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ABSTRACT

An important problem in the analysis of intertemporal choice processes is to separate
the effect of unobserved temporal persistent variables from the influence on preferences from
past choice behavior (state dependence).

The present paper discusses a behavioral Axiom in the presence of random preferences
relative to a discrete alternative set and demonstrates that this Axiom yields joint utility
processes that belong to the class of multivariate extremal processes. Specifically, the Axiom
states that if there is no effect from past choice behavior on current preferences then the
distribution of the current indirect utility conditional on past choice history is independent of
the past choice history. When utilities are extremal processes Dagsvik (1988) demonstrated
that the corresponding choice process is Markovian with transition probabilities that have a
simple structure.
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1. Introduction

The purpose of the paper is to provide a theoretical justification for the structure of
intertemporal utility prosesses under pure taste persistence, i.e., when there is no behavioral
effect on the individual level from past choice experiences. In the present setting the agents’s
planning horizon is one period and the environment is assumed perfectly certain to him. On
the other hand, preferences are assumed random to the agent due to his lack of ability to
forecast his preferences perfectly. The case with uncertain environment will be treated
elsewhere.

Heckman (1981, 1991) and others have discussed the problem of separating the effect
from past behavior on current preferences from spurious effects that stem from correlation
between current and past choices due to unobservables. It appears that this identification
problem cannot be solved without imposing theoretical restrictions in the model. This
identification problem is of considerable practical relevance. For example, in analyses of
travel demand it is of interest to know when observed correlation between persons choice of
a specific transport alternative at different periods of time is a result of preferences being
affected by experience with this alternative or simply a result of time persistent unobservables.

In the present paper we postulate a plausible formal characterization of intertemporal
random utility models with pure taste persistence and with preferences that are random
relative to the agent. Specifically, this characterization is formulated as an axiom as follows:
if no structural state dependence is present then the distribution of the current indirect utility
function does not depend on the past choice history. In the present paper we apply the Axiom
to a subclass of (intertemporal) random utility models, namely the subclass generated from
max-stable processes. Recall that max-stable processes are characterized by having finite-
dimensional distributions of the multivariate extreme value type. There are two reasons for
studying the subclass. First, it turns out to be convenient from a mathematical point of view.
Second, Dagsvik (1991) has demonstrated that the subclass of random utility models

generated from max-stable processes is dense in the class of random utility models, in the
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sense that the corresponding choice probabilities can be approximated arbitrarily closely by
the choice probabilities derived from max-stable processes. This means that there is essentially
no loss of generality by restricting the utility functions to the class of max-stable processes.
Furthermore, by postulating the axiom described above we get the surprising and important
result that given the class of max-stable processes the utility process must be a (multivariate)
extremal process. In Dagsvik (1983) and (1988) it was proved that the choice model generated
from extremal utility processes has the Markov property with a particular simple structure of
the transition probabilities and transition intensities. Consequently, this framework is
convenient in the context of empirical applications.

The organization of the paper is as follows: In Section 2 a random utility framework
is introduced. In Section 3 we discuss the class of max-stable and extremal utility processes

and the implications from the axioms.

2. Preferences

The individual decision-maker (agent) is supposed to have random preferences in the
sense that they depend on tasteshifters which future realizations are uncertain to the agent.
This notion of random preferences is different from the traditional convention in economics
where stochastic utilities usually are unobservables that are assumed perfectly foreseeable
from the agent’s viewpoint. In the psychological literature however, there is a long tradition
dating back to Thurstone (1927) in which utilities are modeled as random. The reason for this
is of course that indivduals have been found to behave inconsistently in laboratory choice
experiments in the sense that a given individual makes different choices under identical
experimental conditions. One explanation for this is that the agent’s psychological state of
mind fluctuates from one moment to the next so as to induce unpredictable shifts in his tastes.
Alternatively, the agent is viewed as having difficulties with evaluating the rank order of the
alternatives, cf. Simon (1988). Thus, at any given point in time neither the agent nor the

observing econometrician is able to predict future tasteshifters. However, tasteshifters realized
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in the past are known to the agent but unobserved to the econometrician.

We shall only consider the discrete choice case. The continuous choice case is left for
future work.

