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Abstract

The paper presents an econometric model for analysing natural gas demand for
space heating in the residential sector in Weste rn Europe. A discrete-continuous
dynamic choice model is specified. Households' decisions on energy consumption are• viewed as carried out in two steps: In the first step they choose between a limited
number of fuel systems. Given this choice a decision is made on how intensively the
energy equipment should be utilised.

The model is estimated from data on energy use and dwelling stock in seven Euro-
pean countries, organised in a database at Lawrence Berkeley Laboratory, Berkeley,
USA. The results yield rather reasonable estimates on price and income elasticities
of gas demand, but the effect on demand from conversions are found to be rather
moderate.
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1 Introduction and summary

In recent years considerable attention has been paid to demand conditions in the market
for natural gas and the potential for future growth in gas consumption. These prospects
are of particular interest for Norway, being a significant supplier of gas to the European
market, and expecting to increase the production in the future. In order to undertake
a systematic collection and treatment of information about the energy market and to
make forecasts of future gas demand, a formal model is a very useful tool.

This paper presents a formal framework for analysing gas demand for space heating
in the residential sector in Western Europe. A discrete-continuous dynamic choice model
is specified. A reasonable interpretation of this approach is that households' decisions
on energy consumption are carried out in two steps: In the first step households have to
choose between a limited (discrete) number of fuel systems or technologies'. Presently,
the theoretical model distinguishes between four fuel systems (with indices used in the
following in paranthesis): natural gas (1), fuel oil (2), solid fuels (3) and electricity (4). It
should be noted that the model thus ignores the existence of 'mixed' technologies. Given
this technology choice, a (continuous) decision is made on how intensively the equipment
should be utilized. In the short run households can change energy consumption only
by varying the intensity in applying the installed equipment, while in a longer time
perspective changes in prices and other variables can motivate consumers to convert
to another fuel system. Formally, the technology choice involves comparisons of levels
of indirect utility attached to the various fuel systems. Consistent with the theory of
consumer behaviour, equations describing gas use per household are derived from the
indirect utility functions by applying Roy's identity.

The technology decision in the present model is described as a sequence of discrete
choices over time, which is an extension of the traditional (static) approach for analysing
choice behaviour The formal model is thus dynamic, allowing for transitions from one
technology to another, as opposed to the static MNL model, which is probably best
suited for modeling new investment decisions, or choices that are irreversible. Assuming
that the unknown (stochastic) terms influencing individuals' utility are independently
distributed over fuel alternatives and develop over time according to an extremal process,
the decisions can be described as a Markov process. The transition probabilities are
functions of the explanatory variables (fuel prices, conversion costs, income level and
socio-economic variables) specified in the indirect utility functions, and thus include
parameters to be estimated. The expressions for the transition probabilities reveal that
this dynamic structure may be interpreted as an extension of the Multi-Nornial Logit
(MNL) model to an intertemporal situation.

The dynamic discrete-continuous choice model is estimated from data on energy use
in seven European countries. The countries included are Denmark, France, Germany,
Italy, the Netherlands, Sweden and the United Kingdom. The data contains energy
consumption by end use and type of fuel, figures for existing and new housing stock
characterized by choice of fuel system , as well as other 'structural' and economic variables

1 111 this paper the concepts 'fuel system' and 'technology' will be used interchangeably. It should be
stressed that the problem of choosing between technologies with different efficiences is not adressed.
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relating to energy use. The data have been constructed from a variety of official and
unofficial sources in each country and are organized in a database at Lawrence Berkeley
Laboratory, University of California. The variables utilized in the present analysis are
defined and briefly discussed in the Appendix I; for a more detailed description of the
data, see Schipper et.al. (1985). The model directly applies information on how energy
consumption is related to the dwelling stock, dwelling size etc. This distinguishes the
present approach from most other studies of energy demand. Only the energy use for
space heating is modeled. This is by far the most important end use, absorbing more
than 70 percent of total energy consumption by households in the countries included in
this study. Furthermore, it is probably not quite unrealistic to simplify the analysis and
assume that the primary fuel choice is the technology decision for space heating, and
that this is done separately from choice of fuel system for water heating and cooking2 .

From the empirical findings of the present analysis we may report the following:

• The short term price elasticity of energy demand is estimated to -0.3 — -0.4.

• Investment choices in new homes are rather price elastic, so that the neoclassical
gas price elasticity related to new homes is found to exceed one in absolute value.

• The effect of changes in energy prices on demand through conversions is found to
be moderate.

• A desicive factor in the natural gas market is the evolution of the distribution
network.

With respect to the use of the model framework it should be noted that the demand
for housing is not modeled. The dwelling stock must be given exogenously by the model
user in order to determine the development of total gas consumption. In the next section
the principal features of the formal model and the dynamic discrete-continuous choice
approach for analysing energy demand will be presented. Section 3 surveys the estimation
procedures and the empirical results, while different types of price responses are discussed
and measured by model relations in section 4.

2 A dynamic discrete-continuous choice model for energy
demand

2.1 Introduction

In recent years the discrete choice approach has gained considerable popularity in the for-
mal modeling of energy demand in the residential sector. 3 As opposed to the traditional

2 Within a static discrete choice framework Goett and McFadden (1982) undertake very detailed
analyses of households' fuel choices in new buildings, specifying a Nested Multi-Nomial Logit model,
where among many features the choice of hot water alternative is dependent on the initial choice of space
heating technology. To estimate such a structure, in particular within the dynamic framework which we
are applying, would complicate the model considerably. For example, such a specification should treat
installation costs for a water heater as dependent on the type of space heating system chosen 'earlier',
and thus either require these data to be available, or leave more parameters to be estimated.

3 See e.g Dubin and McFadden (1984) and Goett and McFadden (1982)
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econometric approach - assuming that energy consumption varies continuously with ex-
planatory variables such as prices and incomes - discrete choice models build explicitly
on the fact that an individual consumer usually chooses between a limited number of
fuel alternatives. Thus, an important structural feature of households' behaviour may be
taken into account in the specification of the theoretical model. Furthermore, as will be
discussed below, the discrete variation over choice alternatives causes specific economet-
ric problems when it comes to estimation of the demand model. By utilizing a discrete
choice approach these econometric problems are very much brought up to the surface.

