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1. Introduction 

Adopting the Lorenz curve as a basis for judging the inequality exhibited by income distributions is in 

line with common practice in applied economics. The strategy for achieving rankings of Lorenz curves 

by the extent of inequality depends on whether or not the Lorenz curves intersect. In the case of non-

intersecting Lorenz curves the higher of the Lorenz curves (first-degree Lorenz dominance) is 

recognized as the one with lowest inequality. The normative justification of this practice relies on the 

Pigou-Dalton principle of transfers, which states that an income transfer from a richer to a poorer 

individual reduces income inequality, provided that their ranks in the income distribution are 

unchanged. However, when Lorenz curves intersect a weaker ordering criterion than first-degree 

Lorenz dominance is called for. To this end it is natural to use either second-degree upward or 

downward Lorenz dominance, i.e. integrating the Lorenz curves from below or above. Mehran (1976) 

provided a normative justification of second-degree upward Lorenz dominance by demonstrating that 

an alternative version of Kolm’s (1976) principle of diminishing transfers is consistent with second-

degree upward Lorenz dominance. The major difference between Kolm’s principle of diminishing 

transfers and Mehran’s principle of positional transfer sensitivity
1
 is that the former accounts for the 

difference in incomes between donors and receivers of income transfers, whereas the latter accounts 

for the difference in the proportion of individuals between donors and receivers. 

 In order to make clearer the normative properties of the criterion of second-degree 

upward Lorenz dominance beyond its transfer sensitivity properties Zoli (1997, 2002) and Aaberge 

(2000b) introduced the (downside) mean-Gini-preserving transformation, which is a combination of 

progressive and regressive transfers that leaves the Gini coefficient unchanged. By applying a 

sequence of (downside) mean-Gini-preserving transformations a Lorenz curve L1 that second-degree 

upward dominates a Lorenz curve L2 can be obtained from L2, provided that L1 and L2 have equal Gini 

coefficients. Thus, the (downside) mean-Gini-preserving transformations transfer inequality from the 

lower to the higher parts of the Lorenz curve. However, as observed by Aaberge (2000b) a social 

decision-maker who supports the Pigou-Dalton principle of transfers may alternatively prefer to use a 

sequence of transformations that transfer inequality from the higher to the lower parts of the income 

distribution. This property is captured by an upside version of the (downside) mean-Gini-preserving 

transformation, where the regressive transfer occurs lower down in the income distribution than the 

progressive transfer. Applying the upside mean-Gini-preserving transformation is demonstrated to be 

consistent with using the criterion of second-degree downward Lorenz dominance. 

                                                      

1 See also Zoli (1999). 
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 To judge the normative significance of upward and downward Lorenz dominance of 

higher degrees than two this paper introduces and justifies the use of various more strict mean-spread-

preserving transformations than the mean-Gini-preserving transformation. 

 As will be demonstrated in Sections 2 and 3, second-degree Lorenz dominance forms a 

natural basis for the construction of two separate hierarchical sequences of partial orderings 

(dominance criteria), where one sequence places emphasize on changes that occur in the lower part of 

the Lorenz curve whereas the other places emphasize on changes that occur in the upper part of the 

Lorenz curve. The hierarchical and nested structure of the dominance criteria appears to be useful in 

empirical applications since we are allowed to identify the lowest degree of dominance required to 

reach unambiguous rankings of Lorenz curves. As the dominance criteria of each sequence are nested 

these strategies also allow us to identify the value judgments that are needed to reach an unambiguous 

ranking of Lorenz curves. To this end, appropriate mean-spread-preserving transformations, which can 

be considered as generalizations of the mean-Gini-preserving transformation, have been introduced. 

Moreover, Section 3 demonstrates that the two hierarchical sequences of Lorenz dominance criteria 

divide the family of rank-dependent measures of inequality into two corresponding hierarchical 

systems of nested subfamilies that offer two different inequality aversion profiles; one exhibits 

successively higher degrees of downside inequality aversion whereas the other exhibits successively 

higher degrees of upside inequality aversion. Since the criteria of Lorenz dominance provide 

convenient computational methods, these results can be used to identify the largest subfamily of the 

family of rank-dependent measures of inequality and thus the least restrictive social preferences 

required to reach unambiguous ranking of any given set of Lorenz curves. Section 4 uses these 

characterization results to arrange the members of two different generalized Gini families of inequality 

measures into subfamilies according to their relationship to Lorenz dominance of various degrees. 

Section 5 summarizes the conclusions of the paper and briefly discusses the use of the obtained results 

as a basis for deriving dominance criteria for generalized Lorenz curves. 

2. Lorenz dominance and mean-Gini-preserving transformations 

The Lorenz curve L for a cumulative income distribution F with mean µ is defined by 

(1) L u F t dt u

u

( ) ( ) , ,= ≤ ≤∫
−

1
0 1

0

1

µ
  

where { }1F (t) inf x : F(x) t−

= ≥  is the left inverse of F. Thus, the Lorenz curve L(u) shows the share of 

total income received by the poorest 100 u per cent of the population. Note that F can either be a 
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discrete or a continuous distribution function. Although the former is what we actually observe, the 

latter often allows simpler derivation of theoretical results and is a valid large sample approximation. 

Thus, in most cases below F will be assumed to be a continuous distribution function, but the 

assumption of a discrete distribution function will be used where appropriate. 

 Under the restriction of equal mean incomes the problem of ranking Lorenz curves 

formally corresponds to the problem of choosing between uncertain prospects. This relationship has 

been utilized by e.g. Kolm (1969) and Atkinson (1970) to characterize the criterion of non-intersecting 

Lorenz curves in the case of distributions with equal mean incomes. This was motivated by the fact 

that in cases of equal mean incomes the criterion of non-intersecting Lorenz curves is equivalent to 

second-degree stochastic dominance
2
, which means that the criterion of non-intersecting Lorenz 

curves obeys the Pigou-Dalton principle of transfers. The Pigou-Dalton principle of transfers states 

that an income transfer from a richer to a poorer individual reduces income inequality, provided that 

their ranks in the income distribution are unchanged, and is defined formally by
3
 

 

 DEFINITION 2.1. (The Pigou-Dalton principle of transfers.) Consider a discrete 

income distribution F. A transfer δ from a person with income ( )−1
F t  to a person with income 

( )−1
F s , where the transfer is assumed to be rank-preserving, is said to reduce inequality in F when 

<s t  and raise inequality in F when >s t . The former transfer will be denoted a Pigou-Dalton 

progressive transfer and the latter transfer a Pigou-Dalton regressive transfer. 

 

To perform inequality comparisons with Lorenz curves we can deal with distributions with equal 

means, or alternatively simply abandon the assumption of equal means and consider distributions of 

relative incomes.
4
 The latter approach normally forms the basis of empirical studies. 

 The standard criterion of non-intersecting Lorenz curves, called first-degree Lorenz 

dominance, is based on the following definition
5
.   

 

                                                      

2 For a proof see Hardy, Littlewood and Polya (1934). 
3 Note that this definition of the Pigou-Dalton principle of transfers was proposed by Fields and Fei (1978). 
4 The importance of focusing on relative incomes was acknowledged already by Plato who proposed that the ratio of the top 

income to the bottom should be less than four to one (see Cowell, (1977)). See also Sen's (1992) discussion of relative 

deprivation and Smith's (1979) discussion of necessities. 
5 Note that most analyses of Lorenz dominance apply a definition that excludes the requirement of strict inequality for some 

u. 
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 DEFINITION 2.2. A Lorenz curve L1 is said to first-degree dominate a Lorenz curve L2 if 

 [ ]( ) ( ) ,
1 2
L u L u for all u 0 1≥ ∈  

and the inequality holds strictly for some , .u 0 1∈  

 

 In order to examine the relationship between various Lorenz dominance criteria and the 

measurement of inequality we will rely on the family of rank-dependent measures of inequality
6
 

defined by 

(2) 

1 1

1

P

0 0

1
J (L) 1 P (u)dL(u) 1 P (u)F (u)du

−′ ′= − = −
µ∫ ∫   

where L is the Lorenz curve of the income distribution F with mean µ and the weight-function P′  is 

the derivative of a continuous, differentiable and concave function P defined on the unit interval where 

P(0) 0=  and P(1) 1= . To ensure that JP has the unit interval as its range the condition P (1) 0′ =  is 

imposed on P. As demonstrated by Yaari (1987,1988) and Aaberge (2001) the JP-family represents a 

preference relation defined either on the class of distribution functions (F) or on the class of Lorenz 

curves (L), where P can be interpreted as a preference function of a social decision-maker. The 

preference function P assigns weights to the incomes of the individuals in accordance with their rank 

in the income distribution. Therefore, the functional form of P reveals the attitude towards inequality 

of a social decision-maker who employs JP to judge between Lorenz curves. The most well-known 

member of the JP-family is the Gini coefficient, which is defined by 

(3) ( )
1 1

1

0 0

2
G(L) 1 2 L(u)du 1 1 u F (u)du

−

= − = − −
µ

∫ ∫ .  

 As demonstrated by Yaari (1988), the JP-family of inequality measures can be used as a 

basis for characterizing first-degree Lorenz dominance. For the sake of completeness the 

characterization result of first-degree Lorenz dominance given by Yaari (1988) is reproduced in 

Theorem 2.1 below, where L denotes the family of Lorenz curves and P1 is a class of preference 

functions defined by 

                                                      

6 Mehran (1976) introduced the JP-family by relying on descriptive arguments. A slightly different version of JP was 

introduced by Piesch (1975), whereas Giaccardi (1950) considered a discrete version of JP. For alternative normative 

motivations of the JP-family and various subfamilies of the JP-family we refer to Donaldson and Weymark (1980, 1983), 

Weymark (1981), Yaari (1987, 1988), Ben Porath and Gilboa (1994), Aaberge (2001) and Gajdos (2002). 
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 [ ]{ }P
1

0 1 0 0 0 1 1 0= ′ ′′ ′ > ′′ < ∈ ′ =P P and P are continuous on P t and P t for t and P: , , ( ) ( ) , , ( ) . 

 

 THEOREM 2.1. (Fields and Fei (1978) and Yaari (1988)). Let L1 and L2 be members of L. 

Then the following statements are equivalent, 

(i) L1 first-degree dominates L2 

(ii) L1 can be obtained from L2 by a sequence of Pigou-Dalton progressive transfers 

(iii) L2 can be obtained from L1 by a sequence of Pigou-Dalton regressive transfers 

(iv) ( ) ( )P 1 P 2
J L J L<  for all 

1
P∈P  

 

 We refer to Fields and Fei (1978) for a proof of the equivalence between (i) and (ii) (and 

(iii))
7
 and to Yaari (1988) for a proof of the equivalence between (i) and (iv). 

 Atkinson (1970) defined inequality aversion as equivalent to risk aversion in the theory of 

choice under uncertainty. This was motivated by the fact that the Pigou-Dalton transfer principle is 

identical to the principle of mean-preserving spread introduced by Rothschild and Stiglitz (1970), which is 

equivalent to the condition of dominating non-intersecting Lorenz curves. Thus, we adopt the following 

definition. 

 

 DEFINITION 2.3. A social decision-maker that supports the Pigou-Dalton principle of 

transfers is said to exhibit inequality aversion. 

 

 A social decision-maker who prefers the dominating one of non-intersecting Lorenz 

curves favors transfers of incomes which reduce the differences between the income shares of the 

donor and the recipient, and is therefore said to be inequality averse.  

 The characterization of the condition of first-degree Lorenz dominance provided by 

Theorem 2.1 shows that non-intersecting Lorenz curves can be ordered without specifying further the 

functional form of the preference function P other than P being strictly concave. This means that JP 

satisfies the Pigou-Dalton principle of transfers for concave P-functions. To deal with situations where 

Lorenz curves intersect a weaker principle than first-degree Lorenz dominance is called for. To this 

end we may employ second-degree upward Lorenz dominance defined by 

 

                                                      

7 See Rothschild and Stiglitz (1973) for a proof of the equivalence between (i), (ii) and (iii) in the case where the rank-

preserving condition is abandoned in the definition of the Pigou-Dalton principle of transfers. 
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 DEFINITION 2.4A. A Lorenz curve L1 is said to second-degree upward dominate a Lorenz 

curve L2  if  

 [ ]
0

u

1

0

u

2
L (t) dt L (t) dt for all u 0,1∫ ∫≥ ∈  

and the inequality holds strictly for some u 0,1∈ . 

 

 The term upward dominance refers to the fact that the Lorenz curves are aggregated from 

below
8
. The aggregated Lorenz curve can be considered as a sum of weighted income shares, where 

the weights decrease linearly with increasing rank of the income receiver in the income distribution. 

Thus, a social decision-maker who prefers the second-degree upward dominating of two intersecting 

Lorenz curves pays more attention to inequality in the lower than in the upper part of the income 

distribution. An alternative ranking criterion to second-degree upward Lorenz dominance can be 

obtained by aggregating the Lorenz curve from above.  

 

 DEFINITION 2.4B. A Lorenz curve L1 is said to second-degree downward dominate a 

Lorenz curve L2  if  

 ( ) ( ) [ ]
1 1

2 1

u u

1- L (t) dt 1 - L (t) dt for all u 0,1≥ ∈∫ ∫  

and the inequality holds strictly for some u 0,1∈ . 

