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Abstract

The paper presents a theoretical framework for analysing investment
behaviour in a perfect neoclassical environment. The model
distinguishes explicitly between capital units of different age. In
coherence with the neoclassical assumptions, these vintages can be
straightforwardly aggregated. Furthermore, perfect second-hand markets
for used capital exist. Mhen the capital market is in equilibrium, the
producer will be indifferent between investing in different vintages.
Given this, it is shown that myopic decisions are consistent with
rational, optimizing behaviour, and that a simple additive user cost
formula is valid independently of the form of capital deterioration.

Not to be quoted without permission from author(s). Comments welcome.



1. Introduction 

It has been common knowledge among economists - at least since the

work of Arrow (1964) and the formalization by Jorgenson (1965) - that when

analysing investment decisions and imposing neoclassical assumptions,

myopic behaviour is consistent with rational, i.e. optimizing behaviour:

The conclusion rests essentially on the assumption made about perfect

second-hand markets for used capital. Then investment decisions are re-

versible and the optimal capital stock may be adjusted continuously through

time responding to changes in exogenous parameters, prices and rate of

interest.

The neoclassical model is usually presented with a very special

assumption concerning the structure of physical retirement of capital;

capital units disappear radioactively according to an exponentially

declining sOrvival function. However, several authors (Arrow (1964), Hall

(1968), Johansen and Scarsveen (1967) and Biørn (1984)) have generalized the

neoclassical production model and introduced a rather general survival

function. Clearly, this complicates the formal analysis and the derivation

of equilibrium conditions describing optimal investment behaviour. But the

fundamental feature of the neoclassical model that investment decisions

can be made solely from information of present prices and capital gains

still prevails.

This conclusion may seem rather obvious since simple intuition

tells us that it is the presence of perfect second-hand markets - not a

specific (exponential) survival function - that justifies myopic behaviour.

The purpose of the present paper is to analyse this problem and to show

that myopic behaviour is rational even when capital disappears according to

the general survival function utilized e.g. by Biørn (1983). Our model

distinguishes explicitely between capital units of different age (vin-

tages), and stresses the role of well-established markets for used assets.

In coherence with the standard neoclassical framework it is assumed that

different vintages of capital can be straightforwardly aggregated (Fisher

(1965) and Diewert (1983) survey the conditions for consistent capital

aggregation). The interpretation underlying this assumption may be that a

new unit of capital "produces" a certain amount of capital services. By

aging the output of capital services deteriorates according to the assumed

survival function.

1



The theoretical framework presented in the next section builds ex-

tensively on several works by E. Biørn (Biørn (1983), (1984)). However,

when analysing investment behaviour Biørn (1984) does not include an expli-

cit treatment of second-hand markets, which we believe explains why he does

not arrive at the conclusion that myopic behaviour is rational under

general assumptions about the physical retirement of capital. The following

analysis may thus be seen as a modification of Biorn's results at this

point. The analysis is carried out in continuous time. A discrete time

version of the production model is presented in Holmoy and Olsen (1986).

A more general model than the present was utilized by Hall (1968),

comprising the vintage dimension and focusing particularly on how measures

of capital and rents are related to technical change. Hall actually

derives, in a slightly different manner, the myopic equilibrium condition

and the expression for the user cost of capital that we will arrive at

below.

2. The model 

In the formal model describing investment behaviour the following

concepts are central:

K(t) 	 (Gross) capital stock at time t. K is measured in such a way that

one capital unit produces one unit of capital services per unit

of time.

J(t,e) 	 The number of capital units of age e invested at time t.

B* (s,e) 	 Survival function for vintage 0. This indicates the proportion of

an investment made s years ago in capital of age 0, which still

exists as productive capital. The survival function is normalized

by setting B * (0,e) = 1 for all 0. Analogously to Biørn (1983)

B * (s,e) is assumed to be monotonically decreasing in s, and

lim B * (s,e) O. We also introduce the simplifying notation
s-wie

B * (s,0) 	 B(s). 	 In the formal analysis below we will need to

modify the vintage specific survival function, so that the pro-

ductive capacity depends only on total age, s+0. As a conse-

quence, the survival function becomes one-dimensional.
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q(t,e) = Price of a capital unit of age e at time t.

-

X(t) 	 = Profits of the firm for a given capital stock K(t).

Introducing the (neoclassical) assumption that capital units of

different vintages are perfect substitutes, these can be aggregated by

simple summation:

00 00

(1) K(t) = f 	 B* (s,e) J(t-s,e) de ds
o o

where

(2) J(t-s,e) = B(e) J(t-s-e)

J(t-s-e) is the initial investment made at time t-s-e. J(t-s,e) measures

the remaining units of capital of this investment e periods later.

We consider an individual firm which faces given prices on all

inputs and outputs. As our focus is on the adjustment of the capital stock,

we assume that output and all other (variable) inputs are optimally ad-

justed at each point of time, expressed formally by a restricted profit

function

(3) X(t ) 	 F [K(t)]

where the F-function has the usual neoclassical properties, i. 	 ' 	 0,

F" < O.