In the discrete choice approach the individual behaviour is typically represented by
a set of choice probabilities. To show the structure of this framework we start with a
simple static model for analysing energy demand. Assume an individual consumer who
is faced with the problem of choosing between 4 different technologies for space heating.
By convention we choose technology 1 to be gas heating. To each technology we define
a conditional indirect utility function, Vh, of the following type:

Vh = V(Zh) + Eh  Vh eh h = (1)

Vh is the maximum utility attainable from space heating given that technology h is
chosen. Vh consists of a structural part, v(zh), written short as vh; and a stochastic term,
Eh. In accordance with traditional theory of consumer behaviour, Vh can be regarded as
the result of the maximization of a (direct) utility function conditioned by technology
h being the most preferable heating choice. zh is a vector of independent variables or
characteristics (i.e. prices, incomes etc.) restricting this maximizing behaviour. Among
the characteriitics some may be alternative specific, such as the fuel price and the price
of the specific type of space heating equipment, while others may be similar for all tech-
nologies, e.g. income4 . The stochastic disturbance term, eh, is interpreted as expressing
the effect of factors on individuals utility that are unobservable to the econometrician,
but which are actually taken into account in the optimization process undertaken by the
consumers.

The decision criterion for choosing between the available space heating technologies
is that alternative h is chosen if this yields a higher utility than any other alternative.
The probability for technology h to be chosen can be defined as:

Ph = Pr( Vh = IT,X14) = Pr( v(zh) — v(zk) > ek — Eh , Vk h). (2)

The explicit form of this probability depends on the form of the indirect utility
function and the joint distribution of the stochastic disturbance terms (ek — eh). By
assuming that the unobservable terms are identically and independently extreme value
distributed, it can be shown by straightforward integration (see e.g. McFadden (1973))
that the probabilities in (2) can be expressed as

eV

Ph = 4
Ek=1 evk

h = 1,...,4 (3)    

41t should be noted that since the indirect utility is conditioned on a fuel-specific technology, the
prices of other fuels or types of equipment do not enter this function
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This Multi-Nomial Logit (MNL) model has been frequently applied in empirical dis-
crete choice studies in recent years, due to its simple structure and the fact that effective
estimation algorithms have been developed for this model. In the present analysis the
MNL structure is also used to formalize households' fuel choices in new homes, which
constitutes an important part of the complete model. On the other hand, when model-
ing energy demand in existing homes the (static) MNL model is too restrictive. We will
argue that in such a case we need a dynamic framework, to which we now turn.

2.2 Dynamic discrete choice

In some recent studies of residential energy demand where a discrete choice approach has
been applied (Goett and McFadden (1982), Ruderman (1985)) investment decisions in
energy using equipment are assumed to be irreversible. This means that one has ignored
the possibility to convert from one fuel system to another. In a model focusing on long
term projections of energy demand the assumption that investments in fuel systems are
made "once and for all" seems inadequate. In particular, in the analyses of gas demand,
one should include the possibility that in the long run conversions from one fuel to
another may take place. On the other hand, the process of changing from one fuel to
another may obviously be "costly" to a consumer.' Both "pure economic" costs and
"psychological" factors may be involved when such decisions are taken, both presumably
reducing the rate of conversion relative to what would otherwise have been the case.

The purpose of utilizing a dynamic discrete choice model, is to capture some of these
features which we believe are essential when analysing demand for natural gas5. While
a static discrete choice model is expressed in terms of state probabilities for the different
alternatives, in a dynamic context the behaviour is represented by a set of transition
probabilities, P,h(t 1,t), defined as

Psh(t — 1, t) = Pr( Vh(t) = max Vk(t) Va (t — 1) = max Vk (t — 1) ) (4)

P,h(t — 1, t) is the conditional probability that technology h at time t is chosen given
that technology s maximizes utility at time t — 1.6 .

As in the static model, in order to reach a specific form of the transition probabilities,
assumptions have to be made regarding the stochastic structure of the utility process.
Our specification builds directly on Dagsvik (1983) and is described in some detail in
Dagsvik et.al. (1986). The basic idea is that the households have to choose, not only
between the observed energy technologies, they also face alternatives that are unobserv-
able to the analysts but known by the decision makers. The extended set of alternatives

'We are not aware of any previous study having utilized a dynamic discrete choice model in the
analyses of energy demand. The general notion of dynamic choice is however discussed in several contri-
butions (see e.g. MacRae (1977) and Heckman (1981)). Oren and Rothkopf (1984) use a dynamic choice
framework for analysing market behaviour for new industrial products which bears several similarities
to the model proposed in this paper

6A more general approach would be to start with the likelihood of a sequence of choices and model the
joint probability that the optimal technologies at time points t1, t2, tn, are h 1 , h2, However,
since our theoretical model will satisfy the Markov property it is sufficient to specify the one step transition
probabilities in (4)
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may differ in terms of quality, efficiency and operational convenience. New alternatives
arrive according to an (inhomogeneous) Poisson process and they have extreme value
distributed utilities. If we assume that the households at each point of time maximizes
utility over all available choice alternatives, we can then specify an extremal process for
the utility structure (for a definition see Tiago de Oliveira (1968)). It is intuitively clear

_ that this kind of process implies that the utilities are correlated at different points in
time. Dagsvik et. al. (1986) shows that this correlation structure can be expressed as

corr(1, (t),V (s))	 J(exp(-(t 8)7)), t > s
	

( 5)

(6)

From 5 and the definition of J(x) given in (6) we observe that when 7 = O then
corr(V(t),V(s)) = 1; that is perfect autocorrelation prevails. When -y increases autocor-
relation decreases, and as -y approaches infinity, autocorrelation approaches zero. It may
be noted that the specified autocorrelation structure does not depend on the structural
part of the indirect utility.