 

 Note that second-degree downward as well as upward Lorenz dominance preserves first-

degree Lorenz dominance since first-degree Lorenz dominance implies second-degree upward as well 

as second-degree downward Lorenz dominance. Consequently, both dominance criteria are consistent 

with the Pigou-Dalton principle of transfers. The choice between second-degree upward and 

downward Lorenz dominance clarifies whether or not equalizing transfers between poorer individuals 

should be considered more important than those between richer individuals. A social decision-maker 

who favors second-degree upward Lorenz dominance would most likely prefer third-degree upward 

Lorenz dominance to third-degree downward Lorenz dominance, because third-degree upward Lorenz 

dominance places the emphasis on equalizing transfers between poorer individuals, whereas third-

                                                      

8 Note that second-degree upward Lorenz dominance is equivalent to a normalized version of third-degree inverse stochastic 

dominance introduced by Muliere and Scarsini (1989). 
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degree downward Lorenz dominance places the emphasis on equalizing transfers between richer 

individuals. 

 As recognized by Muliere and Scarsini (1989) there is no simple relationship between 

third-degree stochastic dominance and second-degree upward Lorenz dominance, but that second-

degree upward Lorenz dominance is equivalent to third-degree upward inverse stochastic dominance. 

Thus, a general characterization of second-degree Lorenz dominance or third-degree inverse stochastic 

dominance in terms of ordering conditions for the utilitarian measures introduced by Kolm (1969) and 

Atkinson (1970) cannot be obtained. As explained in Section 1 the family of rank-dependent measures 

of inequality (defined by (2)) appears to form a more convenient basis for judging the normative 

significance of second-degree and higher degrees of Lorenz dominance than the utilitarian families 

introduced by Kolm (1969) and Atkinson (1970). 

 To judge the normative significance of criteria for ranking intersecting Lorenz curves, 

more powerful principles than the Pigou-Dalton principle of transfers are needed. To this end Kolm 

(1976a,b) introduced the principle of diminishing transfers
9
, which for a fixed difference in income 

considers a transfer from a richer to a poorer person to be more equalizing the further down in the 

income distribution it takes place.
10
 As indicated by Shorrocks and Foster (1987) and Muliere and 

Scarsini (1989) the principle of diminishing transfers is, however, not consistent with second-degree 

upward Lorenz dominance. Mehran (1976) introduced an alternative version of the principle of 

diminishing transfers by accounting for the difference in the proportion of individuals between donors 

and receivers of the income transfers rather than for the difference in income. The principle introduced 

by Mehran (1976) proves to characterize second-degree upward Lorenz dominance. To provide a 

formal definition of this principle, called the principle of positional transfer sensitivity by Zoli (1999), 

let I be an inequality measure and let ∆Ιt(δ,h) denote the change in I resulting from a transfer δ from a 

person with income 1F (t h)−

+  to a person with income 1F (t)−  that leaves their ranks in the income 

distribution F unchanged, where F is assumed to be a discrete distribution for a finite population. 

Thus, ( )
t
I ,h∆ δ  is a negative number

11
. Furthermore, let ( )1 s,t

I ,h∆ δ  be defined by 

(4) ( ) ( ) ( )1 s,t t s
I ,h I ,h I ,h∆ δ = ∆ δ − ∆ δ .  

As will become evident later it will be convenient to denote Mehran’s principle of transfers the 

principle of first-degree downside positional transfer sensitivity. 

                                                      

9 Denoted aversion to downside inequality by Davis and Hoy (1994, 1995). 
10 For a formal definition, see Kolm (1976a,b). 
11 For convenience the dependence of I on F is suppressed in the notation for I.  
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 DEFINITION 2.5A. Consider a discrete income distribution F and rank-preserving 

transfers δ  from individuals with ranks s h+  and t h+  to individuals with ranks s and t in F. Then 

the inequality measure I is said to satisfy the principle of first-degree downside positional transfer 

sensitivity (first-degree DPTS) if 

 ( )
,

,
1 s t
I h 0 when s t∆ δ > < . 

 

 Mehran (1976) demonstrated that JP defined by (2) satisfies the principle of first-degree 

positional transfer sensitivity if and only if P (t) 0′′′ >
12
. Moreover, as stated in Theorem 2.2A below 

dominance for all JP that satisfy the Pigou-Dalton principle of transfers and the principle of first-degree 

downside positional transfer sensitivity proves to be equivalent to the condition of second-degree upward 

Lorenz dominance. 

 The condition of second-degree downward Lorenz dominance proves to be equivalent to 

the condition that P (t) 0′′′ < , when JP for 1
P∈P  is used as a ranking criterion for Lorenz curves. A 

social decision-maker who employs JP with P (t) 0′′′ <  considers a given transfer of money from a 

richer to a poorer person to be more equalizing the higher it occurs in the income distribution, 

provided that the proportions of the population located between the receivers and the donors are equal. 

A formal definition of this principle, that we will call the principle of first-degree upside positional 

transfer sensitivity (first-degree UPTS), is given by 

 

 DEFINITION 2.5B. Consider a discrete distribution F and rank-preserving transfers δ 

from individuals with ranks +s h  and +t h  to individuals with ranks s and t in F. Then the inequality 

measure I is said to satisfy the principle of first-degree upside positional transfer sensitivity (first-

degree UPTS) if 

 ( )
,

,
1 s t
I h 0 when s t∆ δ < < . 

 

 Let *

12
P  be a family of preference functions related to JP and defined by 

 [ ]{ }*

12 1
P : P , P is continuous on 0,1 and P (t) 0 for t 0,1′′′ ′′′= ∈ > ∈P P . 

                                                      

12 Aaberge (2000a) demonstrated that JP defined by (2) satisfies Kolm's principle of diminishing transfers under conditions 

that depend on the shape of the preference function P as well as on the shape of the income distribution F. 
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 The following result provides a characterization of second-degree upward Lorenz 

dominance.
13
 

 

 THEOREM 2.2A. Let L1 and L2  be members of L. Then the following statements are 

equivalent, 

(i) L1 second-degree upward dominates L2 

(ii) ( ) ( ) *

P 1 P 2 12
J L J L for all P< ∈P  

(iii) ( ) ( )<
P 1 P 2

J L J L  for all ∈
1

P P  being such that JP obeys the principle of first-degree DPTS. 

 

(Proof in Appendix). 

 

 To ensure equivalence between second-degree upward Lorenz dominance and JP-

measures as decision criteria, Theorem 2.2A shows that it is necessary to restrict the preference 

functions P to be concave with positive third derivatives. If, by contrast, P has negative third 

derivative, then Theorem 2.2B yields the downward dominance analogy to Theorem 2.2A. 

 Let *

22
P  be a family of preference functions related to JP and defined by 

 [ ]{ }*

22 1
P : P , P is continuous on 0,1 and P (t) 0 for t 0,1′′′ ′′′= ∈ < ∈P P . 

 

 THEOREM 2.2B. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 second-degree downward dominates L2 

(ii) ( ) ( ) *

P 1 P 2 22
J L J L for all P< ∈P  

(iii) ( ) ( )<
P 1 P 2

J L J L  for all ∈
1

P P  being such that JP obeys the principle of first-degree UPTS. 

 

(Proof in Appendix). 

 

 REMARK. It follows from the proofs of Theorem 2.2A and 2.2B that the condition 

P (t) 0′′ <  for all t 0,1∈  can be relaxed and replaced by the conditions P (1) 0′′ ≤  and P (0) 0′′ ≤ , 

respectively. Moreover, note that the equivalence between (ii) and (iii) in Theorem 2.2A means that 

                                                      

13 Note that a slightly different version of the equivalence between (i) and (ii) in Theorem 2.2A is proved by Zoli (1999). 

Actually, when we restrict to cases of equal means Proposition 2 of Zoli (1999) and Theorem 2.2 yield identical results.  
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any JP with P (t) 0′′′ >  obeys the first-degree DPTS.
14
 A similar remark can be made for Theorem 2.2B. 

Thus, any JP with P (t) 0′′′ <  obeys the first-degree UPTS. However, the relevance of using measures 

of inequality that do not obey the Pigou-Dalton of transfers ( )P (t) 0′′ >  may be questioned. 

 

 An inequality averse social decision-maker that supports the criterion of second-degree 

upward Lorenz dominance will act in line with the principle of first-degree DPTS and assign more 

weight to changes that take place in the lower part of the Lorenz curve than to changes that occur in 

the upper part of the Lorenz curve. By contrast, the criterion of second-degree downward Lorenz 

dominance emphasizes changes that occur in the upper part of the Lorenz curve. Thus, an inequality 

averse social decision-maker that employs the criterion of second-degree downward Lorenz 

dominance acts in favor of the Pigou-Dalton principle of transfers and the principle of first-degree 

UPTS. To characterize social preferences of these types we adopt the following definition. 

 

 DEFINITION 2.6. An inequality averse social decision-maker that supports the Pigou-

Dalton principle of transfers and the principle of first-degree DPTS (UPTS) is said to exhibit 

downside (upside) inequality aversion of first-degree. 

 

 Theorems 2.2A and 2.2B demonstrate that the principles of upward and downward 

Lorenz dominance can be used to divide JP-measures into wide families of inequality measures that 

differ in the measures' sensitivity to changes (transfers) in the lower or upper part of the Lorenz curve. 

Members of the family { }*

P 12
J :P∈P  give more weight to changes that take place lower down in the 

Lorenz curve, whereas members of the family { }*

P 22
J :P∈P  give more weight to changes higher up in 

the Lorenz curve. Note that P t t t( )= −2 2 , the P-function that corresponds to the Gini coefficient, is 

neither included in *

12
P nor in *

22
P . Since P (t) 0′′′ =  for all t, the Gini coefficient neither preserves 

second-degree upward Lorenz dominance nor second-degree downward Lorenz dominance apart from 

the case when the inequality in (i) of Theorems 2.2A and 2.2B holds strictly for u 1=  and u 0= , 

respectively.
15
 Thus, the suggestion of Muliere and Scarsini (1989) that the Gini coefficient is coherent 

with second-degree upward Lorenz dominance requires a definition of second-degree that abandons 

                                                      

14 See Chateauneuf et al. (2002) for an alternative proof of this result. 
15 Aaberge (2000a) gave an alternative interpretation of this property by demonstrating that the Gini coefficient attaches an 

equal weight to a given transfer irrespective of where it takes place in the income distribution, as long as the income transfer 

occurs between individuals with the same difference in ranks. 
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the condition of strict inequality (for some u 0,1∈ ). However, by assuming that the Lorenz curves 

cross only once the following results hold.
16
 

 

 PROPOSITION 2.1A. Assume that L1 and L2 are singly intersecting Lorenz curves and L1 

crosses L2 initially from above, and let ( )1G L  and ( )2G L  be the two corresponding Gini coefficients. 

Then the following statements are equivalent, 

(i) ( ) ( ) *

P 1 P 2 12
J L < J L for all P∈P   

(ii) ( ) ( )≤
1 2

G L G L . 

 

(Proof in Appendix) 

 

 PROPOSITION 2.1B. Assume that L1 and L2 are singly intersecting Lorenz curves and L2 

crosses L1 initially from above, and let ( )1G L  and ( )2G L  be the two corresponding Gini coefficients. 

Then the following statements are equivalent, 

(i) ( ) ( ) *

P 1 P 2 22
J L J L for all P< ∈P  

(ii) ( ) ( )≤
1 2

G L G L . 

 

 The proof of Proposition 2.1B can be achieved by following the line of reasoning used in 

the proof of Proposition 2.1A. Note that Proposition 2.1A can be considered as a dual version of the 

results of Shorrocks and Foster (1987) and Dardanoni and Lambert (1988) that clarify the relationship 

between third-degree (upward) stochastic dominance, ordering conditions for the coefficient of 

variation and transfer sensitive measures of inequality.  

 As a preference ordering on L the Gini coefficient in general favors neither the lower nor 

the upper part of the Lorenz curves. Therefore, if we restrict the ranking problem to Lorenz curves 

with equal Gini coefficients, second-degree upward and downward dominance coincide in the sense 

that a Lorenz curve L1 that second-degree upward dominates a Lorenz curve L2 is always second-

degree downward dominated by L2. Thus, it is clear that L1 (and the corresponding distribution 

function) can be obtained from L2 (the corresponding distribution function) by employing a set of 

Pigou-Dalton progressive transfers in combination with an equal set of Pigou-Dalton regressive 

transfers that leaves the Gini mean difference (µG) unchanged, and in which the progressive transfer 

                                                      

16 Zoli (1999) provided a result similar to Proposition 2.1A for singly intersecting generalized Lorenz curves under the 

condition of equal means. 
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of each pair of progressive/regressive transfers occurs lower down in the income distribution than the 

regressive transfer. We call such a change a downside mean-Gini-preserving transformation 

(downside MGPT)
17
. A formal definition of downside MGPT is given below. 

 

 DEFINITION 2.7A. Consider a discrete distribution F and a Pigou-Dalton progressive 

transfer δi  from a person with income ( )−1

i
F t  to a person with income ( )−1

i
F s  and a Pigou-Dalton 

regressive transfer γi  from a person with income ( )−1

i
F u  to a person with income ( )−1

i
F v  for 

=i 1,2,...,N . This sequence of combinations of progressive/regressive transfers is a downside mean-

Gini-preserving transformation (downside MGPT) provided that < < <
i i i i
s t u v  for =i 1,2,...,N  and 

the ( )i i
,δ γ  pairs are such that the Gini coefficient of the post-transfer distribution is equal to the Gini 

coefficient of F. 