When deciding on investments the producer is supposed to maximize

the present value of the net cash flow W. Formally we have the following

optimization problem:.

(4) Max W = 	 e-rt [ X(t) - f q(t,O) J(t,O) de ] dt
0

subject to (1) and (3) where maximization is with respect to J(t,e), X(t)

and K(t).

When solving this constrained intertemporal maximization problem we

follow Biørn (1979) and write the Lagrangian as

00
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Co 	00

(5) 	 U 	 j [ e-rt { F[K(t)] - f q(t,O) J(t,e) de
o 0

00 00

X(t){ K(t) - S 	 B * (s,0) J(t-s,0) de ds 1] dt
o o

where X(t) is the Lagrange parameter associated with the constraint given

by (1). Define

00 00

(6) 	 K o (t) 	 S 5 B* (s,113) J(t-s,e) de ds
t o

i.e. as the part of K(t) that is predetermined from decisions taken before

time t=0, when optimization is performed. The Lagrangian U can then be

written

00	 00

(7) 	 u 	 y 	 e - rt { F[K(t)] - f q(t,e) J(t,e) de 1
O 0

t
- X(t){ 	 - K (t) - J f B*(s,e) j(t-s,e) de ds }] dt0

00

By changing limits in the last double integral in (7) the Lagrangian can be

rewritten in the following additive form

(8) 	 U = 0 [K(t),X(t),t] + 0 2 [J(t,O), a(t,e)]

where

(9) [K(t),X(t),t] 	 f [et F[K(t)] - X(t){K(t) - K(t)lidt

00 00

(10) o2[J(t,e),a(t)e] 	 y y J(t,e) a(t,e) dedt
o 0

00

(11) 	 a(t,e) 	 j X(t+s) B * (s,O)ds - 
e-rt cl(t,e)

From (8) it is seen that the optimization problem is separable; 0 1

is maximized with respect to K(t) and 0
2
 is maximized with respect to

J(t,0). Intuitively, since capital by assumption is homogenous with respect

to productive capacity, the producér first determines the optimal age com-

position of any given capital stock, and then in the second stage decides

on the level of the optimal total stock. As we shall see below, in the

former problem indeterminateness prevails.
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Since F[K(t)] is concave, 0 1 is concave in K(t). Consequently, we

can apply the necessary first order condition

(12) e t P[K(t)] = X(t)

to caracterize the relationship between K(t) and X(t) along the optimal

path.

Turning to the other function 0
2' 

this is linear in J(t,0), which

means that if a(t,8) 0 0 for 0 * , then it is possible to increase 0 2 (and U)

beyond all limits by increasing IJ(t,0 * )1 infinitely, with sign [J(t,8 * )]

sign [a(t,0* )]. Note that this does not contradict the constraints given by

(1), since a finite capital stock may be maintained by disinvesting in

vintages other than 0 * .

Thus, if a(t,8) 0 0 for some 0, 02 and U have no maxima, and an

optimal investment policy does not exist. In order to indentify an equili-

brium solution one must require that the condition

(13) c(t,e) 	 o

is satisfied for all e and t.
(13) is a necessary condition for the existence of an optimal solu-

tion. However, when it is fullfilled, J(t,0) is indeterminate, and the pro-

ducer is indifferent with respect to the age structure of the capital

stock.

The economic interpretation of cdt,O) and the function 02 is quite .

transparent. Substituting the optimum condition (12) into (11 ) , yields

00

-rt 	 e -rs(14) 	 a(t,e) 	
e
	[K(t+s)] B * (s,O)ds - g(t,0)1

o

The rhs. of (14) is the present value of the marginal net income

generated by a marginal capital unit of age 0, invested at time t. In other

words, Œ(t,0) is the present value of the gain from keeping a capital unit

of age 8 employed in the firm throughout its remaining life time instead of

selling it at price q(t,8) in the second-hand market.

If the exogenous variables q(t,8) and B(s,0) are fixed so that with

the optimal level of K, a(t,O) 0 0 for one or more 0, then the firm can in-

crease its present value of the net cash flow infinitely through arbitrage

in - capital of different ages. Thus, (13) is an equilibrium condition pre-



venting such outcomes, i.e. it ensures that the firm's cash flow has "pro-

ductive ativity" as its only source.

By combining (13) and (14) we arrive at the necessary condition for

optimal capital adjustment:

00

(15) f e-rs P[K(t+s)] B * (s,e)ds = q(t,e) for all e and t.

where K denotes the optimal capital stock. 	 We assume the existence of
A

K(t) and that K(t) is uniquely determined by the functional equation (15).

When the path for the optimal capital stock is found, total invest-

ments are derived from (1).

From the equilibrium condition (15) it may seem as when deciding on

investments the producer needs to make expectations of prices and to assess

the impacts of marginal changes in the capital stock for all future peri-

ods. This, however, is rather contraintuitive in a world where perfect

capital markets exist so that producers are always able to supplement or

shrink their capital stocks through market transactions. And, in fact, by

restricting the survival function B * (s,e) to be one-dimensional, the equi-

librium condition can be transformed to a relation describing a myopic de-

cision rule.

