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1 Introduction

The present paper deals with the specification of the dynamic consumption process based

upon the optimal behaviour of a forward-looking consumer. In the stochastic case it appears

to be almost impossible to give an explicit solution to this problem of any generality. How-

ever, by successively extending existing results we hope to be able to gain further insight

into the specification of the consumption relation.

In the sections to come we intend to extend the analysis of Hall (1978). This interesting

paper by Hall (op.cit.) deals with optimal consumption behaviour of consumers possess-

ing time-additive, separable quadratic utilities. Thus, subject to a linear stochastic budget

equation, the Hall consumer maximizes the present discounted value of the future expected

utility, conditional on his/her information set at time zero. This is the standard certainty

equivalent (CEQ) model, but Hall managed to show that this model had interesting impli-

cations for regression analyses of time-series consumption data. Specifically, he showed that

of all the information available at time t, only ct was effective in predicting ct+1 . Previous

incomes and wealth variables are via the optimization procedure eliminated from the equa-

tion predicting ct+1 . We shall call this hypothesis the "Euler equation hypothesis". He also

showed that if the rate of time preference is equal to the rate of interest, the consumption

process becomes a martingale. This hypothesis we shall call the "Martingale hypothesis".

Both these hypotheses have inspired numerous empirical studies (see Hall (1989) for a re-

cent review). Although, the empirical evidence is mixed, only a few support Hall's two

hypotheses.

Rather than embarking on yet another empirical study, we shall first study the con-

sumer's allocation problem within a more general model, and finally supplement our theo-

retical results with an empirical study. Our motivation for writing this paper has been the

fact that Hall's (op.cit.) (CEQ) model has behavioural implications which are not a priori

convincing. For example, the criterion, being the expectation of a sum of discounted one-

period quadratic utilities, will exclude prudent consumer behaviour since the third derivative

of the aggregate utility with respect to ct at any time is zero. Prudent behaviour is con-

tinuously belived to be an essential feature of any optimal dynamic consumption process

(see Leland (1968) or Blanchard and Fischer (1989)). If this is true any specification which

ignores this fact should not be successful in empirical research.

The present extension of Hall satisfies the following reasonable requirements. Firstly,
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Hall's hypotheses appear as special cases in our specification. Secondly, it allows the con-

sumers to have prudent behaviour. Thus, we are able to deal with serious shortcomings of

Hall's certainty equivalent model.

The plan of the paper is the following. In the next section we specify and discuss

the aggregate utility to be applied, and state the problem to be analysed. Section 3 is

devoted to the forward-going optimization approach to be used to solve our consumption

problem. Following the terminology of Whittle (1990), we call it a stochastic maximum

principle (SMP). This principle is particularly interesting in the present application since it

delineates clearly the effect on the optimal solution of prudent behaviour (see remark 3). In

section 4 we show the optimality of this approach. The infinite horizion case is clarified in

section 5. The implications of our theory for time-series regressions are derived in section 6.

There we show that Hall's (op.cit.) specification has very restrictive consequences for the

consumption process. Implications which make us doubtful about its empirical relevance.

Finally, section 7 is devoted to empirical analysis and testing on our Swiss consumption

data.

2 Dynamic consumption without time-additive sep-
arable aggregate utility

In a standard dynamic optimization model the criterion to be optimized is typically a

sum/integral of some additively separable utility. When the one-period (immediate) utilities

are quadratic the analysis becomes particularly tractable. But also other specifications

are manageable. Zeldes (1989) supplemented this approach by replacing the one-period

quadratic utilities with one-period CRRA (constant relative risk aversion) utilities, and

showed that this implied several modifications of the previous certainty equivalent results.

However, there is no strong reason beyond analytical convenience to assume time-

additive separability. Recent work on dynamic demand systemes and labour supply suggest

that this assumption may not be tenable. In dynamic behaviour under uncertainty an

important consequence of this assumption is that it links up the measure of relative risk

aversion and the elasticity of intertemporal substitution (see Blanchard and Fischer (1989)

p. 40). In a dynamic stochastic analysis intertemporal substitution and risk aversion are

distinct aspects of consumers' preference we should like to separate. But truely, dynamic

stochastic optimization without additive separability of the criterion function is, generally,
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difficult to analyse. However, it turns out that this can be done in important special cases.

One such case will be studied in the present paper. We shall relax the assumption of additive

separability, and use as our criterion the expected value of:

This criterion forms the basis for our extension of Hall's analysis. In this respect it has

properties which we should like such a generalization to have.

Firstly, consider the function:

g(co, cl,	 , cn; 0)
	 1 — exp{OU(co,	 cn,)} 	 0 > 0	 (2.2)

We observe that limo_.0g(co,	 - - . Cn ;	 U(CO, Cl, • - • n). Hence, if we put

	h 	 (ci	 c4)2

	

U (Co,	 Cn) =
2j=0

it is obvious that Hall's criterion will emerge as a limit case by letting the parameter O

tend to zero in (2.2). Furthermore, maximizing the expected value of g(co, , cn ; 0)

is equivalent to maximizing the expectation of U(-) given by (2.1). Therefore, all results

attained by Hall (op.cit.) will come out as particular cases in our analysis.

Secondly, the criterion can also be motivated within the general framework developed

by Koopmans et.al. (1964) for representing aggregate utility. Under certain conditions they

showed that aggregate utility can be expressed by a recurrent relation which they write in

the form:

	Ut(Ct, Ct+1, • • •)	 V (U(Ct); Ut+1(Ct+1, CO-2, • - •))	 V t
	

(2.3)

where the aggregator V is increasing in its two arguments u and U +1 . Equation (2.3) says

that at any time t the aggregate utility Ut is a function of the immediate utility u t and the

prospective aggregate utility Ut+1 . Note that if the aggregator V is linear this recursion will

imply that the aggregate utility is additively separable. In order to show that (2.1) can be

generated by a backward recursion of this form, we initiate the iteration by putting:

(ch —

	

Uh(Ch) = — exp {0 
	4)2

	(2.4)
2

Dh(Uh ) — —(—Uh )

	
(2.5)

Since, u(ct ) = — exp{19(ct — c )2 /2} we attain:

	Uh-i (ch-i , ch ) = (— expf 0 (ch-1
 2	

2 ph ( uh
 = 17( Uh-1 (ih)
	

(2.6)
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Then, putting Dh-1	 -(-Uh-i)' and continuing this backward iteration we will finally

attain (2.1). We also note that in this case the aggreator V(-) is increasing and linear in the

first variable (u) and increasing and concave in the second argument (U. ) when O < < 1.