 

 Thus, by applying the downside MGPT inequality is transferred from lower to higher 

parts of the Lorenz curve. By contrast, a social decision-maker who favors second-degree downward 

Lorenz dominance will apply the progressive transfer of each pair of progressive/regressive transfers 

higher up in the income distribution than the regressive transfer. Such a change will be called an 

upside mean-Gini-preserving transformation (upside MGPT)
 18
. In this case inequality is transferred 

from the higher to the lower parts of the Lorenz curve and the corresponding income distribution.  

 

 DEFINITION 2.7B. Consider a discrete distribution F and a Pigou-Dalton regressive 

transfer δi from a person with income ( )−1

i
F s  to a person with income ( )−1

i
F t  and a Pigou-Dalton 

progressive transfer γi  from a person with income ( )−1

i
F v  to a person with income ( )−1

i
F u  for 

=i 1,2,...,N . This sequence of combinations of regressive/progressive transfers is an upside mean-

Gini-preserving transformation (upside MGPT) provided that < < <
i i i i
s t u v  for =i 1,2,...,N  and the 

( )
i i
,δ γ  pairs are such that the Gini coefficient of the post-transfer distribution is equal to the Gini 

coefficient of F. 

                                                      

17 Note that a downside MGPT is equivalent to the favorable composite positional transfer discussed by Zoli (2002). 

18 Note that the MGPT transformations are analogous to the mean-variance-preserving transformation (MVPT) introduced by 

Menezes et al. (1980) and used by Shorrocks and Foster (1987), Dardanoni and Lambert (1988) and Davis and Hoy (1994) as 

a basis for analysing the implications of third-degree stochastic dominance on measurement of inequality and social welfare. 

The major difference between these methods of transformation is that the (downside) MGPT is equivalent to second-degree 

upward Lorenz dominance (third-degree upward inverse stochastic dominance), whereas the MVPT is equivalent to third 

degree (upward) stochastic dominance. Moreover, the MGPT relies on the Gini mean difference rather than the variance as a 

measure of spread. Note that the Gini mean difference was used as an (robust) alternative to the variance as a measure of 

spread long before Gini introduced it as a measure of inequality (see David (1968)). 
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 The following theorem demonstrates that a Lorenz curve L1 that second-degree upward 

dominates a Lorenz curve L2 can be obtained from L2 be a sequence of downside MGPTs’ and that the 

Lorenz curve L2 can be obtained from L1 by a sequence of upside MGPTs’. 

 

 THEOREM 2.3. Let L1 and L2 be Lorenz curves with equal Gini coefficients. Then the 

following statements are equivalent, 

(i) L1 second-degree upward dominates L2 

(ii) L2 second-degree downward dominates L1 

(iii) L1 can be obtained from L2 by a sequence of downside MGPTs’. 

(iv) L2 can be obtained from L1 by a sequence of upside MGPTs’. 

 

(Proof in Appendix)
19
. 

 

 When the ranking problem is restricted to Lorenz curves with equal Gini coefficients then 

the condition that a downside MGPT (an upside MGPT) reduces inequality is equivalent to the 

condition for satisfying the principle of first-degree DPTS (UPTS).  

3.  Lorenz dominance of i
th
-degree and mean-spread-preserving 

transformations 

Since situations where second-degree (upward or downward) Lorenz dominance does not provide 

unambiguous ranking of Lorenz curves may arise, it will be useful to introduce weaker dominance criteria 

than second-degree Lorenz dominance. To this end we will introduce two hierarchical sequences of nested 

Lorenz dominance criteria; one departs from second-degree upward Lorenz dominance and the other from 

second-degree downward Lorenz dominance. As explained in Section 2, the choice between second-

degree upward and downward Lorenz dominance clarifies whether focus is turned to changes that take 

place in the lower or upper part of the income distribution. Thus, a person who favors second-degree 

upward Lorenz dominance would most likely prefer third-degree and higher degrees of upward Lorenz 

dominance to third-degree and higher degrees of downward Lorenz dominance. Conversely, when the 

value judgment of a person is consistent with the criterion of second-degree downward Lorenz 

dominance, higher degrees of downward Lorenz dominance are likely more acceptable than higher 

degrees of upward Lorenz dominance. 

                                                      

19 An alternative proof of the equivalence between (i) and (iii) was provided by Zoli (2002). 
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 As will become evident below it is convenient to use the following notation, 

(5) ( )
u u

2 1

0 0

1
L (u) L(t)dt u t F (t)dt, 0 u 1,−

= = − ≤ ≤
µ∫ ∫   

 

u

i 1 i

0

L (u) L (t)dt, 0 u 1, i 2,3,...,+

= ≤ ≤ =∫  

and 

(6) ( ) ( )
1 1

2 1

u u

1
L (u) 1 L(t) dt t u F (t)dt, 0 u 1,−

= − = − ≤ ≤
µ∫ ∫%   

 

1

i 1 i

u

L (u) L (t)dt, 0 u 1, i 2,3,....+

= ≤ ≤ =∫% %  

 Now, using integration by parts, we obtain the following alternative expressions for L
i+1
 

and 
i 1

L
+% , respectively, 

(7) 
( )

( ) ( )
u u

i 1 ii 1 1

0 0

1 1
L (u) u t L(t)dt u t F (t)dt, i 2,3,...

i 1 ! i!

−+ −

= − = − =
− µ

∫ ∫   

and 

(8) 
( )

( ) ( ) ( )
1 1

i 1 ii 1 1

u u

1 1
L (u) t u 1 L(t) dt t u F (t)dt, i 2,3,... .

i 1 ! i!

−+ −

= − − = − =
− µ

∫ ∫%   

It is easily verified that L
i+1
(1) defined by (7) is a linear transformation of a measure of inequality that 

belongs to the extended Gini family of inequality measures
20
 { }:

i
G i 1≥ , 

(9) 
( )

( )i 1

i

1
L (1) 1 G (L) , i 1,2,...

i 1 !

+

= − =

+

  

where 

                                                      

20 The extended Gini family of inequality measures was introduced by Donaldson and Weymark (1980, 1983) and Yitzhaki 

(1983). 
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(10) ( ) ( ) ( ) ( )( )
1

i 1 i

i

0 0

1
G (L) 1 i i 1 1 u L(u)du 1 F(x) 1 1 F(x) dx, i 1.

∞

−

= − + − = − − − ≥
µ∫ ∫   

Moreover, from the definition (8) of L%  we get that 

(11) 
( )

( )i 1

i

1
L (0) iD (L) 1 , i 1,2,...

i 1 !

+

= + =

+

%   

where 

(12) ( ) ( )
1

i 1 i

i

0 0

1
D (L) 1 i 1 u L(u)du F(x) 1 F (x) dx, i 1,2,...

i

∞

−

= − + = − =
µ

∫ ∫   

and { }i
D : i 1,2,...=  is an alternative “generalized” Gini family of inequality measures denoted the 

Lorenz family of inequality measures
21
, where 

1 1
D G=  is equal to the Gini coefficient. 

 As was demonstrated by Aaberge (2000a) there is a one-to-one correspondence between 

subfamilies of the extended Gini and the Lorenz families of inequality measures shown by the 

following equation 

(13) ( ) ( )
i

k

i k

k 1

i k
G (L) 1 i 1 ( 1) 1 D (L) , i 1,2,...

k k 1
=

 
= + + − − = 

+ 
∑ .  

Thus, the extended Gini subfamily { }i
G (L) : i 1,2,..., r=  is uniquely determined by the corresponding 

Lorenz subfamily { }i
D (L) : i 1,2,..., r=  for any integer r. 

 Expressions (7) and (8) show that L
i+1
 places more weight on changes in the lower and 

i 1
L

+%  on changes in the upper part of the Lorenz curve as i increases.  

 As generalizations of Definitions 2.4A and 2.4B we introduce the notions of i
th
-degree 

upward and downward Lorenz dominance
22
. Note that subscripts i and j in the notation i

jL  and i
jL

%  

used below refer to dominance of i
th
-degree for Lorenz curve Lj and that 

1

jL  is the Lorenz curve Lj and 

1

j jL 1 L= −
% . 

 

                                                      

21 The Lorenz family of inequality measures was introduced by Aaberge (2000a) and proves to be a subclass of the "illfare-

ranked single-series Ginis" discussed by Donaldson and Weymark (1980) and Bossert (1990). 
22 A similar definition of ith degree (upward) inverse stochastic dominance was introduced by Muliere and Scarsini (1989). 

Note that Definitions 3.1A and 3.1B do not require any restrictions on the Lorenz curves (or the distribution functions) and 

thus differ in this sense from the definitions of stochastic dominance proposed by Whitmore (1970) and Chew (1983). 
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 DEFINITION 3.1A. A Lorenz curve L1 is said to i
th
-degree upward dominate a Lorenz 

curve L2 if  

 [ ]i i

1 2
L (u) L (u) for all u 0,1≥ ∈  

and the inequality holds strictly for some 0,1u∈ . 

 

 DEFINITION 3.1B. A Lorenz curve L1 is said to i
th
-degree downward dominate a Lorenz 

curve L2 if  

 [ ]i i

2 1
L (u) L (u) for all u 0,1≥ ∈% %  

and the inequality holds strictly for some 0,1u∈ . 

 

 Note that ( )i
th

+ 1 -degree upward and downward Lorenz dominance are less restrictive 

dominance criteria than i
th
-degree upward and downward Lorenz dominance and thus can prove to be 

useful decision criteria in situations where i
th
-degree dominance does not yield an unambiguous 

ranking of Lorenz curves. 

 It follows from the definitions (7) and (8) of L
i
 and 

iL%  that 

 
i i

1 2
L (u) L (u) for all u≥   implies  

i 1 i 1

1 2
L (u) L (u) for all u ,+ +

≥  

and that 

 
i i

2 1
L (u) L (u) for all u≥% %   implies  

i 1 i 1

2 1
L (u) L (u) for all u+ +

≥% % , 

which means that ( )
th

i 1+ -degree upward Lorenz dominance preserves i
th
-degree upward Lorenz 

dominance and that ( )
th

i 1+ -degree downward Lorenz dominance preserves i
th
-degree downward 

Lorenz dominance. 

 Thus, the various degrees of upward and downward Lorenz dominance form two separate 

sequences of nested dominance criteria, which turn out to be useful for dividing the JP-family of 

inequality measures into nested subfamilies. To this end it will be convenient to introduce the 

following notation. Let P
(j)
 denote the j

th
 derivative of P and let * ** *** * ** ***

1i 1i 1i 1i 2i 2i 2i 2i
, , , , , , ,P P P P P P P P  be 

families of preference functions defined by 
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( ) [ ]{ }i 1 ( j)

1i 1P : P ,P is continuous on 0,1 and P (1) 0, j 2,3,...,i
+

= ∈ = =P P , 

 { }* j ( j 1)

1i 1iP : P and ( 1) P (t) 0 for t 0,1 , j 1,2,...,i+

= ∈ − > ∈ =P P , 

 
( ){ }i 1** i

1i 1i
P : P and ( 1) P (t) 0 for t 0,1

+

= ∈ − > ∈P P , 

( ) [ ] ( ){ }i 1 i 1*** i j 1 ( j)

1i 1P : P ,P is continuous on 0,1 , ( 1) P (t) 0 for t 0,1 and ( 1) P (1) 0, j 2,3,...,i ,
+ + −

= ∈ − > ∈ − ≥ =P P

 

 
( ) [ ]{ }i 1 ( j)

2i 1P : P ,P is continuous on 0,1 and P (0) 0, j 2,3,...,i
+

= ∈ = =P P , 

 { }* ( j 1)

2i 2iP : P and P (t) 0 for t 0,1 , j 1,2,...,i+

= ∈ < ∈ =P P , 

 
( ){ }i 1**

2i 2i
P : P and P (t) 0 for t 0,1

+

= ∈ < ∈P P , 

and 

 
( ) [ ] ( ){ }i 1 i 1*** ( j)

2i 1P : P ,P is continuous on 0,1 , P (t) 0 for t 0,1 and P (0) 0, j 2,3,...,i
+ +

= ∈ < ∈ ≤ =P P , 

respectively. Note that * ** ***

1i 1i 1i
⊂ ⊂P P P  and * ** ***

2i 2i 2i
⊂ ⊂P P P . 

 The subfamilies of the JP-family formed by ** **

1i 2iandP P  are characterized by the 

following theorems. 

 

 THEOREM 3.1A. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree upward dominates L2. 

(ii) ( ) ( )< ∈
**

P 1 P 2 1i
J L J L for all P P . 

 

(Proof in Appendix). 
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 THEOREM 3.1B. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree downward dominates L2 

(ii) ( ) ( )< ∈
**

P 1 P 2 2i
J L J L for all P P . 

 

(Proof in Appendix). 

 

 The criteria of Lorenz dominance offer convenient computational methods for applied 

work. As is demonstrated by Theorems 3.1A and 3.1B this approach is particular attractive since it 

provides identification of the restrictions on the preference function P that are needed to reach 

unambiguous rankings of Lorenz curves.
23
 As will be demonstrated in Section 4 the extended Gini 

inequality measure Gk satisfies the conditions 
jP (1) 0, j 2,3,...,k= = , whereas the Lorenz family 

measure Dk satisfies the conditions 
( j)P (0) 0, j 2,3,...,k= = .  

