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Abstract

The Generalized Extreme Value Model (GEV) was developed by McFadden (cf. McFadden,
1981) with the purpose of extending the Luce Model to account for interdependent utilities. While
the Luce model satisfies the IIA property it has not been clear whether or not the GEV class
implies theoretical restrictions on the choice probabilities other than those that follow from the
random utility framework.

The present paper extends the GEV class to the intertemporal situation and proves that the
choice probabilities generated from random utility processes can be approximated arbitrarily closely
by choice probabilities from an intertemporal GEV model.
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1. Introduction

McFadden (1977) introduced the class of Generalized Extreme Value (GEV) random

utility models for discrete choice. This class contains the special cases known as the Luce and

the nested logit model. The GEV class is generated from utility functions that have

distributions of the multivariate extreme value type. This class of distribution functions yields

strong restrictions on the interdependence between the utilities of different alternatives. For

example, the correlation between joint extreme valued distributed utilities is always non-

negative. The GEV class is tractable since it enables us to express choice probabilities on

closed form. The GEV class is also appealing from a theoretical point of view since it is

consistent with certain invariance properties, cf. Strauss (1979) and Robertson and Strauss

(1981). In particular this class of utility functions is closed under aggregation of alternatives,

i.e., the utility function relative to any aggregate version of the alternative space is

multivariate extreme value distributed provided the original alternative set has multivariate

extreme value distributed utilities. Until recently is has not been known if the GEV class

yields apriori theoretical restrictions on the choice probabilities. However, Dagsvik (1990)

demonstrated that the GEV class is dense in the class of random utility models. This means

that any random utility choice model can be approximated arbitrarily closely by choice

models belonging to the GEV class. Accordingly, the GEV class yields no theoretical

restrictions on the choice probabilities other than those that follow from the random utility

hypothesis. Necessary and sufficient conditions for a discrete choice model to be consistent

with a random utility model were given by Falmagne (1978).

In the present paper we extend the result of Dagsvik (1990) to the intertemporal case

in which the agent makes discrete choices at different points of time without transition costs.

In the present paper the choice environment is assumed to be perfectly certain apart from

future preferences which are allowed to be random to the agent. The interpretation of

intrapersonal randomness due to psychological factors dates back to the work by Thurstone

(1927) and is supported by many laboratory experiments since then. If the random

components at different points in time are independent the conventional static model
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framework applies. However, in many experiments it is natural to assume that psychological

factors that affect tastes show some stability over time. In addition, there may be interpersonel

randomness due to variables that are perfectly certain to the agent but unobserved by the

analyst.

The extension of GEV to the intertemporal setting (IGEV) is obtained by introducing

max-stable utility processes. A max-stable utility process is characterized by the property that

its finite-dimensional distributions are of the multivariate extreme value type.

The paper is organized as follows. In Section 2 the general intertemporal random

utility framework is defined. In Section 3 the subclass of random utility processes generated

by the class of max-stable random utility models is characterized and discussed. This section

also contains the proof of the property that the class of max-stable random utility models is

dense in the class of random utility models.

2. The intertemporal random utility model

The choice setting is defined as follows. Let S be a set of finite alternatives, al , a2,

a., and let 8 be the collection of all non-empty subsets from S. To each alternative, al, there

is associated a utility process, Vi = (WO, DO), where VI is a separable stochastic process that

is assumed to be continuous in probability. Let U = (U 1 ,U2,...,U,), denote the multivariate

process. The choice environment is assumed to be perfectly certain. Thus the choice setting

here is analogous to Heckman (1981), McFadden (1984) and Dagsvik (1983).

The agents choice process, J = (J(t), t>0), is defined by

J(t) = j if Ui(t) = maxkUk(t).

This means that there are no transaction costs, i.e., the agent can move "frictionless" from one

alternative (state) to another in continuous time. The motivation for a random utility

framework is that the agent may have tastes that fluctuate over time according to his

psychological state of mind which to him is not perfectly foreseeable. An additional
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justification for randomness in the agents utility function is that there may be variables that

are perfectly foreseeable to the agent but unobservable to the analyst.