Let S be a finite set of n alternatives, a,, a,,...,a,, and let § be the index set that
corresponds to the collection of all non-empty subsets from S. For simplicity we assume that
the economic budget constraint holds at each moment in time i.e., no savings and borrowing
are allowed. To each alternative, a, there is associated a stochastic process {Uj(t)}, where
U;(t) is the agent’s (conditional indirect) utility of a; given the information and choice history
at time t. There are no transaction costs and the agent therefore chooses a; at age t if Uy(t) is
the highest utility at t. Here age (time) is continuous. Let {J(t)} denote the choice process,

ie.,
It =j if Uj > max U, (1)
k#j,ke B

where B € 8 is the choice set. We shall assume that the choice set B is kept constant over

time. We shall henceforth, for notational convenience, suppress B in the notation. Let

u® = U,®),U,(....U, 1)

and let F(t;u(t,)), u(t) € R™, be the nr-dimensional distribution function of U at t, = (t,,t,,...,t,)

where t, <t, < .. <t,lie,

F(tu(t)) = P(inl(U(t‘) s u(y))).
We assume that {U(t)} is separable and continuous in probability.” Moreover, we
assume that the mapping u(t,)—F(t;;u(t,)) is continuous. This implies that there are no ties,

that is
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P(U® = U(®) = 0.

The class of choice models generated from {U(t)} will be called the class of
intertemporal random utility models (IRUM).

When the finite dimensional distributions have been specified it is in principle possible
to derive joint choice probabilities for a sequence of choices. In practice however, it turns out
to be rather difficult to find stochastic processes that are good candidates for utility processes
in the sense that they imply tractable expressions for the choice probabilities in the
intertemporal context. More importantly, the class of intertemporal random utility models is
quite large and it is thus of substantial interest to restrict this class on the basis of theoretical
grounds.

One important theoretical problem in this context is to characterize the preferences
under different assumptions about the effect from past choice experience.

The main purpose of the present work is to characterize preferences and the choice
probabilities when there are no effects from past experiences on future preferences nor on

future choice opportunities. To this end we start with the following definition:

Definition:
By pufe-taste-persistent preferences (PTPP) we mean that there are no effects on the

agent’s preferences from previous choices.

Thus PTPP means that preferences are exogenous relative to the choice process.
Heckman (1981) calls PTPP "habit persistence". We prefer however the notion PTPP since
habit persistence may yield association to dependence on past choice experience.

We now introduce a fundamental assumption stated as Axiom 1 below.



Axiom 1

The indirect utility, max,U(t), is stochastically independént of {J(s), Vs<i}.

Axiom 1 states that the distribution of the indirect utility at time t across series of
observationally identical choice experiments, does not depend on the choice history prior to
t. Clearly, this Axiom follows from PTPP. However, PTPP is not necessarily implied by the
Axiom. In fact, PTPP would imply that Uj(t), for each j, is independent of {J(s), Vs<t}.

In order to clarify the interpretation consider the case in which the preferences also
depend on a process, I} = {n,, t>0}, that is random to the observer but perfectly foreseeable
to the agent. Since the conventional assumption is that preferences are deterministic to the
agent this case thus represents a generalization of the traditional setting. Then the obvious

modification of Axiom 1 to be consistent with PTPP is

P(max U (1) <y|J(s),s<t,n) = P(max U ()Sy|n). 2.1

If we also require that

P(max, U, (t)<y|J(s),s<t) = P(max, U, (t)<y) 2.2)

then the process M must be stochastically independent of {J(s), s<t}. The difference in
interpretation between (2.2) and (2.1) is the following: While (2.1) follows from PTPP (on
the individual level) (2.2) corresponds to an aggregate analogue - namely that PTPP holds on
average.

In Sections 3 and 4 we shall investigate the implications from Axiom 1.

3. The class of intertemporal generalized extreme value models (IGEV)
The IGEV is generated from utility processes that are max-stable. A max-stable

process has finite dimensional distributions of the multivariate extreme value type. This means
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that maximum of independent copies of a max-stable process is max-stable (cf. de Haan,
1984). As is wellknown, there are three types within this class. We shall here consider type

IIT which has finite-dimensional distributions (normalized) that are characterized by

logF(t ;u(t ) = elogF(t ;u(t) - z1), zeR @3.1)
where 1 = (1,1,...,1). In particular, the one-dimensional marginal distribution has the form
F,(t;u,) = exp(-e"™).

