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ABSTRACT

The paper develops a simple estimation procedure for a labor supply

model with non-linear convex budget set. The procedure is an extension

of Heckman's two stage method. The asymptotic properties of the

estimators are derived.
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1. Introduction 

Heckman (1979) has demonstrated that it is possible to estimate a

two-equation model of the Tobit-type by a two stage procedure where only

the first stage involves a non-linear problem, namely the estimation of

the parameters in a Probit model. Heckman's demonstration was motivated

by the econometrics related to the standard labor supply model. 	 This

model consists of two equations: One equation specifies the (log) market .

wage as a function of individual characteristics (qualification variables)

while the other equation specifies the (log) shadow price of leisure

(marginal rate of substitution) as a function of hours worked and variab-

les that affect the preferences. Since the individual's decision problem

involves a corner solution (work or not work) thé transformed model that

gives hours of work as a function of wages and individual characteristics

becomes non-linear in the parameters even if the log wage and log shadow

price equations are linear. The Heckman procedure relies on the assump-

tion that the reduced form of the market wage and shadow price equations

are linear in parameters. This assumption is restrictive for the follow-

ing reason: Even if the shadow price is structurally linear, e.g.,

linear in parameters as a function of wage and consumption the reduced

form may often be non-linear because the budget constraint is non-linear.

One example of non-linear budget constraints is the case with progressive

taxes. Even if the budget constraint is linear the reduced form shadow

price may become non-linear because labor income is the product of hours

and wage.

The procedure presented here modifies Heckman's original method so
as to deal with general concave and smooth budget constraints.' This

modified method avoids the use of instrument variables to accommodate for

endogenous consumption.

The method is applied to estimate labor supply functions for West-

Germany and France, see Dagsvik et al. (1987a), (1987b). The empirical

evidence from these studies demonstrate that the estimators for the struc-

tural parameters of the labor supply equation perform very well. .

Rudiments of the central idea were presented in Dagsvik (1987) but the
estimators proposed there are inconsistent.
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The paper is organized as follows: 	 In section 2 the individual

decision model is presented and in section 3 the corresponding econometric

model is developed. Section 4 discusses the estimation procedure and

section 5 contains proofs of the large sample properties of the esti-

mators. The final section discusses the efficiency of estimating the . wage

equation with the modified method instead of using Heckman's orginal met-

hod.

2. The individual decision model 

We assume that the individual has utility in leisure, L, and con-

sumption, C, that Is of the following type

(2.1) U(L,C) = 
Œ

where a<1 and p<1 are parameters and A and B are tasteshifters that depend

on individual characteristics. This is a . CES type separable utility
function that allows for Quite flexible patterns of Cournot and Slutsky

elasticities. The budget constraints is given by

(2.2) C = f(h1,1+I), L+h = M

where V.) is the function that transforms gross income to consumption
(composite consumption). This function also depends on the price of C and
of actual deductions and tax-free transfers. I is nonlabor income, h is
hours of work, M is total number of hours per year and W is the market
wage the individual faces.

Provided C.) is concave and differentiable the first order

conditions yield the following decision rule:

Work if and only if

A
(2.3) 	 V(I)1.1 > -B- • M 	 f(I) 	 •

If (2.3) holds hours of work, ii, is determined by

(2.4) 	f I+AWN =	 ( M- gh ) a-1 f(
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We recognize the left hand side of (2.4) as the marginal wage evaluated at

Fi. The right hand side is the marginal rate of substitution

(or shadow price) evaluated at .6. Similarly, (2.3) expresses that working

is optimal when the marginal wage at zero hours is larger than the shadow

price at zero hours.

3. The econometric model 

In order to estimate the model of section 2 it is necessary to

specify a wage equation and A/B. We adopt here the standard specifica-

tions

(3.1) 	 logW 	 X ie +

and

A
(3.2) 	 logH + (0.-1)logM 	 X 2y + E2B

where E l and E 2 are jointly normally distributed random variables with

zero mean and variances ai and ai , respectively. X 1 is a vector that

consists of one, length of schooling and experience. X2 consists of

variables such as: one, age, number and age of children. e and y are
parameter vectors to be estimated. The error terms E l and E2 are

supposed to account for variables that are known to the individual but

unobservable to the econometrician. The errors E l and E2 may be corre-

lated.