 To judge the normative significance of i
th
-degree upward and downward Lorenz 

dominance, it appears helpful to strengthen the principles of first-degree downside and upside 

positional transfer sensitivity to be more sensitive to transfers that take place lower down (higher up) 

in the income distribution.
24
 To this end it will be useful  to introduce the following notation. Let 

( )2 s,t 1 2
I ,h ,h∆ δ  be defined by 

 Note that 1 s,tI 0∆ <  for any s t<  when I obeys the first-degree UPTS. Since the principle 

of second-degree UPTS is meant to strengthen the principle of first-degree UPTS, it follows from (14) 

that this is obtained when 
2 s,t
I 0∆ >  for s t< . Thus, we can only discern between second-degree 

DPTS and second-degree UPTS if these principles are required to be linked to first-degree DPTS and 

first-degree UPTS, respectively. Thus, when a sequence of first-degree DPTS (UPTS) transfers is 

valued more the lower down (higher up) the sequence of the transfers occurs, the sequence of transfers 

is made in line with the principle of second-degree downside (upside) positional transfer sensitivity. 

To deal with i
th
-degree Lorenz dominance it is convenient to introduce the notation 

( )i s,t 1 2 i
I ,h ,h ,...,h∆ δ  defined by 

(15) ( ) ( ) ( )
i i

i s,t 1 2 i i 1 s,t 1 2 i 1 i 1 s h ,t h 1 2 i 1
I ,h ,h ,...,h I ,h ,h ,...,h I ,h ,h ,...,h , i 3,4,...

− − − + + −
∆ δ = ∆ δ − ∆ δ =   

                                                      

23 Note that Muliere and Scarsini (1989) provided a characterization of ith-degree upward Lorenz dominance (inverse 

stochastic dominance) in terms of order conditions for a subfamily of 
*

1i
P . 

24 Note that Fishburn and Willig (1984) introduced an extension of Kolm’s principle of diminishing transfers to higher-order 

transfer principles and demonstrated that these principles are associated to higher orders of upward stochastic dominance. 
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 DEFINITION 3.4A. Consider a discrete income distribution F, an inequality measure I 

that obeys the ( )−

th

i 1 -degree DPTS, and rank-preserving transfers δ from individuals with ranks 

+
1

s h , + + + +
1 2 1 i

s h h ,...,s h h ,...,  + + + +
1 2 i

s h h ... h ,  +
1

t h ,  + + + +
1 2 1 i

t h h ,...,t h h ,...,  

+ + + +
1 2 i

t h h ... h  to individuals with ranks s, 

+ + + + + + + + + + + +
2 i 2 3 i 2 i 2 3 i

s h ,...,s h ,...,s h h ... h ,t ,t h ,...,t h ,...,t h h ... h  in F. Then I is said to satisfy 

the principle of i
th
-degree downside positional transfer sensitivity, the i

th
-degree DPTS, if 

 ( )i s ,t 1 2 i
I ,h ,h ,...,h 0 when s t∆ δ > < . 

 DEFINITION 3.4B. Consider a discrete income distribution F, an inequality measure I 

that obeys the ( )−

th

i 1 -degree UPTS, and rank-preserving transfers δ from individuals with ranks 

+
1

s h , + + + +
1 2 1 i

s h h ,...,s h h ,...,  + + + +
1 2 i

s h h ... h ,  +
1

t h ,  + + + +
1 2 1 i

t h h ,...,t h h ,...,  

+ + + +
1 2 i

t h h ... h  to individuals with ranks s, 

+ + + + + + + + + + + +
2 i 2 3 i 2 i 2 3 i

s h ,...,s h ,...,s h h ... h ,t ,t h ,...,t h ,...,t h h ... h  in F. Then I is said to satisfy 

the principle of i
th
-degree upside positional transfer sensitivity, the i

th
-degree UPTS, if 

 ( )i s ,t 1 2 i
I ,h ,h ,...,h 0 when s t and i 2k 1, k 1,2,...,∆ δ < < = − =  

and 

 ( )i s ,t 1 2 i
I ,h ,h ,...,h 0 when s t and i 2k , k 1,2,...∆ δ > < = = . 

 

 The motivation for introducing the principle of ( )
th

i 1− -degree DPTS was to strengthen 

the principle of ( )
th

i 2− -degree DPTS. A similar consideration is valid for ( )
th

i 1− -degree UPTS. As 

stated in Theorems 3.2A and 3.2B support of the Pigou-Dalton principle of transfers and the principles 

of DPTS of each degree up to i 1−  is equivalent to be in favor of the criterion of i
th
-degree upward 

Lorenz dominance, whereas support of the Pigou-Dalton principle of transfers and the principles of 

UPTS of each degree up to i 1−  is equivalent to be in favor of i
th
-degree downward Lorenz 

dominance. 

 

 THEOREM 3.2A. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree upward dominates L2 
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(ii) ( ) ( )< ∈
*

P 1 P 2 1i
J L J L for all P P  

(iii) ( ) ( )P 1 P 2
J L J L<  for all 

1i
P∈P  being such that JP obeys the Pigou-Dalton principle of 

transfers and the principles of DPTS up to and including (i-1)
th
-degree. 

 

(Proof in Appendix.) 

 

 THEOREM 3.2B. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree downward dominates L2 

(ii) ( ) ( )< ∈
*

P 1 P 2 2i
J L J L for all P P  

(iii) ( ) ( )P 1 P 2
J L J L<  for all 

2i
P∈P  being such that JP obeys the Pigou-Dalton principle of 

transfers and the principles of UPTS up to and including (i-1)
th
-degree. 

 

 The proof of Theorem 3.2B can be achieved by following the line of reasoning used in 

the proof of Theorem 3.2.A. 

 As noted above the motivation for introducing the principles of DPTS (UPTS) was to 

successively strengthen the emphasis of transfers taking place lower down (higher up) in the income 

distribution. To characterize social preferences that are consistent with these principles we adopt the 

following definition. 

 

 DEFINITION 3.5. A social decision-maker that supports the Pigou-Dalton principle of 

transfers and the principles of DPTS (UPTS) up to and including i
th
-degree is said to exhibit downside 

(upside) inequality aversion of i
th
-degree. 

 

 By adding the condition of dominating extended Gini coefficients Gk for k 1,2,...,i 1= −  

to the condition of i
th
-degree upward Lorenz dominance it follows from the proof of Theorem 3.1A 

that the conditions ( j)P (1) 0, j 2,3,...,i= =  can be replaced by less restrictive conditions for P, which 

means that the subfamily of JP-measures that preserves a “restricted” i
th
-degree upward Lorenz 

dominance condition is larger than the subfamily of JP-measures that preserves i
th
-degree upward 

Lorenz dominance. Moreover, as indicated above, the latter is a subfamily of the former.
25
  

                                                      

25 Wang and Young (1998) provide a result similar to Theorem 3.3B for intersecting distribution functions. However, their 

result relies on the condition of negative derivatives (up to order i) of P whereas the condition for P used in Theorem 3.3B is 

less strict. Moreover, Wang and Young (1998) don’t appear to be aware of the fact that their result concerns downward rather 

than upward inverse stochastic dominance. 
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 THEOREM 3.3A. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree upward dominates L2 and ( ) ( )≤

k 1 k 2
G L G L  for = −k 1,2,...,i 1  

(ii) ( ) ( )< ∈
***

P 1 P 2 1i
J L J L for all P P . 

 

(Proof in Appendix.) 

 

 THEOREM 3.3B. Let L1 and L2 be members of L. Then the following statements are 

equivalent, 

(i) L1 i
th
-degree downward dominates L2 and ( ) ( )≤ = −

k 1 k 2
D L D L for k 1,2,...,i 1  

(ii) ( ) ( )< ∈
***

P 1 P 2 2i
J L J L for all P .P  

 

(Proof in Appendix.) 

 

 As we demonstrated in Section 2, first-degree DPTS (UPTS) could be given an 

alternative interpretation in terms of a mean-Gini-preserving transformation. This equivalence arises 

due to the fact that second-degree upward and downward Lorenz dominance “coincide” when the Gini 

coefficient (or the mean and the Gini mean difference) of the Lorenz curves are equal. By assuming 

that L
3
(1) defined by (9) is kept fixed, a similar interpretation of second-degree DPTS in terms of a 

mean-Gini-L
3
(1)-preserving transformation can be obtained. Requiring L

3
(1) to be equal across 

Lorenz curves is equivalent to require that the extended Gini measure of inequality G2(L) (or its 

absolute version and the mean) is kept fixed. Thus, in order to obtain the upward dominating L
2
-curve 

from the dominated L
2
-curve we may use combinations of downside and upside MGPTs’ that are 

carried out under the conditions of equal Gini coefficients and equal G2-coefficients. Similarly, we 

find that the downward dominating L
2
-curve can be obtained from the dominated L

2
-curve by 

combinations of downside and upside MGPTs’ provided that 3L (0)%  is kept fixed, which according to 

(11) is equivalent to require that the D2-coefficients are equal. However, when the requirement of 

equal D2-coefficients are made in combination with the condition of equal Gini-coefficients, it follows 

from equation (13) that this is equivalent to require equal G2-coefficients in combination with equal 

Gini coefficients. Formal definitions of downside and upside mean-Gini-G2-preserving (or mean-Gini-

L
3
(1)-preserving) transformations are given by 
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 DEFINITION 3.6. Consider a discrete distribution F, a downside MGPT of two amounts 

( )1 1
,δ γ  and an upside MGPT of two amounts ( )2 2

,δ γ . This pair of transformations is a downside 

mean-Gini-G2-preserving transformation (downside MG2PT) provided that the pairs ( )1 1
,δ γ  and 

( )2 2
,δ γ  are such that the G2-coefficient of the post-transfer distribution is equal to the G2-coefficient 

of F, and the downside MGPT occurs lower down in the income distribution than the upside MGPT. 

By contrast, when the upside MGPT occurs lower than the downside MGPT we say that the pair of 

transformations is an upside mean-Gini-G2-preserving transformation (upside MG2PT). 

 

 As indicated above there is a similarity between third-degree and second-degree Lorenz 

dominance in the sense that both dominance criteria can be given a normative characterization in 

terms of principles for positional transfer sensitivity and mean-“spread”-preserving transformations. 

Moreover, as for the second-degree dominance criteria, upward and downward third-degree Lorenz 

dominance require the same measures of “spread” (inequality) to be kept fixed in order to obey the 

principle of mean-“spread”-preserving transformation
26
. Keeping the Gini coefficient and G2 fixed is, 

as noted above, equivalent to keeping the Gini coefficient and D2 fixed. This means that upside as well 

as downside MG2PT relies on fixed G2- and D2-coefficients. Observe that the scaled-up (the absolute) 

version of D2 (or 
3L (0)% ) can be considered as a measure of right spread, i.e. it is more sensitive to 

changes that affect the spread in the upper part of the income distribution rather than in changes that 

affect the spread in the lower part of the income distribution. By contrast, the scaled-up version of G2 

can be considered as a measure of left-spread. Accordingly, it is more sensitive to changes in spread 

that occur in the lower rather in the upper part of the income distribution. Thus, upside and downside 

MG2PT place more emphasis on the tails than the upside and downside mean-Gini-preserving 

transformation. The downside mean-Gini-G2-preserving transformation reduces inequality (spread) in 

the lower part of the income distribution at the expense of increased inequality in the middle/upper 

part of the income distribution, whereas the upside mean-Gini-G2-preserving transformation reduces 

inequality (spread) in the upper part of the income distribution at the expense of increased inequality 

in the middle/lower part of the income distribution. In order to place even stronger emphasis on the 

tails we may introduce higher-order mean-“spread”-preserving transformations. 

 

                                                      

26 In contrast to the absolute Gini-coefficient note that the absolute versions of Gi defined by (10) and Di defined by (12) do 

not fulfill the standard conditions of being measures of spread (dispersion) when i>1, but can be used as measures of left and 

right spread, respectively. See Fernández-Ponce et al. (1998) and Shaked and Shanthikumar (1998) for discussions on 

measurement of right spread. 
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 DEFINITION 3.7. Consider a discrete distribution F, a downside MGi-1PT of two 

amounts ( )1 1
,δ γ  and an upside MGi-1PT of two amounts ( )2 2

,δ γ . This pair of transformations is a 

downside mean-Gini-G2-…-Gi-preserving transformation (downside MGiPT) provided that the pairs 

( )1 1
,δ γ  and ( )2 2

,δ γ  are such that the Gi-coefficient of F, and the downside MGi-1PT occurs lower 

down in the income distribution than the upside MGi-1PT. By contrast, when the upside MGi-1PT 

occurs lower than the downside MGi-1PT we say that the pair of transformations is an upside mean-

Gini-G2-…-Gi-preserving transformation (upside MGiPT). 

 

 The following theorems demonstrate that a Lorenz curve L1 that ( )
th

i 1+ -degree upward 

(downward) dominates a Lorenz curve L2 can be obtained from L2 by a sequence of downside (upside) 

MGiPTs’. 

