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ABSTRACT

The standard neo-classical formulae for the user cost of capital is based
on the assumption that the retirement and decline in efficiency of the
capital units with age follow an exponentially declining function
(exponential decay). In the present paper, we generalize this specification
to the case where the capital volume is defined in terms of a general
survival function. The specification of the corporate tax system in this
context is discussed. Three capital concepts are involved: the gross
capital, the net capital, and the tax accounting capital. Conditions for
neutrality of the tax system, which generalize previous results in the
literature, are established. Numerical illustrations based on Norwegian
data are reported.
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1. INTRODUCTION

Thé cost of using real capital as a factor of production is one
of the‘principél determinants of the firm's investment decisions. It.is also
a useful tool in theoretical and empirical analysis of the system of corpo-
rate taxation. Seminal contribuﬁions to this literature were the articles
by Jorgenson (1967) and Hall and Jorgemson (1967), in which the user cost of
capital and its dependence on the corporate income tax system were inte-
grated into a neo—classical model of producer's behaviour. A basic assump-
tion in these articles, which has been more or less tacitly accepted by

most researchers,‘is that the replacement investment (technical de-
preciation) is a constant, time invariant proportion of the capital stock.
Constant rate of technical depreciation has also become a main ingredient
in.the growing literature on the optimality, or lack of optimality, of the
corporate income tax.1)

Several authors have, however, contested this hypothesis, both

2)

theoretically and empirically. If weAdisregard the empirically un-

interesting situation in which investment grows at a constant rate, it
will be satisfied only in the special case where the survival rates are

3)

exponentially declining functions of the capital's age (exponential
decay). Jorgenson, on the other hand, has attempted to justify this
hypothesis as an approximate long-run description. (Jorgenson et al.
(1963).) He invokes "a fundamental result in renewal theory that

§

replacements for ..... an infinite [investment] stream approach a constant

1) See e.g. King (1975), Sandmo (1974), Boadway and Bruce (1979), and
Atkinson and Stiglitz (1980, section 5.3).

2) Examples are Griliches (1963), Feldstein and Foot (1971), Eisner (1972),
Feldstein and Rothschild (1974), and Hulten and Wykoff (1981),

3) When considering time as continuous. If time is discrete, the hypothesis
implies geometrically declining survival rates.



proportion of capital stock for (almost) any disﬁribution of replacements
for a single investment and for any initial age distribution of capital
stock". (Jorgenson (1963, p. 251).) Long-run constructs are, however,
difficult td implement. econometrically, and in any case, the relevance of
Jorgenson's simple conclusion for short-term model building is questionable.
The short-run variations in economic activity are usually accompanied by
large fluctuations in gross investment , and it may be a drastic simplifi-
cation to exclude a priort the possibility that these fluctuations.affect
the average annual depreciation rate. x
The problem of defining and measuring the user cost of capital is
closely related to the problem of defining and measuring the volume of the
capital stock. They are, in a sense, dual problems; This implies that
the underlying specification of the replacement process should be the same
for the two variables if they are to be applied in the same analysis. It
would, for instance, be inconsistent to combine user cost series conctruc-
ted on the basis of a constant rate of technical depreciation with capital
data computéd by cumulating previous investment series and assuming linear
depreciation or a 'one horse shay' (simultaneous exit) specification; the lat-
ter being a common procedure for comstructing capital data in several
countries.4)
Moreover, taking constant rate of technical depreciation as a
maintained hypothesis will strongly restrict the class of tax systems which
can be analyzed from the point of view of optimality (neutrality). Sympto-
matically, authors dealiag with this issue have almost without exception
considered only the declining balance method of calculating depreciation

allowances for tax.purposes.s) This is probably due to the formal

4) See, for instance, OECD (1982).
5) Examples are Sandmo (1974), Hartman (1978), Boadway (1980), and
Bergstrém and S&dersten (1982).



similarity between this depreciation scheme and the specification with
a constant rate of technical depreciation, since it implies that a constant
fraction of the firm's book value of the capital stock is written off in its
accounts each year. But practically important depreciation schemes, like
straight-line depreciation and the sum—-of-the-years'-digits method, cannot
be properlf handled within this framework. So both theoretically and
empirically the standard parametrization may be felt as something of a
strait—jacket, and a generalization is well worth exploring.

In this paper, we attempt to generalize the specification
with constaﬁt_rate of technical depreciation to the situation
where the capital volume is defined in terms of a general survival function
on the basis of past investment. We start by defining the basic capital
concepts (and some related terms) required for deriving the user cost
of capital (section 2). It becomes essential to aistinéuish betweeﬁ the
capacity 'dimension' and the wealth 'dimension' of the capital. The former
represents the (potential) flow of capital services from a firm's equipment
at a given point of -time = it is the variable to be used as argument in
a production function. The user cost of capital is the cost per unit of
these capital services, or equivalently, the cost of using the capacity
of the capital stock at a given point of time. The wealth dimension of
the capital, on the other hand, is needed for defining corporate income,
depreciation, deprecia;ion allowances for tax purposes, and hence taxable
incoﬁew In section 3, we derive, on the basis of these two capital concepts,
a general expression for the user cost of capital in the presence of corpo-
rate taxation. In section 4, we consider more closely the effect of the tax
system on the user cost via the rules for depreciatién allowances, interest
deductibility, and capital gains taxation. Our results appear as generali-
zations of previous conclusioné in the literature confined to models with
exponential depreciation. Finally, in section 5, we present some numerical

results based on parametric survival profiles and Norwegian data.



