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1. Introduction
The problem of computing price indexes is an important and troublesome aspect of the construction of

national accounts data and of macro- as well as microeconomic analyses in general. Part of the problem

is related to the fact that products are differentiated and the number of variants may be very large. Also

many of the variants that appear in the market today represent dramatic improvements over their

counterparts a few years back. Moreover, since products are sold in retail stores with different locations

with different characteristics and costs, and consumers have preferences over stores, product prices may

vary across stores for a given variant. For example, Carlson and Pescatrice (1980) have found that

prices of “identical products” tend to be dispersed.1 The traditional way of accounting for differentiated

products in demand analyses is either simply to increase the number of (observable) variant categories

or to apply Hicks aggregation. Although many variants can in principle be classified in observable

categories, there will, in practice, be a limit to how many variants one can treat as separate goods in a

demand system. To aggregate goods into composite ones is also problematic. If consumers have

heterogeneous preferences the corresponding price indexes will be individual specific and can therefore

not readily be implemented. As a result, it becomes a forbiddening task to estimate for example

empirical demand systems and price indexes without some sort of aggregation of commodity variants.

The traditional approach to the construction of price indexes is to apply some sort of Laspeyres

or fixed quantity index, which can be used to obtain a first order approximation to a Cost-of-Living

index. Most Consumer Price Indexes (CPI) are based on the Laspeyres formulae. The point of departure

for computing the CPI is a classification of items into successively higher item group levels. At the

lowest level (elementary level) price observations are collected. According to the Laspeyres formulae,

the CPI can be constructed on the basis of price (indexes) from any item group level using the

corresponding group budget shares as weights. However, for items at the elementary level (the first level

at which price observations are combined) information on budget shares is not readily available. Hence,

at the elementary level, most countries rely on less relevant weighting information or simply unweighted

measures. This has led to the search for an appropriate alternative that can be justified by theoretical

arguments. One strand of theory (see Eichhorn and Voeller (1983) for a survey), which dates back to

Fisher (1922), advocates the view that the price indexes should pass certain tests (or axioms) such as

monotonicity, proportionality, etc. From a theoretical point of view it is, however, not always clear to

                                                  
1 Carlson and Pescatrice obtained prices of 34 identical products from different stores in New Orleans. Thus, it is possible
that some of this price dispersion may be explained by the locations of the stores.
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what extent indexes that pass these tests are consistent with consumer theory. Thus, to the extent that a

Cost-of-Living index should serve as a basis for the CPI (for which there are strong arguments that it

should), it would be desirable to derive indexes for elementary aggregates that are consistent with

behavioral assumptions. In this paper we shall discuss the choice of index for elementary aggregates

based on exact aggregation that follows from particular assumptions about consumer preferences. In the

context of demand analysis the setting we draw on here has been discussed in Dagsvik (1996), Dagsvik

et al. (1998), and Brubakk and Dagsvik (1998). However, since these papers were primarily concerned

with demand analysis we shall in the present paper discuss the relevance to index construction, and in

particular the construction of indexes for elementary aggregates.

Other authors that have discussed the problem of price and commodity aggregation include for

example Anderson (1979) and Feenstra (1995). Feenstra assumes a finite number of variants within a

single commodity group and an “outside” numeraire commodity. Furthermore, he discusses the so-

called hedonic index problem which arises when nonpecuniary attributes associated with the variants are

observed. In contrast, the framework developed in this paper is designed to deal with random sets of

feasible product variants that are unobservable by the analyst. This randomness can be interpreted as

stemming from variations in for example the set of feasible stores across consumers. Alternatively, one

may attribute random choice sets to consumers being boundedly rational in the sense that they only take

into account a subset of alternatives within their respective "objective" choice sets in the decision

making process. However, we do not consider the issue of hedonic regression nor do we explicitly

discuss how the distribution of prices are determined in market equilibrium. Feenstra shows that the

inddex derived from a discrete choice type of micro model also can be interpreted within a

representative consumer setting. Similarly to Feenstra we also demonstrate that the index referred to

above is consistent with a representative approach.