In Dagsvik (1991) it is proved that under suitable conditions the class of IGEV models
is dense in the class of IRUM. By this it is meant that IRUM choice probabilities for a
specific sequence of alternatives can be approximated arbitrarily closely to the corresponding
choice probabilities of an IGEV model. The implication of this result is that there is no loss
of generality by restricting the class of IRUM to the class of IGEV. Thus in the following we
shall assume that the utility function is a multivariate max-stable process which is continuous
in probability.

A very important subclass of the class of max-stable processes is called extremal
processes. Multivariate extremal processes have been characterized by de Haan and Resnick
(1977) and Dagsvik (1988). Following Dagsvik (1988) let {H,(-), t20} be a family of
multivariate extreme value distribution functions that satisfies Hy=1. Suppose also that
H,(w)/H,(w), for t>s, is a distribution function in weR". The multivariate extremal process has

the same finite-dimensional distribution as {Y(t), t20} defined by

Y(t) = max(Y(s),W(s,t)), s<t, Y(0) = —oo (3.2)

where maximum is taken componentwise, W(s,t) and W(s’,t’) are independent when

(s, (s’,t")=D and



P(W(s,) < w) = H(w/H,(w). (3.3)

Also Y(s) and W(s,t) are independent. It can be demonstrated that a multivariate
extremal process is a pure jump Markov process (cf. de Haan and Resnick, 1977).

In Appendix 2 we summarize some of the properties of multivariate extremal
processes. The class of multivariate extremal processes turns out to be of particular

importance in choice theory as the next result indicates.

Theorem 1
Assume that the choice model belongs to the IGEV class with utility process that is
continuous in probability. Then Axiom 1 implies that the utility function is a multivariate

extremal process.

The proof of Theorem 1 is given in the appendix.
Theorem 1 provides the necessary theoretical foundation for postulating utility
processes that are of the extremal type, at least as a point of departure. Theorem 1 has some

very important implications which are summarized in Theorem 2 and Corollary 1.

Theorem 2
Suppose that the utility function is a multivariate extremal process (type III) with c.d f.
H{y) at t. Then the choice process {J(t)} is a Markov chain with marginal - and transition
probabilities given by
G0)

3,
PO =PUQ) = )) = -

g (34)
G0



-9.G(0) +0 G,0)
(s.1) = =j|(s)=i) = 20 it 35
Q,(s.0) = PU ) =j|J(s) =i) 0] , (35)
Jor i#j, and
-.G.(0) +3.G.(0) +G (0)
(o) = T T 3.6
Q.(s:1) 70) (3.6)

where G(y)=-logH(y) and 9; denotes the partial derivative with respect to the j-th component.

Theorem 2 has been proved in Dagsvik (1983) in the case where utilities are
independent across alternatives. The more general case with interdependent utilities is proved
in Dagsvik (1988). Resnick and Roy (1990) give a proof that does not require that the partial
derivatives of H(y) exist.

From Theorem 2 it is easy to obtain the corresponding transition intensities. Recall that

the transition intensities for {J(t)} are defined by

. Qtt+At) ..
T = Llin.o_j_r' for i#j
and
. L(tt+A)-1
100 = hn{&____}
A0 At

According to Dagsvik (1988) we have the following:

Corollary 1

Suppose G(y) is differentiable with respect to t. Let g(y) = 0G(y)/dt. Then

_ 980

(1) = L __ 3.7
Y1) 0 (3.7)

for i#j, and



d.8,(0)-3(0)

(3.8)
G (0)

Nlt) = -2 () =
ki

4. Interpretation of results

From Theorem 1 and Corollary 1 we can draw a number of important conclusions.
First, note that (3.4) is the wellknown formula for the choice probability in the GEV class
(Generalized extreme value models), cf. McFadden (1981). The interpretation of G,(0) is as

E(makak(t)) = logG,(0) + 0.5772.... 4.1)
Similar to Dagsvik (1983) it can be proved that

corr{m:lek(s),mfok(t)} = p{_g.‘_((g_;} s<t 42)

where p:[0,1]1-[0,1] is an increasing function with p(0)=0 and p(1)=1.2 By combining (3.4)
and (3.5) we get

