(λ)jt − µ̂(λ)dirt

)
=

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

)]
µ̂(λ)dirt

+

[
Ω̃−1 −

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

)] (
y(λ)1t − µ̂(λ)dirt

)
,

where
∑J
j=2

(
y(λ)jt − µ̂(λ)dirt

)
= −

(
y(λ)1t − µ̂(λ)dirt

)
is used in the last equality.

By using this in (A.2), we can work out the coefficient matrix of the direct estimator:

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1]
µ̂t

=

[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

)]
µ̂(λ)dirt

+ (J − 1)
(
K̃Ω̃K̃>

)−1
Φ̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

)
+

1

J − 1

[
(J − 1)

(
Ω̃−1 −

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

))] (
y(λ)1t − µ̂(λ)dirt

)
, (A.3)

or

µ̂t = (II−1 − α̃) µ̂(λ)dirt + α̃

µ̂t−l +
1

J − 1

J∑
j=2

(
y(λ)jt − y(λ)j−1t−l

)+ β̃
1

J − 1

[
y(λ)1t − µ̂(λ)dirt

]
,

where, by using
(
K̃Ω̃K̃>

)−1
=
(
Ω̃− Φ̃Ω̃Φ̃′

)−1
, we have

α̃ =

[
Ω̃−1 + (J − 1)

(
Ω̃− Φ̃Ω̃Φ̃>

)−1]−1 [
(J − 1)

(
Ω̃− Φ̃Ω̃Φ̃>

)−1
Φ̃

]
=
[
JII−1 − Φ̃Ω̃Φ̃>Ω̃−1

]−1 [
(J − 1) Φ̃

]
(A.4)

β̃ =

[
Ω̃−1 + (J − 1)

(
Ω̃− Φ̃Ω̃Φ̃>

)−1]−1 [
(J − 1)

[
Ω̃−1 −

(
Ω̃− Φ̃Ω̃Φ̃>

)−1 (
I − Φ̃

)]]
=
[
JII−1 − Φ̃Ω̃Φ̃>Ω̃−1

]−1 [
(J − 1) Φ̃

(
II−1 − Ω̃Φ̃>Ω̃−1

)]
. (A.5)

The second equalities in (A.4) and (A.5) can be shown by pre-multiplying (A.3) with K̃Ω̃K̃> and

applying the identity K̃Ω̃K̃> = Ω̃ − Φ̃Ω̃Φ̃>, as detailed below. For the (inverted) expression in
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the first square brackets for the estimates of both α and β (i.e., (A.4) and (A.5)), we have

(
K̃Ω̃K̃>

)[
Ω̃−1 + (J − 1)

(
K̃Ω̃K̃>

)−1]
= K̃Ω̃K̃>Ω̃−1 + (J − 1)II−1

=
(
Ω̃− Φ̃Ω̃Φ̃>

)
Ω̃−1 + (J − 1)II−1

= II−1 − Φ̃Ω̃Φ̃>Ω̃−1 + (J − 1)II−1

= JII−1 − Φ̃Ω̃Φ̃>Ω̃−1.

For the expression in the second square brackets for the estimate of α, we have

(
K̃Ω̃K̃>

)
(J − 1)

(
K̃Ω̃K̃>

)−1
Φ̃ = (J − 1)Φ̃.

For the expression in the second square brackets for the estimate of β when ignoring the scaling

factor (J − 1), we have

(
K̃Ω̃K̃>

)[(
Ω̃−1 −

(
K̃Ω̃K̃>

)−1 (
II−1 − Φ̃

))]
=
[
K̃Ω̃K̃>Ω̃−1 −

(
II−1 − Φ̃

)]
= II−1 − Φ̃Ω̃Φ̃>Ω̃−1 − II−1 + Φ̃

= Φ̃
[
II−1 − Ω̃Φ̃>Ω̃−1

]
.
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