 

 THEOREM 3.4A. Let L1 and L2 be Lorenz curves with equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= = . Then the following statements are equivalent, 

(i) L1 (i+1)
th
-degree upward dominates L2 

(ii) ( ) ( )<
P 1 P 2

J L J L  for all P such that 
( )+i 2

P  is continuous on [ ]0,1  and 

 ( ) ( ) ( )
+ +

− > ∈
i 1 i 2

1 P u 0 for u 0,1  

(iii) L1 can be obtained from L2 by a sequence of downside MGiPTs’ 

 

(Proof in Appendix.) 

 

 THEOREM 3.4B. Let L1 and L2 be Lorenz curves with equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= = . Then the following statements are equivalent, 

(i) L1 ( )
th

i 1+ -degree downward dominates L2 

(ii) ( ) ( )<
P 1 P 2

J L J L  for all P such that 
( )+i 2

P  is continuous on [ ]0,1  and 

 
( ) ( )+

< ∈
i 2

P u 0 for u 0,1  

(iii) L1 can be obtained from L2 by a sequence of upside MGiPTs'. 

 

 The proof of Theorem 3.4B can be constructed by following exactly the line of reasoning 

used in the proof of Theorem 3.4A. 
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 Since downside as well as upside MGiPT relies on equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= = , it will be of interest to explore the relationship between these two 

transformation approaches. To this end we draw on Theorems 3.4A and 3.4B, from which we can 

derive the following results. 

 

 COROLLARY 3.1A. Let L1 and L2 be Lorenz curves with equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= = . Then the following statements are equivalent for i 2k , k 1,2,...= = , 

(i) L1 ( )
th

i 1+ -degree upward dominates L2 

(ii) L1 ( )
th

i 1+ -degree downward dominates L2 

(iii) ( ) ( )P 1 P 2
J L J L<  when 

( ) ( )i 2
P u 0 for u 0,1

+

< ∈  

(iv) L1 can be obtained from L2 by a sequence of downside MGiPTs' 

(v) L1 can be obtained from L2 by a sequence of upside MGiPTs'. 

 

 COROLLARY 3.1B. Let L1 and L2 be Lorenz curves with equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= = . Then the following statements are equivalent for i 2k 1, k 1,2,...= − = , 

(i) L1 ( )
th

i 1+ -degree upward dominates L2 

(ii) L2 ( )
th

i 1+ -degree downward dominates L1 

(iii) ( ) ( )P 1 P 2
J L J L<  when 

( ) ( )i 2
P u 0 for u 0,1

+

> ∈  

(iv) L1 can be obtained from L2 by a sequence of downside MGiPTs' 

(v) L2 can be obtained from L1 by a sequence of upside MGiPTs'. 

 

 REMARK. As demonstrated above the condition of equal Gini coefficients and 

( ) ( )j 1 j 2G L G L , j 2,3,...,i= =  is equivalent to the condition of equal Gini coefficients and 

( ) ( )j 1 j 2D L D L , j 2,3,...,i= = . Thus, the downside and upside mean-Gini-G2-…-Gi-preserving 

transformations could alternatively have been denoted the downside and upside mean-Gini-D2-…-Di-

preserving transformations. 

 

 The proposed sequences of dominance criteria along with the results of Theorems 3.1A-

3.4A and 3.1B-3.4B suggest two alternative strategies for increasing the number of Lorenz curves that 

can be strictly ordered by successively narrowing the class of inequality measures under consideration. 

As the dominance criteria of each sequence are nested these strategies also allow us to identify the 
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value judgments that are needed to reach an unambiguous ranking of Lorenz curves. It follows from 

Theorem 3.2A that JP-measures derived from P-functions with derivatives between second and i
th
 

order that alternate in sign ( )( )− > =
−

1 0 2 3
1j j
P t j i

( )
( ) , , , ... ,  preserve upward Lorenz dominance of all 

degrees lower than and equal to i-1. Thus, as demonstrated by Theorem 3.2A their sensitivity to 

changes that occur in the lower part of the income distribution (and the Lorenz curve) increases as i 

increases. By contrast, Theorem 3.2B shows that JP-measures derived from P-functions with negative 

derivatives of order two and up to i ( )P t j ij( ) ( ) , , , ... ,< =0 2 3  preserve downward Lorenz dominance of 

all degrees lower than and equal to i-1. Theorem 3.2B demonstrates that this means that they increase 

their sensitivity to changes that occur in the upper part of the Lorenz curve as i increases. Note that the 

theorems, propositions and corollaries introduced above are only valid for finite i. At the extreme, as 

i→∞ , observe that 

(16) ( ) i 1 1

0, 0 u 1

i 1 !L (u) F (0 )
, u 1

+ −

≤ <


+ → +
= µ

  

and 

(17) ( )

1

i 1

F (1)
, u 0

i 1 !L (u)

0, 0 u 1,

−

+


=

+ → µ
 < ≤

%   

where F
-1
(0+) and F

-1
(1) denote the lowest and highest income, respectively. Hence, at the limit 

upward and downward Lorenz dominance solely depend on the income share of the worst-off and 

best-off income recipient, respectively. At the extreme upward Lorenz dominance is solely concerned 

with transfers that benefit the poorest unit. By contrast, downward Lorenz dominance solely focuses 

on transferring money from the richest to anyone else. 

 

 REMARK. Restricting the comparisons of Lorenz curves to distributions with equal 

means the various dominance results of Sections 2 and 3 are valid for generalized Lorenz curves and 

also apply to the so-called dual theory representation for choice under uncertainty introduced by Yaari 

(1987, 1988). 
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4.  The relationship between downward and upward Lorenz 

dominance and generalized Gini families of inequality 

measures 

The dominance results in Sections 2 and 3 show that application of the criteria of upward Lorenz 

dominance requires a higher degree of aversion to downside inequality the higher is the degree of upward 

Lorenz dominance. A similar relationship holds between downward Lorenz dominance and aversion to 

upside inequality aversion. As suggested in Section 3 the highest degree of downside inequality aversion 

is achieved when focus is exclusively turned to the situation of the worst-off income recipient. Thus, the 

most downside inequality averse JP-measure that is obtained as the preference function approaches 

(18) 
d

0, t 0
P (t)

1, 0 t 1,

=
= 

< ≤
  

can be considered as the JP-measure that exhibits the highest degree of downside inequality aversion. 

As Pd is not differentiable, it is not a member of the family P1 of inequality averse preference 

functions, but it is recognizable as the upper limit of inequality aversion for members of P1. Inserting 

(18) in (2) yields 

(19) 
d

1

P

F (0 )
J (L) 1 .

−

+
= −

µ
  

Hence, the inequality measure 
dP

J  corresponds to the Rawlsian maximin criterion. Since 
dP

J  is 

compatible with the limiting case of upward Lorenz dominance the Rawlsian (relative) maximin 

criterion preserves all degrees of upward Lorenz dominance and rejects downward Lorenz dominance. 

 By contrast, the JP-measure that is obtained as P approaches
27
 

(20) 
u

1, 0 t 1
P (t)

0, t 1,

≤ <
= 

=
  

exhibits the highest degree of upside inequality aversion. Inserting (20) in (2) yields 

(21) 
u

1

P

F (1)
J (L) 1 .

−

= +
µ

  

Thus, 
uP

J , which we will denote the relative minimax criterion, is “dual” to the Rawlsian (relative) 

maximin criterion in the sense that it is compatible with the limiting case of downward Lorenz 

                                                      

27 Note that the normalization condition P'(0)=1 is ignored in this case. 
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dominance. When the comparison of Lorenz curves is based on the relative minimax criterion the 

Lorenz curve for which the largest relative income is smaller is preferred, regardless of all other 

differences. The only transfer which decreases inequality is a transfer from the richest unit to anyone 

else. 

 Based on the results in Sections 2 and 3, we shall now demonstrate how the above Lorenz 

dominance results can be applied to evaluate the ranking properties of the Lorenz and the extended 

Gini families of inequality measures. The extended Gini family is defined by (10). Note that 

{ }k
G :k 0>  is a subfamily of { }J P

P
: ∈P

1
 formed by the following family of P-functions, 

(22) k 1

1k
P (t) 1 (1 t) , k 0.+

= − − ≥   

 Differentiating P1k defined by (22), we find that 

(23) 

j 1 k j 1

( j)

1k

(k 1)!
( 1) (1 t) , j 1,2,...,k 1

(k j 1)!P (t)

0 , j k 2,k 3,...

− − +
+

− − = +
− += 

 = + +

  

As can be observed from (23) the weight function P1k of the extended Gini family of inequality 

measures is a member of *

1i
P  (and **

1i
P ) for k i,i 1,...= + . Thus, we get the following result from 

Theorem 3.2A.
28
 

 

 COROLLARY 4.1A. Let L1 and L2 be members of L. Then  

(i) L1 i
th
-degree upward dominates L2 

implies 

(ii) ( ) ( )k 1 k 2
G L <G L for k = i,i+1,i+2,...  

 

 Equation (23) implies that 
1k
P (t) 0′′ <  for all t ∈ 0 1,  when k > 0  and thus that the Gk-

measures satisfy the Pigou-Dalton principle of transfers for k > 0 . Moreover, 
1k
P (t) 0′′′ >  for all 

t ∈ 0 1,  when k >1 . Hence all Gk for k >1  preserve second-degree upward Lorenz dominance. 

Moreover, the derivatives of Pk alternate in sign up to the ( )k th
+1  derivative and ( j)

1kP (1) 0=  for all 

j k≤ . Thus, it follows from Theorem 3.2A that Gk preserves upward Lorenz dominance of degree k 

and obeys the principles of DPTS up to and including th(k 1)− -degree. The highest degree of 

downside inequality averse behavior occurs as k→∞ , which corresponds to the inequality averse 

                                                      

28 Muliere and Scarsini (1989) gave an alternative proof of Corollary 4.1A  
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behavior of the Rawlsian (relative) maximin criterion. Thus, Gk satisfies all degrees of upward Lorenz 

dominance as k→∞ . At the other extreme, as k 0= , the preference function 
0
P (t) t= , which means 

that 
0
P
J  does not obey the Pigou-Dalton principle of transfers or any principle of DPTS. The stated 

properties of the Gk-measures are summarized in the following corollary, 

 

 COROLLARY 4.2A. The extended Gini family of inequality measures defined by (10) has 

the following properties, 

(i) Gk preserves upward Lorenz dominance of degree k and all degrees lower than k, 

(ii)  Gk obeys the principle of transfers for k 0> , 

(iii) Gk obeys the Pigou-Dalton principle of transfers and the principles of DPTS up to and 

 including (k-1)
th
 degree, 

(iv) If ( ) ( )<
k 1 k 2

G L G L  then ( )k 1
G L  can be obtained from ( )k 2

G L  by a sequence of downside 

−

′
k 1

MG PTs . 

(v) The sequence { }kG approaches 0  as k 0→ . 

(vi) The sequence { }kG  approaches the Rawlsian relative maximin criterion as k→∞ . 

 

 Note that P1k has negative derivatives (of any order) when 0 k 1< < . Thus, Gk for 

0 k 1< <  preserves downward Lorenz dominance of all degrees. 

 As demonstrated by Aaberge (2000a) the Lorenz family of inequality measures is a 

subfamily of { }J P
P
: ∈P

1
 formed by the following family of P-functions, 

(24) ( )( )k 1

2k

1
P (t) k 1 t t , k 1,2,...

k

+

= + − =   

Differentiating P2k defined by (24) yields 

(25) 
( )( )( ) ( ) k j 1

( j)
2k

k 1 k 1 k 2 .... k j 2 t , j 2,3,..., k 1
P (t)

0 , j k 2,k 3,...

− +− + − − − + = +
= 

= + +
   

By noting from (25) that the weight-function P2k of the Lorenz family of inequality measures is a 

member of *

2i
P  for k i,i 1,...,= +  we obtain the following result from Theorem 3.2B. 
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 COROLLARY 4.1B. Let L1 and L2 be members of L. Then  

(i) L1 i
th
-degree downward dominates L2 

implies 

(ii) ( ) ( )k 1 k 2
D L < D L for k = i, i+1, i+2,....  

and 
-1 -1

1 2

1 2

F (1) F (1)
< .

µ µ
 

 

 The results of a similar evaluation of the Lorenz family of inequality measures as that carried 

out for the extended Gini family are summarized in the following corollary. 

 COROLLARY 4.2B. The Lorenz family of inequality measures defined by (12) has the 

following properties, 

(i) Dk  preserves downward Lorenz dominance of degree k and all degrees lower than k, 

(ii) Dk obeys the principle of transfers for >k 0 , 

(iii) Dk obeys the Pigou-Dalton principle of transfers and the principles of UPTS up to and including 

(k-1)
th
 degree, 

(iv) If ( ) ( )<
k 1 k 2

D L D L  then ( )k 1
D L  can be obtained from ( )k 2

D L  by e sequence of upside 

−

′
k 1

DG PTs . 

(v) The sequence { }kD approaches 0  as k →∞ . 

(vi) The sequence { }1k
kD +  approaches the relative minimax criterion as k→∞ . 

 

 Note that the derivatives of P2k alternate in sign when 1 k 1− < < . Thus, Dk for 1 k 1− < <  

preserves upward Lorenz dominance of all degrees and approaches the Rawlsian relative maximin as k 

approaches -1. As demonstrated by Aaberge (2000a) Dk approaches the Bonferroni coefficient as 

k 0→ . 