Thirdly, under uncertainty the aggregate utility does a double duty. Not only do we wish

that it should reflect the consumer's attitude to risk, but also that it should indicate the

degree of substitution between consumption in different time periods. A serious objection

to an additively separable aggregate utility is that these two attitudes are closely related

(see Blanchard and Fischer (1989) ch. 6). The non-separability of aggregate utility cuts this

linkage.

Also, in evaluating temporal prospects under uncertainty Kreps and Porteus (1978) have

shown a representation theorem (th. 1, p. 192) which is recursive and in spirit similar to

those obtained by Koopmans et. al. (op.cit.) for deterministic prospects. Hence, by similar

arguments we can embed our aggregate utility into the Kreps-Porteus framework.

Finally, we have to interpret the parameters /3 and 0 appearing in (2.1). In order to get

better insight into /3 we consider the infinite horizon case. Then the recursion (2.3) reads:

U(64) = V(u(c4), U(Et+1)) = u(—U ) 	(2.7)

where öt and "ét+1 denote the infinite vectors Et = (ci, ct+i, .), 	i = (ct+i, Ct-F21 ). Koop-

mans et. ai. (op.cit. p. 97) have shown that the quantity (in their notation):

(017(u, U))
OU )..w-1

can be interpreted as a discount factor. Applying this definition to (2.7) we attain:

Nu) = ß =
(

	

U))
(2.8)au )u.0

The fact that this rate is independent of U in our case is perhaps a little surprising, but is very

reasonable, indeed. In the deterministic case maximizing (2.1) is equivalent to minimizing

the exponent of (2.1), and there /3 certainly appears as a discount factor. As a matter of fact

our result (2.8) shows that Koopmans' definition is very appropriate. The parameter ß thus

reflects a time perspective in aggregate utility, and is therefore an interesting parameter

which should be included in the criterion. This should be noted since criteria similar to

(2.1) for some time have been used in the operation research (OR) literature but ignoring

the ,3 parameter.

(OR) writers for obvious reasons always interpret O as a risk parameter (Whittle (1982),

(1990)). Although O reflects attitudes to risk, it is clear from the limiting process above
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X ,- = 	 -I- ET,
ET e%, N(0, Cr2 )

= awdr-1	 — C,-

yr = z, -F x„

leading to the Hall case that O also mirrors an effect caused by the non-separability of the

aggregate utility. In the stochastic case we shall see that a value of O different from zero

(actually we assume O > 0) has important implications.

Hall (op.cit.) considered the certainty equivalent (CEQ) consumer. Therefore, the

present approach, beeing an extension of Hall, will be labeled "The generalized certainty

equivalent consumer" (GCEQ).

By the (GCEQ) consumer we mean the specification:

h ( cr	 cT*)2

	max E (— exp {0 E 	
	-r=0 	 2

subject to the budget equation:

Q0) (2.9)  

with the initial value w_ 1 given and terminal condition:

Wh = O	 (2.13)

We use the following definitions:

a = (1 r)

r — the real rate of interest, supposed constan

[3 — a constant discount factor.

o — a risk/non-separability parameter.

zr — a known deterministic function of time.

— an AR(1) process.

ct — consumption outlays in period t.

4 ) — the estimate of c„ at current time t, r > t.

h — the consumer's horizon.

— the estimate of wr formed in period t.

Wt --- observable wealth at time t.

xt — stochastic labour incomes in period t.

x,(rt) — the estimate of x„, formed in period t.
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Yr — observable incomes in period T.

S2t — the "large" information set containing everything known at time t.

REMARK 1. For the sake of clarity we note. The non-separability of the criterion in (2.9)

has consequences for the stochastic, but not for the corresponding deterministic case. In

this respect our criterion parallells previous parametrizations of non-separability criteria by

Epstein (1988), Farmer (1990), Weil (1990), etc. However, this relaxation of the standard

time-additive, separability assumption on aggregate utility is sufficient to separate the risk

aversion and intertemporal substitution.

REMARK 2. The aggregate utility (2.1) has the unattractive property that the marginal

aggregate utility with respect to any ct is finite at zero consumption (et = 0), which means

that part of the optimal consumption sequence could be negative. Problem

3 The Stochastic Maximum Principle (SMP) Applied
to the (GCEQ) Consumer Problem

In the present section we solve the optimization problem specified by (2.9)—(2.13) by a

maximum principle set forth by Whittle 0982), (1990)). Compared to the usual dynamic

programming principle (DDP) which is based on backward induction, the (SMP) goes for-

ward. Therefore, (SMP) simultaneously produce current decisions but also estimates of the

future optimal decisions as well as estimates of the future values of the endogenous and

exogenous variables not observed at time t. Hence, in economics/econometrics this princi-

ple is particularly noteworthy since it generates information economists would like to see,

but which tends to be suppressed in the (DP) approach. In addition, (SMP) can be simple

to apply to models in which (DP) are quite prohibitive. In fact, that was the case in the

present application.

However, to be convinced that the (SMP) provides us with the optimal decisions we

shall show that they coincide with the corresponding (DP) decisions.

Before we start the following comments may be helpful. At any operating time t, s will

denote the number of periods to go, s = h — t. It is intuitive, since (SMP) is a forward going

approach, to take account of the constraints on the paths given by the state equations by

introducing Lagrange multipliers. We also note that since the random incomes {xr} is a

Malloy process, at any time t the joint density of fx(t + 1), x(t + 2), , x(h)Ix(t)} can be
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written:
h—t

f(x(t	 1), x(t + 2 ) ,... , x(h)Ix(t))	 f (x(t j)lx(t -I- j — 1))
	

(3.1)
i=1

Then we state:

PROPOSITION 3.1. Let us consider the consumer model given by eqs. (2.9)-(2.13). Then, at

time t the current consumption strategy ct = clt) and the estimates c) of the future optimal

consumption outlays derived by the (SMP) are given by:

ct 	c4;
Ds — fryGs

Par' {a3+1 wh_(s+1) M(s)x Ers =o z 	4-7)1 
Ds — /37G,

where:

Ds:. Epa2 )7. = 1— (0a2
 s+1

	T= 0
	 1 — ßa2

Gs := I-11 (s) — H2 (s)

1— (f3a2 )s	 (f3a2)3(a-1 p)(1 — (a -1 p)s)
(1 — Pap)(1 — ßa 2)(1 — a-1 p)	 (1 — i@ap)(1 — a -1 12) 2

	

(a-lp)(1 — Pap)s) 	(Oap)s(a-1 p) 2 (1 — (a_ 1 p))
H2 (s): ---= (1 a_ i p)(1 op2)(i oap) 	(1 _ sp2)( 1 _ a-ip)2

and the sequence {M(j)}, j = 1, 2, . . . is given by the recursion

M(j) = ai + MU —1)p

with initial value M(0) =1.