While the present approach, and those of Anderson (1979) and Feenstra (1995) assume that the

consumers are perfectly informed about the distribution of variants and their prices, a few authors have

assumed that the consumers are not fully informed about the price distribution they face, and

consequently they search to obtain acceptable prices. These authors include Baye (1985), Anglin and

Baye (1987), and Reinsdorf (1994).

The paper is organized as follows: In Section 2 we present the modelling framework, and in

Section 3 we discuss Cost-of-Living indexes. In Section 4 we discuss estimation and computational

issues. In Section 4 we demonstrate that the results of Section 3 can also be obtained from a

representative consumer analogue to the model introduced in Section 2.
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2. The model
The commodity space is supposed to consist of n different types of products (goods), where each

product consists of a set of different variants/locations characterized by price and quality attributes. The

n goods refer to the observed commodity categories while the product variants refer to the items in the

lowest level of grouping, i.e. the individual retail stores and unobservable variants. Let Qj(z) be the

quantity of observable good j and unobservable location and variant z, and let T zj
* ( ) > 0  be an

unobservable quality/location attribute associated with variant z. For example, let the commodity type

be bread, available in two stores as the variants wheat bread and rye bread. Let z = 1  represent store A

and wheat bread, z = 2  store A and rye bread, z = 3  store B and wheat bread, and finally z = 4  store B

and rye bread. These are all possible combinations of locations and variants in the example. The T*-

attributes are consumer specific in the sense that they are subjectively perceived. The setup above is

similar to the approach of Lancaster (1966), where the T*-attributes represent the characteristics

dimension.

Next we state the assumption about the distribution of consumers preferences and the quality

attributes. Evidently, we can represent the vector of product variants and their attributes as the

Cartesian product

( ) ( )Q T*, ( ), ( ), ( ), ( ), ..., ( ), ( ) .* * *= ×
z n nQ z T z Q z T z Q z T z1 1 2 2

The consumer is assumed to be perfectly informed about the distribution of product locations, variants

and prices. He is assumed to have preferences over product variants and associated quantities,

represented by a utility function U(Q, T*).

Assumption 1

The utility function U(Q, T*) has the structure

(2.1) ( )U Q T u S z S z S z
z

1
z

2
z

n, ( ), ( ),..., ( ) ,* =






∑ ∑ ∑

where

S (z) Q (z)T (z),j j j
*=

and u is a mapping u:R R ,+ +→  that is increasing and quasiconcave.
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Assumption (2.1) implies that within a specific type of good, the different variants are perfect

substitutes. This implies that the consumer will only buy one variant of each type of good at a time.

This setup is therefore a version of the “Ideal Variety Approach”, proposed by Lancaster (1979). The

realism of (2.1) depends of course on how detailed the observable commodity types are defined. It also

depend on the time unit because the consumer specific attributes { }T zj
* ( )  may change from one instant

of time to another. If the purchases are made on a daily basis then the perfect substitute assumption

might seem rather plausible, while this assumption is quite strong if one assumes that “month” is the

proper time unit.2

The budget constraint is given by

(2.2)
j

n

z
j jQ z P z y

=
∑ ∑ ≤

1

( ) ( )

where y is income.

Let

(2.3) R z P z T zj j j( ) ( ) ( ) .*=

The consumers optimization problem is equivalent to maximizing the utility function (2.1) with respect

to { }S z z j nj ( ), , ,... , , ,...,= =1 2 1 2  subject to the “budget” constraint

(2.4)
j

n

z
j jS z R z y

=
∑ ∑ ≤

1

( ) ( ) .

We realize immediately that the problem above is formally equivalent to a conventional consumer

optimation problem where S z zj ( ), , ,...,= 1 2  are perfect substitutes that enter symmetrically in the

model, and { }R zj ( )  represent "prices". As mentioned above we realize easily that the consumer will

choose only one variant within each observable type of good. Specifically, variant $z j  will be chosen if

(2.5) ( )R z R zj j z j$ min ( ),=

                                                  
2 The price observations in the Consumer Price Index in Norway are supposed to be valid for one day (the 15th.) each
month.
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which means that $z j  is the variant with the lowest taste-and-quality-adjusted"price".