Provided there are no conversion costs the intertemporal choices of heating technolo-
gies is a discrete dynamic choice process of the type stated in Dagsvik (1983). By a
slight modification of the results therein it follows that this process is a Markov chain
with transition probabilities

Psh(t - 1,t) = Ph(t) - - 1) e -1 , s h , > o (7)

P„(t - 1,t) = P, (t) — Ps (t — 1) e-1 (8)

where Pk(t) is given by (3) above and is the probability of being in state k at time t.
When conversion costs are included the choice process is obviously still Markovian, but
the transition probabilities now take the form

	Ps,* — 1,t) = 80) -	 - 1) e-1 , s h , y >= 0

	

P„(t 1, = Q	 - Q „(t - 1) e-I

where

ev,k(t)

,h(t) = 	 (11)E ko ev .k(t)	 ev,(t)

and vsh(t) is the mean utility of state h given that state s was occupied in period t-1.
vsh(t) depends on s when s h due to conversion costs. Note that Q,h(t) does not have
the same interpretation as Ph(t).

where V(t) is the unconditional indirect utility, -y is a nonnegative parameter, V(t) =
maxh Vh(t), and J(x) is the autocorrelation function

J(x)= _ ; f0
=	 f z log v dv j(0) = 0, j(i) = 1.

o 1 - v



The parameter reflects the possible stability in the unmeasurable factors influencing
utility. The effect of this term may be called habit persistence. From (6) we observe that
if autocorrelation is zero, (^i is infinitely large), then habit persistence vanishes and the
transition probabilities degenerate to the state probabilities. This means that there is
no temporal stability in the unmeasurable factors influencing individual decisions on
conversions. The opposite situation emerges when ^i = 0, which is equivalent to perfect
autocorrelation. From (7) we observe that when = 0, P,h(t — 1, t) Ph(t) — — 1).

Obviously, changes in 'observable' choice conditions, such as e.g. prices, may tend
to make an alternative technology more attractive than it was one period earlier, and
motivate the consumers to convert. When deciding upon this, conversion costs will
also have to be taken into account. The existence of state dependent conversion costs
may be said to reflect structural state dependence in the behavioural model. We may
interpret structural state dependence as the effect of past choices actually experienced
by the households, while habit persistence represents the effect of past choices from the
observers viewpoint.

2.3 The indirect utility function

The functional form of the indirect utility function should of course be consistent with
basic properties derived from consumer behaviour. Apart from that, our choice of func-
tional form has primarily been motivated by the need for specifying a rather simple struc-
ture which e.g. is manageable when coming to estimation of the model. In Hanemann
(1984) several specific indirect utility functions which may be suitable as representations
of discrete/continuous consumer choices are suggested . Our choice is a modification of
one of these utility models. More precisely, the following state dependent indirect utility
function has been chosen:

V h = ao  1-ai o4
	2h 1 --2311+E:=2 fikzk + 131(1 — Siii) Z1 (1 — shhP

al — 1 	a3
(12)

where ao > 0, al 1, a3 0

The variables in this relation are defined and discussed in some detail in Appendix
A. In short, the symbols in (12) have the following interpretation:

Ph is the real price of fuel h per energy unit.

rh is the user cost of energy using equipment of type h relative to the consumer price
index. Geometric depreciation is assumed.

y is real disposable income per household.

z1 denotes the gas network saturation.

Z2 is the relative penetration of district heating.

Z3 is the relative share of single family dwellings.



Z4 is the average dwelling area.

Z5 is a climate factor, measured as the total number of heating degree days.

Z6 denotes the relative penetration of central heating systems.

81,1 is a dummy variable related to whether the household is connected to the gas network
or not; 51,1 = i if h = 1 (i.e. in the case of natural gas), 8h1 = O if h	 1 (thus, if

< 0 then an expansion of the gas network (increase in zi) has a positive impact
on the utility).

6,h is a dummy related to whether a conversion takes place or not; 8,/, = 1 if s = h
Sah =0 if s h.

C s represents conversion costs (measured as loss in utility) of changing fuel system. 7

The specification (12) ensures that the indirect utility is a decreasing and convex
function in prices. Moreover, the conditional indirect utilities increase with increases in
income. The additivity in the terms involving price of energy and user costs of capital
respectively, implies that energy prices affect the investment and transition decisions
(through the state probabilities) as well as decisions on capacity utilization. The user
cost of capital affects investment and transition decisions only, since this variable vanishes
when the conditional demand functions are derived (see below).

A general question regarding the explanatory variables in the indirect utility function
is whether they should refer to current or expected values. Since investment choices in
various types of equipment are involved, the latter interpretation is preferable, and an
explicit expectation mechanism should be introduced, at least for some of the indepen-
dent variables. However, so far we have not attempted to specify any explicit expectation
structure.

2.4 Short run capacity utilization

As mentioned in the introduction, the present model assumes that when consumers
have chosen a specific technology, they can vary the intensity or utilization rate of the
heating- equipment continuously. At this stage we can apply the theorem known in the
literature as Roy's identity. This states that the (uncompensated) demand functions for
the various commodities can be derived from a fully specified indirect utility function
simply by differentiation. If we introduce the notation

X 1 as consumption of fuel h per household/dwelling,

Roy's identity states that the demand functions for fuel h can be derived from the indirect
utility function as

71.n Dagsvik et.al. (1986) conversion cost was specified as a reduction in income. The specification of
C. In (12) should be regarded as a normalization of the pure economic costs and is introduced for the
sake of simplifying the econometric model.

7



a vsh/a Ph .

Xh=	 (13)a vahia y
Relation (13) illustrates an essential feature of the discrete/continuous choice model:

having solved the technology choice problem, demand relations describing the utilization
of a given equipment follows directly by applying equation (13) 8 .

From the chosen form of the indirect utility function (12) we can now derive the
following set of demand equations9 :

6

log zh = log ao — c 1 log ph + a3Y Efikzk
k=2

3 Estimation and empirical results

The international energy data used for estimating the model (cf. section 1 or the Ap-
pendix A) are not strictly 'individual' data. What we actually have are country averages
for the various variables in the model. The data may thus be regarded as what in the lit-
erature is called grouped data (Maddala (1983)). Another principle limitation set by the
available data is that the LBL database at present does not provide sufficient information
on conversions from one technology to another. If such data on observed transitions had
been available, the estimation procedure would have been simplified, as this would have
allowed us to employ directly the relations for transition probabilities for calculating
coefficients of the model.

MacRae (1977) discusses several procedures for estimating a Markov model with
time dependent transition probabilities in a situation where only the state frequencies at
different points of time - not the transitions - are observable. Following her results, we
can specify the following set of stochastic equations:

4
Ph(t)= E fro- i)p,h(t - 1,0 -F. Ah(t) , h =	 .

8=1
(15)

where Ph (t) is the observed frequency of technology h. As shown in MacRae (1977),
the means of the residual terms, ph(t), in (15) equal zero. The covariance matrix -
conditional on the states occupied at time t —1 - can also be readily calculated, revealing
that the equations in (15) have heteroscedastic disturbances. Thus, GLS is a preferable
procedure for estimating the parameters of the model.