PROOF. Considering the exponential criterion (2.9) at time t, and taking account of the

future constraints on the budget equation (2.10) by Lagrangian multipliers, we have to

calculate the expectation of an exponential with exponent given by  OLt where:

h (cT	)2	 h

Lt = E	 t 	 PT-tAr(wr -	 — y, + cr)	 (3.9)
2r=t	 r=t

Since x(t) is known at time t and the conditional distribution of x(t j) given x(t	 — 1) is

normal N(px(t + j — 1), a2), it follows from (3.1) that we have to intergrate over the infinite

C(t) 	C*

11-1 (s): =

(pa)s {as-Hwh_ (s+i) m(s )x + T (Z	 ch _T)}
(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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= t, t	 , h

domain an exponential with exponent given by 0Q t where:

h	 (CT - C* ) 2 	h
Q sr-t AT(Wr 	 — ZT XT + CT

T=t	 T=t

h

E #, _(t+1) (x, — pxr_02

,=t+i	 20a2

(3.10)

Since the exponent Q t is a negative definite quadratic form in the integrator variables

{xt+i , xt+2, , xh}, this integrad can be calculated by maximizing Q t (3.10) wrt. integra-

tor variables. The exponential with the resultant exponent will, except for an irrelevant

constant, give a correct evaluation of the integral (Whittle (1990), lemma 6.11). Hence,

we shall extremize the Lagrangian form (3.10) wrt. to {ct , ct+i,	 ,Ch }, ftVt,tpt-F11• - • 'WO,

{xt+i, xt+2, • • • , xh} and finally {At , At+i ,	 , A h}. That is, we extremize wrt. all decisions

not made and all variables (endogenous and exogenous) variables not observed at time t.

Thus we attain:

(dt) 4.) 	 =0, 	T = t,t +1,...,h

A rt) — i3aA (rtl_ i = 0,	 T = t,t +1,...,h

tv(t)
T	 ZT	

x(i)	 c(t)	 0
	T 	 T

fry x(rt) —	 — Px (: ) i) + /3 19(x.1-1 — P4) ) = 0 ,

7: = 0.72

The terminal conditions are:

/37A (ht) _ (xit) pxit) = o

(t)
Wh =

In solving these equations, eq. (3.12) implies, immediately:

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

= War,
	 r=t,t+1,...,h	 (3.18)

where K is some constant.

Solving the predictor eq. (3.14) for the future random incomes, the two constants ap-

pearing in the general solution are determined by the initial condition xlt) x t and the

determinal condition (3.16). Thus we attain:

4t) = 19,_txt .4. 07K  (f#a),1 — PaPrt 1 PP2)T-t fa_i p\h+lopr)
1	 1 — flap	 1— $p2 	)

(3.19)
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Ds — (3713,_10*	 h

Qt = 2(Ds — #7G.)2 (a
3+1 wh—(s+1) + m(s)xt E ah-j (z,

r=t

Combining eqs. (3.13) and the terminal condition (3.17) we attain (s = h — t):

a wh-(s+i) E ah---(z, x(r) —c.ç.t)).0
	

(3.20)
T=t

Combining (3.20) with eq. (3.19) (to eliminate 4)), eq. (3.11) (to eliminate dt)), and finally

(3.18) (to eliminate 4)), we, eventually, determine K by:

(oa)' (as-Fi wh_ (s+i) m (s ) xt Erh=t ah-r(z, 
—

These calculations show that the quantities D, and Gs are given by eqs. (3.4)-(3.7). Simi-

larly we deduce that the sequence M(r) obeys the recursion (3.8). Finally, combining eqs.

(3.21), (3.18) and (3.11) we attain (3.2) and (3.3). •

REMARK 3. Now we should note an interesting implication of the non-separability of the

aggregate utility ( 9> 0). The estimates at time t, x,ç.t), of the future incomes x, have been

risk adjusted. We observe from (3.19) that:

4t) = E{x, Pt } -1- the risk-adjusted term	 (3.22)

Hence, these predictions deviate from the conditional expectations E{x Qt}. In the (CEQ)

case, (the Hall case), 0 = 0 implying 7= 0 (see 3.15), then we have the standard situation

= E{x,In t }.

The following results, distributed over a couple of lemmas for convenience, will be helpful

in the sequel.

LEMMA 3.1. Let us consider the recursion (3.8), i.e. the difference equation M(j) =

MU —1)p with the initial condition M(0) =1. The solution of this equation is given by:

,;\	 a2 — (a-1 p)p'
1 — (a-1 p)
	 (3.23)

PROOF. Apply the standard machinery. •

K=
Ds — /37G,

(3.21)

LEMMA 3.2. The quadratic form Qt (3.10) has at the optimum the evaluation:

c2t 	K2pay-21,[3s (s	 _	 #3(a3(1_ (a-ip)3+1))2\

	  E(i3a2 )3 	yß .P 3
j=0 	(1 — (a-ip)) 2

or

(3.24)

(3.25)
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(1 - )37)4,_ 1 ßct(a2wh_2 + (a P)xh-i azh--4 zh -
Ch-1

— ßa2 — /3 17

PROOF. The expressions (3.24) and (3.25) follow by direct substitution. By (3.11) we have

(40 c;) 2 = (40 ) 2 . The Lagrangian terms of (3.10) vanish because of (3.13). Finally, using

(3.19) we attain:

(K,37(f3a)r(1 _ (a-i p)h-i+T) 2

1 - )

which is used in evaluating the last sum of (3.10). By using (3.21) to substitute for K2 in

(3.24) and using the solution (3.23) for M(j ), we recognise the term (Ds - flyBs_i ) (see

definitions (3.4) and (4.3)). Then (3.25) follows from (3.24). •

4 On the Optimality of the present (SMP)

The above application of the (SMP) involves two technical details which are not quite

intuitive. Firstly, (3.9) and (3.10) show that the constraints given by the budget equations

appear in the quadratic form Qt, i.e. in the exponent of the exponential. Secondly, (3.10)

indicates that our specification assumes a discounting of the future errors ET , T > t.