For notational convenience, let ( )$ $ ,R R zj j j=  ( )$ $ ,Q Q zj j j=  ( )$ $S S zj j j=  and ( )$ $ .P P zj j j=  Let

( )y y j mj r, , , ..., ,= 1 2,  be the function that yields expenditure on good of type j that follows from

maximizing ( )u s s sm1 2, , ...,  subject to 
j

n

j jr s y
=

∑ ≤
1

,  where ( )r = r r rm1 2, , ..., .  We realize immediately

that the purchased quantity of good j, $ ,Q j  is given by

(2.6)
( )$

$ $

$

$

$Q
S R

P

y
j

j j

j

j= =
R, y

Pj

where ( )$ $ , $ , ..., $ .R = R R R n1 2  Thus, we have expressed the expenditures that correspond to the chosen

quantities by means of an ordinary and deterministic Marshallian demand system where $R  represents

the vector of prices. We shall call { }$R j  virtual prices. The effect of unobserved heterogeneity in quality

and preferences is thus entirely captured by the virtual prices. The virtual prices as well as the unit

prices, { }$ ,Pj  are of course endogeneous because they are associated with the respective chosen product

variants/locations, while prices are exogenous to the consumers. Note that the virtual prices are not

observable. They can be interpreted as taste-and-quality-adjusted-prices in the sense that if the virtual

prices were known, consumer behavior could be represented by an ordinary deterministic demand

system that does not depend on the consumer (within suitable defined population groups) nor on the

unobservable product variants. This is so because the “quantities” Sj(z) enter symmetrically in the

utility function within each commodity type. Due to this property the virtual prices are in fact latent

stochastic price indexes.

Similarly, it follows that the Hicksian (compensated) demands can be expressed as

(2.7)
( )$
$ ,
$Q

c u

Pj
j

j

=
R

where c u j mj ( , ), , ,..., ,r = 1 2  is the function that yields minimum expenditure on good j given that the

utility level is equal to u. From (2.7) it follows that the expenditure function c(⋅) equals

(2.8) ( ) ( )c u c R u
j

n

j
$ , $ , .R =

=
∑

1
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From (2.8) we realize that the expenditure function has the crucial property that it depends on prices

solely through virtual prices. This property is useful in the context of price indexes and cost of living

indexes.

To obtain aggregate relations that apply to empirical settings, it is necessary to make further

assumptions. Without loss of generality we can write T z T z zj j j
* ( ) ( ) ( ),= ξ  where Tj(z) represents the

mean attribute value of variant z of type j in the population, and ξ j(z) are taste-shifters that represent the

heterogeneity in consumers tastes. According to Lancaster (1966) the attributes { }T zj ( )  correspond to

the notion of vertical product differentiation, while the taste-shifters { }ξ j z( )  correspond to the notion of

horizontal product differentiation. We shall in the sequel call Tj(z) the quality attribute associated with

variant z.

Assumption 2

The taste-shifters { }ξ j (z)  are assumed to be i.i.d. random variables with

(2.9) ( ) ( )P (z) y exp yj
jξ α≤ = − −

for y 0> , where α j 0>  is a constant.

A useful interpretation of α j is as

(2.10) ( )α π
ξj

jVar z
2

2

6
=

log ( )
.

A possible justification for (2.9) is that it is consistent with the notion of “Independence from Irrelevant

Alternatives”, which is discussed in Dagsvik et al. (1998).

Let gj(p,t) be the density of prices and quality attributes of the variants in the market within

commodity group j, and let Dj be the support of gj(⋅). Let $ ( , )g p tj  be the probability that a consumer

shall purchase a variant with price and quality (p,t) given that a variant of type j is purchased. The

empirical counterpart to gj(p,t) is the fraction of variants of type j with list price p and quality attribute t

that appear in the stores. The empirical counterpart to $ ( , )g p tj  is the number of consumers that

purchase a variant with price and quality (p,t) to the number of consumers that purchase a variant of
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type j. From the assumptions above it follows readily from the theory of discrete choice that the

relationship between $ ( , )g p tj  and gj(p,t) is given by

(2.11) $ ( , )
( , )

( , )
.