2. PRELIMINARIES: GROSS CAPITAL, NET CAPITAL, REPLACEMENT
(DETERIORATION), AND DEPRECIATION

Let J(t) denote the quantity invested by the firm at time t,
where time 1is considered as continuous. To characterize the retirement
of the capital units over tinie, we introduce the function B(s), indicating
the proportion of an investment made s years (periods) ago which still
exists as productive capital. It represents both the loss in efficiency’
of existing capital units and physical disappearance of old capital goods.
This function, which we call the 'technical survival fuﬁction’, is non-

increasing, with values between 0 and 1 :

(1) 0<B(s)<1, B'(s)<0 (if it exists) for all s20,

B(0) =1, B(») =0.

. 6 .
We assume that the units of measurements ) are chosen in such a

way that one capital unit 'produces' one unit of capital services per

unit of time. Then
(2) K(t,s) = B(s)J(t-s)
represents both the volume of the capital which is s years of age at

time t and the momentaneous flow of capital services produced at time t

by capital of ag: s . The total capital volume at time t , in the following

to be denoted as the 'gross capital stock’, is

- (3) R(t) = [ R(t,s)ds = / B(s)J(t-s)ds.
0 0

6) And possibly also the definition of the functional form of the production
function.




This is a technical concept, indicating the productive capacity of the
capital stock at time ¢t .
The volume of the capital worn out at time t , or the replacement -

(deterioration), can now be written as

(4) D(t) = J(t) =K(t) = f b(s)I(t-s)ds,
i 0
where (if it exists) -
(5)  b(s) = -B'(s) (s30).

The function b(s) ?epresent§~the:share of an initial investment (expressed
in efficiency units) which disappears s yeérs after its instalment;j)‘

Let q(t) denote the investment price at time t. The current invest-
ment outlay is q(t)J(t). The market value of an old capital object does not,
in general, reflect its historic cost, but rather the service flow that it

is likely to produce during its remaining life time. It is this property.

which is of interest to a potential purchaser (user) of capital goods.

The value of the capital vintage t-s at time t can be written as
(6) v(t,s) = q(t,s)K(t,s),

where q(t,s) is the price of one capital (efficiency) unit of age s at time t, and

K(t,s), as defined in eq. (2), is the number of such units.

7) Here we interpret the functions B(s) and b(s) deterministically. They
can also be interpreted within a stochastic framework: B(s) is then
the probability that a new capital unit will survive in at least s
years, and b(s) is the density function of its life time.



We make the specific assumption that the relative prices per unit
of capital objects of different ages, at each point of time, perfectly
reflect the differences in their prospective service flows. The total

flow of capital services from one capital unit during its life time 1is

®(0) =/ B(z)dz.
0
In general,
. R -
(7 o(s) = [ B(z)dz (s>0),
BZS.;S =

has. the 'interpretation as the flow of remaining capital services to be.

produced per capital unit which has attained age s, since / B(z)dz is the
‘ s
service flow produced after age s by one inztial capital unit and B(s) is

8)

the share of this unit which attains age s . We can then express our

assumption as follows:

"~ (8) Sé%é§l =-%%%} for all s>0.

Substituting (2), (7), and (8) in (6), we obtain

(9 V(t,s) = q(t)G(s)J(t~s),

where
J B(z)dz

(10)  G(s) = B(S;féi‘) =32 (s20).
/ B(z)dz
0

8) If the replacement process is interpreted stochastically (cf. footnote
7), it can be shown that 9(s) represents the expected remaining life
time of a capital good which has attained age s .



The value of the capital vintage t-s at time t is thus the product of the
replacement value of the original investment, q(t)J(t-s), and the share of
the total service flow which is produced by one capitél unit after it is s
years old, G(s). Aggregation over capital vintages yields the following

expression for the total capital value at time ¢t :
(o] oo}

(11) V(t) = J V(t,s)ds = S q(t)G(s)JI(t-s)ds.
0 0

This value can be separated into a price and a volume
component in several ways. For our purpose, the following decomposition

is convenient:

(12) v(e) = q(e)K (L),
where

(13) Ky(e) = Z G(s)J(t-s)ds.

We shall call KN(t) the 'net capital stock'. Like the gross capital K(t),
it is a volume concept constructed by aggregating the previous investment
flow in volume terms, but the weighting system is basically different. The
weight assigned to investment made s years ago in KN(t), G(s), is the
share of the total service flow produced by one unit invested after it <s

s years old, whereas K(t) is based on the survival rates B(s), or, what is
equi&alent,on the {nstantaneous service flow at age s. From (10) and (1) it

follows that G(s) has the same general properties as B(s):

(14) 0<G(s)<t, G'(s)K0 (if it exists) for all s>0,

G(0) =1, G(»®) =0 -



Differentiating (12) with respect to timé, we get

(15) \}(t) = q(t)I.cN(c) + c'l(t)KN(t).