Hence, it is not obvious that the (SMP) at any time t, will provide the optimal consump-

tion strategy we seek. However, it is, and to show this fact we shall demonstrate that the

(SMP) and the (DDP) generate identical strategies. Since fulfilment of the optimal equation

of dynamic programming (DP) is necessary and suficient for optimality in this case, we can

then conclude that the (SMP) solution (3.2) is optimal.

Then we are ready to attack the specification (2.9)-(2.13) by (DP) arguments.

PROPOSITION 4.1. Let us consider the consumer model given by eqs. (2.9)-(2.13). Then

the optimal consumption strategies at time t = h -1 and generally at time t = h - s are

given by:

(4t) — xi
(t) 1) 2 = 7".	 t	 1,t+2,...,h	 (3.26)

where in

Pa)s(as+ l wh_(,+i) M(s)xt -FE 1j.0ct = ca;
Ds - 07B8-1

(4.2) Ds is the partial sum defined by (3.4) and B8_ 1 is defined by:

3 (	
• —

B8 . 1 : = E /37m2 (7)
	

(4.3)

M(r) is the sequence given by (3.8).

PROOF. At the horizon point h all uncertainty is resolved and the final decision Ch 1S

determined by the terminal condition Wh = 0. Then we proceed by the familiar backward
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induction pattern of (DP). Although this procedure is tedious in the present application, it

is well known and therefore omitted. NI

In order to show that the (SMP) strategy (3.2) is optimal, we have to demonstrate that

(3.2) is equal to (4.2) for any time t. By comparing the two equations we observe that

we have to show that the partial sum Gs defined by (3.5) is equal to the partial sum B8-1

defined by (4.3) for an arbitrary value of s. For clarity we state this as lemma (4.1).

LEMMA 4.1. The partial sum Gs = I-11 (s) — 1I2 (s) defined by (3.5)-(3.7) is identical to

B8-1; defined by (4.3), for any value of s.

PROOF. A direct approach is possible, but the following inductive argument is simpler.

An easy calculation shows that G1 = Bo. Suppose that G8-1 = B8-2 then Gs = 138-1

if and only if the partial sums G8_ 1 and 13s_2 are added identical increments AGs and

ABs_ i by proceeding from s — 1 to s. From (3.6) we deduce that H1 is to be added

(ßa2 )s-1 ( 1 (C1-1 P) s)/( 1
 

(a-1 p)) 2 by this transition. Similarly, we find from (3.7) that H2
gets the increment (ßap) 8-1 (a- lp)(1 — (a-1 p)s)I(1 — cr i p) 2 .

Hence, we attain from (3.5):

AG. = AH1 — AH2 =
(1 — a- ip)2

#3-1(as-i _ (a-ip)p8-1)2

(1 — a- lp) 2

From (4.3) we observe that:

/3s-1 (as-1	 (a—lp)ps-1) 2

ABs_ i = Os-1- M2 (s — 1) =  	 (4.5)
— a-lp) 2

where the last equality follows from (3.23). Eqs. (4.4) and (4.5) shows that EGs = ABs-i

and by the induction hypothesis we can, therefore, conclude that Gs = B5-1. •

From the proof above the next proposition follows:

PROPOSITION 4.2. Let us consider the consumer model given by eqs. (2.9)-(2.13). Then

the (SMP) consumption strategy (3.2) is identical to the (DP) strategy (.2). Since this

holds for any operating period t, the (SMP) generates the optimal consumption strategy.

REMARK 4. Now, we could ask: "Although, the (SMP) is shown to determine the current

consumption decisions optimally, isn't the (SMP) an awkward detour"? The answer is no!

Compared to the (DPP) the (SMP) gives considerably more. It provides estimates of what

the optimal decisions will be in the future (7 > t), as well as estimates of the future values

os-1(a2(3-1)	 a8-2ps)( 1 ___	 —1 )s)

(4.4)
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of the endogenous and exogenous variables. This is information which is suppressed by the

(DPP). Thus, the (SMP) makes explicit the idea of a provisional forward plan. Although we

know that the plan will be revised as later observations become available, this conception

of a continually revised plan corresponds very well to our intuition and actual economic

practice. Also as noted above the (SMP), being, as we have shown, a study of a Lagrangian

form, it will often offer tractable solutions in models in which it will be almost impossible

to work out the solutions by the (DPP).

5 The Infinite Horizon Case

End-conditions will often blur results we attain in models with finite horizon. However,

under appropriate specifications these effects will fade away and eventually vanish if we let

the horizon h tend to infinity. Thus, infinite horizon results will often be more transparent

and simpler to analyse.

If, at operating time t, we let h or s tend to infinity in (3.2) or (4.2) we attain:

(1 — ,8a2 )(1. — criP)2 (awt_1 -f-	
xtct = ct* (37 _ *12(1 _ a-10	 1 —

Obviously this is the stationary infinite horizon consumption strategy. However, to be on

the safe side we should check that it is just this strategy which satisfies the equilibrium form

of the optimality equation of (DP).

We note by lemma 4.1 that Gs = ./33_ 1 for all s. Then the quadratic form (3.25) reduces

and can be slightly rewritten:

h

e (S)	 Pa2)s
2(D. — ß B3_1 ) aw"s+1) cs M(s)xt cs	 ah-1" (zr c;)))

2

(5.2)

We shall define:

	ft: = lim E ct —i (zt+i — etc+j) oc
	

(5.3)

If we let h or s tend to infinity in (5.2) and use definitions (3.4 4.3 and (3.23) of D.,

B3_ 1 and M(s) we attain:

e2t= slila e2t(s). 20 ,7 _ #(12(1 _ a_ ip)2) (atut-i (1 —	 ft)
\	 (1 — ßa2 )(1 — cc 1 p) 2 	xt 

Hence, if all decisions are taken optimally from time t onwards, then apart from an inessential

positive constant, the expected utility at time t is given by:

Ut = — exp(19(2t)	 (5.5)

ft)
	

(5.1)

2
(5.4)
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Finally, we have to show:

A •A

PROPOSITION 5.1. The value function —exp(19Q t)} where Qt as given by 0.4) satis cs

the equation of optimality:

expA til = max E exp (0 [( ca — ciK)	
0e)t+11)	 (5.6)

and the optimal strategy ct is identical to (5.1).