All parameters of our theoretical model may be identified in the set of Markov-
equations in (15). To base estimation of the coefficients solely on these dynamic relations
would, however, imply that not all available information about the structural model is

3A detailed presentation of the interactions between a discrete choice problem and the (conditional)
decisions on capacity utilization is given by Hanemann (1984)

a Strictly, by applying Roy's identity directly on (12) the derived demand are conditioned on state s.
However, since these actually are independent of s, the unconditional demand, zh is easily arrived at by
averaging (see Dagsvik et.al. (1986))

(14)

8



utilized. The information on fuel choices in new homes and capacity utilization given
type of equipment (the demand equations derived by Roy's identity) should be utilized
as well. However, for computational convenience we have carried out the estimation
procedure in three stages:

Step 1: In the first step the demand equations derived from Roy's iden-
tity are used to estimate the parameters which can be identified from these
relations.

Step 2: The next step in the estimation procedure is to utilize the data
on new constructions, insert the parameter estimates identified in step 1 and
use a conventional static MNL model to estimate initial fuel choices.

Step 3: In the final step, the dynamic Markov model is used to estimate
the remaining parameters of the model, which actually can be restricted to
Cs and 7, i.e., the central coefficients related to the dynamic features of the
model. Again, all parameter estimates obtained previously are substituted
into these regressions.

This sequential estimation procedure is obviously not optimal from a strict econo-
metric point of view. The most efficient estimation method would have been to calculate
all parameters simultaneously, utilizing all information contained in the three stages at
the same time. However, with all non-linearities and other complex features of the spec-
ified theoretical model, this would be a quite complicated task. The stepwise procedure
outlined above should thus be regarded as a compromise between what is desirable on
theoretical grounds and what can be implemented. The actual estimation carried out in
the various stages and the corresponding empirical results are described below.

3.1 Step 1: Short term capacity utilization

A first point to be noted is that the random variables specified in the conditional in-
direct utility functions cancel out when applying Roy's identity. Thus, there are no
interactions between the random utility model and the derived demand functions. With
respect to the stochastic specification in the utility functions, the demand functions are
deterministic.10 However, we now introduce the (reasonable) additional assumption that
there are measurement errors involved in the observed variables included in the demand
functions. This means that the following stochastic specification of (14) is assumed:

6
log xh = log ao a i log ph+ a3 y — E fik zk rm

k=2

tm is a stochastic error term interpreted to represent meaurement errors, with zero
mean and constant variance. Furthermore, the demand relations for the different fuels
are assumed to be uncorrelated. This makes Ordinary Least Square (OLS) a reasonable

'With a more general formulation of the stochastic terms in the utility function, the derived demand
functions might alternatively have been stochastic, i.e. included the e-terms. Such interactions between
probability structure in the discrete choice problem and the conditional demand structure are discussed
in detail in Hanemann (1984).

(16)
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estimation method. Since parameters are identical over fuel types this is done efficiently
by using all four demand equations in (16) simultaneously in the regression. It may be
noticed that a majority of the parameters in the model as a whole is actually identified
in the present stage of the estimation procedure.

The estimation results are presented in table 1. The various numbered models refer to
a test procedure visualized in figure 1 below. Looking first at the figures in the first row,
i.e. the calculation results with no a priori restrictions imposed, Model I, the following
features may be stressed:

• Most parameter estimates have the expected sign. In particular this applies to the
coefficients related to energy prices and incomes, implying negative energy price
elasticity and postive income elasticity.

• Five out of eight coefficents are significantly estimated at a 5 percent significance
level. From an economic point of view it is interesting to note that among these
are the energy price coefficient (a 1) and the income parameter (a3). But also the
parameters expressing the effects of district heating (/62) and the climate PO have
rather small variances estimated.

• The energy price elasticity, directly expressed by the negative of al, is estimated to
-0.42. This should be interpreted as a short term price elasticity, since it is defined
conditional on that a specific fuel is already chosen. The figure is in reasonable
accordance with estimates obtained in empirical studies previously undertaken (see
e.g. Bohi (1981)), perhaps somewhat on the higher side (in absolute value).

• The estimate of the income parameter, a3 , as is the case for all the P-parameters,
is dependent on the unit of measurement of the variables involved. The expression
for the short term income elasticity is given by

Es — 

a log 2; 
=

- a log y
(17)

For the average income level in the sample, which is approximately 15000 US
dollars, this implies an income elasticity of 0.75.

It is interesting to focus somewhat more closely on this estimate of the income
elasticity. Again, it is in reasonable coherence with figures from several previous
energy demand studies, and not very far from what one would expect as a measure
of a short term income effect on energy consumption. However, in a number of
studies focusing particularly on the demand for natural gas in Western Europe
there have been severe problems of obtaining reasonable estimates of the income
elasticity. Typically the estimates obtained have been far too high in magnitude.
The reason for this common problem is the rapid evolution of the European gas
market and the rapid increase in gas consumption experienced through the last 15
years. Traditional econometric models using some sort of ad hoc lag structure to
distinguish between short- and long term effects have not been able to explain the

10



Model
Parameter estimates (t-values)

10 DW SSRao al a3 132 03 /534 Als /96

I

II

Ilia

IIII3

iv

2.64
(5.19)

3.00
(7.27)

3.04
(7.29)

3.03
(7.49)

2.84
(6.94)

.42
(7.80)

.42
(7.81)

.42
(7.68)

.42
(7.87)

.40
(7.41)

.005
(2.10)

.006
(2.65)

.004
(1.91)

.005
(3.05)

.006
(3.29)

-1.11
(-2.18)

4.08
(-2.12)

-0.92
(-2.93)

-.06
(-0.13)

-.44
(4.22)

-0.58
(4.62)

-0.48
(4.41)

-0.39
(-1.07)

-0.01
(4.25)

-.0002
(-3.05)

-.0002
(-3.48)

-.0002
(-3.12)

-.0002
(4.82)

-.0003
(5.43)

0.35
(0.90)

0.14
(0.40)

-0.44
(-2.03)

0.39

0.38

0.37

0.38

0.35

2.15

2.14

2.07

2.13

2.04

30.309

30.599

31.445

30.629

32.237

Table 1: Estimation of step 1

rapid expansion of the gas market; strong increases in gas demand together with
a moderate income growth have resulted in that the income elasticity has been
overestimated. A preferable feature of our discrete.continuous choice model is that
the income effect is identified in households which have already chosen their heating
equipment. The estimate of the income parameter is therefore not influenced by
the fact that the number of gas customers has increased strongly through the
estimation period. In our theoretical model the latter feature should under ideal
circumstances be represented by the development of the gas distribution network
(zi ).