Now taking the logarithm on both sides of (2.3) and (2.4), and

inserting in (3 .1) and (3.2) yield 	 -

(3.3) 	 = (3.2() + (1-0 log (1- -A

when

(3.4) 	 €2- e i < 3Z (0)

where

- 	 1
Z 	 = (211) log f(hW+I) + 

X 
1
e X2y 

+ 	 log f'(hW +I)
a 	 a
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2
and a = Var Cc1 -£2). From (3.4) - it follows that the probability of

working , p, is given by

(3.5) v. p(X) = 	 (Z(0))

where X = (X 1 , X 2, I), and O(.) is the standard cumulative normal

distribution.

For later reference it will be convenient to state a number of

properties of the model (3.3) and (3.4). Let

(3.6) 	 V = Z(R) a-1)

(3.7) 	 a = E(Z(1)1;>0) + Ex

and
-

(3.8) 	 b = Enog (1-14 dfin)

where

(3.9) = x00 - o'tZ(0)) 
c(Z(0))

is the inverse of Mill's ratio. Then from (3.3) and (3.4) we get by
straight forward calculus that

(3. 1 0) 	 xl =

and

(3.11) VarIVITI>0, XI = 1 - Z(0)X - X 2 .

Since e l and e 2 are jointly normal a standard result gives

(3.12) E 	 lel - £2)

where p = corr 	 el, c - e2) 	 Also we have

2 	 2

el • £21 z al (1-P ).'(3 .13) Var {e l l
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Thus by (3.3) and (3.4)

(3.14) ElcilV,;>01 = -01 pV

and
2 	 2

(3.15) Var {E11V, ;4, X} = al (1-p )•

From (3.10) and (3.6) we immediately get

(3.16) a-1 =

This equation is very interesting because it suggests a way of estimating

a from conditional means as we shall disamin the next section.

Eq. (3.14) implies that

(3.17) E(log W1h>0,V,X) = X l e - al OV

which also suggets an alternative estimation procedure of the conditio-
nal) wage equation as we shall see below.

4. A four stage estimation procedure 	-
The procedure suggested by Heckman to estimate the labor supply

equations consists in estimating the participation probability and next

estimate the parameters in the conditional labor supply and wage equations

given participation. Unfortunately , this method is not directly appli-

cable here because our labor supply equation (3.3) is a form of a pseudo-

supply function where 	 is determined implicitly.



(4.4) b= 	.E log (1-
h i

n 1 1E0
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Here we shall discuss a four stage estimation procedure that

avoids the use of instrument variables to-account for endogenous consump-

tion and marginal wage. Let the index i refer to individual i and let t)
denote the subsample of those who work. The size of Q is

The first stage consists of estimating a reduced form probability
of working and in the second stage a wage equation is estimated by using1
Heckman's method to correct for selectivity bias. Often this selectivity

bias is negligible so that estimates of the wage equation can be obtained
directly without using an estimate of the participation probability. In
the third stage a structural model for the participation probability is
estimated by entering the systematic term of the wage equation as an in-
strument variable for the wage rate. From stage two and three we get

estimates 	 a and 	 for p, a and 45, respectively, where t) is defined by

XL
 -

112 	 x2.1)(v.) r. 	a 	 a •

A
Hence we are able to compute estimates, Z i , for the variable 2 1 (h 1 ))
by

(4.1) 	 Z. =
1 	 a log f (hW i + I i ) + X 3 + ,log f (h iy I) .

A
Similarly we are able to compute estimates,XWor Xi by

(4.2) 	 :?1,i 	x(Z i (0)).

Now 2 defined by

(4.3)
A 	i 	z( X. 4. Z.)

1 	 1a = 71.1 icg2

Is obviously a consistent estimate for a. Also

is a consistent estimate for b and therefore by (3.16)



(4.5) 	 rx-1
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is a consistent estimate for a-1. Accordingly, the fourth stage consists

of estimating a by (4.5).
It is also possible to improve the estimation of the wage

equation. Define e i by

(4.6) 	 log W i 	 lie - al PV i

Then it follows from (3.14) and (3.15) that

E le i lX i , V i , h 1>101

and

Valle
2

Ixi, Vi, h1>01 = al (1-p 4 )

which demonstrates that 64 and al p can be estimated by OLS provided Vi

is known. Now, by using the results from stage one and two we are able to

compute an estimate

A

(4.7) 	V = Z. - a log (1- i)I
b

for Vi.