PROOF. Calculating the expectation of (5.6) wrt. the distribution of xt+i , (xt+i e'd 1\1(PXt1 (72 ))

the righthand side of (5.6) will become an exponential with exponent given by:

Of (ct —24)2 + 

20a2 (ß7 — (1 — a- ip) 2 ))

/3(1 — i3a2 )	 \ 2
pxt + (1 a p)(awt ft4-1))	 (5.7)

Minimizing (5.7) wrt. ct gives after some rearrangement:

ct
 (1 — ßa2)(1 — 42-1 P) 2 {	 xt 

#1, — ßa2 (12(1 — a	
awt_i

- lp) 2 	1 —
= 	ft 	 (5.8)

Finally, eliminating wt in (5.7) by using the budget equation, and substituting (5.8) for ct

in the subsequent expression we attain

20-y — ßa 2 (1 — a- lp) 2 )	 1 — a- lp 1
(1 — /3a2 )(1 — a- lp) 2 	xt

awt_i + zt c7 + a-l ft+i +  	 (5.9)

From the definition (5.3) of ft we observe that (5.9) is equal to (5.4). We observe that (5.8)

is identical to the limit strategy (5.1). Then we are done. •

REMARK 5. (Parameter restrictions). In calculating the expectation of the right-hand side

of (5.6) wrt. the distribution of xt+i , it is obvious that the coefficient of the quadratic term

of the integrator variable (x4 1 ) has to be negative otherwise this expectation will not exist.

That is, we must have:
#a2((1 — a-1 p) 2 — #7)  < o

(5.10)
27(fr — /3a2 (1 — a-lp) 2 )

This means that the numerator and the denominator of this fraction must have opposite

signs.

If we make the reasonable assumption that there is a positive relationship between con-

sumption ct and observable wealth wt_ i , then we observe from (5.8) and (5.10) that the

magnitude of 1 — ßa 2 will determine which case we have. The denominator of (5.10) will

have the same sign as 1 — ßa2 . In order that (5.8) shall be a sensible consumption function

also in the Hall case ( 9 = 0), (5.8) shows that we must have ßa2 > 1. We should also note

that #7 ßa2(1 — a-1 p) 2 has to be bounded away from zero which put restriction on 7 or

= Ocr2).

2
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6 Implications for Time-Series Regressions

The optimal consumption strategies deduced in sections 3 and 5 form the basis for the em-

pirical analysis to come. The strategies (3.2) and (5.1) or (5.8) provide regression equations

which can be directly applied to empirical data.

The finite horizon case (h < oo)

Consumers do not live for ever, so it is important to clarify whether finite horizon effects

are present in the deduced regression equations.

At operating time t the consumer has s = h t periods to go. According to (3.2) the

optimal strategy is given by

(Sa) s (as+l wh-(.+1) M(s)xt Ers .0	 c*h T)) 

Correspondingly, at time t 1 we have:

pa\s-i (astvh_ s -F M(s — 1)xt÷i ETsfo ctr(zh-,
ctii. 7= C7+1 +

D3-1 - 07GS-1

Then we use the budget equation wt = awt_ i -F zt x t — ct and the process equation

x t = pxt_ i +e t to substitute for wh, and xt+i in (6.2). Finally, we use the difference equation

(3.8), M(j) = a +M(j -1)p, and eventually (6.1) to eliminate the term as+1 wh_(s+1). Thus,

we attain:

ct+i = 4+1 +	
D3-1 — /37G.-1

This is the general finite horizon regression function.

Now, it is instructive to write out the results for the Hall case, i.e. O = 0 and constant

bliss levels c*	 , v T. Then (6.3) reduces to:

— 1)c* 1	 Par' M(s —1)
ct-fi = 	 (6.4)

ßa 	ßa ct 	Ds_i

But what happens if the aggregate utility is not additively separable, i.e. if 0 > O. In

order to gain further insight in this case we assume constant bliss levels and ßa = 1: Then

(6.3) reduces to:

= ro(s — 1)c* -I- ri(s 1)ct -}- 7r2(s —

where:

ro(s — 1) -_-_-  S s M2 (s — 1)

Ds-i —

ct 	Cst.

Ds — /37G,
(6.1)

(6.2)

Parl ((ßa)_s (D.-1 — 07G8)(ct — c7) M(s — 1)Et+i) (6.3)

(6.5)

(6.6)
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D3_1 - S'7Gs 
iri(s	

D3-1 -
m(s - 1) 

r2(s - 1 ) = D3_ 1 - (37G8- 1

From 6.6)-(6.8) we attain the limits:

ro
( 1 - /3 )/37 lim ro (s - 1)

(1 - 1))2 - 7132

(6.7)

(6.8)

(6.9)

ri =- lim
	(1 - ß p2) - 
ri(s - 1) - (1 _ #11) 2 _ 7/32 (6.10)

lim	 (1 - t3 )( 1 	p)r2(s - 1) = (1 /319)2 7/32

Using the definition of B, and lemma (4.1) it follows that:

2 (6.11)

Gs = Gs-1 + 13s-1 M2 (s - 1),	 for s = 1, 2, ...	 (6.12)

Because of this identity we observe from (6.6) and (6.7) that 0 < ri (s - 1 ) < 1 and:

ro(s - 1) + ri (s - 1) = 1,	 for s = 1, 2, . . . 	 (6.13)

Evidently we also have (see (6.9) and (6.10)):

ro =- 1 (6.14)

The limits (6.9)-(6.11) indicate the magnitudes of ro(s), ri(s) and 72 (s) for large values

of s. From a statistical point of view we should like to know the rates of convergence of

these sequences. If these rates are very fast the variations in ro(s), ri(s) and r2 (s) can

be ignored, since then hopefully, eq. (6.5) is reasonably well approximated by a standard

auto-regression with constant regression coefficients and homoscedastic errors. On the other

hand if this convergence is slow we have to be very careful with interpreting and drawing

conclusion from empirical applications of this model.

In order to get an idea of these convergence rates several simulations under different

specifications were carried out using the equations (6.6)-(6.8) and (6.9)-(6.11). We note

the following findings from these experiments.

(i) The convergence rates of ro(s), ri(s) are very sensitive to the magnitude of the O param-

eter. For small values of O the experiments indicated fast convergence of ro(s) and ri (s).