_ _ G,(0)Ps) o 43
Qu(s,t) = Pj(t) _—G‘(—O)_' s<t, i#j (4.3)
and
G (0)
= + 8 - 4.4
Q,(s:t) =P,V _G,(O) (1-P(s) 44)

where we emphasis that, apart from a monoton mapping G,(0)/G,(0) is the autocorrelation
function of the indirect utility function. In other words, in the absence of structural state
dependence there is a simple relationship between the transition probabilities, the marginal

probabilities (3.4) and the autocorrelation function of the indirect utility function.
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The transition intensities (3.7) and (3.8) can be given a particular interpretation. Let

P = - 980 (4.5)

Recall that {max,U,(t)} is a pure jump Markov process. The interpretation of (4.5) is that
given that a jump of the process {max,U,(t)} occurs at time t, py(t) is the probability that the
highest utility is attained in state j. To see this note that by Theorem Al (iv) in Appendix 2

£y)
g(x1)

1- for y > x1, xeR, yeR"

is the c.d.f. of the utility process given that a jump occurs at t and given that max,U,(t)=x.

Note also that g(y) has the property
g(y) =eg(y-x1) (4.6)

which follows immediately from (3.1). The probability that J(t)=j, given that a jump occurs

at t and given max,U,(t-)=x, is therefore easily demonstrated to be

-fa,g,(yl)dy
—_— e R
e 7
which by (4.6) reduces to
0,8,0) 7
-2 7 [e00dy = p(t).
£(0) f YR

From (3.7) we thus obtain that
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£,0)

%® =p,® 0]

= p,(t)9E(max,U,(1))/o, for i#j. 4.7

The last equality follows from the wellknown property that

E(max,U,(1)) = logG(0) + 0.5772....

The second equality of (4.7) tells us that the transition intensity is the product of the rate of
change in the mean indirect utility and the conditional probability that the highest utility is
attained at alternative j given that a jump of the indirect utility occurs at t.

The conditional probability, m(t), of moving to state j given that state i is left follows

from

%,® = MY 7,0 = -1 O®.
r#

Hence (4.7) implies

- PO | 4.8)
nﬁ(t) l-pi(t)°

The results discussed above are related to the particular utility function representation.
However, we can use Theorem 1 and Theorem 2 to obtain a characterization result of the
choice model that is independent of the particular utility structure provided the utility process

{U(t), >0} satisfies the condition

Emax (1,exp (a(sup,, , (max, U,(s)))) < oo 49)

for some a>0 and any Borel set K < (0,00) that is compact.
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Theorem 3
Assume that the choice model is a random utility model where the utility process satisfies
(4.9) and the first order partial derivatives of the corresponding finite-dimensional
distributions exist. Assume furthermore that Axiom 1 holds. Then the choice process {J(t),t>0}
is a Markov chain and the transition probabilities, {i Q--u( s,t)}, from state (alternative) i to state

J have the form

Q.s.:t) = P(J(t) =j) - K(s,)P(J(s) =j) for j#i, (4.10)

and
Q.(s,t) = P(J(t) =i) + (1 -P(J(s) =i))K(s,t) (4.11)

JSor some suitable positive function, K(s,t).

Proof:

Assume first that the random utility model belongs to the IGEV class. Then by
Theorem 1 and 2 {J(t), t>0} is a Markov chain with transition probabilities that have the
structure given in (4.3) and (4.4). Dagsvik (1992) has proved that under condition (4.9) the
class of IGEV models is dense in the class of random utility models. This means that for any
8>0 it is possible to find an IGEV model with transition probabilities {Qy(s,t)} such that

IPA® =j|3@) =i, J¢t),Vr<n) - Qt,t)| <3 (4.12)

holds forany t,; <t, < ..<t, <t
Suppose now that the Theorem is not true, i.e., for some time epochs t, t,,..., t,, t and

some choice sequence

IPA® =j It =i, J(t), Vr<n) - Q0| >3
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for any choice of K(s,t). But since Q,(s,t) has the same structure as Qy(t,,t) we may choose
K(s,t) such that Qj(s,t) = Qy(s,t) which yields a contradiction of (4.12). Thus {J(t), >0} is a
Markov chain and the transition probabilities have the structure stated in the Theorem.

Q.E.D.

The result in Theorem 3 is of particular interest - since it provides a nonparametric
test for the hypothesis that no structural state dependence effects are present.