9)

We define depreciation, in volume terms’, as the difference between the
volume of the gross investment and the increase in the volume of the net

capital stock:
(16)  Dy(e) = J(&) =K (&) = é'g(s)J(t-s)ds,
where (if it exists)

U7 gls) = -¢'(s) = & (s20),

J B(z)dz
‘0

the last equality following from (10). The function g(s) has the same
relation to depreciation as b(s) has to deterioration; the former is in a
sense:the economic counterpart to the-laﬁter, technical concept,

The (net) value of depreciation (the true economic depreciation) is
the difference between the current investment outlay and the rate if increase

of the capital value:

(18)  E(H) = q(£)J(t) -V (c) = q(t)DN(w-c}(c)KN(c)

@

= q(t) S {g(s) - LKL
0

e - G(s) }J(t-s)ds.

9) We herg define deprecigtion as a volume concept. It can alternatively
be defined "from the price side", i.e. in terms of the prices q(t,s).

(Cf. e.g. Hall (1968) and Jorgenson (1274).) The two interpretations can
be shown to be equivalent.



Here we can intérpret q(t)DN(t) as the gross value of depreciation, and
d(t)KN(t), i.e. the part of the increase in the capital value which is due
to changes in the current investment price, as the value of the appreciation
of the capital. Their difference is the true economic depreciation. An
equivalent way of stating this is that the weight g(s) assigned to capital
vintage t-s when calcuiating the volume of depreciation, should be replaced
by the 'inflation adjusted' weight g(s) - [q(t)/q(t)]G(s) when calculating

its value counterpart.

3. THE USER COST OF CAPITAL: A GENERAL FORMULA

Since one capital unit produces ®(0) units of capital services
during 'its total lifevtimej and since -.in the abéence of taxation - its
(effective) purchase price is q(t), q(t)/®(0) would be the price per unit of
capital services at time t - or the user cost of capital - in the absence
of interest costs. To account for such costs, we replace ®(0), as defined
in (7), by the corresponding service flow discoﬁnted at the real rate of

interest plo)

(19) o (0) = JSeP%B(2)dz, -
e 0

and define the user cost as

(20) c(t) = %(E(?)) = Q(t)
| ° e_sz(z)dz

D 8

10) More precisely, p 1is the rate of interest forgone by a producer who owns
the capital and uses: its services instead of purchasing interest-
bearing financial assets.
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[Note that if we set p = r-y, where r is the nominal interest rate and.7
is the rate of increase of q, and if r and Y are constants, then (20) is
©

equivalent to q(t) = Se F?c(t+2)B(z)dz.]

We now introdgce corporate taxes into this framework. We proceed
by first specifying an income tax function which comp?ises a wide class of
tax systems as special cases, and expressing the user cost of capital in terms
of the parameters of this general function. Then, in section 4, we consider
some specific tax systems within this class.

Let X(t) denote the difference between the firm's output value and
the total costwmf all other inputs than capital at time t. The tax function
is

® .

(21) T(t) ~ulxtt) - q(t) S u(s)I(t-slds] ,
: 0

where u is the income tax rate (assumed to be constant) and u(s) is a

function representing the effect of the previous investment decisions on

the current income tax base: an increase in the replacement value of an
investment made s years ago by one unit reduces the current tax base by
u(s) units. This is a general way of representing the depreciation

allowances, the treatment of interest deductions and capital gains, and

other factors determining the corporate taxable income. All tax systems

we shall consider i section 4 can be written in this format.
The firm's net cash-flow at time t is

(22) R(t) X(t) - q(e)J(r) - T(t)

(1]

(1-w)X(t) - q(£)[I(t) - u J u(s)I(t-s)ds].
0
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Let r be the (constant) rate of (nominal) interest at which the firm
can discount receipts and outlays at different points of time, and assume

that the investment price grows at a constant rate Y . The present value

 of the net cash-flow can then, after some rearranging, - be written as
-]
(23) W=/ e "CR(t)dt
0
2 t 1-A
=/ TN (1-u) [X(0) = q ()= J(6) Jdt + W,
0 oo T 0

where’

(24) WO‘=uf efrtq(t) J u(s)J(t-s)ds dt
0 t

and

(25) X ='? e-(r-Y)zu(z)dz.
0

Since Wo is affected only by investment decisions madé before«timé t =0
it represents the part of W which is predetermined in relation to the firm's
plans for the period [0,=).

Eq. (23) shows an interesting correspondence between the income tax
(21) and a tax on the firm's net cash-flow: A tax on the corporate income
at the rate u is equivalent to defining a corrected investment price q*(t) =
q(t) (1-Au)/(l-u) and taxing the resulting net cash-flow X(t) -‘q*(t)J(t)

at the rate u in each period.ts[O,G).ll)

We shall refer to (1l-Au)/(l-u)
as the fiscal factor in the following. This motivates us to modify the

definition of the user cost of capital accordingly. We then get

11) This, of course, presumes the existence of a perfect financial market, by
means of which the firm can transform payment streams between periods at
the interest rate r.
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*.
(26)  c(t) (t) o q(w) l-Au ,

2 (@ 9@ T-u

r

or

investment price

user cost of capital =
- P present value of capital service flow

fiscal factor.