However, for larger values of 0 as many as s = 40 or s = 50 periods to go were not enough to

bring ro(s) and ri (s) towards their limit values given by (6.9) and (6.10). Hence, in using

panel data the assumption of constant regression coefficients might be questionable.
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(ii) For a given value of O the convergence rate of 72 (s) appeared to be considerably slower

compared to those of ro(s) and ri (s). Although we specified parameter values implying limit

values of 71 2 > 1, the sequence ir 2 (s)2 (s) fluctuated, being less than 1 for spans of periods. Hence,

in regression studies studing E{ct ict_ i } heteroscedasticity is likely to be present. Secondly,

the experiments indicated that we should be careful in drawing definite conclusions as to the

magnitude of the ratio between the error variances in regression studies treating consumption

and income data.

At this point it is instructive to sum up the main results for the two cases; (i) O = 0 and

> O.

The Hall case (0 = 0)

(i) The conditional expectation of ct+i given all the information at time t {Ft } depends

solely on ct. This is the "Euler equation hypothesis".

(ii) From (6.4) we observe that the parameters of the regression equation E{ ct+i Ict} depend

only on the time preference parameter /3 and the interest rate r (a = 1 + r). When (3a = 1

E{ct+lict } reduces to a martingale. This is Hall's martingale hypothesis on the consumption

process.

(iii) There is no finite horizon effects on the regression coefficients of the regression equation

E{ ct+ i Ict }. All finite horizon effects on E{ ct+ i Ica are contained in the random disturbances.

A fact which makes this term heteroscedastic.

The generalized Hall case (t9 > 0)

Or The "Euler equation hypothesis" is satisfied.

(ii)* The eqs. (6.6)—(6.7) in the finite horizon case and (6.16) in the infinite horizon case

show that the regression coefficients of E{ct+1 1c,t } in addition to /3 and r, also depend on

the risk parameter O and the parameters (p, a 2 ) of the income process. Thus, a positive risk

parameter O implies a coupling of the consumption and the income process. This we shall

call the "Risk sensitivity hypothesis".

(iii)* The eqs. (6.6)—(6.8) show that the regression coefficients ro (. ), vi ( ) and the scaling

factor 7 2(-) depend on the number of periods (s) to go.

Thus, the "Euler equation hypothesis" is implied in both cases. Knowing that this

hypothesis is a direct consequence of the assumption that the consumers are rational, max-
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imizing agents, the agreement of the two cases on this point is obvious. The income and

wealth variables are simply extremized out of the regression model in both models.

However, the two cases differ markedly as regards the other two properties. The im-

plications of Hall's model stated in (ii) and (iii) are in our opinion counterintuitive and

not credible. For example one main finding of Friedman (1957) was that income variability

affected the consumers' regression parameters. Friedman (op.cit.) observed that farm fam-

ilies with a large income variability had on the average a lower propensity to consume than

non-farm families with less income variability. We observe from (ii)* that this important

property of the conumption process, is compatible with our generalized Hall case (0 > 0).

The implications of the generalized Hall case stated in 00* says that (6.3) is a regression

equation with time-varying coefficients and heteroscedastic disturbances. Hence, in contrast

to the Hall case, the case (19 > 0) permits consumers to vary the parameters of the regression

equation E { ct+1 I c} over their life-cycle. In particular, it allows for the fact that young

and elderly people may have different consumption behaviour. It appears reasonable and

intuitive that age should have an effect on consumption behaviour, and the question is often

discussed in the life-cycle consumer theory (see Mayer (1972), ch. 5). That our model allows

for this effect, emphasises once again that the case 0 > 0 is an appropriate extension of Hall

(op.cit.).

The empirical application to follow are based upon a number of relatively short time-

series, and we are, therefore, unable to control for the aging tendency of the regression

coefficients. Our empirical study will be based on the limiting infinite horizon case.

The infinite horizon case

When the horizon h tends to infinity, we deduce from (6.3) that the optimal consumption

strategy constitutes a stochastic process given by:

*	 — crip) 2 — /37) 	(0a2 — 1)(1 — a-1p)
= ct+1 #a2(1 _ a_ ip)2 _	 (ct cs;) ßa2(1 _ a-ip)2	 Et+1	 (6.15)

This looks like a simple regression of (ct+1 — 4+1 ) on (ct — ci). However, the bliss levels c7

are unobservables, a fact which has to be dealt with. In some applications, but certainly

not always, it is reasonable to suppose that the bliss levels are constant, i.e. ct* c*, vt
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Then (6.15) becomes:

(aPa — 1)(1 —	 p) 2 ,37 (a — 1))
-H.	

*
ct =	 c

ßa2 (1 — a-1 p)2 /37

a(( 1 —	 /37) 	(ßa2 — 1)(1 —	 p) Et+i

ß a2 (1 — a- 1 p)2 — /37 ct  ßa2(1 _ a- i p)2

(6.16)

which for tidiness can be written:

ct+i =	 aict -f- a2Et+1,	 = ao c*	 (6.17)

The definitions of IC (= aoc*), ai and a2 are all obvious from (6.16).

We observe that the 'structural form of (6.16) supplemented by the stochastic income

process (2.13) contain 6 structural parameters {a, /9, c*, , p, cl- 2 }. The question is if all these

parameters can be determined from the joint distribution of the observable variables. The

parameters p and cr2 can be determined from the bivariate distribution of (x t , x t_ i ), and

the parameter set {7r, a i , a2 } from the distriution of (ce , ct_ 1 ). In all we are able to identify

5 parameters, which means that not all structural parameters are identifiable. For this to

be the case we need an additional independent restriction on the parameters. For instance,

the restriction ßa = 1 will do, since we calculate quite easily:

c* 
=  	 (6.18)

1 — a l

(1 — ai )(ai — p)
(6.19)

(1 — a2 )a2

1 — a2
(6.20)

al — a2P

But the assumption ßa = 1 is quite arbitrary and appears to be too restrictive. Hence,

we will treat a and i3 as free parameters. Note that in this case al is not restricted to the

interval (0,1). Although some of the structural parameters are not identifiable, we observe

immediately:

ao + a = 1

IC

1 — al

Finally, on a panel of Swiss family data we shall in the next section test the main

hypothesis:

c* =

(6.21)

(6.22)

The "Martingale hypothesis":

E{ct+ilct} = ct
	 (6.23)
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We make the following assumptions:

i = 1,2,...,34,	 t = 1, 2 , ...,10 	(7.1)

(7.2)E{Cit+1 1 Cit} =	 aiiCit

The "Euler equation hypothesis":

E{ct+ilFt} = E{ct+iict}	 + aict	 (6.24)

The "Euler equation hypothesis":

The nullhypothesis Ho :19 = 0 against H1 : O > 0	 (6.25)

'T The empirical Investigations

Our statistical tests are based on a sample of 34 Swiss families which over a period of 10

years kept detailed accounts of their consumption outlays, incomes, taxes, etc. (see appendix

A). We have made the following considerations. The 34 families are chosen at random from

a large number of families of a certain variety. In order to allow for individual family

differences, we consider each family's regression line to be a random variable. In order to

characterize the whole population of families it is natural to look at the distribution of

these lines. The expected values of the stochastic regression coefficients, their variances and

covariances are then the parametres of our interest.