Recall that in the present paper we have assumed that the choice set is constant over
time® and that there are no transaction costs.

From Corollary 1 it follows that the hazard function, hy(t), of state i is given by

= g;(o) 'aig,(o)

4.13)
GO

hy(t) = ~Y,(0)
Let Ti(s) be the length of time in state i given that state i was entered at time s. Then
it follows immediately from (4.13) that the survivor function of the choice process {J(t)} is

given by

y G.(0 "»0.g.(0)d
P(T(s)>t-5) = exp [— f hi(u)du] = G_':(.).;.exp[- f %‘((.%3} (4.14)
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S. Special cases

In the case where the utilities are independently distributed across alternatives we

obtain
G(y) = exp(B)Y, exp(v, (1) -y,) (5.1)
and
exp (v,(1)
P() = L (5.2)
Y, e 0)

where B(t) is some function of t and where v;(t) has the interpretation

EU®) = v® + BO. (5.3)

From Corollary 1 we get that the transition intensities in this case reduce to

(v +B®)exp (v,(1)

(5.4)
Y., exp(v, (1)

%,® = PO +pW®) =

for i#j, provided v,(t) and B(t) are differentiable. We see from (5.4) that we must have

v§(t)+B’(t)>O for all j. By (4.13) the corresponding hazard function reduces to

h@® =Y POV.® + Bt - POV +PW®). (5.5)
k

Consider next the particular case with independent utilities and v;(t)=v;. Then (5.5) reduces

to

hi(t) = B,(t) (l -P i) (5'6)

and the survivor function (4.14) becomes
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P(T(s)>t-s) = exp(-(1-P)(B(®) - B(s))) 6.7
where P, is given by (5.2) when the mean utilities v,(t) are substituted by v,, k=1,2,...,n.

If in addition B(t) is linear in t; B(t)=t0, then {J(t)} becomes a time homogenous

Markov chain with exponentially distributed holding times i.e.,

P(T(s)>t-s) = exp(-(t-s)(1-P)O) (5.8
and transition intensities
Y, = 0P, for i#] (5.9)
and
b = -y, = 8(1-P). (5.10)

There is an important observation to be made here. Recall that the well-known
specification of the transition intensities due to Cox (see Andersen et al.,, 1991) in the

multistate case can be written

1,0 = A Oexp((Z,Z;0) (5.11)

where f(*) is some specified function and Z, is an individual specific time invariant vector
of state specific covariates that characterize state i and o is a vector of parameters. Ay(t) is
called the baseline hazard. Let us now compare the structure (5.11) with the result of
Corollary 1 in the time homogenous case when the utilities are independent across alternatives

and

v, = £(Z, ). (5.12)

Then we get
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B(t) exp ((Z, )

et dssd 5.13
Y., exp(f(Z, o) G-

%, ® = PP, =

We realize that (5.13) is essentially different from (5.11) in that it depends on all the
covariates in a particular way while (5.11) only depends on the covariates related to state i
and j. Therefore, the standard proportional hazard specification (5.11), which is often applied

in duration analysis, is inconsistent with a random utility formulation.
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Footnotes

1

2)

3)

Recall that a process { Y(t), t>0} being continuous in probability means that 33>0 such
that for any n,, N,>0

PY®-Y@E)>n) <n,

whenever |t-s|<3, where |°] is the standard Eudician metric.

The function p(+) has the form

(cf. Tiago de Oliveira, 1973).

It is possible to extend the results of this paper to the case with non-decreasing choice
sets. (See Dagsvik, 1983).
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APPENDIX 1

Lemma 1
Let F(x,y) be a bivariate (type IIlI) extreme value distribution. Then -logF(-x,-y) is
convex. If F(x,y) is continuous the left and right derivatives, oF ,(x,y)/0x and dF (x,y)/dy, exist

and are non-decreasing.

Proof:
Let L(x,y) = -logF(-x,-y). Since F is a c.df. it follows that L is non-decreasing.
Moreover, since F is a bivariate extreme value distribution it follows by Proposition 5.11, p.

272 in Resnick (1987) that there exists a finite measure 1 on

A={zeRf:z,2+z22=1}

such that

L(x,y) = fmax(zlc %, z,e ")u(dx,dy).