Let F(t.;u(t.)) be the nxm-dimensional distribution of U where t. = (t l ,t2,...,t.) are m

points in time, u(ti) = (u l (ti), u2(;),...,u„,(9) and u(Ç) = (u(t), u(t2),...,u(t.)). Thus

{F(t. ; u(t.)) = P hi fill (Uj(ti)Sui(ti)) .
I'd J.1

In the following we shall assume that F(t,,m(t.)) is continuous in u(t.) which implies that

P(Ui(t)=Ui(t)) = O. Moreover, we shall assume that supg.KUi(s) is a random variable when

Kcik,, is a Borel set and finally we require that when ae (0,-a) for some i>0

E max [1, exp (a(sup. K (maxkUk(s))))] < °°•	 (2.1)

The probability of a particular choice career is given by

p(t mj ) r- P (ri (J(ti) j i)) = P ( irn1 (Ui (t) = maxkUk(ti)))
	 (2.2)

where j. = (j 1 ,j2,...,j.).

When the finite-dimensional distributions are specified the choice probabilities (2.2)

can in principle be calculated. Let d(j.,UF denote the differential operator of F with respect

to the components (ji ,j2,...,j.), at time epochs (ti ,t2,...,t), By straight forward calculus it

follows that

p(t.j.) =
	 (2.3)

where 1„ = (1,1,1,...,1). For example with n=rn=2 we get
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p (ti , t2; 2, 1) = 12 F (ti , t2; x, dx, dy, y) . (2.4)

Except for special cases it is very difficult to obtain tractable expressions for the choice

probabilities. This is wellknown for the one period case and it is even more difficult in the

multiperiod case. For example, while multivariate extreme value c.d.f. imply closed form

expressions in the one-period case this is no longer true in the multiperiod case except in

special cases.

3. The class of max-stable intertemporal random utility models

The class of intertemporal generalized extreme value random utility models (IGEV)

is generated from utility processes that are max-stable. The class of max-stable processes is

precisely the class of stochastic processes that have finite-dimensional distributions of the

multivariate extreme value type, cf. de Haan (1984). As is wellknown there are three types

of extreme value distributions and we shall restrict our analysis to max-stable processes with

type III marginals (cf. Resnick, 1987). In the intertemporal context this class has been

investigated by Dagsvik (1983). A special subclass of max-stable processes is the class of

extrema! processes. This class turns out to yield tractable expressions for the choice

probabilities, as was shown by Dagsvik (1983). Subsequently, Dagsvik (1988) and Resnick

and Roy (1990) have investigated this class in detail and extended the results of Dagsvik

(1983).

The IGEV class is of particular interest for a number of theoretical reasons. First it

can be viewed as an extension of the GEV class to the intertemporal context. The GEV class

contains the Luce model and the extension of the Luce model to the intertemporal setting is

obtained by letting U1,U2,..., be independent max-stable processes. Second, it has the property

that it is closed under aggregation of alternatives in S in the sense that the (multivariate)

utility process relative to a univers of aggregate alternatives is also a max-stable process.

Strauss and Robertson (1981) have introduced other invariance assumptions that characterize
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the GEV class and accordingly the IGEV class.

In the present section we shall prove that the IGEV class is dense in the class of

intertemporal random utility models. To this end we need to introduce some definitions.

Let N denote the class of n-dimensional random utility processes and for any subclass

DcN let Sri) denote the class of intertemporal random utility models generated from D.

Definition

Let M be a subclass of N. We say that .9; is dense in .9;1 if for any - UeN for any t„,

and e>0 there exist a lie Al such that

IP * (t„,;.1„,)	 P(t.;.1)1< e

for allj„, where p* is generated by If and p is generated by U.

Before we state the main result of the paper we shall discuss a particular

representation result of max-stable processes given by de Haan (1984).

Theorem 1

Suppose Y is a n-dimensional type III max-stable process which is continuous in

probability. Then there exists a finite measure on R such that if (Xi, ed is an enumeration

of the points in the Poisson process on le with intensity measure Vdx)v -ecle, then the

process, V, defined by

Vi(t) = maxk (vt(j,;) + ed

with suitable L1-functions, exp(vtj,9), j=1,2,...,n, teR +, has the same finite-dimensional

distributions as Y.
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Recall that the condition that exp(v,(j,)) is L 1 means that

fexp (v, (j, x)) (dx) < 00 .