• It may be noticed that the effect of district heating on energy consumption of other
fuels is estimated to be positive (the negative of g2). This may seem a bit odd, since
one immediately should think that increased presence of district heating should
lower the need for other fuels. However, one should remember that the model
assumes away dual fuels systems in the households. Accordingly, the obtained
result simply indicate a positive correlation between energy (unit) consumption
and the penetration of district heating between countries and over time. On this
background it may of course be questioned whether it makes much sence to specify
district heating as an argument in a short term demand equation. Therefore, we
have experimented with excluding this variable from the model.

• The climate variable, zs, is measured as the number of (heating) degree days during
the year in the various countries. The estimated figure implies a 'climate elasticity'

11



Model Ma: 2 = • • • Ek02,4 13"k

Model II: x =	 Ek04/3kZk    

Model IIIb: x = Ek#4,6 PkZk   

( 1119-) of 0.62.k 8 log z6

• Unit energy consumption is positively correlated with the share of single family
dwellings, as one would expect, but the estimate obtained is very uncertain.

• Increases in the average dwelling area also tend to raise unit consumption. This
variable is probably strongly correlated with the income level, and we have therefore
reestimated the model exclusive of this variable to see whether the income elasticity
is changed.

Model I: z = — E ek.2 /3kzk

N 
Model IV: z = — Ek02,4,6 Pk2k

Figure 1: Test scheme for the z-variables

We have also carried out a number of additional estimation with a priori restrictions
on the coefficients. More specifically, we have sucessively excluded some of the z-variables
and tested nested hypothesis against each other. The test procedure is based on Hendry
(1974), utilizing hyphotesis about the distribution of proportions between related sum
of squared residuals (SSR's) 11 . An overview of the different models is given in figur 1,

"Define the statistics Z = T log (12) where T is the number of observations, and let vi and vi
denote the number of parameters in model i and j respectivly (vi > vi). Asympthotically we then have:
Z

12



and the corresponding empirical results are also included in table 1.
In model II we have excluded the variable z4, the averge dwelling area, as this is

assumed to be highly correlated with income. The estimate of the income parameter,
a3, is not significantly changed by this restriction. All other models are then nested to
II. The test procedure supports the hypothesis that /34 g6 0, while the models Ma
and IV are rejected.

3.2 Step 2: Fuel choices in new homes

In the decisions on fuel technologies in new homes, obviously no dynamic elements are
involved and the behaviour may be described by a conventional static discrete choice
model. It is easily seen that when both conversion costs and 'habit persistence'are ex-
cluded from the theoretical model outlined in section 2, the state probabilities degenerate
to the traditional MNL form, (3). Furthermore, it seems reasonable to assume that the
same structure for indirect utility prevails when describing this behaviour. The structure
of indirect utility for investing in new equipment is thus given by (12) except that the
conversion costs c, in this case is excluded.

As already mentioned, the general procedure both for step 2 and 3 is to substitute
parameter estimates from the previous steps into the present regressions. The results
presented below are based on the unrestricted model in step 1. Actually, all of these
coefficients cancel out except the price elasticity al . In the following it is convenient to
define the following auxilliary variables: aph = (1/(al 1))plh-a ', where a l is fixed to
0.42 (cf. table 1).

As mentioned in the introduction, individual observations of fuel choices by house-
holds are not available. The data used in the present step (and also in step 3) consist of
shares in each country/year utilizing the various fuels for space heating. These empir-
ical frequencies are interpreted as observations of the corresponding theoretical choice
probabilities. An equivalent representation of the model (3) is given by

Ph =log(—, vh - vi , h = 2,3,4 (18)

By replacing the theoretical choice probabilities in (18) with observed frequencies,
f5h, we obtain

h-) = vh - + ph , h = 2,3,4	 (19)
Pl

where ph is a stochastic error term defined by (19). From the 'multinomial structure'
of the choice problem facing the individual households it is easily seen that E(ph) = 0,
and it can furthermore be shown that the variances and covariances are of the following
form:

1	 1	 1var p =
ni Phi Ai

(20)
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Model
Parameter estimates (t-values)

ao a2 fii

OLS -0.14 0.89 -2.17
(-1.20) (3.27) (-2.55)

ZELLNER -0.007 0.47 -2.24
(-OM) (1.84) (-2.87)

ZELLNER, 0.33 -0.14 -4.12
S-iterativ. (3.82) (-0.70) (-7.45)

Table 2: Estimation of step 2

covar (phi, psi) =	
I_
T  ,	 8 h	 (21)
t-1

The estimation procedure that may be suggested by relation (19) is the minimum
chi-square MIN X2 -method, described e.g. in Amemiya (1981). This estimator is
obtained by applying a weighted least square procedure to (19). However, in our case ni
is very large so that we have var psi A-4 O.

Since the explanatory variables are highly aggregated, it seems unreasonable to expect
the coefficients in the structural part of the utility function to be constant over time. We
therefore assume that the coefficients may be random. This specification implies additive
random disturbances in the mean utility function vh. These random terms are supposed
to account for unobserved price variation across consumers as well as measurement errors
in prices and other independent. We have assumed unspecified correlation structure
between these disturbances. With only one endogenous variable on the left hand side of
each equation, as in (19), Zehner 's seemingly unrelated regression method is convenient.
This procedure is applied both with and without an iterative process on the 'S-matrix'
(the variance-covariance matrix of the residuals). In addition, we have also experimented
with using OLS, again utilizing all (three) equations in (19) simultaneously.

By inserting the expressions for the indirect utility function into (19), and also using
the auxilliary variables introduced above, we obtain the following econometric specifica-
tion of the model:

Ph = ao(aph — api) a2(rh — ri) fhzi +	 h = 2,3,4	 (22)

From this equation it is revealed that in this step the parameters a2 (expressing the
impact on fuel choices by changes in prices on heating equipment) and 131 (measuring the
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effect of expanding the gas distribution network) are identified. The estimation results
based on equation (22) with different estimation procedures applied are given in table 2.

Based on arguments from economic theory one should expect both o 2 and ß to be
negative; an increase in the price of energy using equipment should cause a negativ shift
in the conditional indirect utility, and increased gas network availability must be expected
to imply an increase in the utility related to natural gas. Looking at the figures in table
2 we see that ß is significantly estimated and has the correct sign in all the presented
models. a2 is estimated to be positive in the first two models, while the estimate has the
correct sign in the S-iterative Zehner estimation, but with a large standard deviation.
We may thus conclude that the model and the data available have not given us any
reliable estimate of how changes in heating equipment prices affect fuel choices. This is
not very surprising, since the quality of the data on equipment prices is rather poor.