This is our general formula for the user cost of capital in the
presence of corporate taxes. It is more general than the expressions usu-
ally discussed in the literature since it applies to any specification of
the.survival function B(s) and any system of capital taxation which can be

represented by the general weighting function u(s).lz)

4. THE EFFECT OF THE TAX SYSTEM

Let us now consider, more specifically, how depreciation allowances,
interest deductibility, and taxation of capital gains affect the form of
the function u(s), and hence the parameter A and the user cost of capital
c(t). For this purpose, we introducé the concept accounting cdpital. This
is the capital concept used by the firm (and the tax authorities) for accoun-
ting purposes in order to define depreciation allowances and, possibly, also
for calculating interest deductions, and capital gains. We define the value

of the accounting capital at time t as

12) It can be shown formally that (26) is consistent with the conditioms for
maximization of W with respect to J(t), subject to (3). The first order
condition for this problem can be expressed as

q<t)1—if§- = SR (t+2)B(2)dz
0
=9

where Xé(t+z) X(t+z)/3K(t+z) is the value of the marginal product of

capital services at time t+z. Since (26) implies

[--]
q(t) liiz = Jfe F%c(t+z)B(z)dz,
0

the user cost of capital as defined above corresponds to the opportunity
cost of holding capital goods in this constrained optimization problem.




13

27) VA(t) =

o 8

A(s)e®Sq(t-s)JI(t-s)ds,

where A(s) is the proportion of the original investment cost which is
included in the accounting capital s years later, and e®S is an inflatiom
adjustment factor: € 1is the inflation rate which the firm is allowed to
use for tax accounting purposes. If €=y, the accounting capital is based
on replacement cost, if €=0, it is based on historic cost, etc. The
function A(s), which may be denoted as the statutory survival function of

the accounting capital, is assumed to satisfy

(28) 0<A(s)<1, A'(s)<0 (if it exists) for all s>0,

A(0) =1, A(») =0,

i.e. it has the same general properties as B(s) and G(s); cf. (1) and (14).

The depreciation allowances at time t can be written as
[o o]
(29) DA(t) =/ a(s)eesq(tes)J(t-s)ds;
0
where (if its exists)

(30)  a(s) = -A'(s) .

The function a(s) represents the statutory depreciation rates, i.e.

the weight assigned to capital invested s years ago when calculating the
volume component of the depreciation of this capital vintage. Its price
component is the original purchase price inflated by =S,

From (27)-(30) we obtain

Y}A(t) = q()J(t) =D, (t) +eV, (£) ,
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which shows that DA(t) has the character as the gross depreciation of the
accoﬁnting capital. Its net value is obtained by subtracting

. the capital gains'as recorded in the firm's accounts, EVA(t). Hence, in
analogy with eq. (18), which gives the true economic depreciation of the

firm's capital, we can define the accounted net depreciation as

"

(31) EA(t) q(t)J(t) —VA(t) = DA(t) —eVA(t)

i) {a(s)-€A(s)}e€sq(t—s)J(t—s)ds.
0

Obviously, we have EA(t) = E(t) (and VA(t) = V(t)) regardless of the time "
path of q and J if the following two conditions are satisfied: (i)
A(s) = G(s) (= a(s) = g(s)), i.e. the statutory survival function for the
accounting capital coincides with the weighting function for the net
capital, and (ii) € =Y’=(i(t)/q(t), i.e. the rate of inflation permitted
for accounting purposes is equal to the rate of increase of the investment
price.
Let m be ﬁhe proportion of the (imputed) interest§ on the capital

value which is deductible in the firm's income tax base, and n the propor-

tion of the capital gains, defined as d(t)KN(t) = yV(t), which is included

in taxable income. The tax function then becomes
(32)  1() = ulk(t) - D, (£) - mrV(t) + myV(D)]

lnserting from (29) and (11), this implies that the function u(s) in (21) takes on

the following specific form:

(33) u(s) =»a(s)e(E_Y)s4-{HW"nY}G(S).
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Define, for an arbitrary constant p, the functions

(34) ~Yp:= SeP%G(s)ds,

o

Se™P%A(s)ds.
0

(35) Z
P

Inserting (33) in (25) and making use of (34)-(35), we find that the para-

meter A in the fiscal factor can be written as
(36) } = 1= (r-e)zr_e + {mr-nq}Yr_Y.

The resulting formula for the user cost of capital -becomes

g(t) 1
o (0) ° I-

(37) c(t) = [l1-u{l-(r-e) Z + {mr-ny}y_ 1.
u _ r-¢ r-y

We have thus expressed the user cost of capital in terms of the in-
vestment price q(t) and its rate of increase, the interest rate r, the tax
parameters u, €, m, and n, and the present values of the survival rates of
the gross capital ¢r-7(0)’ the net ca?ital,‘Yr_Y, and the accounting capitaLZr_e.
Note that the first two present values are based on the market real interest

rate r-y, while the third is based in the ''tax permitted" real interest rate

. r-€. From this formula we derive three conclusions:

1. The fiscal factor will be 1 when A=l. This is thus, in general form,
the condition for neutrality of the corporate tax system. It will be satis-
fied uniformly (i.e. for all values of u, r, v, and G(s)) in the following
cases:

(a) Depreciation allowances are based on replacement value (e=y),

with the depreciation rates equal to the true rates of depre-

ciation of the net capital{A(s) = G(s)=>-Zr_Y = Yr-Y)’ full interest
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deductibility is permitted (m=l), and capital gains are fully

included in taxable income (n=1).

(b) Immediate deduction of capital purchases in taxable incéme is -
permitted (Zr-e = 1), no interest deductibility is permitted
(m=0), and capital gains are not subject to taxation (n=0).
Conclusion (a) generalizes the conclusions of Sandmo (1974, sections &4, 6
and 7), King (1975, p. 275), and Boadway (1980, pp. 254-255) to the situation
with general survival functions of gross capital, net cépitai, and accounting

capital. These authors consider the case with an exponentially declining

survival profile (B(s) = e’és) and the declining balance method of deprecia-

' tion (A(s) = e %) only. Conclusion (b) confirms the neutrality of the

cash-flow tax.