The result above is called the max-spectral representation result by de Haan, and

vi(j,.) is denoted the spectral function.

In the context of choice theory the result above allows interesting interpretations.

Interpretation I

Consider the following general example. Each agent in a population faces a set of

choice alternatives, a(i,j,k), j=1,2,...,m, k=1,2,..., where i indexes the agent and (j,k) indexes

the alternatives. This means that the choice sets are agent-specific. Alternative a(i,j,k) is

characterized by attributes (Zi(t),Xil) where Zi(t)e R2, Xike R. Thus for fixed j every agent

faces the same Z-attribute. However, the set of feasible X-attributes vary from one agent to

another. Suppose now that the set of feasible attributes are not observed by the analyst nor

is the X-attribute of the chosen alternative observed. Let the utility function be defined by

U 1(it) f(Zi(t),Xik) + e ik

where f is a deterministic function that is the same for every agent and depends on the

alternatives solely through their attributes. The term elk is a taste-shifter that is supposed to

account for differences in tastes across agents and across alternatives due to unobservables.

Here it is assumed that the differences in utility between a(i,j,k) and a(it,k) is perfectly

accounted for by (Zi(t),Xik) and (Zi.(t),Xik). In addition we also have unobserved heterogeneity

in opportunities since the set of feasible X-attributes differ from one agent to another. The

set of feasible X- and e-attributes

pi = {(Xik, e ik), k = 1,2,...}, i = 1,2,...
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are realizations from independent copies of a Poisson process with intensity measure

X(dx) e -* de .

Thus two different agents face two different Poisson realizations. The coordinates of these

points represent the unobserved attributes and unobserved taste variables, respectively. The

utility that corresponds to the observable Z-attributes is

U(it) = maxkUjk(i,t) = maxk (f (Zi(t), Xik) + e fic) .

Now if the function exp(f(Zi(t),•)) is L1-integrable it follows that the utility Ui(i,t) can be

viewed as a realization of a max-stable stochastic process.

A concrete example is choice of occupation and job. Suppose there are n occupations

with wages Z, j=1,2,...,n. Within each occupation there are different jobs with non-pecuniary

attributes. To agent i only a particular subset of jobs within occupation j is feasible, say

{a(ij,k)), with non-pecuniary attributes X ik, k=1,2,... The measure X() represents an

"aggregate" or mean measure of the availability of attributes. For example

X(x)
X,(1)

can be interpreted as the distribution of feasible X-attributes relative to an (arbitrary selected)

agent. For a more detailed discussion on this interpretation, see Dagsvik (1990, a,b). In

empirical applications it may be cases where one has auxiliary aggregate data on total number

of alternatives with specific attribute values. From these auxiliary data it would therefore be

possible to obtain estimates of X(x)A(1).

Interpretation H

Now suppose that the agent does not perceive or alternatively, simply does not take

into account the whole set of attributes available to him. Specifically, the set of attributes
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(stimuli) taken into account varies randomly from one experiment to another due to

unpredictable fluctuations in the agent's ability to perceive stimuli. The fraction X(x)A(1) can

now be interpreted as the mean fraction (across experiments) of stimuli taken account of by

the agent. Thus in this case X(x)A,(1) is a measure of the agent's perceived choice set or,

alternatively, the set of attributes - or signals - the agent is informed about.

Next let us turn to the main result of the paper.

Theorem 2
Assume that (2.1) holds and that the first order partial derivatives, aF(t,„;u(t,„))1au k(ti)

exist for all ti, int, and all m and lcn. Then the class of IGEV is dense in the class of

intertemporal random utility models.

Proof:

For notational simplicity we shall present the proof for the special case with m=n=2.