Since z;e* and z,¢’ are convex functions it follows that L(x,y) is convex. Since L(x,y) is
convex the left and right derivatives of F(x,y) exist. (See for example Kawata, Theorem
1.11.1 p. 27.)

Q.ED.

Proof of Theorem 1

Resnick and Roy (1990) have demonstrated that there is no loss of generality by
assuming the components of the utility process are independent. Although their discussion
only regards multivariate extremal processes it is clear that their argumént goes through also
in the general max-stable case. Thus we assume that the components U(t), j=1,2,...,n, of U(t)

are independent. Also we assume n=2 since the general case is completely analogous.
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Consider the case of choices at two moments in time, s and t. Let F(s,t; x,,X,,y;,y,) be

the corresponding c.d.f. of (U(s), U(t)). By the independence asshmption

F(s,t; X;:X,0¥,0Y,) = Fy(8.6 X, ¥)F, (8.8 X,.y,) (A.)

where F is the c.d.f. of (Us), U(t)). Note that since {U(t), £20} is assumed continuous in
probability it follows that Fi(s,t; x,y) is continuous in (x,y).
Let
G,(x,y) = -logF(s,t; x,y).

The probability distribution, M(s,t; j,, jo» 2), of {J(s), J(t), max,U,(t)} is given by

M¢s.t; 2,1,2)=P(J(s)=2,J(1)=1,max U, ()<z) = fF(s,t; x,dx,dy,y). (A2)
ysz

and similarly for other values of j; and j,.
By Lemma 1 the first order left and right derivatives of G,(x,y) exsist. From now on we
shall use the notion derivative of G,(x,y) meaning the respective (first order) right derivatives.
Since F by assumption is a multivariate extreme value distribution it follows from (3.1)

that for zeR

G,(x,y) = e7G(x-z,y~-2).

Hence

F(st; xadxvdy’y) = [CXP( -c -y(Gl (x -Yvo) +Gz(x "y,O)))] (A3)

* € 79,G, (x-y,0)9,G,(x-y,0)dxdy

where d; denotes the partial derivative with respect to component j. Let
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h(x) = G(-x,0).

From the relationship
G,(x.y) = e7G(x-y,0) = e “h(y-x)
it follows that
9,G(-x,0) = -h,(x) + h{(x). (A4)

By Lemma 1 h(x) is convex and has derivatives that are non-decreasing. From (A.2),

(A.3) and (A 4) it follow after the change of variable x=-u+y that

MGs,t; 2,1,dy) = e dy f [exp(-¢ ~(h,(u) +h,)))] hj()(h,(u) -hy(w))du.  (A.5)
R

Suppose now that x = r 2 -oo is the largest point at which hj(x) + hj(x) = 0. Then since
hi(x) is nondecreasing it must be true that hj(x)=h;(x)=0 for x<r. As a consequence the

mapping V¥ : R, — [r,00) defined by

z = h,(y(2)) + h,(¥(2)) - h,0) - h,(0) (A.6)

exists, is invertible and has (right) derivative everywhere on R,. By change of variable

u- ylu) =z

(A.5) takes the form

M(s,:2,1,dy) = e dyexp(-be~) f (exp(-¢2))Y(2)dz %)
q
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where

q = hy(=e0) + hy(-w) - h,(0) - h,(0) = h,(x) + h,@) - h,(0) - hy(0),

Y(@) = h{ (W@)¥(2) (h,(W¥(2)) - h; (¥(2))) (A.8)
and

b = h,(0) + h,(0).

According to Axiom 1 we must have

M(s,t; i,j,dy) = M(s,t; ij,e0)P(max U (De dy). (A9)

The (marginal) distribution of max,U,(t) for i, j = 1,2, is easily demonstrated to be

extreme value as below

P(max U, ()<y) = exp(-e b). (A.10)

With 0=exp(-y) we thus obtain from (A.5), (A.6) and (A.7)

Be f (exp(-02))Y(2)dz = M(s,t; 2,1,09)be . (A.11)
q

Note that (A.11) implies that the Laplace transform of y(z) has the form c/0 where c is

a constant. But this implies that Y(z) = 0 for z<q and

Y(z) = M(s,5;2,1,00)b, z2q. (A.12)
From the definition of y(z) we get

1 = (h(y(2)) + h(Y@W (). (A.13)



22
Hence (A.8), (A.12) and (A.13) with u=y(z) yield

h;(u)(h,(u)-hy(u)) = h'(w)C,,, for u>r, (A.14)
where h(u) = h)(u)+h,(u) and C;= M(s, t; i, j, °°)b. Similarly we get

hy(u)(h, (u)-h{(w)) = h’(w)C,,, for u>r. (A.15)
By substracting (A.14) from (A.15) we get

h/(uh,(u) - hy(wh() = h'W)C,,~C,)
which, when dividing by h(u)* becomes equal to

h,'(u)h(u) =h,(wh ‘(w) - h'(u)(C21 -Cp) (A.16)
h(u)? h(u)?