When passing over to step 3, again substituting parameter estimates from both pre.'
ceeding sections, we have chosen to utilize the results from the S-iterativ Zehner model.

3.3 Step 3: The dynamic Markov model

In this final step, the coefficients related to the dynamic features of the model, the
correlation parameter "t and the conversion costs, c., are estimated within the Markov
model (15). Let us repeat the set of relations for the transition probabilities

Pah(t — t) = Q8h(t) Q8h(t — 1 ) e-1 8 h	 (23)

and define the probability of being in state h (according to the Markov model) as

4
ph(t)=EP,(t- 1)P,h(t — 1,t) . 	 (24)

8=1

Here we should remind ourselves of the fact that the Psh- variables in (23) are ex-
pressed in terms of the conditional indirect utility function, i.e. they depend also on the
specified conversion costs. This implies that the econometric model which is obtained
by substituting (23) into (24) becomes very complicated. Remember also from section
2 that in the special case of no conversion costs the Pm-variables degenerate to MNI,
choice probabilities, given by relation (3). Note then that the structure of these relations
now are completely known by the results from step 1 and 2. This feature will be utilized
in the following to simplify the econometric specification in the present stage.

The simplification is obtained by introducing a transformation of the conversion cost
variables. Let us define:

ev,(t)
d, = EL 1 evh(t) 

(ec. _ 1) = ps (t)(ec. _1)	 (25)

Treating d, as a constant, as it will in the following, c, varies 'proportionally' with
the inverse of the choice probability, P, (t). If the probability of choosing a specific fuel
is 'high', the corresponding conversion cost is relatively low, and vice versa.
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It is now easily shown that the transition probabilities can be written in the following
way:

Peh(t - 1,0 = + d, [P
h (t) -	 - 1) e-1 }	 s h.

1 

By transforming the conversion costs we have thus expressed the transition proba-
bilities in terms of the MNL state probabilities, Ph(t). The term between the brackets
is the transition probability in the case where there are no conversion costs. Let in the
following this be denoted by P-sh, and define furthermore

1
a, = 	

1 -1- d,
We can then summarize the modified econometric model as follows:

(27)

Psh(t - 1,0 = Ph(t)	 - 1)e-1 , s h	 (28)

P„(t - 1,t) = P3 (t) - P,(t 1)e-1 4- e-1 	(29)

Psh(t - 1,t) = asP,h(t - 1,t) s h	 (30)

P„ (t - 1, = 1 E a8 .P,k(t 1, t) = 1 - a,(1	 - 1, t))	 (31)
ICO 8

4

Ph(t) = E Ph(t— i)psh(t-1,0+Ah(t) 	 (32)
.=1

The expressions Ph(t) in (32) are observed frequencies of the different fuel systems
in existing homes, and the residual terms ph(t) are defined by this relation. Parallell to
what was the case in step 2, the multinomial structure of the individual choice model
has certain implications for the variance-covariance matrix of of these residuals (see e.g.
MacRae (1977)). As explained above, however, we get in our case that ph 0. Similarly
to step 2 we have based the estimation on general regression procedures - like OLS and
Zellner estimates.

So far we have assumed that the costs of converting to another technology differ
between fuels. Obviously, the problem is considerably reduced by restricting the trans-
formed conversion costs to be identical; i.e. ai = = a4 = a. From (28) - (32) we then
arrive at the following simple regression model:

Ph(t)	 - 1) = a (Ph(t) - Ph(t - 1)) + b (Ph(t - 1) -	 - 1))	 (33)

where b = a e-1 . Each of the equations in (33) (only three are included in the
estimation due to the restriction that the probabilities sum to unity) is linear in the
parameters.

(26)
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Model,
method

Parameters (t-values)

a ai a2 a3 a4 b Pi

OLS
0.07

(0.41)
0.055
(0.30)

0.28

ZELLNER
0.21

(1.19)
0.17

(0.92)
0.24

ZELLNER
S-iterativ

0.33
(2.00)

0.27
(1.60)

0.20

OLS
_

-8.66
(4.17)

-0.65
(-2.17)

-0.89
(-1.51)

5.82
(2.27)

0.008
(0.86)

ZELLNER
8.28
(4.3)

-0.69
(-2.24)

-0.06
(-0.11)

4.71
(1.80)

—7.610-4
(-0.07)

ZELLNER
S-iterativ

9.08
(5.06)

-0.61
(-1.98)

-0.39
(-0.65)

3.83
(1.51) s

-0.01
(-0.77)

Table 3: Estimation of step 3

Estimation results both from (33) and from the more general model with no re-
strictions on the conversion costs are presented in table 3. Also at this point we have
experimented with using both OLS and Zenner regression methods.

From the results in table 3 we may notice the following features:

• Due to its interpretation in the theoretical model it is required that -y > O. Fur-
thermore, from the defintions of d, and a, it is seen that 0 < a < 1 should be
expected. These requirements are fulfilled in all the calculations based on a unique
conversion cost over fuels. The most significant parameter estimates are obtained
in the iterative Zellner procedure.

• We notice that the estimate of the correlation parameter 7 is rather low in mag-
nitude (actually it is not significantly different from zero in any of the alternative
regressions. In other words: the model indicates a high positive autocorrelation
between the stochastic elements influencing peoples' fuel choices, implying that
there is a set of unknown factors motivating households to stick to a fuel system
once chosen.

• The results from the regressions with no restrictions on the a-coefficients imposed
are observed to be in conflict with the a priori restrictions; with a2 and a3 estimated
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to be negative (implying negative transition probabilities) and a l and a4 estimated
to exceed one (implying dl, c/4 < 0).

Model a d
Conversion costs

c1 C2 C3 C4 7

ZELLNER,
S-iterativ

0.33 2.03 2.42 1.60 2.45 3.11 0.20

Table 4: Conversion costs

From the estimates of a, the transformed conversion costs, d and c, can be readily
calculated as d = (1- a)/a, c, = log((d+ P',)/f;',). The values for these parameters cor-
responding to the Zehner S-iterativ estimation of model (33), and calculated for sample
means of the P, - variables, are reported in table 4.