The proof in the general case is completely analogous. Let

G. Op t2; xi , x2, yi , y2)

= exp( - f (exp (a max (z i - xi , z2 - x2, z3 - yi , z4 - y2))) F t2; dz)) .
	 (3.1)

ze

Let fp,(4,t2;i,j)) be the choice probabilities generated by G a(t1 ,t2;x1 ,x2,y1 ,y2). According

to (2.4) we have for i=2 and j=1

pa (ti , t2, 2, 1) = SSG.(tt2; x, dx, dy, y) .
	 (3.2)

The c.d.f. (3.1) is a type DI multivariate extreme value distribution. Let (U(4), U(t) be the

utility vectors with joint c.d.f. F(t1 ,t2;x1 ,x2,y1 ,y2) and let (p(t1 ,t2;i,j)) denote the corresponding

choice probabilities. For given x1 ,x2,y1y2 define
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Z = max (U i(ti) - xi , U2(td - x2, Ui(t2) - yi ,U2( 2) y2).
	 (3.3)

The c.d.f. of Z is given by

P(Z5z) F(t 1 ,t2;x1 +z,x2 +z,y1 +z,y2 +z), ze R.	 (3.4)

For notational convenience let

H(x1 ,x2,y1 , )'2; a) = -logGa (t1 ,t2;x1,x2,y1 ,y2).

From (3.1) and (3.4) it follows that

H(x1 ,x2,y1,y2 ;a) E(e)

= feszEk F1 (t1 ,t2 ;x1 +z,x2 +z,y1 +z,y2 +z)dz	 (3.5)

= afesz(1-F(t1 ,t2 ;x1 +z,x2 +z,y 1 +z,y2 +z))dz

where F1(t1 ,t2;•) denotes the partial derivative with respect to the k-th argument and the last

equality follows from integration by parts.

Notice that from (3.1) we get

H (xi , x2, y2 ; a) = e -azH (x i - z, x2 z, - z, y2 - z)
	

(3.6)

for any ze R. By combining (3.6) and (3.2) we get
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(3.7)
p1 (t1 ,t2 ; 2,1)

= ff(exp (-e -"H (0,0, y -x, y -x; a))) 112 (0,0,y -x,y -x ; a) H3 (0,0, y -x,y -x; a) e -2" dx dy

- ff(exp (-e -"H (0,0, y -x,y -x;a)))d3 H2 (0, 0, y - x, y - x; a) e -"dx

where dk denotes the differential with respect to the k-th component. By applying (3.6) it is

easily veryfied that

H3(0,0,u,w,a)	 H3 (-u, -u,0,0;a)	 (3.8)
H(0,0,u,u;a)	 H(-u,-u,0,0;a)

Now make the following change of variable; u=y-x in (3.7). Then integration with respect to

X gives

p1 (t1 ,t2 ; 2,1)

= ff(exp (-e ""H(0,0,u,u ; a))) H2 OA U ; a) H3 OA U a)e" 2"dxdu

- ff(exp(-e -"H(0,0,u,u;a)))d3 H2 (0,0,u,u;a)e -"dxdu	 (3.9)

	a r H2 (0,0,u,u;a)H3 (-u,-u,0,0;a)du	 1d3 H2 (0,0,u,u;a)

	

a2H(0,0,u,u,a)H(-u,-u,0,0;a) 	 aH(0,0,u,u;a)

Since

e"F2 (t1 ,t2 ;z,z,z+u,z+u) max(1,e iz)F2 (t1 ;z,z)
	

(3.10)

for ae (OZ, we get from (3.5), (2.1) and the Lebesgue Dominated Convergence Theorem that

limH2 (0,0,u,u; a)/a = -limfe"F2 (t1,t2 ;z,z,z +u,z +u)dz
a-+0	 a-+0

= -5F2 (t1 ,t2 ;z,z,z+u,z+u)dz.
(3.11a)
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k (3.12)
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Similarly it follows that

liMH3 (-11, -U, 0, a)/a = - fF3 (ti ,t2 ; z -u,z -u,z,z)dz
a-40

(3.11b)

= I F(t1 , t2 ;z,z,z +u,z+u) = 1 = limH(-u, -u,0,0; a).
11-.0

Moreover

H(0,0,u,u;a) H(0,0,00,00;a)

and

H(-u, -u,0,0;a) H(00,00,0,0;a)

which imply that
(3.13)

0 < fH
2 (0,0,u,u;a)H3 (-u, -u,0,0;a)du H2(0,0,u,u;a)H3(-u, -u,0,0;a)du

a2H(0,0,u,u;a)H(-u,-u,0,0;a) 	 a2H(0,0,00,00;a)H(o0,00,0,0;a)

Also from (3.5) we get
(3.14)

SH2 (0,0,u,u;a)H3 (-u, -u,0,0;a)du

a2

5 5[fmax(i,eaz)F2 (t1 ,t,2 ;z,z,z+u,z+u)dzfmax(1,eav)F 3 (t1,t2 ;v-u,v-u,v,v)dviclu.