( , )

g p t

t
p

g p t

y
x

g x y
j

j

x y D
j

j

j

j
=













∈
∑

α

α

The interpretation of (2.11) is as follows: Due to the consumer's random taste-shifters, { }ξ j z( ) , a

selection effect arises and the distribution of prices (unit values) and quality attributes of the purchased

variants will differ from the corresponding distribution of list prices and quality attributes offered in the

market. Eq. (2.11) expresses the structure of this selection effect. Note that according to (2.10) the

selection effect decreases when the variance of log ( )ξ j z  increases, and disappears when the variance

approaches infinity, which means that the distribution of unit values and market values coincide in the

limit.

It follows from (2.9) that the distribution of $R j  has the structure

(2.12) ( ) ( )P R r r Kj j
j$ exp≤ = − −1 α

for r ≥ 0,  where

(2.13) K b
y
x

g x yj j
x y D

j
j

j

= 



∈

∑
( , )

( , )
α

,

and where bj represents the number of variants of type j that is supplied to the market.

In empirical analyses, (2.11) is not readily applicable due to the fact that the quality attributes

are unobservable. We shall therefore derive aggregate relations that correspond to observations of prices

and unit values. To this end let

(2.14) ( )λ α

α

j j j
t

j

j

p E T z P z p
t g p t

g p
j

j

( ) ( ) ( )
( , )

( )
≡ = ≡

∑
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where $R 0  denotes the vector of virtual prices in the basis period. The index given in (3.1) is household

specific and random due to the fact that the virtual prices are household specific. The corresponding

aggregate index ( )E I ut
$ , $ ,R R0  can, by first order Taylor approximation, be expressed as

( ) ( )
( ) ( )E I u

c E u

c E u
I E E ut

t
t

$ , $ ,
$ ,

$ ,
$ , $ , .R R

R

R
R R0

0
0≈ ≡

Thus, to a first approximation we can interpret ( )I E utE $ , $ ,R R0  as an (aggregate) Cost-of-Living

index. As a result, the corresponding Laspeyres and Paasche indexes follow from the usual expression

by substituting the prices by the respective mean virtual prices.

Let us next discuss the issue of commodity group-specific indexes (elementary indexes). To this

end we consider the cost function conditional on group j. Due to assumption (2.1) it follows that

z
jS z∑ ( )

is equivalent to a utility function when only consumption allocation within group j is considered. This

implies that the "subutility"

(3.2) u Sj j≡ $

represents the "indirect" utility, due to the fact that only one variant within group j is purchased.

Therefore, the group-specific cost function at time t equals

(3.3) ( )c R u u Rj jt j j jt
$ , $=

and consequently, the group-specific cost of living index equals

(3.4) ( ) ( )
( )I R R u

c R u

c R u

R

Rj j jt j
j jt j

j j j

jt

j

* $ , $ ,
$ ,

$ ,

$

$ .0
0 0

≡ =

This index is reference free, i.e., it does not depend on the level of the subutility. As in the unconditional

case, the index given in (3.4) is household specific and random. We shall therefore be interested in the

corresponding aggregate index
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(3.5) ( )E I R R u E
R

Rj j jt j
jt

j

* $ , $ ,
$

$ .0
0

=










In contrast to the treatment in the general unconditional case it is in fact possible to calculate an exact

formulae for the right hand side of (3.5) due to a bivariate extension of (2.12), provided the correlation

between $R jt  and $R j0  is sufficiently strong. Specifically, we prove in the Appendix B that

(3.6) E
R

R

E R

E R
jt

j

jt

j

j

j
j

j

$

$

$

$
sin0 0









 = ⋅









ρ π

α
ρ π
α

where ρ j is a constant such that ρ αj j< , with the interpretation as

(3.7) ( )1 2
0− =ρ j jt jCorr R Rlog $ , log $ .