Next, integrating both sides of (A.16) yields

h,(u) - C.-C,

+d, for u>r,
h(u) h(u)

where d is a constant. Hence we obtain

h,() = C,, - C,, + h(u)d, for u>r. (A.17)

By inserting (A.17) into (A.14) we get
h/(u)(h,(u) -hy(u))d = h'(w)C,,, for u>r,

which is equivalent to
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hy(u) - hy(u) = C,/d. _ (A.183)
Similarly

h,(u) - hi(u) = C,/d, for u>r. (A.18b)

Eq. (A.18) is a first order differential equation which has a solution of the form

h) = o + Be?, for u>r, j=12. (A.19a)

Since hj’(u)=0 for usr and hy(u) is continuous we get from (A.19a) that

h(u) = o, + Be’, for usr. (A.19b)

As a consequence

Gy(xy) = e“h(y—x) = oye + Bexp(-min(x,y -1). (420

From (A.20) we obtain that for s<t

P(U®)<y|Ufs)=x) =0 when y<x+r (A.21)

and

P(U®<y|U(s) =x) = P(U1)<y) when y>x+r. (A22)

Eq. (A.21) means that {U,(t)} is non-decreasing with probability one. Eq. (A.22) means
that conditional on U(t)>U(s) then U,(t) is stochastically independent of U(s). But then we
must have that {U(t)} is equivalent to the utility process defined by

U,(t) = max(U(s),W(s,t)) + 1 (A.23)

where W(s,t) is extreme value distributed and independent of Uj(s). Since U,(t)-U,(t) is
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independent of r for any t we may without loss of generality choose r=0. But then (A.23)
defines the extremal process as defined by Tiago de Oliveira and others, (cf. Dagsvik, 1983,
1988) which was to be proved.

So far we have proved that conditional on a particular choice history, at two points in
time, Axiom 1 implies utilities that are extremal processes. We have not yet demonstrated that
the class of choice models with extremal utility processes fullfills the requirement of Axiom
1 when we condition on {J(t), V1<t}. Fortunately, however, this has been proved by Resnick

and Roy (1990), p.p. 321.
QED.

APPENDIX 2

Theorem Al

Suppose H(w) is differentiable in t. Then the multivariate extremal process {Y(t)} has
the following properties
(i) It is continuous in probability.
(ii) With probability one it has only a finite number og jumps in a finite time interval.

(iii) The transition probability function is given by

P(Y(1) S y|¥(s) = w) = {H:(V)/H,(Y?, y2w, s<t (A.29)
0, otherwise

(iv) Given that a jump occurs the process jumps from x into [y,eo) with probability
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8(y) if yow A
II(w,[y,)) = {g(w) (A.30)
0 if ysw
where
20 = M. (A31)
t
Proof:

(i) This result is demonstrated by extending the proof by Resnick (1987) p. 182 to the
multivariate non-homogeneous case.

(i) This is Theorem 1 in Dagsvik (1988).

(iii) Dagsvik (1988), p. 33 gives this result.
It thus only remains to prove (iv). From (iii) it follows that the intensity of a jump out

of state w is given by

lim(P(Y() > w|Y(s) = w)/(t-s)) = g(W).

Recall that IT(w, [y,e)) is the probability that {Y(t)} jumps from w into [y,e) given

that a jump occurs. Since {Y(t)} is a Markov process we have

l‘im(P(Y ®) > y|Y(s) = w)/(t-s)) = g (W)L (W,[y,)).
But by (iii) we get

l'im(P(Y(t) > y|Y(s) = w)/(t-s)) = g(y)

for y2w and zero otherwise. Thus by combining the last two equations yields



QE.D.
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