2. These conclusions rest essentially on the assumption that the tax-
permitted interest deductions, and the calculation of capital gains are
based on the capital calue V(t) as defined in (12). 1f, howevef, these
components are calculated on the basis of the accounting capital VA(t), as

defined in (27)'the tax function (32) changes to

T(t) = u[ X(t) - DA(t) - erA(t) + neVA(t)]

and we get
A= 1-{(1-m)r - (1-n)e}z .
r-€

In this case, the condition- for neutrality (A=1) is simply m=n=1,

regardless of the values of & and zZ_ and hence of A(s). The interpretation

-e?
of this is that with full interest deductibility and full inclusion of caﬁiﬁal
gains, the tax system - including the form of the accounting capital function -
will not interfere with the firm's optimizing conditions, provided that the

same accounting capital concept is used for calculating deprectation

allowances, interest deductions, and capital gains. This generalizes the
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conclusion in Boadway (1980, pp. 255-256), which is confined to a model

with exponential depreciation allowances.

3. The distinction between the gross and the net capital concepts is
indisﬁensible for the derivation of the general user cost formula (37). 1In
one particular case, however, their values are equal, namely the familiar
exponential case B(s) = e"%%. Then ?(s) = 1/6 and G(s) = B(s) for all s;

cf. (7) and (10). In this degenerate case, we have

%ﬂ=nﬁ=ﬁ&%w%
If, for instance, depreciation allowances are calculated according to the
declining balance scheme, A(s) = e—as(a>0), based on historic cost (e=0),
i.e.

Z_ = 1/ (z+a) ,

and if m=1 and n=0, eq. (37) gives the same expression for the user cost
of capital as the one discussed in Boadway (l98bJ p. 257):

ur(&-y-a) ]

c(t) = q(e) (e+d=y)[1 + (1-u) (r+d-y) (r+a)

5.NUMERICAL ILLUSTRATIONS

The above results. hold for any specifications of the survival function.
for gross capital, B(s), and of the statutory survival function for accounting
capital, A(s), which satisfy (1) and'(28). In this section, we consider a
selection of parametrizations of these functions to illustrate (i) the relation-
ship between the curvature of B(s) and the user cost of capital, and (ii) the

sensitivity of the user cost with respect to the tax parameters m, n, and €.
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For this purpose, we specify two classes of survival functions for

gross capital, B(s). Both have two parameters, the first, denoted by N,

representing the (maximal) life time of the capital, the second indicating

the 'curvature' of the survival profile.

Class_ I

The first class has the form

T
(1 =)
(38)  B(s) = BY(s;N,T) = N
0

.. 13) .
where N and T are positive ° constants, T integer.

(5), (10), and (17), we obtain

9 T S T-1 T I
(39) b(s) = ﬁ(1-?9 = FB (s;N,T-1)
T+1 I
(40)  G(s) = (1 —%) = B (s;N,T+1),

T
(41) g(s) = T—;—‘-U -%) = 1;1—131(5;1\1,1') ,

respectively.

for 0<s<N

for s>N,

Inserting this in

for 0<s«N,

13) B(s), G(s), and g(s) are defined also for 1=0, but b(s) is undefined.
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Class II
The survival function in the second class is

ag
1= (-%) for 0<s<N

(62) B(s) = BII'(S;-N,G) =
0 . for s>N,

where N and O are positive constants, O integer. This parametrization

implies
0,877 o 1T
(43? b(S). = ﬁ(-l\-f) ='*I;]-[1-B (s;N,0-1)],

. 5 ‘
; S s s _ 1., 1T, . 11T, .
(44 G(s) = I~% -ﬁh - (ﬁ) ]-(1*0-)3 (s3N,1) B (s3N,0+1) ,

g
. g+1 s _o+1_IT, .
(45) g(s) ‘6:31—[1 (ﬁ) ] ——EFI—B (s3N,0) , for OﬁSSN .

These two pa_.rametrizations contain several specifications discussed
in the literature as special cases. The case in which all capital objects
retain their full productivity during N periods and are then completely
scrapped (simultaneous exit, 'one horse sﬁay"‘), corresponds to class I with
T=0, or class II with 0 >», The case with a linearly decreasing survival
function B(s) is obtained by 'letting T=1 in classI or o=1 in class II. In
this case, the survival function for net capital is simply G(s) = (1-s/N)2,
with g(s) =(2/N)(1-s/N), which follows from eqs. (40) and (41) (or (44) and
(45)). We reco.gnize the latter as the depreciation rates implied by the
sum-of-the-years'-digits method. Furthermore, class I with T+ (énd N
finite) implies momentaneous scrapping of the capital once it has been

installed (for practical purposes, this is equivalent to a situation with



20

a service lifé of one year). I1f, however, T and N both go infinity while
their ratio is a finite constant §, then class I degenerates to the
standard exponential case, B(s) =e_6s;
All members of class I in which T>2 have (strictly) convex survival
functions for both gross capital and net capital (i.e. b'(s)<0, g'(s)<0).
In class II, 0>2 implies a (strictly) concave survival function for gross
capital (i.e. b'(s)>0), but a (strictly) convex survival function for net
capital (i.e. g'(s)<0). There is thus no conflict between the. assumption
that the technical deterioration of the capital is increasing with age and
the assumption that the depreciation (decline in capital value) is decreasing.
Function values of B(s) and G(s) for N=20,14) with different values
qf o and T, are given in table 1. Corresponding values of the relative
user cost of capital, c/q, with the fiscal factor set to unity (i.e. A=1),
are recorded in table 2. The user cost depends strongly on the curvature

of the survival profile, as characterized by 0 and T, the sensitivity

is larger the lower is the technical life time.