The estimation of the wage equation proposed here differs from
Heckman's (1979) method in that he introduces X. as an additional

regressor while we use Vi . By (3.10) X is the conditional mean of -V i
given X. and h.>0. One would therefore expect Heckman's method to be1
less efficient than the method proposed here. Also Heckman's approach

implies heteroscedastic disturbances which is avoided in the present

procedure.

5. The large sample properties of the estimators

Considers first the asymptotic properties of SA. Let

T 1= 1ArT 1 ( - a) , 	 Tis Ritt - b).
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Inserting T i into (3.16) yields

a
(5.1) 	 • 	 = 	 1 + 	 g 	 T1 - --T

b 2 	+ 0(411).1; • b 

1 + T 2 1bVii 1

EQ. (5.1) implies that

-

b 	 .5

has the same asymptotic distribution as
aT i — T2
b

b

Under Quite general conditions see for instance Judge at a 1985)

(5.2) 	 T - a 2

where

r(5.3) 	 Ti 2 = lim Varo l -1/2 E 	 + V i )].

ni+c° 	 ico

This variance formulae can be simplified due to (3.11). We have

Var [n1-11 
id)
E ( 	 4. Vi)]

E [1g E 1rn E Var( + V i )
111. 	 st2

r -11+ Var Ln i E E(Ai + 	 Ihi>0,X0

which by (3.10) and (3.11) reduces to



•

E Var n i 	E VO1h i >0,X0

= E [ski i oz Var(i i lhe 0,X1)]

= 	 jEQ (14 1 (0)79- x2j )} ..

Thus

_
2 	 1 	 2

(5.4) T1 := 1 im E { E (1-Z (0) X -X .) 1.
niiœ 	 n1 id2

^
However, since we do not know Zi we must apply the estimate Z, and conse-, x
quently T 1 is not the correct asymptotic standard error of a/b. The

correct variance that takes into account the sampling error in the
coefficients obtained in stage one is defined by

h1/2 	 A 	 a
(5.5) T 

2
o = lim Var in_i E (X4+2 4- 710g (1- TO)}.
` 	 4 	 . 	 .

eQ

In order to simplify the arguments below we introduce the variables

when h.> 0

otherwise

'and -Y = (Y 	 Y
2' 	 '

.... Y 
n

) 	 n
1
 = E Y.

	' 	 i

Thus we can express (5.5) as

2
T2 = lim Var+1 	 i

h4
log (1-i) )Y i 1

where n is the sample size.
Now observe that conditional on Y the parameter estimates obtained in

stage three become non-stochastic.
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As a consequence 	 and 	 become independent for it whereas they
i 	 J

depend on each other when Y is not given. Thus

h.2 	 1
(5.6) 	 .r2 	1 im [E {Tr z var(	 +	 -bog (1- ti-.))

n-o• 	 li

A a
+ Varin i E E(X1 + Z i - -G1og(1- m )) Y i

Let

^ A
A

1
. = X. + Z i 	- z i

and notice that A. is of order O(n) since the variance of the stage one

parameter estimates converges to zero with rate n. Hence

h
i

Var[(.  + 	 llog (1- 'pr ) ) 	 IL)) 	Var(Oli + Xi + AOY i l

= YiVar(V i + xilX) + 	 Yi) + V icov(V i + xi, Ail!)

-= YiVar(Vi 
1+ 	1:0 4- 0(n

1
 ).

We have thus demonstrated that

h.1 	 a 	 2 	 -
(5.7) 	 Ely E Var((31 + Li - Vog (1-0) y 1 lY)1 	 T, + 0(n 1 ).

1 i

Consider next the second term of (5.6). We have by (3.10)

h i
EI(Zi + 	 (1-7' )) Y i ln

= Y 1 El3i - xi 4- Z 1 	Z1 1y}1

-15
= Y i E{(21 (0) - Z (0)»4 + 	 - 	 + otn

Let

= Vlog 	 W+I)111>0) + Wog f(I)X 1 ) ;

K2 = Wog f s (Fi W+I)1>0) + Wog f I (I)X I ) )

h
1].