4 Price effects and elasticity concepts

Based on the empirical results surveyed in the previous section we now turn to describing
how the model traces the impacts on energy demand caused by changes in energy prices.
Estimates of such price effects may be interesting per se, and in a process of using the
model to analyze feasible ranges of future demand. The discussion is carried out in terms
of price elasticities, and the focus is on the demand for natural gas.

Due to its dynamic structure and the distinction between technology choices and
capacity utilization several kinds of elasticity concepts may be defined within the present
model. The short run effect on the demand for natural gas is given directly by the
parameter a i , as explained in section 3. This follows from the logic of the model; in the
very short run the consumers can vary their energy consumption only by changing the
intensity of use of the given equipment. Thus, denoting the short run elasticity by Es,
we define

a log z 1
Es = a log pi 

= ai (34)

In a longer time perspective changes in prices may influence consumers choices of fuel
system in new homes and also motivate existing households to convert to another heating
technology. The elasticity of the probability of choosing gas among new dwellings with
respect to the gas price, EN, is

„ a log Pr(t) 
E	

0 _ if4

)

0.-cr I. (1 ..... PNO)
l"t)= a logpi (t) - a P "'

(35)

where the notation Pr is introduced at this point to distinguish this variable from
the state probability for the existing dwellings, PI, in the Markov equation below. While
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the short run elasticity measured by a l is a constant, the price effect on the choice
probability in (35) varies over time. The elasticity of the expected gas consumption in
new homes is the elasticity of /3rx 1 with respect to the price of gas, which of course is
equal to Es + EN. We term this the long run neoclassical elasticity of gas demand. 12

A third type of price effect on energy demand implied by the present model comes
through conversions to or from other fuel systems. Principally, a change in e.g. the gas
price influences all transition probabilities at each point of time in a specific scenario.
To arrive at formal expressions for this kind of energy demand impacts is complicated,
and the easiest way of obtaining empirical characteristics is to undertake simulations and
sensitivity analysis on the estimated model system.

The impacts from conversions affecting gas consumption are summarized in the effect
on the state probability, PI (t). In order to briefly discuss the nature of this effect, it
may be useful to repeat the expression for this probability from the Markov model, i.e.

4
Pl(t)=: E pgt — i)pal(t — 1,0 • (36)

3=1

Starting out from a given set of state probabilities in period t4 , P:(t-1), the first year
conversion effect for. gas stems from changes in the transition probabilities, P, i (t
in (36). This effect may be called the intermediate term conversion effect.

With respect to long term conversions effects, it is decisive whether the price
change is temporary or permanent. If the price change only relates to time to, and
if furthermore expectations are static, only transition probabilities for period to and
to 1 are affected 13. If on the other hand a price change is permanent, transition
probabilities inall future periods are affected, and thus reinforcing a tendency to convert
to or from another fuel. Denoting the long run conversion elasticity by Ec, the long
run elasticity of expected gas demand in existing dwellings, i.e. taking conversions into
account, is the elasticity of Plxi, or Es Ec

In order to illustrate the magnitude of the different types of price effects, we have
calculated a set of price elasticities of the various kinds based on data for France. The
results are presented in table 5. The estimates of the conversion effects are obtained by
simulating the empirical model from 1984 to 2000. A reference scenario is constructed
by making rough estimates for the exogenous variables, and thereafter the price path of
natural gas is given a permanent 10 percent increase in 1985. 14

It is interesting to notice from table 5 that the estimated results imply a considerable
flexibility and price sensitivity in investment decisions in new constructions. The relative
demand impact through fuel choices in new homes of an increase in the gas price is twice
the magnitude of the short run effect. Together, these two effects imply an neoclassical
gas demand elasticity of 1.2 - 1.3 in absolute value. On the other hand, consistent with

12 The term 'neoclassical" refers to the feature that the demand respons to changes in prices is not
restricted by costs of conversion or refers to the long run demand respons if were inflnitly large.

131t is important to notice, however, that state probabilities for later periods in general are influenced
even by a temporary price change

"Since the model is non-linear, total elasticities of this kind may depend on the reference scenario
chosen. Experiences indicate, however, that this dependence is rather weak
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Elasticities 1985 1990 2000
Unit consumption, short run (Es): -0.420 -0.420 -0.420

Choice prob., new homes (EN): -0.819 -0.843 -0.886

Long run neoclassical (Es + EN): -1.239 -1.263 -1.306

Conversion effect, 1. year (Ec 1): -0.052

Long run conversion effect (Ec): -0.070 -0.083

Long run conversion elasticity (Es -I- Ec): -0.510 - 0.523

Table 5: Estimated price elasticities for France

the high 'habit persistence estimated (cf. the previous section), the changes in the share
of gas customers due to conversions are very moderate; the elasticity, however, increasing
over time. We observe that the long run conversion elasticity in expected gas demand in
existing dwellings is substantially lower in absolute value than the long run neoclassical
elasticity.

5 Concluding remarks

Traditionally, residential energy demand modeling has pursued two different lines of
development. The first is the econometric approach, where demand relations are derived
from 'smooth' economic consumer behaviour. The second is the engineering approach,
which utilizes detailed information of market penetration of different types of energy
using equipment and their energy intensity. The discrete-continuous choice approach
integrates elements from both these procedures of energy demand modeling. It explicitly
builds on the observation that private households choose between a limited number of
fuel technologies. Furthermore, it links energy consumption to characteristics of the
dwelling stock in a way that makes it easier to take into account structural barriers
and limitations on energy consumption. At the same time the market penetration of
the different technologies and their intensity of use are based on relations drawn from
economic theory, stressing the impact of prices and incomes for the evolution of energy
demand.

To harvest the full advantages of using a discrete-continuous choice approach requires
that micro data are available. This points at an obvious weakness of the empirical results
presented in the this paper: only aggregate data were available, restricting both the
formal specification and the estimation of the model. As discussed in some detail in the
Appendix A, other problems in the model specification can also partly be related to the
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present data situation (the abscence of district heating as a separate fuel, the lack of
choice of central/non-central heating etc.). In spite of these limitations, the estimation
of the model has yielded some empirical results which are rather resonable. In particular,
the estimates of the price- and income effects seem fairly robust, and it is also interesting
to notice the significance of the distribution network on the penetration of natural gas.
With respect to the dynamic features of the model, the estimation traced a significant
degree of habit persistence by the consumers, i.e. 'reluctance' to convert to another
heating technology. However, in a long term perspective the effects of conversions on
energy use forecasted by the model will not be negligible.