To show this, we first rewrite (15) as

(15') 	 e-r(u-t) P[K(u)] B * (u-t,e) du = q(t,e)

Taking the derivative of (15') with respect to t yields

(16) aci(t,e) 
at

00

-_,- P[K(t)] 	 ers
F [K(t+s)][rB * (s,e) + b * (s,e)]ds

00

- FIK(t)] + rq(t,e) + f e-rsP[K(t+s)] b* (s,e)
0

where b* (s,e) 	 aB*(s,e)
which can be interpreted as the physical re-/3s

tirement function (Hall (1968), Bjorn (1983)). The last integral in (16) is

the present value of the loss due to physical retirement from investing in

a marginal unit of capital vintage e at time t.

Next, we also take the derivative of (15) with respect to e and get

00



7

(17)
aq(t,O) 	-rs aB*(s,8)
ae = S e 	 P[K(t+s)] 	ae	 ds

0

In order to proceed we make the reasonable assumption that the sur-

vival profile depends on total time of use only and is independent of where 

the capital actually is employed. By this simplification it is possible to

transform the two-dimensional survival function into an one-dimensional, so

that we can write

(18) B*(s,e) B(e) = B(s+e)

As expressed by this relation it is the total age s+0 of an asset

that determines its productive capacity, and this is independent of when it

is bought and invested in a specific firm. From (13) we have

(19) aB*(s,e) 	 1 B(s+.0) b(e) - B(e) b(s+e)].
ae

[B(e)]
2

Using the relationships

'843(s+0) 	 aB(s+0)
	b(s+8) = 	 a s 	 = 	 a e 	 B(e) b * (s,e)

(19) can be inserted in (17) to yield

	aq(t,e) 	b(e) 
(20) ae 	 B(e) `"'-`" 

= s e-rs
F [K(t+S)] b* (s,0) ds.

0

By substituting (20) into (16) we finally get, for all t and 0:

(21) 	 F[0t)] = c(t) = q(t,e) [ r + a(e) 	 ( cl e (t,e) + cit (te) )

where 6(e) - 	  , qe (t,e)

	aq(t,e)	 aci(t,e) 

	

ae , 	 at
	ci l t,e) 	and 	(te ) 	ci(t,e) .

.5(e) is the rate of retirement per capital unit of vintage O. q e and q t

are growth rates of q(t,O) due to increasing age and change of time respec-

tively.

From (21) we see that we have arrived at an equilibrium condition

and a general expression for the user cost of capital that is strikingly



similar to the simple text-book formula in the case of an exponentially de-

clining survival function. The user cost is the sum of an interest compo-

nent, the rate of retirement and the two partial "growth rates" for the

capital price. q t is the potential capital gain from increasing prices that

is abolished by a marginal investment, while q e reflects the marginal

loss of value of a capital unit due to aging. (21) thus expresses a myopic

decision rule: The producer adjusts the level of the capital stock so that

the value of the marginal productivity of capital equals the user cost. It

is unnecessary for the decision maker to assess more than the marginal in-

stantaneous changes in q(t,0). Nor is information about the whole survival

function necessary; only the current retirement rate matters.

Since (21) holds for all e, the user costs for all vintages are

identical. This is another way of expressing that in equilibrium nothing

can be gained by trading in different vintages. Consequently, the firm in

our model may calculate the relevant user cost by regarding an arbitrary

vintage, e.g. new capital units. On the other hand, the possibility of dis

equilibrium in the capital market obviously gives high incentives to gather

information about the complete age dimension of q(t,e) and B(s,e).
-With exponential retirement, i.e. B* (s,e) B(s) eöt indepen-

dently of e, 8(e) = 5, i.e. constant. Furthermore, it is easily verified by

inspection of (15) that the present value of income generated by a marginal

capital unit is independent of age, O. Thus capital units of different age

constitute homogenous goods, and the "law of indifference" guaranties that

in this case the price per capital unit is independent of age. It is then

easily seen that the right hand side of (21) coincides with the well known

text book user cost formula, given as

(22) c(t) = q(t) [r + 5 -

3. Concluding remarks 

In Biørn (1983), a specific hypothesis regarding the structure of

prices of capital units is introduced, namely that the price q(t,e) is pro-

portional to the remaining discounted flow of capital services. This .

assumption is used by Biørn to eliminate the vintage dimension in the user

cost expression. In the present paper we derive a condition for the pro-

ducer being indifferent between vintages which is equivalent to Bicarn's



hypothesis for the structure of capital prices. Our model clearly reveals

why this "indifference condition" is essential to the neoclassical model of

producer behaviour when capital units of different age are assumed to be

perfect substitutes. When the capital market is in equilibrium in this re-

spect, the essential cOnclusion reached in this paper is that myopic be-

haviour is consistent with rational, optimizing behaviour, and that a

simple additive user cost formula remains valid independently of the form

of the survival function.
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