11

and

•g= a •

Now from (4.1) it follows that

E 0. (0) - 2.00))x; + 	 - Z i
	

Y i =

= 	 + (;-1 -c7 1 )K 2 + K3 (2, 6) + 0(n).

Accordingly, the second term on the right hand side of (5.6 ) can be

written as

_1/2 	 A 	 A 	 a 	
h 1

(5.8) 	 Var In1 	 E 	 + Zi - -slog (1 - 	 y il

= Var 1% 1/2 [6-OK I + ( 74-04 )K 2 	+ 41 )

1
= K E K i d + 0(Ti)

where

K: = (K 1' K2' 3 ),

E is the asymptotic covariance matrix of

1/2 ^ 	 A-1 	 -1n (g-g, a - a '
and

d = pl im 
n1 , 0 < d < 1.

n1
n + CD

Combining (5.6), (5.7) and (5.8) yields

(5.9) 	 T2
2 

=
2 

+dK E 	 .

Y)

Accordingly, we have demonstrated that when the stochastic parameter

estimates from stage three are accounted for we have
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a -
^

(5.10) 	 ni h 	 a 	 -• N(0, 6-1 •b b 	 n

2The asymptotic variance, T2
' 
can be estimated in a straight forward manner

as follows. Let

2 1 	 ^ 	 A A 2
(5.11) T 	 E (1-Z i ( 0)N-N1 	 n 1 ici2

A 	 1
(5.12) K 	 . --- 	 E log f (h VI

i
+I ) - 	 Vki 	i	n 	 ^ 	 AZ (0)/ l og f (I i )

1 	 n1 id2

A 	i	 i 	A	 A 	 A
(5.13) K2

	n1 i
Liog 	 - —n E(Xi 	 Z i (0)Xi) log f i (I i )

and

A 	 1
(5.14) 	3 Z "P'. E X-13 .n i 

Notice.that in (5.12) and (5.13) we have exploited the fact

that xs(x) = -X(x)-xX(x)
2
. From (5.11) - (5.14) it is clear that T

2
2

can be consistently estimated by

.15) t? = A2 	 ni A 
A A

(5
42 T1 + 7 1( E Ks

AAAA 	 A

where K = (K 	 K
2' (

3 ) and E is the estimated asymptotic covariance matrix

of the stage three parameter estimates.

The asymptotic variance of

Œ- 1
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can be derived in a completely analogous manner. Let

A2
T3 denote the estimator of the asymptotic variance

T3. b
2 	2.

m Var { n k (Ca - 001.
n

Then

(5.16) AT32 -- a42 f:1 2 + 1 K E K 	 •

where
^0 	

A 	 A
= 	 K3 )

1/2 	 Alk A
and E is the asymptotic covariance matrix of n (p-O, a -a6).

Finally we consider the sampling properties of the estimator
^

alp and e for al p and e in (4.6). We demonstrated above that the

conditional variance of ei given X li and V i does not depend on these

variables. However since we use 	 instead of V the real error term is

ei = ei + c( 1 -V.)

where c = al p. The problem is therefore to obtain the limiting distri-

bution of 

[.

.., E X„'e*
8 n f l I leg2^1"

z V
i
e

i
*

id2

where
A m'

E 	 X 'X 	 E 	 X 'Vi co li 	 , co 	i

E 	 Xli;i ' E 1 2
ict2 	 ia2

Under general conditions of the regressors (Amemiya, 1973)) we have 

1
E Xli Xli ' -E X II Xi
let
E Xli E (1-Z1 (0)X. ) i
er2 	 1 eQ

-1
(5.17) B = plim B n = plim nl

n+ . " 1 n+   

Poo P. OW s.

-1

n 1
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since by (3.10) and (3.11)

2 	 2
M i 'X i ) x 	 + Var (Viki) g 1-Z 1 (0)X1 .