Table 3 illustrates the sensitivity of the user cost with respect to
the interest deductibility parameter m, fhe share of the capital gains sgbf
ject to taxation n, and the inflation édjustment parameter €. For simplicity,
we consider only the case where the survival function of theigross capital is

of the 'simultaneous exit' type (t=0, or ¢ —= @)=implying a linearly declining

survival function for net capital — and where the depreciation allowances

are linear over T years, where T may be different from N.

The forr:ch column of the bottom part of the table (T=N=20, m=n=1, and e€=Y)
corresponds to the neutral tax system referred to in section 4. We observe
that other constellations of the tax parameters T, m, n, and € may give large

departures from neutrality, in particular when the inflation rate is high.

14) Since (38), (40), (42), and (44) are homogeneous of degree zero in s and
N, it is straightforward to compute similar function values for other
values of N from this table.
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An interesting question for econometric work with investment equations
is to which extent the standard parametrization with constrant rate cf
(technical) depreciation is an acceptable approximation fof practical pur-
poses. From our formulae, we can throw some light on this issue. In a
stationary :situation with constant (grcss) investment, the rate of deterio-

©
ration (i.e. D/K) will be equal to 6y = I/éB(z)dz. Eqs. (38) and (42) give,

in particular,

"+ 1
6y = T 5 (class I),
by o o+l (class 1I).
oN :

Let us use this as an approximation to the actual deterioration rate in
situations with fluctuating investment; Assume that the actual survival
profile is of the gimultaneous exit type (t=0, o-=), whicﬁ implies 60 = 1/N.
This suggests approximating Qr_Y(O) and Yr-q by 1/(r+1/N-y) in eq. (37),
since thw(o) ___»Yr-_‘Y = 1/(r+6-y) holds exactly when the deterioration rate is
ccnstant and equal to 8, i.e. in the case with exponential survival profile.
(Confer conclusion 3 in section 4 above.)

In table 4, wé compare — for different values of the tax parameters
m, n, and € - these two ways of calculating the relative user cost (c/q).
The data employed for u, r,and Y = {/q are Norwegian annual data for the
income tax rate (joint-stock companies), the interest rate (loans from
commercial banks to companies) and the rate of increase of the price of investment
in machinery and equipment for the years 1965-1980. We find that

the series calculated from the exact formula are significantly different
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from those based on the approximate formula and the latter have a tendency
to exaggerate the fluctuations. In most cases, however, they move in the
same direction from one year to the next.

The results in table 4 indicate that a first order approximation
based on a constant rate of technical depreciation may lead to inadequate
estimates of the variations in the capital cost for policyanalysis and
prediction. This conclusion will probably hold a fortiori if 60 is replaced
by a time function equal to the observed ratio between the replacement and
the gross capital stock - a common practice in empirical investment analysis.
The formulae for d)r_Y(O) and Yr-»‘y’ as well as their inverses, are, in general, .
highly non-linear expressions. In periods with fluctuating interest and infla-
tion rates - as several countries havevexﬁerienced during the last 15 vears.
the standard treatment of the replacement component in the user cost of
capital may not be as innocent a simplification for empirical research as

it may first seem.



TABLE 1. Survival profiles for gross and net capital.

Technical life time: N = 20.

simult. exit class II, o~ = 10 class II, o= 5 class II, o =2
age -
s gross net gross net gross net gross net
00 1. 00000 1.00000 1.00000 1. 00000 1.00000 1.00000 1.00000 1. 00000
01 1. 00000 0. 95000 1.00000 0.94500 1. 00000 0. 94000 0.99750 0.92506
a2 1.00000 ' 8. 99000 1.00000 0.89000 8.99999 . 86000 0. 99000 0.85050
63 1.00000 0. 65000 1.00000 | 0.83500 0.99932 0., 62000 0.97750 0.77669
04 1. 00000 0. 60000 1. 00000 0. 76000 0.99968 . 76001 0. 96000 0. 70403
05 1.00000 0. 75000 1.00000 0. 72500 0.99902 0. 70005 0.93750 0.63281
%6 1. 00000 0. 70000 0.99999 0.67000 8.99757 0.64015 0.91000 0.56350
o7 1. 00000 0. 65000 0.99997 0.61500 0.93475 9.58a37 0.87750 0.49644
08 1.00000 0. 60000 0.99990 0. 56000 0.98976 0.52082 0.84000 0.43200
09 1.00000 0. 55000 0.93966 0. 505a2 0.98155 0.46166 8.79750 8.370656
10 1. 00000 0. 50000 0.99902 0. 45085 0.96875 0.40313 0. 75000 0.31250
11 1. 00000 0. 45000 0.99747 0.39514 0.94967 0.34554 0.69750 0.25819
12 1. 00000 0. 40000 0.99395 0.34836 8.92224 9.28933 0. 64000 0. 20000
13 1. 00000 0. 35000 0.98654 0.28568 0.88397 0.23508 0.57750 8.16231
14 1. 00000 0. 30000 0.97175 0.23198 0.83193 0.18353 0.51000 0.12150
15 1. 00000 0.25000 0.94369 0.17922 0.76270 0.13560 0.43750 0.068594
16 1. 00000 0. 20000 0.89263 0.12859 8.6723 0.09243 0. 36000 0. 05600
17 1. 006000 9. 15000 0.684313 0.06173 0.55629 0.05543 0.27750 0.03206
18 1. 00000 0. 10000 0.65132 0.04138 0.40951 0.082629 . 19000 0.01450
19 1.00000 0. 085000 0.40126 0.01168 0.22622 0.00702 0.09750 0.00369 -
20 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 (9% 5%

34



TABLE 1.