The consumption of familiy (i) in period t 1 is specified by:

The set of variables (K i , a» ), (\K2, an), • • -, are independently, identically distributed with

means and variances/covariances given by:

E{Ki} = K,	 Efaii	 (7.3)

var(a11 )	 i, ali)var(Ki) = Aoo,	 7---- A 11, 	cov(K= A01

The random disturbances (Sit) are independently, identically,

normally distributed with means zero and variances 0.

Our estimates of tc and ai are calculated as ordinary averages of the least-square esti-

mates ki and Similarly we obtained the estimates of the variances Aoo and An , from

which we attained estimates of the standard errors std(k) and std(ii). Standard statistical

theory then says that (k — ic)/ std(k) and (ex' — ai )/ std(ii i ) are approximately, normally

distributed (0,1).

(7.4)

(7.5)
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Testing the "Martingale hypothesis"

From (6.23) we observe that this hypothesis is equivalent to the following hypotheses on the

population characteristics K and ai :

Ho : (a) K = 0 and (b) a = 1	 (7.6)

We reject Ho if we reject either (a) or (b) of (7.6).

= 2048
	

al = 0.9112
(7.7)

std(k) = 655	 std(ill) = 0.0482

From what has been said above we conclude that the "Martingale hypothesis" can be rejected

straightaway at any sensible significance level.

Testing the "Euler equation hypothesis"

A simple direct test of the hypothesis (6.24) is to run the regression

=	 aict vYt 6t+i
	 (7.8)

(Yt — current income at time t), and then test the nullhypothesis

Ho : v 0 against H1 :zì70
	

(7.9)

A version of this procedure has been carried out by many writers. Since we have time-

series data for a sample of different families we can apply this test to each family separately.

Therefore, our test should be more reliable than the usual ones which are based on aggregate

or som kind of pooled data. No doubt, aggregation or pooling of data will usually bring in

noise which are difficult to control for in regression studies.

Thus, for each family we regressed ct+i on previous consumption (ce ) and previous in-

comes (yt). In all these regressions the (LS) estimates of aii and vi turned out to be very

instable, signalling a high degree of collinarity between ct and yt. In order to investigate this

fact we applied the diagnostic test of collinarity proposed by Belsley et. al. (1980). That is,

after having normalized the regressors to unit length giving the matrix P, we calculate the

eigenvalues Ai of the symmetric, non-negative matrix (P'P). Finally, we calculate the proxy

k = A(max)/A(min), where A(max) and A(min) denote the largest and smallest eigenvalues

of (PP). Belsley et. al. (op. cit.) conclude from numerical experiments that values of k

in excess of 20 suggest potential problems. On this problem see also Silvey (1969). The

following table shows the proxy k values calculated for our sample.
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Table 7.1

k-values 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-139 14O-

No. of
families	 6	 3	 5	 7	 3	 2 	2	 3

Hence, this diagnostic test indicates that collinarity between ct and yt is a potential problem

in all regressions.

It is frequently believed that the life-cycle theories of the consumption function always

dissociate current consumption and incomes. This opinion is superficial. Equation (5.8)

shows that this is not a necessary implication of the dynamic optimal behaviour. In order

to explain the present observed collinarity between ct and yt we can argue as follows. Let

us suppose that the bliss levels are constant (i.e. ct* = c Vt). Our theory (5.8) then predicts

that ct is a linear combination of wt _4 , xt and ft , where ft = zt a-i f 0. 1 (see (5.3)).

It is reasonable to assume that (1 - p) is a small number in the interval (0, 1). If the

variability of awt_ i and a'ft .fi are moderate which certainly can be the case for many

families, the variability of { awt÷i -F x t/(1 - a- 1 p) ft } is to a large extent accounted for by

the variability of xt and zt—i.e. by deterministic and stochastic components of observable

income (see (2.11)). This means that for many families there can be an approximately

linear relation between consumption (ce ) and observable incomes (yt). For these families

collinearity between ct and yt will cause a serious problem in the regression (7.8). It is this

problem we face in our application of the Swiss data.

As to the test of the hypothesis (7.9) we conclude. Owing to multicollinearity between

ct and ytwe are unable to neither reject nor accept the nullhypothesis Ho of (7.9). The

collinearity problem we face can be explained by our theory by using perfectly sensible

arguments. Thus there is no reason to reject the "Euler equation hypothesis" on this data-

set.

Testing the "Risk sensitivity hypothesis"

As we have noted above, the presence of risk, 19 > 0, implies that optimal consumption

and observable income are coupled via the regression coefficients. Although, this kind of

copuling appears to be very sensible, we should also like to test its strength statistically.

Again we shall apply the random coefficient regression model.
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Hence, for any familiy (i) we consider the regression model:

Ct+1	 K aict '5t+1,
	 (K	 aoc*)	 (7.10)

where the random regression coefficients ao and ai are given by (see (6.16))

(ßa2 - a)(1 - a- lp) 2 ,3a(a - 1)
0a2 (1 - c -' p) 2 - fry

a((1 - a- lp)2 - 137)
al 	/3a2(1 - a- lp) 2 - 13-7

By combining (2.11)-(2.12) we can write the income process {yt}:

Yt+i (zt+i - pzt) + pyt + Et+1,	 ipl < 1

ao =

(7.13)

The term (zt+i pzt) is a deterministic component of observable income. From (7.13) we

observe that the variance of {yi} is an increasing function of p. That is, the larger p the

more uncertain (risky) will the incomes {yi } turn out to be.

It is reasonable that uncertainty about the future income process in one way or another

should be reflected by the regression coefficients of the consumption process. When 19 >

we observe from (7.11)-(7.12) that this is, indeed, the case.