Note that we can write

V i - Vi = D i ( Z-K)

where D1 = (O il' 
D

12 1 D13' D 14 ) is defined by

D ll = log gh i W i + -I t ),

-D
12 

= log f'01
1

14
1 

+ I ),

D
13 t

ar

D
i4 

=X
i3

and
(kl, 1, a

a

Hence

n
11 A 	 1 	

A
1 	 E X1 ( 1 -V 1 ) = (E Y iX iDi) n1/2 (K-K) • n )1/2

iet2 	 i 	 n

By the strong law of large nunbers

Y X D. a.s.
	 4 	MXiD)

n 	 n4.

Accordingly

* 	 1,
(5.18) n11/2 	 X

li
e

i 	 crlicE(YX 1D) n -‘ (;-)c)+
leg

where
2 	 2 	 -1 	I	 2 	 2

(5.19) tr N(00904 ïlz al (i -p 	 plim I •ji ii = d E(YX1 Xi)cTi (1-p ).
TEO ni
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Similarly

* 	 "1/2
(5.20) n 1 -1/2 	V ie i 	d cE(YVD n 1/2 (2-K) + n2

where
2

	

2	 2	 2	 22	 2	 2
(5.21) n2 	 N( 0 ,Y2), 12 =	 (1-p ) PliM 	 yi = a 1-p )

n 1 	1

2	 2	 2
+ plim 	 Vni) = al (1-p ) plim E (1-Z i (0)X1 )/Ni.

itf2 	 '

The variables IC- IC and y are uncorrelated because

E((-Idei) = EE((-IdeilX) = E((2-0E(ei1 Y) = CI *

The covariance matrix, Q, of

•

is	 ' 	 1/2 Acd E(YX1D)n K- K)

cdE(YVD)n 1/2(C- K) + T12

has the form

-
1(5.22) q = a 

2
 ( -p

2
 )8

1
 + c2 cì' 1-1

1 E(YX1 NEE(YD I X1' E(YX1 WEE(YVD I )

E (YVD) EE(i 	 , 	 E (YU) EVYVDI)

Consequently

(5.23) fill [1
- 	N(0, BIT3`).
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6. Comparison with the Heckman procedure for estimating for wage equation 
Above we mentioned that the procedure for estimating the wage

equation proposed here intuitively appears to be more efficient than

Heckman's method. This is true when the effect of the inserted stochastic

parameter estimates from stage one is small. If the influence of these

parameters estimates is large the conclusion is not clear.

In the present section we shall only consider the relationship to

the Heckman procedure in the partidular case where we ignore the effect of

stochastic parameter estimates.

Also we shall ignore the heteroschedasticity problem in Heckman's

method by replacing n i in Heckman's formulae for 4, by 1-p2 .

Let r,and 7' denote the asymptotic covariance matrices for our and

Heckman 's estimators, respectively.

Then

(6.1) 	 r -7' 	 ai 2 ( 1 .. p2) ( B4)

where B is defined by (5.17) and ri is denoted B in Heckman 's paper. By
inspection we realize that

_i
(6.2) 	 B 	 tR

where

•
R r.

•

and
-1 	 2 	 _1 2

t=d 	 Var(YV ) = d T i .

Standard manipulation of (6.2) yields

(6.3) 	 B 	 (B- 1 
+ tR)

-1 
= B (I-(I+tRB)

_1
tRB).



Furthermore

	— 	 —
(6.4) 	 (I+tRI3) 	 tRB

1+ttimm

0 	 • •

B B 	 Bma m2,.. mm
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where m is the dimension of B and B. Let e and c denote the estimates
obtained by Heckman's procedure. Then (5.22), (5.23), (6.2) and (6.4)

Imply that

2
t13m

A 	 2 	 2 	
j

Var ej= C11 (l .p )(B 3   h
1 + tt3mm

t* =
2 	 /

al (1-p )

Then the variance expressions above can be expressed as

Varc
(6.5) 	 Var C =

• l+t*Varc

covtc, 	 t*
MC 	 Val" (1. 	 Var 	 - 	J	 = Var (1-corr(c e3 ) t*Var 2 ) .•

J
l+t* Var c

Formulae (6.6) tells us that the variance reduction increases when the

correlation between the estimators for c and e increases or if the
variance of c increases (provided corr (Z, gi) is fixed).

2' 	2
A 	 a l (1-p )13MMVar c =

and

Let
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