(Cont.)

class I, T =S

class I, T = 10

linear deterioration class I, T =2

age

s gross net gross net
0 1. 00000 1.00000 ' 1.00000 1.00000
a1 0. 95000 0.9a250 0.90259 0.85737
(%724 0. 90000 0.81000 0.61000 0.7290
a3 0. 85000 0.72250 0.72254 0.61412
()] 0. 8000a 0. 64000 0.64000 0.51200
25 8. 75009 0.56250 0.56250 0.42187
06 0. 70000 0. 495000 0. 49000 0.34300
a7 0. 65000 0.42250 0. 42250 0.27462
08 0. 60000 0. 36000 0. 36000 0.21600
09 a. 55000 0.38250 0.38250 0.16637
10 @. 50000 0. 25000 0. 25000 0.12500
11 0. 45008 0.28250 0.20250 0.09112
12 0. 40000 0. 16000 0. 16000 0.06400
13 0. 35000 0.12250 0.12250 0.04287
14 0. 30000 0. 89000 0.05300 0.82708
15 0.25000 0.06250 0.06250 0.01562
16 0.20000 . 0. 04009 0. 64000 0. 08600
17 0. 15000 0.82250 0.82250 0.00338
18 0. 10000 0.01000 0.01609 0.00100
19 8.05000 0.08250 0.00250 0.00013
29 (%% % % %) %% %% %) 0. 0BLd (7% % %% ")

gross net gross net
1.00000 1. 00000 1. 00000 1.00000
0.77378 0.73509 0.59874 0.56680
0.59049 0.53144 0.34868 8.31331
0.44371 0.37715 0.19687 8.16734
0.32768 0.26214 0.10737 8.835%0
0.23730 0.17798 0.085631 0.84224
0.16807 0.11765 0.026825 0.01977
0.11683 0.07542 0.81346 . 0.80875
0.07776 0.04666 0. 6605 0.60363
0.05033 0.02768 0.00253 0.00139
0.03125 0.01562 0. 00098 0.080049
0.01845 0.08330 0. 00034 9.00015
0.01024 0.00410 0.00010 8. 63004
0.0a525 0.00184 @.0a303 e. 6001
0.08243 0.00073 0. 20001 8. 6200
0. 00098 0. 00324 (%% 8% %) 0. e300
0.00032 0. 00006 0. 66000 0. 06000
0. 00008 0. 00001 0. 00000 9. 60002
0. 00001 0. 60000 0. 6000 0. 6000
0. 00000 %% %% %) 0. 020000 0. 62000
0. 60000 %% 5% %) 0. 0000d 0. 0Bs9d

e



TABLE 2. User cost of capital for different survival profiles.

Fiscal factor =1 (i.e., c/q = 1/1}P ).

Per cent of investment price.

Technical Real rate Simul - Linear -
life time of interest taneous Class II: B(s) = 1 - (§)°  Dererto- Class I: B(s) = (1-8)"
(max) pa) exit: , ration: N
Class II, o== : Class II, o=l
N Per cent Class I, t=0 0=10 o=5 o=2 Class I, t=1 =2 =5 =10
6 0 16 .67 18.33 20.00 25.00 33.33 50.00 100.00 183.33
19.29 - 20.97 22.68 27.90 36.75 53.81 104 .31 187.92
10 22.16 23.83 25 .56 30.98 40.32 57.71 108.66 192.52
20 0 5.00 | 5.50 6.00 - 7.50 10.00 15.00 30.00 55.00
7.91 8.39 8.92 10.60 13.59 18.92  34.36 59.61
10 11.57 11.97 . 12 .46 14.22 17.62 23.13 38.83 64.27
50 - 0 2.00 2.20 2.40 3.00 4.00 6.00 12.00 22.00
5 5.45 5.59 5.77 6.48 7.90 10.13 16 .44 26 .64
10 10.07 10.12 10.22 - 10.83 12 .48 14.72 21.10 31.38
90 0 1.11 1.22 1.33 1.67 2.22 3.33 6.67 12.22
5.06 5.09 5.16 5.51 6.41 7.65 11.20 16 .91
10 10.00 10.01 10.02 10.25 11.25 12.40 15.99 S 21.71
@ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

a) Continuous time.



TABLE 3. ]
Survival profile:

User cost of capital for different tax systemsa).
Simultaneous exit, N=20 years.

Per cent of investment price.