But what happens in the Hall caxe (0 = O)? In this case we observe directly from (7.11)

and (7.12) that:

= 0a2 , so that 0 = 0 implies 7 = 0)

In order to test the hypothesis:

ßa - 1
ao = 	

13a

1
al = —Pa

(7.14)

(7.15)

Ho : 0 = 0	 ( 7.16 )

we shall argue as follows. If Ho is true, neither ao nor ai depend on p, which implies that

aao /ap = aadap = O. Therefore, the hypothesis (7.16) in particular implies the hypothesis:

: w = aadap = 0

Since the hypothesis H1 is implied by the hypothesis 1/0, we should reject Ho if we

reject H1 . On the other hand if we accept (7.17) then ai is independent of p, and (7.15)

is a possible value of al . Hence, if we don't reject H1 (7.17) we should also abstain from

rejecting Ho (7.16).
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Our test of Hi is based on a Taylor expansion of ai given by (7.12). From 7.11)-(7.12)

we observe that ao 	= 1 and that:

aao =	 > 0,	 if ßa2 > 1 and 0 <	 < 1	 (7.18)
ap	 ap

	act' 	2,37(1- ßa 2)(1 - cri p)
<0,	 if ßa2 > 1 and	 < 1	 (7.19)

	ap 	(ßa2(1 _ a-1 19)2 _ /37 )2

Hence, we have to consider the test problem:

aai
111 : w1 = -

ap 
= 0 against HA : W1 < O.	 (7.20)

A first-order Taylor expansion of ai (7.12) wrt. the variable coefficients around their

respective means is given by:

= coo +w(t) E(P))	 - EA) +W3 (0 - E(0)) v	 (7.21)

where w1 = aadap, w2 = %I MO, w3 = aada0 and v denotes random disturbances.

The expansion (7.21) is based on the following reasoning. According to (7.12) ai depends

on (a, /3,7, p). We suppose that a = (1 -F r) is the same for all families. This is resonable

since the data refers to the same time period and the families, therefore, will face the same

interest rates. A part from cr2 which is supposed to be constant, the remaining parameters

are free to vary over families, i.e. ß, 0, p may be different for different families. Also,

the coefficients and Oi describe properties of the aggregate utility of family (i), while pi

describes the autocorrelation of the income process. Thus, it appears tenable to suppose

that the distribution of (f3, 0) is independent of the distribution of p. This implies that

the regression coefficient wi of eq. (7.21) will coincide with the regression coefficient in the

simple regression of ai on p.

In order to test the hypothesis H1 against HA (see (7.20)) we shall apply the following

simple approach. First we run the 34 regressions as indicated by (7.10) and (7.13). As a

proxy-variable for (zt+i - pzt) we use the trend variable (id). Having attained the estimates

	and i3 	ali and p, we, then, regress	 on f) giving an estimator of w1 . Since we have

argued that p is independent of /3 and 0, the net and gross effect of p on ai are equal to

This regression gave the following result.

ali = 2.09 - 1.18 3i -141	(7.22)
(0.8527)	 (0.8551)

In order to decide on the test problem (7.20) we shall use the criteria: (i) The sign of

(4./1 predicted by our theory and (ii) the value of the statistic ((2)1 - wi )/(std( i ) under I/1 .

Under general conditions this statistic is approximately normally distributed.
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From (7.22) we observe that c2)1 (= —1.18) turns out to have the sign predicted by our

theory (see (7.19)). Under H1 the value of the statistic is (-1.18/0.8551) = —1.38 which

corresponds to a p-value Pe, 0.08. Hence, according to the calculated statistic we can reject

H1 at a 0.10 level but not at a 0.05 level. Judging these pieces of information together, we

are inclined to reject H1 and accept HA. According to our arguments above we should in

this case, since H1 is implied by 1/0 also reject Ho. Hence, we conclude that the simple Hall

model (0 = 0) is rejected statistically on our data-set.

The implication (7.19) (w1 < 0) may seem counterintuitive at first glance, but further

thought confirms it as sensible. As indicated above we can associate the magnitude of p with

income uncertainty. Then (7.18)—(7.19) simply say that families with volatile incomes will

try to smooth out consumption outlays by adjusting the regression coefficients. They will

attempt to keep relatively more of the consumption at a fixed, constant level, and reduce

that part contributed by the auto-regressive component. Indeed, this effect of income vari-

ability was also noted by Friedman (1957) comparing the marginal propensity to consume

by farmers and non-farm families. However, in our model this result comes out explicitly as

a consequence of the optimal dynamic behaviour of our forward-looking consumer.

Finally, our empirical findings can be summarized as follows:

(i) Hall's simple martingale hypothesis is rejected.

(ii) There is no ground to reject the "Euler equation hypothesis".

(iii) We reject the simple Hall case (0 = 0) and accept the more general case (0 > 0). Thus

the dynamic behaviour of the families investigated in our empirical study is characterized

by risk sensitivity.

8 Conclusion

Beeing a (CEQ) model Hall's model has the pros and cons of this class of models. Generally,

(CEQ) specifications make possible simple and explicit solutions, but from an economic point

of view they are often too restrictive to capture essential aspects of economic behaviour. The

model studied in the present paper is more general in that the aggregate utility explicitly

includes a risk parameter O. As we have shown this parameter constantly modifies Hall's

results for the (CEQ) model.

However, inspired by Hall (op.cit.) we have worked hard to derive a fully specified

regression model on the basis of an explicitly stated optimization model. At the same time
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we hope that the forward-going optimization process described in section 3 will have some

independent interest. The fact that it produces simultaneously the current optimal strategy

and estimates of what the optimal decisions will be in the future, as well as predictions of

the future path of the exogenous variables is very appealing.
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Appendix A

A major difficulty in testing the life-cycle theories of the consumption function has been

the lack of data giving the household's consumption and income over many years. Owing

to the kindness of professor Mayer we recived his data giving annual budgets over a five-

year period for 124 Swiss households. A sub-sample of 34 families reported their annual

budgets for a ten-year period. It is this data-set we have used. The data states the families'

annual expenditures for consumption, insurances specified by types, taxes and various public

charges, total income and finally a variable (quets) measuring the size of the households.

This data is particularly useful because of its quality (Mayer (1972) p. 379), and the length

of time each household has reported their outlays and incomes. Compared to data-sets

used in similar studies, these data seems to be quite unique. Mayer (op. cit.) devotes a

considerable part of his book to the study of this sample. He describes this data in detail

(ch. 13 and appendix 5). Since we have followed Mayer as regards definitions of variables,

it is sufficient to refer to Mayer's description (op.cit.).
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