 Corollary 4.1A shows that the various degrees of upward Lorenz dominance is preserved 

by sub-families of the extended Gini measures of inequality, which divide the integer subscript 

subclass of the extended Gini family into nested subfamilies. Thus, the hierarchical sequence of nested 

upward Lorenz dominance criteria offers a convenient computational method for identifying the 

largest subfamily of the integer subscript extended Gini family of inequality measures that is 

consistent with the actual ranking of Lorenz curves. As demonstrated by Corollary 4.1B the various 
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degrees of downward Lorenz dominance divide the Lorenz family of inequality measures into a 

similar sequence of nested subfamilies.  

5. Summary and discussion 

This paper introduces two sequences of partial orderings for achieving complete rankings of Lorenz 

curves. In particular, we have examined situations where Lorenz curves intersect by introducing 

ranking criteria that are weaker than non-intersecting dominance (first-degree Lorenz dominance) and 

stronger than single measures of inequality. The proposed dominance criteria are shown to 

characterize nested subsets of the families of inequality measures defined by ∫ ′P u d L u( ) ( )where P' 

is the derivative of a function P that defines the inequality aversion profile of the inequality measure. 

The condition of first-degree Lorenz dominance corresponds to concave P-functions. By introducing 

higher degrees of dominance, this paper provides a method for identifying the lowest degree of 

dominance and the weakest restriction on the functional form of the preference function P that is 

needed to reach unambiguous rankings of Lorenz curves, irrespective of whether one’s social 

preferences is consistent with downside or upside inequality aversion. To judge the normative 

significance of the sequences of dominance criteria, appropriate principles of transfers and mean-

“spread”-preserving transformations have been introduced. The criteria of Lorenz dominance provide 

convenient computational methods for ranking a set of Lorenz curves and for exploring how robust the 

attained ranking would be with respect to choice of rank-dependent measures of inequality. Thus, in 

applied work the ranking obtained by applying this approach should in general have a wider degree of 

support than that obtained by applying arbitrarily chosen summary measures of inequality.  

 To deal with the mean income income inequality trade-off, in cases where they conflict, 

Shorrocks (1983) introduced the “generalized Lorenz curve”, defined as a mean scaled-up version of 

the Lorenz curve. Moreover, Shorrocks (1983) obtained characterizations of social welfare functions 

based on first-degree dominance relations between generalized Lorenz curves. Thus, scaling up the 

introduced Lorenz dominance relations of this paper by the mean income (µ) and replacing the rank-

dependent measures of inequality JP defined by (2) with the rank-dependent social welfare functions 

WP = µ(1− JP), it can be demonstrated that the present results also apply to the generalized Lorenz 

curve and moreover provide convenient characterizations of the corresponding social welfare 

orderings.  
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Appendix 

Proofs of Dominance Results 

 

 LEMMA 1. Let H be the family of bounded, continuous and non-negative functions on [0,1] 

which are positive on 〈0,1〉 and let g be an arbitrary bounded and continuous function on [0,1]. Then 

 ∫ > ∈g(t) h(t) dt 0 for all h H  

implies 

 [ ]g(t) 0 for all t 0,1≥ ∈  

and the inequality holds strictly for at least one t 0 1∈ , .  

 

 The proof of Lemma 1 is known from mathematical textbooks. 

 The proof of the equivalence between (i) and (ii) in Theorem 2.2A is analogous to the 

proof for stochastic dominance in Hadar and Russel (1969) but is included below for the sake of 

completeness. 

 

 Proof of Theorem 2.2A. Using integration by parts we have that 

 ( ) ( ) ( ) ( )J L J L P L u L u du P u L t L t dt du
P P

u

2 1

0

1

1 2

0

1

0

1 2
1− = − ′′ − + ′′′ −∫ ∫ ∫( ) ( ) ( ) ( ) ( ) ( ) .  

Thus, if (i) holds then ( ) ( )J L J L
P P2 1

>  for all P ∈P
2
. 

 To prove the converse statement we restrict to preference functions P ∈P
2
 for which 

′′ =P ( )1 0 . Hence, 

 ( ) ( ) ( )J L J L P u L t L t dt du
P P

u

2 1

0

1

0

1 2
− = ′′′ −∫ ∫( ) ( ) ( )  

and the desired result it obtained by applying Lemma 1. 

 To prove the equivalence between (ii) and (iii) consider a case where we transfer a small 

amount γ from persons with incomes ( )1

1
F s h
−

+  and ( )1

1
F t h
−

+  to persons with incomes 1F (s)−  and 



37 

1F (t)− , respectively, where t is assumed to be larger than s. Then JP defined by (2) obeys the first-

degree DPTS if and only if 

 ( ) ( )1 1
P (s) P s h P (t) P t h′ ′ ′ ′− + > − +  

which for small h1 is equivalent to 

 P (t) P (s) 0′′ ′− > . 

Next, inserting for 
2

t s h= + , we find, for small h2, that this is equivalent to P (s) 0′′′ > . 

 

 The proof of Theorem 2.2B is analogous to the proof of Theorem 2.2A and is based on 

the expression 

 ( ) ( ) ( ) ( )
1 1 1

P 2 P 1 1 2 1 2

0 0 u

J L J L P (0) L (t) L (t) dt P (u) L (t) L (t) dt du′′ ′′′− = − − − −∫ ∫ ∫  

which is obtained by using integration by parts. Thus, by arguments like those in the proof of Theorem 

2.2A the results of Theorem 2.2B are obtained. 

 

 Proof of Proposition 2.1A. The statement (i) implies (ii) follows from Theorem 2.2A. 

 To prove the converse statement assume that (ii) holds and that L1 and L2 cross at u a= . 

Then the following inequalities hold, 

(A1) ( )
a

1 2

0

L (u) L (u) du 0− >∫   

and 

(A2) ( ) ( )
1

1 2 2 1

0

1
L (u) L (u) du G G 0

2
− = − ≥∫ .  

Since L1 and L2 cross only once (A1) and (A2) imply that 

 ( ) [ ]
u

1 2

0

L (u) L (u) du 0 for all u 0,1− ≥ ∈∫   

and the inequality holds strictly for some u, and the desired result is obtained by applying Theorem 

2.2A. 
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 Proof of Theorem 2.3. Assume that  

(i) [ ]
u u

1 2

0 0

L (t)dt L (t)dt for all u 0,1≥ ∈∫ ∫  

and the inequality holds strictly for some u 0,1∈  and that L1 and L2 intersect m times, where m is an 

arbitrary integer. Since 

1 1

1 2

0 0

L (t)dt L (t)dt=∫ ∫  and L1 and L2 intersect m times, then (i) implies that 

[ ]1 2 1
L (u) L (u) for u 0,a≥ ∈  and 

1 2
L (u) L (u)≤  for [ ]

m
u a ,1∈  where a1 is the first intersection point 

and am is the last intersection point. Accordingly, m has to be odd. For convenience we let m 2n 1= − , 

where n is an arbitrary integer, and let 
i

a , i 1,2,...,2n 1= −  denote the 2n 1−  u-values where L1 and L2 

intersect, i.e., ( ) ( )1 j 2 jL a L a=  for j 1,2,...,2n 1= − . Thus, we have that 

(A3) 
2 2 j 2 2 j 1

1

2 2 j 1 2 j

L (u) for u a ,a
L (u)

L (u) for u a ,a

− −

−

  ≥ ∈  


 ≤ ∈  

  

for j 1,2,...,n=  where 
1 2 2n 1

0 a a ... a 1
−

< < < < < , 
0

a 0=  and 
2n

a 1= . Furthermore, let L1j and L2j be 

the Lorenz curves defined by 

(A4) 
1 2 j 2 2 j 1

1j

2 2 j 2 2 j 1

L (u) for u 0,a and u a ,1
L (u)

L (u) for u a ,a

− −

− −

    ∈ ∈    
= 
  ∈  

  

and 

(A5) 
1 2 j 1 2 j

2 j

2 2 j 1 2 j

L (u) for u 0,a and u a ,1
L (u)

L (u) for u a ,a

−

−

    ∈ ∈    
= 
  ∈  

  

for j 1,2,...,n= . 

 Then it follows from (A3) that 

 [ ]1j 1L (u) L (u) for all u 0,1≤ ∈  

and 

 [ ]2 j 1L (u) L (u) for all u 0,1≥ ∈  

for j 1,2,...,n= . 
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 By applying Theorem 2.1 we get that  

 [ ]1j 1L (u) L (u) for all u 0,1≤ ∈  

if and only if L1 can be obtained from L1j by a sequence of Pigou-Dalton progressive transfers, and 

 [ ]2 j 1L (u) L (u) for all u 0,1≥ ∈  

if and only if L1(u) can be obtained from L2j by a sequence of Pigou-Dalton regressive transfers. 

 Next, by noting that 

(A6) ( )
2 n

1 2 1 ij

i 1 j 1

L (u) L (u) L (u) L (u)
= =

− = −∑∑   

we then have that L1 can be obtained from L2 by sequences of Pigou-Dalton progressive and 

regressive transfers. 

 It follows from (A3) that the 2n segments formed by the 2n 1−  intersections may be 

arranged in n pairs where L1(u) dominates L2(u) when 2 j 2 2 j 1u a ,a
− −

 ∈   and L2(u) dominates L1(u) 

when 2 j 1 2 ju a ,a , j 1,2,...,n
−

 ∈ =  . Thus, since 2 j 2 2 j 1 2 ja a a
− −

< <  it follows for each pair of segments 

that the progressive transfers occur for lower income levels than the regressive transfers. Moreover, 

since 

 

( )

( ) ( )

( )

2 j 1 2 j

2 j 2 2 j 1

1 2 n

1 ij

i 1 j 10

a a
n

1 2 1 2

j 1 a a

1

1 2

0

L (u) L (u) du

L (u) L (u) du L (u) L (u) du

L (u) L (u) du 0

−

− −

= =

=

− =

 
 − + − =
  

− =

∑∑∫

∑ ∫ ∫

∫

 

we get that 

(A7) ( ) ( )
2 j 1 2 j

2 j 2 2 j 1

a a
n n

1 2 2 1

j 1 j 1a a

L (u) L (u) du L (u) L (u) du

−

− −

= =

− = −∑ ∑∫ ∫ .  

Thus, in order to fulfill the condition of equal Gini coefficients the sequence of Pigou-Dalton 

progressive transfers captured by the left side of equation (A7) has to be matched by a corresponding 

sequence of Pigou-Dalton regressive transfers captured by the right side of equation (A7). 
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Accordingly, we have found that L1 can be obtained from L2 by a downside mean-Gini-preserving 

transformation. 

 

 To prove that (iii) implies (i) we will rely on Theorem 2.2A and follow the line of 

reasoning used by Zoli (1999) for the proof of the “only if part” of his Proposition 3. 

 Consider the family JP defined by (2) for 1
P∈P , i.e. for increasing concave P, let F1 and 

F2 be discrete distributions with Lorenz curves L1 and L2, and assume that L1 can be obtained from L2 

by a downside mean-Gini-preserving transformation where N 1= . Thus we consider a Pigou-Dalton 

progressive transfer δ from a person with income 1

2
F (s h)−

+  to a person with income 1

2
F (s)−  and a 

Pigou-Dalton regressive transfer γ from a person with income 1

2
F (t)−  to a person with income 

( )1

2
F t h
−

+
% , where s t< . Since these transfers are assumed to leave the Gini coefficient unchanged it 

follows from (3) that 

 ( ) ( ) ( ) ( )1 s 1 s h 1 t 1 t h δ  − − − −  = γ − − − −   
%  

which is equivalent to 

(A8) h hδ = γ% .  

Furthermore, from (2) we have that a downside MGPT reduces inequality, i.e. ( ) ( )P 1 P 2
J L J L< , if and 

only if 

(A9) ( ) ( )P (s) P s h P (t) P t h ′ ′ ′ ′δ  − +  > γ − +   
% .  

Inserting for (A8) in (A9) yields 

 
( ) ( )P (t) P t hP (s) P s h

h h

′ ′− +′ ′− +
>

%

%
 

which for small h and h%  is equivalent to 

 P (t) P (s) 0′′ ′′− > . 

Next, inserting for 
1

t s h= + , we find, for small h1, that this inequality is equivalent to P (s) 0′′′ > . Then 

it follows from Theorem 2.2A that L1 second-degree upward dominates L2. 
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 The equivalence between (i) and (ii) follows by noting that 

 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 2 1

u u

1 u u

2 1 1 2 1 2

0 0 0

1 L (t) 1 L (t) dt L (t) L (t) dt

L (t) L (t) dt L (t) L (t) dt L (t) L (t) dt

 − − −  = − = 

− + − = −

∫ ∫

∫ ∫ ∫

 

when L1 and L2 have equal Gini coefficients. 

 

 To prove that (ii) implies (iv) we follow the line of reasoning used for proving that (i) 

implies (iii). To this end it is convenient to introduce the Lorenz curves 
1i

L%  and 
2i

L%  defined by 

(A10) 
[ ] [ ]

[ ]

2 2i 2 2i 1

1i

1 2i 2 2i 1

L (u) for u 0,a and u a ,1
L (u)

L (u) for u a ,a

− −

− −

 ∈ ∈
= 
 ∈

%   

and 

(A11) 
[ ] [ ]

[ ]

2 2i 1 2i

2i

1 2i 1 2i

L (u) for u 0,a and u a ,1
L (u)

L (u) for u a ,a

−

−

 ∈ ∈
= 
 ∈

%   

for i 1,2,...,n= . 