We have therefore demonstrated that the index Ij defined by

(3.8) I
E R

E Rj
jt

j

=
$

$
0

can (apart from a multiplicative constant) be interpreted as an exact aggregate cost of living index for

commodity group j.3

4. Calculation of mean virtual prices
We shall in this section consider the problem of calculating (estimating) the virtual prices. We shall

demonstrate that the assumptions introduced in Section 2 imply rather convenient expressions for E R j
$ .

For simplicity we drop the indexation of time in the notation. From (2.12) and (2.14) it follows, with the

normalization,

(4.1) b j
j

j1 1
1α

α
= +









Γ

                                                  
3 It is easy to verify that the result (3.6) does not essentially depend on the Weibull distribution (2.12). It is in fact sufficient
that the virtual prices have the structure $ $R E Rjt jt jt= ⋅ η , where { }η jt  are positive random variable with distributions that

do not depend on the mean virtual prices, and with the property that ( )E jt jη η 0  is finite for all j.
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that one gets

(4.2) ( )( )E R K p p g p E P z P zj j
p

j j j j j
j j

j

j
j$ ( ) ( ) ( ) ( ) .= =









 ≡− −

−
− −∑1

1
1α α

α
α α

λ λ

One can also express the mean virtual price E R j
$  by means of the distribution of unit values.

Specifically, it can be demonstrated that

(4.3) ( ) ( )E R

p g p

t g t
E T z E Pj

p
j

t
j

j j

j

j

j

j
j j

j$
$ ( )

~ ( )
( ) $=

















≡
∑
∑

−

α

α

α

α α α α

1

1 1

where ~ ( ) ( , )g t g p tj
p

j≡ ∑ , is the marginal density of Tj(z) across variants (see Dagsvik et al. (1998)).

We shall next introduce an additional assumption which implies a useful restriction on the

functional form of λ j(⋅).

Assumption 3

The conditional distribution of unit values within each commodity group given that a variant

is purchased, is not affected by a scale transform of the prices of the variants.

Assumption 3 seems reasonable since only changes in relative prices matter due to the fact that

$ ( )g j ⋅  is independent of income.

In Appendix A we demonstrate that Assumption 3 implies that λ j(⋅) is a power function. Thus,

under Assumption 3

(4.4) ( ) ( )λ α α α κ
j j j jp E T z P z p A pj j j j1 ≡ = =( ) ( )

where A j > 0  and κ j > 0  are constants. From (4.4) we obtain that Aj has the interpretation

(4.5)
( )

( )A
E T z

E P z
j

j

j

j

j j
=

( )

( )
.

α

α κ
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From (4.4) we realize that ( )λ α
j p j1/  is convex when κ j > 1  and concave when κ j < 1.  This means that

when κ j > 1 , increasing prices do not reduce the perceived attractiveness of the product variants as

much as when κ j < 1,  because high prices are perceived as an indication of high quality, and vice versa.

When κ j > 1 , for example, the relationship between prices and quality is strengthened as the price level

increases.

From (4.2) and (4.4) it follows that we can express E R j
$  as

(4.6) ( )E R E T z
E P z

E P z
j j

j

j

j
j

j j

j j j

j

$ ( )
( )

( )
=













−

−
α α

α κ

α κ α

α
1

1

or, alternatively, E R j
$  can be expressed by (4.3).

To gain some intuition about the properties of the index formulae (4.6), we will discuss a few

particular cases below. If we are willing to assume that E T zj
j( ) α  is constant through time we can

without loss of generality normalize such that E T zj
j( ) α = 1. Consider first the case with κ j ≈ 0.  In this

case expression (4.6) reduces to the generalized harmonic mean

( )E P zj
j j

( ) − −α α1
.