Since max(1,e") is nondecreasing in a it follows by the Lebesgue's Monotone Convergence

Theorem that the right hand side of (3.14) converges towards

itfF2 (t1 ,t2 ;z,z,z +u,z +u)dzfF3 (t1 ,t2 ;v -u,v -u,v,v)dvidu
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as a 0. Now observe that

fF2 t2 ; z, z, z +u, z+u) dz

= P (U2(t1) > max (U1(t1),U1 (t2) - u,U2(t2) - u)) 5 P (u >U2(t2) -U2(t1))
(3.15)

and   

fF3 (t1 , t2 ; z-u, z -u, z, z)dz

= P (U1(t2) > max (Ui(ti) + u,U2(t1) + u, U2( 2)) 5 P (u <102) - Ui(ti))

When we combine (3.14), (3.15) and (3.16) we obtain

fH2 (0,0,u,u;a)H3 (-u,-u,0,0;a)du

(3.16) 

a2

fP > U2( 2) U2(t1))P (u <U1 (t2) -1Ji(td)du 

0 00

5P(u>U2(t2) -U2(t1))du + fP(u<U 1 (t2) -U1 (t1))du
0 (3.17)

0 00

= - fudP(uU2(t2) -U2(t1)) + fudP(uU1(t2) -Ui (ti))du
0

5 E I U2(t 1) -U2(t) I + E I U1 (t2) -U1 (t1) I < c*.

The last inequality follows because (2.1) implies that the expectation EUk(t) exists.

Consequently (3.12), (3.13) and (3.17) yield

(3.18)

lim 	
H2 (0, 0, u,u;a) H3 (	 0, a)du

a-90 f a2H(0,0,u,u;a)H(-u,-u,0,0;a)

2
E E lUk(t2) - U„(t1)

2

E E lUk(t2) -U„(ti) I
lod

lim H (0,0,00,00; a)}1(00,00, 0, 0, ; a)
-+0

• ki.1
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and by (3.9) we therefore obtain

limp1 (t1 ,t2 ;2,1) = -lim (C13142("' ll '" 
a-40 —	 a-40) aH(0,0,u,u; a)

(3.19)

Furthermore, due to (3.12), H(0,0,u,u;a)>H(0,0,00,00;a)>K when a is sufficiently close to zero

and K is a constant.

Hence by (3.5)

0< 
 -d3H2(0,0,u,u;a)

aH(0,0,u,u;a)
fmax(1,eiz)d3 F2 (ti ,t2 ;z,z,z+u,z+u)4z (3.20)

K 

when a is sufficiently small. The right hand side of (3.20) is integrable with respect to u

because

(3.21)

ffmax (1, eiz) d3 F2 (ti , t2 ; z, z, z+u, z+u)dz ffmax (1, e iz)d3 F2 (ti , t2 ; 00, z, z+u,00)dz

fmax (1, eiz) F2 (ti , t2 ; 00, z,00,00)dz

E max [1, exp ('U2(t))] < 00.

We are now ready to apply the Lebesgue Dominating Convergence Theorem, which gives

	

d3 H2 (0, 0, u, u ; a)	 limd3H2(0,0,u,u;aYa
f a-40 lim pa Op t2 ; 2,1) = -lim f	 —

a—o0	 a-40 aH(0,0,u,u; a)	 limH(0,0,u,u;a)
a.-)0

= fid3F2 (t1 ,t2 ; z, z, zu, z+u)dz = p (t 1 ,t2 ; 2,1)

(3.22)

which concludes the proof.

Q.E.D.
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