 Then it follows from (A3) that  

 [ ]1j 2L (u) L (u) for all u 0,1≥ ∈%  

and 

 [ ]2 j 2L (u) L (u) for all u 0,1≤ ∈%  

for j 1,2,...,n= . 

 By applying Theorem 2.1 we thus get that L2 can be obtained from 1jL%  by a sequence of 

Pigou-Dalton regressive transfers and from 2 jL%  by a sequence of Pigou-Dalton progressive transfers. 

Moreover, by observing that 

(A12) ( )
2 n

2 1 2 ij

i 1 j 1

L (u) L (u) L (u) L (u)
= =

− = −∑∑ %   
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we thus have that L2 can be obtained from L1 by sequences of Pigou-Dalton regressive and progressive 

transfers. As noted above L2(u) dominates L1(u) when 2 j 1 2 ju a ,a
−

 ∈    and L2(u) is dominated by L1(u) 

when 2 j 2 2 j 1u a ,a , j 1,2,...,n
− −

 ∈ =  . Thus, by arranging the adjacent segments 2 j 2 2 j 1a ,a
− −

    and 

2 j 1 2 ja ,a
−

    in n pairs we find for each pair of segments that the regressive transfers occur for lower 

income levels than the progressive transfers. Moreover, since 

 

( ) ( ) ( )

( )

2 j 1 2 j

2 j 2 2 j 1

a a1 2 n n

2 ij 2 1 2 1

i 1 j 1 j 10 a a

1

2 1

0

L (u) L (u) du L (u) L (u) du L (u) L (u) du

L (u) L (u) du 0

−

− −

= = =

 
 − = − + − =
  

− =

∑∑ ∑∫ ∫ ∫

∫

%

 

we get that 

(A13) ( ) ( )
2 j 1 2 j

2 j 2 2 j 1

a a
n n

1 2 2 1

j 1 j 1a a

L (u) L (u) du L (u) L (u) du

−

− −

= =

− = −∑ ∑∫ ∫ .  

Thus, in order to fulfill the condition of equal Gini coefficients the sequence of Pigou-Dalton 

regressive transfers captured by the left side of equation (A13) has to be matched by a corresponding 

sequence of Pigou-Dalton progressive transfers captured by the right side of equation (A13). 

 

 To prove that (iv) implies (ii) we consider a Pigou-Dalton regressive transfer δ from a 

person with income 1

1
F (s)−  to a person with income 1

1
F (s h)−

+  and a Pigou-Dalton progressive 

transfer γ from a person with income ( )1

1
F t h
−

+
%  to a person with income 1

1
F (t)−  where s t< . Since 

these transfers are assumed to leave the Gini coefficient unchanged it follows that the condition (A8) 

has to be fulfilled. Furthermore, it follows from (2) that an upside MGPT reduces inequality, i.e. 

( ) ( )P 2 P 1
J L J L< , if and only if 

 ( ) ( )P (t) P t h P (s) P s h ′ ′ ′ ′γ − + > δ  − +   
%  

which by inserting for the condition (A8) is equivalent to 

 
( ) ( )P (t) P t h P (s) P s h

hh

′ ′− + ′ ′− +
>

%

%
 

which for small h%  and h is equivalent to 
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 P (t) P (s) 0′′ ′′− < . 

Next, inserting for 
1

t s h= + , we find, for small h1, that this inequality is equivalent to P (s) 0′′′ < . Then 

it follows from Theorem 2.2B that L2 second-degree downward dominates L1. 

 

 Proof of Theorem 3.1A. To examine the case of i
th
-degree upward Lorenz dominance we 

integrate ( ) ( )J L J L
P P2 1

−  by parts i times, 

 ( ) ( ) ( ) ( )
1i

j 1 ( j) j j i (i 1) i i
P 2 P 1 1 2 1 2

j 2 0

J L J L ( 1) P (1) L (1) L (1) ( 1) P (u) L (u) L (u) du− +

=

− = − − + − −∑ ∫  (A14) 

and use this expression in constructing the proof of the equivalence between (i) and (ii). 

 Assume first that (i) in Theorem 3.1A is true, i.e. 

 [ ]i i

1 2
L (u) L (u) 0 for all u 0,1− ≥ ∈  

and > holds for at least one u 0,1∈ . 

 Then ( ) ( )J L J L
P P2 1

>  for all **

1i
P .∈P  

 Conversely, assume that 

 ( ) ( ) **

P 2 P 1 1i
J L J L for all P .> ∈P  

For this family of preference functions we have that 

 ( ) ( ) ( )
1

i (i 1) i i
P 2 P 1 1 2

0

J L J L ( 1) P (u) L (u) L (u) du.+

− = − −∫  

Then, as demonstrated by Lemma 1, the desired result can be obtained by a suitable choice of **

1i
P∈P .  

 

 Proof of Theorem 3.2A. Assume that (i) in Theorem 3.2A is true, i.e. 

 [ ]i i

1 2
L (u) L (u) 0 for all u 0,1− ≥ ∈  

and > holds for at least one u 0,1∈ . Then it follows from Theorem 3.1A that ( ) ( )P 2 P 1
J L J L>  for 

all 
i1

P∈P  such that ( ) ( )j j 1
1 P (t) 0 for t 0,1 , j 1,2,...,i

+

− > ∈ =  since this family of P-functions is a 

subfamily of **

1i
P . 
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 Conversely, assume that ( ) ( )P 2 P 1
J L J L>  for all 

1i
P∈P  such that 

( ) ( )j j 1
1 P (t) 0 for t 0,1 , j 1,2,...,i

+

− > ∈ = . For this family of P-functions we have that 

 ( ) ( ) ( ) ( ) ( )
1

i i 1 i i

P 2 P 1 1 2

0

J L J L 1 P (u) L (u) L (u) du
+

− = − −∫  

and the desired result is obtained by applying Lemma 1. 

 A proof by mathematical induction will be used to prove the equivalence between (ii) and 

(iii). To this end it is convenient to introduce the following notation. Let H1, H2 and j 1H
+
 be defined 

by 

(A15) ( ) ( )1 1 1H v,h P (v) P v h′ ′= − + ,  

(A16) ( ) ( ) ( )2 1 1 1 1 1H s, t,h H s,h H t,h= −   

and 

(A17)    ( ) ( ) ( )j 1 1 2 j j 1 2 j 1 j j j 1 2 j 1H s, t,h ,h ,...,h H s, t,h ,h ,...,h H s h , t h ,h ,h ,...,h , j 2,3,...
+ − −

= − + + = .  

Moreover, let 

(A18) ( ) ( )
1

(1)

2 2 1
h 0

1

1
H s, t lim H s, t,h

h→

=   

and 

(A19) ( ) ( )
j 1

( j)

j 1 j 1 1 2 jjh 0 h 0

k

k 1

1
H s, t lim ... lim H s, t,h ,h ,...,h

h

+ +
→ →

=

=

∏

.  

 It follows from Theorems 2.1 and 2.2A that JP obeys the Pigou-Dalton principle of 

transfers and the first-degree DPTS iff P (t) 0′′ <  and P (t) 0′′′ > . From (14), definition (2) of JP and 

(A15)-(A19) we then get that JP obeys the second-degree DPTS iff  

(A20) ( )(2)

3H s, t 0 for s t> < .  

Inserting for (A17), (A16) and (A15) in (A19) for j 2=  yields 
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( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( ){

( ) ( ) ( ) ( )( ) }

2 1

2 1

2

2

(2)

3 3 1 2
h 0 h 0

1 2

2 1 2 2 2 1
h 0 h 0

1 2

(1) (1)

2 2 2 2
h 0

2

1 1
h 0

2 1

2 1 2 2 1 2

1
H s, t lim lim H s, t,h ,h

h h

1
lim lim H s, t,h H s h , t h ,h

h h

1
lim H s, t H s h , t h

h

1 1
lim lim P (s) P s h P (t) P t h

h h

P s h P s h h P t h P t h h

lim

→ →

→ →

→

→

= =

− + + =

− + + =

′ ′ ′ ′− + − − + −

 ′ ′ ′ ′+ − + + − + − + + = 

( ) ( )( )
2

(3) (3)

2 2
h 0

P (s) P s h P (t) P t h P (s) P (t).
→

 ′′ ′′ ′′ ′′− + + − − − + = − 

 

Inserting for t s h= + , we find, for small h, that this is equivalent to (4)P (s) 0< . 

 Next, assume that 

(A21) 
( ) ( ) ( ) ( )

j 1j 1 ( j) ( j)

jH s, t 1 P (s) P (t)
−

−

= − − .  

It follows from Theorem 2.2A and the proof above that (A21) is true for j equal to 2 and 3. 

 Inserting for (A17) in (A19) we get 

 

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( )( )

j 1

j 2

j

( j)

j 1 j 1 2 j 1 j j j 1 2 j 1jh 0 h 0

k

k 1

(1) (1)

j 2 3 j 1 j j 2 3 j 1jh 0 h 0

k

k 2

j 1 j 1

j j j j
h 0

j

1
H s, t 1lim ... lim H s, t,h ,h ,...,h H s h , t h ,h ,h ,...,h

h

1
lim ... lim H s, t,h ,h ,...,h H s h , t h ,h ,h ,...,h

h

1
lim H s, t H s h , t h ,

h

+ − −
→ →

=

− −
→ →

=

− −

→

= − + + =

− + + =

− + +

∏

∏

 

which by inserting for (A21) yields 

 ( ) ( ) ( ) ( )( )j j 1 j 1( j)

j 1H s, t 1 P (s) P (t)
+ +

+
= − − . 

Thus, (A21) is proved to be true by induction. 

 Since JP defined by (2) obeys the ( )i 1−
th
-degree DPTS if and only if 

 
( ) ( )i 1

i
H s, t 0 for s t

−

> <  

we get from (A21) that this condition is equivalent to 
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 ( ) ( )i i 1
1 P (s) 0

+

− > . 

 

 Proof of Theorem 3.3A. By inserting for (9) in (A14) we get that 

(A22)    ( ) ( ) ( ) ( )( ) ( ) ( )
1i

i 1j 1 ( j) i i i

P 2 P 1 j 1 2 j 1 1 1 2

j 2 0

J L J L ( 1) P (1) G L G L ( 1) P (u) L (u) L (u) du
+−

− −

=

− = − − + − −∑ ∫ .  

Assume first that (i) of Theorem 3.3A is true. Then ( ) ( )P 2 P 1
J L J L>  for all ***

1i
P∈P . 

 Conversely, assume that 

 ( ) ( ) ***

P 2 P 1 1i
J L J L for all P> ∈P . 

Then this statement holds for the subfamily of ***

1i
P  for which ( j)P (1) 0=  for j 2,3,...,i= . For this 

particular family of preference functions we get that 

 ( ) ( ) ( ) ( )
1

i 1i i i

P 2 P 1 1 2

0

J L J L ( 1) P (u) L (u) L (u) du
+

− = − −∫ . 

By applying Lemma 1 we get that L1 i
th
-degree upward dominates L2. 

 Next, consider the subfamily of preference functions defined by 

(A23) ( )
k 1

k
P (t) 1 1 t , k 1,2,...,i 1

+

= − − = − .  

By observing that ***

k 1i
P ∈P  we find by inserting for (A23) in JP that 

 ( ) ( ) ( ) ( )
k k
P 2 P 1 k 2 k 1

0 J L J L G L G L< − = −  

for k 1,2,...,i 1= − . 

 

 The proofs of Theorems 3.1B, 3.2B and 3.3B can be constructed by following exactly 

the line of reasoning used in the proofs of Theorems 3.1A and 3.3A. The proofs use the following 

expression, 

(A24) ( ) ( ) ( ) ( )
1i

( j) j j (i 1) i i
P 2 p 1 2 1 2 1

j 2 0

J L J L P (0) L (0) L (0) P (u) L (u) L (u) du ,+

=

− = − − − −∑ ∫% % % %   

which is obtained by using integration by parts i times. 
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 Proof of Theorem 3.4A. 

 To prove the equivalence between (i) and (ii) we draw on the proof of Theorem 3.3A. 

Under the condition of equal Gini coefficients and ( ) ( )j 1 j 2G L G L , j 2,3,...,i= =  we get from (A22) 

that 

(A25) ( ) ( ) ( ) ( ) ( )
1

i 1 i 2 i 1 i 1

P 2 P 1 1 2

0

J L J L 1 P (u) L (u) L (u) du
+ + + +

− = − −∫ ,  

and the desired result is obtained by applying Lemma 1. 