A main purpose of constructing a model as described in this paper is to establish
a framework for projecting residential gas demand in Western Europe. How the model
framework is utilized for this purpose is described in Dagsvik et.al. (1986). A basic
feature of the model is that in order to estimate future demand for natural gas one has
to make assessments of the evolution of the dwelling stock in the various countries. This
of course requires extra efforts by the model user, but as mentioned above we tend to
regard the explicit connection between energy use and the dwelling stock as a strong side
of the model rather than a weakness. Given this input and assumptions on the other
exogenous variables, the specified model then calculates

• Fuel choices in new homes (the static MNL model).

• The penetration of different fuel systems in existing homes (the dynamic Markov
model) .

• Energy consumption per dwelling (short term demand equations).

• Total consumption of natural gas by country and in Western Europe (by aggrega-
tion).

With respect to future work it obviously would be of considerable interest to utilize
a similar type of model framework on a set of truly individual data. Furthermore,
since the model involves investment decisions, the impacts of expectations should be
given specific attention, most preferably within a more explicit dynamic optimization
framework. Finally, more efforts - both academic and empirical - will be needed to make
the model capture the existence of secondary heating, and also to include energy demand
for other end uses than space heating.
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A Data sources and variable definitions

A.1 General characterisitics

The data utilized in the estimations presented in this paper are from Lawrence Berkeley
Laboratory's (LBL's) OECD residential energy use data base. These data are collected
from a large number of official and private sources in each country and year. Consumption
data by end use and fuel type have been constructed by using "bottom up" information
on dwelling stock and measurements of unit energy consumption. For major OECD
countries economic data and a number of structural indicators relevant for analyzing
energy demand are also included in the data base. Considerable efforts have been put
to achieve consistent definitions of variables to allow for comparisons between countries.
For most countries the time series begin in the early 1960's and extend through 1983. It
should be stressed that presently the data base does not contain continuous time series
for the different countries.

The countries and years included in the data sample are shown in the following table:

country 	 years
Denmark
France
Germany
Italy
Netherlands
Sweden
United Kingdom

1965,70,72,77,80,81,82
1962,1973-81
1960,65,70,72,75,78,80,81,82
1978,80
1973,78,81,83
1963,65,70,72,75,78,80,81,82
1970,75,78

A.2 Definitions of variables

In section 2 the variables included in the formal model were defined very briefly. Below
the variables and the data used are listed and discussed in some more detail.

Space heating fuels
In the model four different fuels are assumed to be available for space heating use: -

fuel oil, natural gas, solids and electricity. Fuel oil includes LPG in all countries, except
Germany, where it was included in natural gas in the primary data sources.

Dwellings by fuel type
The LBL data base has collected information of number of dwellings with different

fuel types. Both figures for total stocks and new constructions are available, but for the
latter some observation points are missing compared to what is indicated in the table
above. The dwelling figures provide observations of the frequencies which are empirical
counterparts to the choice probabilities, Pig and Ph(t), in the formal model.

Intensity of use
The variable xh(t) denotes consumption of fuel h per household (dwelling). Energy

consumption is measured in GJ and defined as delivered amount of energy (type h) used
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for space heating purposes.
Prices and income data
Prices and income data are in 1981 US dollars. The current local prices were deflated

using consumer price indices of the individual countries, with 1981 as the base year. The
real prices and incomes were then converted to dollars using the appropriate exchange
rates for the same year. Fuel prices, ph, are average residential fuel prices per GJ includ-
ing taxes. The price of solid fuels is assumed equal to the price of coal, since proper wood
prices were difficult to obtain. Income per household, y, is defined as national disposable
income per household. Equipment prices, qh, are measured as average equipment prices
for the different fuels. The data situation for these variables is weak, and the utilized
figures are constructed from scattered estimates from a few countries and years.

District heating penetration
The variable z2 is defined as the share of dwellings using district heating for space

heating. Strictly this technology should have been included as a separate 'fuel' in the
model, but prices and other data were not available.

The share of Single Family Dwellings
The share of single familiy dwellings, z4 , is defined as the share of all single family

dwellings in the total dwelling stock (both heated and unheated dwellings). Single family
dwellings include row house and townhouses, but not mobile homes. In the construction
of these figures some problems exist with respect to comparisons between different data
sources; for example uncertainty pertains to proper counting of farm houses, whether
they are used for residential or commercial purposes.

Average dwelling area
The variable z3 is defined as the weighted average dwelling area of total occupied

dwellings in square meters.
Climate factor
The climate factor, z5, is measured as the number of heating degree days using an

18 C base.
Share of central heating
The variable z6 is defined as the share of all heated dwellings (included district heated

dwellings) with a central heating system. Again, the exact definition of this variable can
vary somewhat betweeen the various primary data sources. In general, central heating
refers to a system which is able to heat the entire home, and in which the heat is
distributed from a central point.

Interest rates
The data for the interst rates (p) are based on OECD's Main Economic Indicators,

where we have used rates on government bonds for the different countries.
Equipment lifetimes
The variable dh is defined as the expected lifetime of equipment of type h. At this

point we have used US data, which were the only information available. Obviously, this
is a weakness, since the duration of heating equipment may vary from country to country
due to different qualities, efficiencies etc.
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Gas network saturation
Z1 is defined as the share of dwellings in a specific country/year where gas is available

as a heating fuel, in the sence that a household is located in a 'gas zone'. The definition
is thus not restricted to dwellings actually hooked up to the gas grid. The data are
collected from 'Le Marché Domestique du Gm', Données statistiques 1984.

A.3 Data limitations

Several problems were encountered when constructing a complete data set for the dy-
namic discrete-continuous choice model. One major difficulty was the lack of information.
regarding heating equipment prices. Other limitations of the data have directly influ-
enced the actual model specification. One may for example refer to the fact that district
heating is excluded as a separate technology in the model. At the same time, income per
dwelling, the share of single family dwellings, the share of dwellings with central heating
and average dwelling area are constructed using figures for total heated dwellings. The
representation of 'central heating' as an independent variable is also a principal limitation
of the model framework. A more satisfactory way of taking this variable into account
would be to introduce explicitly a choice between a central and a non-central system in
the model.

Instead of using average data for fuel shares in the various countries and years,
individual observations of fuel choices would clearly have been preferable. The LBL data
base does not provide sufficient information of conversion from on technology to another.
Such data would obviously have been very useful for estimating the above kind of model.
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