Note that this expression is little affected by the right tail of price distribution. This means that since

quality in this case is not correlated with price, high prices will have a small effect on the price index

simply because consumers will not buy from stores with high prices (or variants with high prices). In

the “reference case” with κ j = 1 , the index above reduces to the generalized mean

( )E P zj
j j

( ) .α α1

This reference case means that relative changes in prices yield the same relative changes in mean

perceived quality. In this case we realize that high prices will be much more important that in the

previous case, unless α j is very small. Recall that a small α j means large heterogeneity in tastes, and

consequently the effect of the price dispersion will be reduced. This conforms with the intuition that

since consumers value the product variants differently, the influence on demand of a specific price
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(4.8) E R
N

Pj
i

N

ij
j

j

$ $≅








=
∑1

1

1
α

α

where $ , , , ..., ,P i Nij = 1 2  is a random sample of unit values. It is interesting that while it is necessary to

know α j and κ j to apply (4.7), only α j is needed to compute the index formulae in (4.8). In practice,

however, it will usually not be possible to apply (4.8) due to the fact that the samples used in consumer

expenditure surveys are too small.

In Dagsvik (1996), part II, it is discussed how α κ αj j j−  can be estimated provided one has a

sample of unit values and list prices. To estimate α j, however, one needs to make further assumptions

about the structure of the function y yj ( , )r  introduced in Section 2. This issue is discussed in Dagsvik

et al. (1998).

Finally, let us consider the case with very large population heterogeneity in tastes, i.e., when

α j → 0 , cf. (2.10). By using l'Hìpital's rule we get from (4.6) that

(4.9) ( ) ( )lim $ exp log ( )
α j

E R E P z P zj j
s

M

j s

M

→ =
= ≅







∏0

1

1

which we recognize as the geometric mean of the prices. Notice that in this case the parameter κ j

vanishes in the index formulae. From (4.3) we also obtain

(4.10) ( )lim $ exp log $ $ .
α j

E R E P Pj j
i

N

ij

N

→ =
= ≅







∏0

1

1

In other words, when α j is close to zero we can estimate the mean virtual prices by a geometric mean of

list prices or, alternatively, by the geometric mean of unit values. The geometric mean alternative (4.9)

has been recommended by the so called CPI Commision, see Boskin et al. (1997). See also Dalén

(1992).

We conclude this section by a discussion on the differences between the generalized mean given

by (4.7) when κ j = 1 , and the geometric mean. From Hölder's inequality (see for example Berck and

Sydsæter, 1993) it follows easily that

(4.11) ( ) ( )1

1

1

1

1

M
P z P z

s

M

j s
s

M

j s

M
j

j

= =
∑ ∏






 ≥







α

α
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where equality holds only when all prices are equal. Moreover, the difference between the right and the

left hand side will increase as the variance of the logarithm of prices increases, provided the central

moments of order higher than two are not too “large”. To see this we note that the asymptotic

counterpart to (4.11) is

( ) ( )E P z E P zj j
j

j
( ) exp log ( )α α1

≥

which is equivalent to

(4.12) ( )( )[ ]E P z E P zj j j

j

exp log ( ) log ( ) .α
α

− ≥
1

1

By a second order Taylor expansion it follows that the left hand side of (4.12) is approximately equal to

1
2

2 1

+










α
α

j
jVar P z

j

log ( )

which shows that the left hand side of (4.12) is increasing in Var P zjlog ( )  provided that

( )1
n

E P z E P zj j

n

!
log ( ) log ( )−

is small for n ≥ 3 .

5. A representative consumer analogue
Anderson et al. (1992) and Feenstra (1995), among others, have discussed how discrete choice behavior

can be interpreted within a representative consumer setting. In this section we shall demonstrate that the

indexes derived above can also be derived from a representative consumer approach.

To this end we assume that the representative consumer has utility function given by

(5.1) ( )U u V V Vn( , ) , ,...,Q T = 1 2

where

(5.2) ( )V T z Q zj
z

j j

j

j

j

j

=








∑ +

+

( ) ( ) .
α

α

α
α

1

1
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The representative consumer's problem is to maximize (5.1) subject to (2.2). This problem can be

formulated as a two stage budgeting problem as follows: First, maximize utility with respect to variants

within commodity groups subject to expenditure on each commodity type. Second, maximize utility with

respect to consumption allocation between commodity groups.