Depreciation allowances: Linear, T=10 or 20 years.
Income tax rate: u=0.508b).
Nominal interest rate: r=10 per centC)
A. No taxation of capital gains : n=0a)
Rate of
inflation, T=20 1=10
Y m=0 m=1 m=0 m=1
per cent® e=0 e=y e=0 €=y €= e=y €= e=y
0 18.71 18.71 11.75 11.75 16 .42 16 .42 9.46 9.46
3 15.04 14.02 8.49 7.47 13.20 12.34 6.65 5.79
6 11.72 9.79 5.63 3.71 10.29 8.79 4.20 2.71
9 8.83 6.10 3.23 0.51 7.75 5.84° 2.15 0.25
B. Full taxation of capital gains: n=la)
Rate of
inflation, T=20 T=10
_— m=0 m=1 m=0 m=1
per centC) e=0 €=y e=0 e=y e=0 e=y e=0 €=y
0 18.71 18.71 11.75 11.754) 16 .42 16.42 9.46 9.46
3 17.00 15.99 10.45 9.44%) 15.16 14.30 8.61 7.76
6 15.37 13.45 9.29 7.363) 13.94 12.45 7.85 6.36
9 13.86 11.14 8.27 5.543) 12.78 10.88 7.19 5.29

a) The figures in this table are based on a discrete time version of eq. (37).

The alternatives considered are:

mm3 3
no

0: No interest deductibility.(Or debt ratio = 0.)
= 1: Full interest deductibility.
0: Depreciation allowances based on historic cost.

yY: Depreciation allowances based on replacement cost.

(Or debt ratio =1.)

b) Norwegian tax rate for joint-stock companies.

c) Pro anno rate.

d) Neutral tax system.

9¢



Table 4.

User cost of cagpital for machinery and equipment calculated from exacta) and approximate

Per cent of investment price.

Survival profile: Simultaneous exit, N = 20 years.

Depreciation allowances: Linear, T = 10 years.

A. Full interest deductibility: m =1

No taxation of capital gains: n=0 . Full taxation of capital gains: n=1
Depreciation allowances based on: Depreciation allowances based on:
Year orig. cost: €=0 repl. cost: e=y ' orig. cost: e=0 repl. cost: e=y
exact approx. exact approx, exact approx, exact apprdx.

1965 4 .80 3.59 3.97 2.62 6.59 6.75 -5.76 5.77
1966 5.53 4.90 4.96 4.21 6.73 6.95 6.16 6.26
1967 6.39 6.36. 6.15 6.06 6.87 7.16 6.64 6.87
1968 7.217 1.72 7.42 7.91 6.97 7.24 7.12 7.43
1969 3.86 1.63 2.55 0.12 6.85 6.98 5.55 5.48
1970 0.74 -6.33 -1.04 -6.55 5.90 - 5.20 4.12 4.98
1971 3.85 1.72 2.62 0.34 6.71 6.91 5.48 5.53
1972 5.00 3.91 4.09 2.82 7.02 7.40 6.11 .6.31
1973 6.70 6.81 . 6.33 6.35 7.47 8.06 7.10 7.60
1674 0.86 -5.70 -1.00. -6.56 6.16 5.62 4.29 4.76
1975 2.70 -0.77 1.06 -2.49 6.81 6.90 5.17 5.17
1976 2.23 -1.69 0.48 -3.47 6.81 6.85 5.06 5.06
1977 2.90 -0.33 1.22 -2.20 7.12 7.35 5.44 5.48
1978 1.04 -3.84 -1.04 -5.93 7.11 7.13 5.03 5.03
197¢ 8.32 8.92 7.79° 8.25 9.51 10.72 8.98 10.05
1980 1.92 -2.38 -0.13 -4.€7 7.49 7.75 5.44 5.47

formulae.

L7



Table 4. (cont.)

B. No interest deductibility: m = 0

No taxation of capital gains: n=0 Full taxation of capital gains: n=l

Depreciation allowances based on: Depreciation allowances based on:
Year orig. cost: e=0 repl. cost: e=y orig. cost: e=Q repl. cost: e=y

exact approx. exact approx, exact approx, exact approx.
1965 8.30 9.75 1.47 8.78 10.09 12.91 9.26 11.94
1966 9.23 11.23 8.66 10.53 10.43 13.27 9.86 12.58
1967 10.27 12.79 10.04 12.50 10.76 13.60 10.52 13.30
1968 11.53 14.56 11.67 14.75 11.23 14.09 11.38 14.27
1969 8.24 9.46 6.93 7.96 . 11.23 14.82 9.92 13.31
1970 3.79 0.48 2.00 0.25 8.94 12.01 7.16 11.78
1971 7.62 8.56 6.39 7.18 10.49 13.75 9.26 12.37
1972 9.05 10.89 8.14 9.80 11.07 14.38 10.16 13.29
1973 11.08 13.93 10.72 13.47 11.85 15.19  11.49 14.73
1974 4.50 2.09 2.64 1.22 9.80 13.41 7.93 12.54
1975 7.15 E 7.53 ' 5.51 5.81 11.26 15.20 9.62 13.48
1976 6.94 ! 7,08 5.19 5.29 ' 11.52 15.61 9.77 13.82
1977 7.97 8.90 6.30 7.03 12.19 16.57 10.52 14.70
1978 7.17 7.24 5.09 5.14 13.24 18.20 11.16 16.10
1979 15.83 . 20.23 15.30 19.56 17.02 22.02 16.50 21.35
1980 - 8.33 . 9.29 6.28 7.00 13.90 19.42 11.85 17.14

8¢

a) The discrete time version of (37). '
b) Discrete time version of (37) with ¢r-7(0) and Yr—7 replaced by 1/(r+1/N-y).
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