 

 Next, we will prove that (i) implies (iii). Assume that 

(i) [ ]
u u

i i

1 2

0 0

L (t)dt L (t)dt for all u 0,1≥ ∈∫ ∫  

and the inequality holds strictly for some u 0,1∈  and i

1
L  and i

2
L  intersect m times, where m is an 

arbitrary integer. Since ( ) ( )i 1 i 2
G L G L=  is equivalent to 

1 1

i i

1 2

0 0

L (t)dt L (t)dt=∫ ∫  and i

1
L  and i

2
L  

intersect m times, then [ ] [ ]i i i i

1 2 1 1 2 m
L (u) L (u) for u 0,b and L (u) L (u) for u b ,1≥ ∈ ≤ ∈  where b1 is the 

first intersection point and bm is the last intersection point. Accordingly m have to be odd. For 

convenience we let m 2n 1= − , where n is an arbitrary integer, and let 
i

b , i 1,2,...,2n 1= −  denote the 

2n 1−  u-values where i

1
L  and i

2
L  intersect, i.e. ( ) ( )i i

1 j 2 jL b L b for j 1,2,...,2n 1= = − . Thus, we have 

that 

(A26) 

i

2 2 j 2 2 j 1i

1 i

2 2 j 1 2 j

L (u) for u b ,b
L (u)

L (u) for u b ,b

− −

−

  ≥ ∈  


 ≤ ∈  

  

for j 1,2,...,n= , where 
1 2 2n 1

0 b b ... b 1
−

< < < < < , 
0

b 0=  and 
2n

b 1= . Furthermore, let i

1jL  and i

2 jL  be 

the L
i
-curves defined by 

(A27) 

i

1 2 j 2 2 j 1i

1j i

2 2 j 2 2 j 1

L (u) for u 0,b and u b ,1
L (u)

L (u) for u b ,b

− −

− −

    ∈ ∈    
= 

 ∈  

  

and 
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(A28) 

i

1 2 j 1 2 ji

2 j i

2 2 j 1 2 j

L (u) for u 0,b and u b ,1
L (u)

L (u) for u b ,b

−

−

    ∈ ∈    
= 

 ∈  

  

for j 1,2,...,n= . 

 Then it follows from (A26) that 

 [ ]i i

1j 1L (u) L (u) for all u 0,1≤ ∈  

and 

 [ ]i i

2 j 1L (u) L (u) for all u 0,1≥ ∈  

for j 1,2,...,n= . 

 Let us first consider the case where i 2= , i.e. third degree upward Lorenz dominance. By 

applying Theorem 2.3 we have that 

 [ ]2 2

1j 1L (u) L (u) for all u 0,1≤ ∈  

if and only if L1 can be obtained from L1j by a downside mean-Gini-preserving transformation 

(downside MGPT), and 

 [ ]2 2

2 j 1L (u) L (u) for all u 0,1≥ ∈  

if and only if 
1

L (u)  can be obtained from L2j by an upside MGPT. 

 Next, by noting that 

(A29) ( )
2 n

2 2 2 2

1 2 1 kj

k 1 j 1

L (u) L (u) L (u) L (u)
= =

− = −∑∑   

we then have that L1 can be obtained from L2 by a combination of a downside and an upside MGPT. It 

follows from (A26) for i 2=  that the 2n segments formed by the 2n 1−  intersections can be arranged 

in n pairs where 
1

L (u)  second-degree upward dominates 
2

L (u)  when 2 j 2 2 j 1u b ,b
− −

 ∈    and 1
L (u)  

second-degree downward dominates 
2

L (u)  when 2 j 1 2 ju b ,b
−

 ∈  . Thus, since 2 j 2 2 j 1 2 jb b b
− −

< <  it 

follows for each pair of segments that the downside MGPT occurs for lower income levels than the 

upside MGPT. Moreover, since 
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( )

( ) ( )

( ) ( ) ( )

2 j 1 2 j

2 j 2 2 j 1

1 2 n
2 2

1 kj

k 1 j 10

b b
n

2 2 2 2

1 2 1 2

j 1 b b

1

2 2

1 2 2 2 2 1

0

L (u) L (u) du

L (u) L (u) du L (u) L (u) du

L (u) L (u) du G L G L 0

−

− −

= =

=

− =

 
 − + − =
  

− = − =

∑∑∫

∑ ∫ ∫

∫

 

we get that 

(A30) ( ) ( )
2 j 1 2 j

2 j 2 2 j 1

b b
n n

2 2 2 2

1 2 2 1

j 1 j 1b b

L (u) L (u) du L (u) L (u) du

−

− −

= =

− = −∑ ∑∫ ∫ .  

Thus, in oder to fulfill the condition of equal G2-coefficients the sequence of downside MGPTs' 

captured by the left side of equation (A30) has to be matched by a corresponding sequence of upside 

MGPTs' captures by the right side of equation (A30). Accordingly, we have found that L1 can be 

obtained from L2 by a downside MG2PT. 

 By following the line of reasoning used to prove that third-degree upward Lorenz 

dominance implies that the dominating Lorenz curve can be obtained from the dominated Lorenz 

curve by a downside MG2PT we assume that a Lorenz curve L1 that 
th
i -degree upward dominates a 

Lorenz curve L2 can be obtained from L2 by a combination of a downside and an upside i 1
MG PT

−

. 

Then it follows from (A26) that the 2n segments formed by the 2n 1−  intersections of i

1
L  and i

2
L can 

be arranged in n pairs where 
1

L (u)  ith-degree upward dominates 
2

L (u)  when 2 j 2 2 j 1u b ,b
− −

 ∈    and 

1
L (u)  ith-degree downward dominates 

2
L (u)  when 2 j 1 2 ju b ,b

−

 ∈  . Thus, since 2 j 2 2 j 1 2 jb b b
− −

< <  it 

follows for each pair of segments that the downside 
i 1

MG PT
−

 occurs for lower income levels than the 

upside 
i 1

MG PT
−

. Moreover, since 

 

( )

( ) ( )

( ) ( ) ( )

2 j 1 2 j

2 j 2 2 j 1

1 2 n
i i

1 kj

k 1 j 10

b b
n

i i i i

1 2 1 2

j 1 b b

1

i i

1 2 i 2 i 1

0

L (u) L (u) du

L (u) L (u) du L (u) L (u) du

L (u) L (u) du G L G L 0

−

− −

= =

=

− =

 
 − + − =
  

− = − =

∑∑∫

∑ ∫ ∫

∫

 

we get that 
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(A31) ( ) ( )
2 j 1 2 j

2 j 2 2 j 1

b b
n n

i i i i

1 2 2 1

j 1 j 1b b

L (u) L (u) du L (u) L (u) du

−

− −

= =

− = −∑ ∑∫ ∫ .  

Thus, in order to fulfill the condition of equal Gi-coefficients the sequence of downside i 1
MG PTs

−

′  

captured by the left side of equation (A31) has to be matched by a corresponding sequence of upside 

i 1
MG PTs

−

′  captured by the right side of equation (A31). Accordingly, we have found that L1 can be 

obtained from L2 by a downside i
MG PT . 

 

 A proof by mathematical induction will be used to prove that (iii) implies (i). To this end 

it is convenient to introduce the following notation. 

 Let 

(A32) ( ) ( ) ( )( ) ( ) ( )( )
kk k k

2 j j j j j j j jA j,k 1 s 1 s h 1 t 1 t h= δ − − − − − γ − − − − % ,  

(A33) ( ) ( ) ( )i i 1 i 1
A j,k A j,k 1 A j a(i),k 1

− −

= + − + + ,  

(A34) ( ) ( ) ( )( ) ( ) ( )( )P j j j j j j j jT 2, j P s P s h P t P t h′ ′ ′ ′= δ − + − γ − + %   

and 

(A35) ( ) ( ) ( )( )P P P
T i 1, j T i, j T i, j a i 1+ = − + +   

where 

(A36) i 3a(i) 2 , i 3,4,...−

= = .  

 Consider the family JP defined by (2) where F1 and F2 are discrete distributions with 

Lorenz curves L1 and L2, and assume that L1 can be obtained from L2 by a sequence of downside 

MGiPTs´. Thus, we consider pairs ( )j j,δ γ  of Pigou-Dalton progressive/regressive transfers δj from a 

person with income ( )1

2 j jF s h
−

+  to a person with income ( )1

2 jF s
−

 and γj from a person with 

income ( )1

2 jF t
−

 to a person with income ( )1

2 j jF t h
−

+
% , where j js t< , j j 1s s

+
<  and j j 1t t

+
< . Since the 

transfers are assumed to leave the Gini coefficient unchanged it follows from (3) that 

 ( )2
A j,1 0= , 
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which from (A32) is found to be equivalent to 

(A37) j j j jh hδ = γ % .  

The condition of fixed G2-coefficients is equivalent to the following requirement 

 ( ) ( ) ( )3 2 2
A j,1 A j,2 A j 1,2 0= − + = , 

which by inserting for (A37) is equivalent to 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

222 2

j j jj j j

j j

j j

222 2

j 1 j 1 j 1j 1 j 1 j 1

j 1 j 1

j 1 j 1

1 t 1 t h1 s 1 s h
h

h h

1 t 1 t h1 s 1 s h
h

h h

+ + ++ + +

+ +

+ +

 − − − −− − − − δ − =
  
 

 − − − −− − − − δ −
  
 

%

%

%

%

 

which for small j j j 1 j 1h , h , h and h
+ +

% %  is found to be equivalent to 

(A38) ( ) ( )j j j j j 1 j 1 j 1 j 1h t s h t s
+ + + +

δ − = δ − .  

By proceeding for i 4=  we get that the condition of fixed G3-coefficients is equal to the requirement 

 ( ) ( ) ( )4 3 3
A j,1 A j,2 A j 2,2 0= − + = , 

which by inserting for (A37) and (A38) (for small j j j 1 j 1 j 2 j 2 j 3 j 3h , h , h , h , h , h , h and h
+ + + + + +

% % % % ) is 

equivalent to 

 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2 2 2 2

j j j 1 j 1

j j j j

j j j 1 j 1

2 2 2 2

j 2 j 2 j 3 j 3

j 2 j 2 j 2 j 2

j 2 j 2 j 3 j 3

1 s 1 t 1 s 1 t
h t s

t s t s

1 s 1 t 1 s 1 t
h t s ,

t s t s

+ +

+ +

+ + + +

+ + + +

+ + + +

 − − − − − −
 δ − − =
 − −
 

 − − − − − −
 δ − −
 − −
 

 

which for small j t j tt s
+ +
−  for t 0,1,2,3=  is found to be equivalent to 

 ( )( ) ( )( )j j j j j 1 j j 2 j 2 j 2 j 2 j 3 j 2h t s s s h t s s s
+ + + + + + +

δ − − = δ − − . 

Similarly, the condition of unchanged Gi-coefficients is captured by the requirement 
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 ( ) ( ) ( )( )i 1 i i
A j,1 A j,2 A j a i 1 ,2 0

+
= − + + = , 

which by inserting for the conditions of equal Gj-coefficients, j 1,2,...,i 1= −  for small j t j t 1s s
+ + −
−  is 

found to be equivalent to 

(A39) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
i 2 i 2

j j j j j t j j a i 1 j a i 1 j a i 1 j a i 1 j a i 1 t j a i 1
t 1 t 1

h t s s s h t s s s

− −

+ + + + + + + + + + + + + +

= =

δ − − = δ − −∏ ∏ .  

 The case for i 1=  (second-degree Lorenz dominance) was proved for Theorem 2.3. Thus, 

let us firstly consider the case i 2= . Inserting for (A37) in ( )PT 3,1  defined by (A35) we find that a 

downside MG2PT reduces inequality, i.e. ( ) ( )P 1 P 2
J L J L< , if and only if 

 ( ) ( ) ( )( ) ( ) ( )( )P 1 1 1 1 2 2 2 2
T 3,1 h P s P t h P s P t 0′′ ′′ ′′ ′′= δ − + − δ − − > , 

which by inserting for (A38) is equivalent to 

 
( ) ( ) ( ) ( )1 1 2 2

1 1 2 2

P t P s P t P s

t s t s

′′ ′′ ′′ ′′− −
>

− −
, 

which for small 
1 1
t s−  and 

2 2
t s−  is equivalent to 

 ( ) ( )2 1
P s P s 0′′′ ′′′− < , 

which for small 
2 1
s s−  is equivalent to 

 ( )(4)

1P s 0< . 

 Next, we have that a downside MGiPT reduces inequality if and only if 

 ( ) ( ) ( )( )P P P
T i 1,1 T i,1 T i,a i 1 1 0+ = − + + > , 

which by inserting for (A37) in ( )P
T 2,1 , (A38) in ( )P

T 3,1  and so forth is found to be equivalent to 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )( )( )

i 3
i (i) (i)

1 1 1 1 t 1 1 i 1 1

t 1

a i 1 1 a i 1 1 a i 1 1 a i 1 1

i 3
i (i) (i)

a i 1 1 t a i 1 1 a i 1 i 1 a i 1 1

t 1

h t s s s 1 P s P s

h t s

s s 1 P s P s

−

+ −

=

+ + + + + + + +

−

+ + + + + + + − + +

=

 δ − − − − >
 

δ − ⋅

 − − −  

∏

∏
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which by inserting for (A39) is equivalent to 

 ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( )

(i) (i)(i) (i)i 2
a i 1 i 1 a i 1 1i i 1 1

1 1 1 1 t 1 1

t 1 i 1 1 a i 1 i 1 a i 1 1

P s P sP s P s
h t s s s 1 0

s s s s

−
+ + − + +

−

+

= − + + − + +

  −−  δ − − − − >
  − −
   

∏ , 

which for small 
i 2 1
s s

−

−  and ( ) ( )a i 1 i 1 a i 1 1
s s

+ + − + +
−  is equivalent to 

 ( ) ( ) ( ) ( ) ( ) ( )
( )( )( )

i 2
(i) i 1 i 1

1 1 1 1 t 1 1 1 a i 1 1

t 1

h t s s s 1 P s P s 0

−

+ +

+ + +

=

 δ − − − − >  ∏  

which for small ( ) 1a i 1 1
s s

+ +
−  is equivalent to  

 ( ) ( ) ( )
i 1 i 2

1
1 P s 0

+ +

− > . 
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