Consider first allocation within commodities. As above, let cj denote the (conditional)

expenditure function for commodity group j. It follows readily that

(5.3) Y
T z

P z
uj

z

j

j
j

j
j

=


















∑

−
( )

( )
.

α α1

The interpretation of (5.3) is as the expenditure Yj which is required to achieve utility level uj within

group j, given prices and quality attributes. With the same notation as in Section 2 it follows that we can

write (5.3) as

(5.4) Y b
y
x

g x y u b E
T z

P z
uj j

x y D
j j j

j

j
j

j

j j
j

j

= 















 =























∈

− −

∑
( , )

( , )
( )

( )
.

α α α α1 1

From (2.12) we have that (5.4) also can be expressed as

(5.5) Y u Kj j j
j= − 1 α .

If now K j
j− 1 α  is linear homogeneous in prices, it is clear from (5.5) that uj can be interpreted as

composite consumption of type j while K j
j− 1 α  is the corresponding “price” (price index). Thus the total

expenditure function can therefore be expressed as a function of the “price indexes”,

K j nj
j− =1 1 2α , , ,..., . But from (4.2) we realize that the index formulae for E R j

$  and K j
j− 1 α  are the

same. In other words, the representative consumer approach presented above yields the same price index

as the micro-approach outlined in Section 2.

In the representative consumer setting the interpretation of the parameters { }α j  is different

from the case with a population of consumers. In that case α j is associated with the dispersion of the

random taste-shifters, cf. (2.10), and is constrained to be positive. In the representative consumer

approach 1 + α j  can be interpreted as the elasticity of substitution between variants within commodity

group j, and α j can take any real value except zero.
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6. Empirical results
To gain some insight on the importance of the value of the parameter κ j in the formulae (4.7) one can

compute (4.7) for different values of κ j and α j. We have computed estimates by means of (4.7), the

arithmetic mean ( )κ αj j= = 1 , and the geometric mean given by (4.9), for selected commodities based

on data from January 1989 to December 1994. Plots of the resulting indexes are displayed in Figures 1

to 19. For the sake of comparison we have also displayed the index currently in use by Statistics

Norway. The three indexes shown are: (i) The actual elementary index used by Statistics Norway in the

construction of the Consumer Price Index (CPI) (See Koht and Sandberg (1997)), which is based on

regional ratios of mean prices, weighted together using appropriate regional weights.4 This index will be

referred to as kj, where j denotes the commodity group. (ii) The index given by (4.7), with κ j = 1  and

α j = 0 63.  (the chosen value of α  is taken from Brubakk and Dagsvik (1998)), is referred to as dj and,

finally, (iii) the geometric mean given by (4.9), is referred to as gj. In Figures 10 to 19 we display the

respective arithmetic and geometric means, where the arithmetic mean for group j is referred to as aj. All

the indexes are normalized to 100 in January 1989.

From Figures 10 through 19 we realize that the geometric and the arithmetic means yield very

similar result except for the commodity groups “Bread” and “Fish products”. From the discussion in

Section 4 we realize that this may be due to the fact that the variance of the logarithm of prices

increases for these particular commodity groups. From Figures 1 to 9 we note that the elementary index

currently in use in Statistics Norway differs from the other indexes for some goods in some months.

Since the difference between this index and the geometric mean evidently is due to the regional

weighting, we realize that it may be of some importance how the weights are selected.

                                                  
4 Thus, for a given commodity group j, we have that the elementary index for the time period 0 to t can be expressed as

k w
n

P z

n
P z

j r
r

jt sr
s

r
j sr

s

r

=
∑
∑∑

1

1
0

( )

( )

where { }w r  denote regional weights. For each region r, the summation is made across the set of stores, indexed zsr. The

number of stores in each region is denoted nr.
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Figure 7. Price indexes for potatos
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Figure 8. Price indexes for sugar
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Figure 17. Price indexes for sugar
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Figure 18. Price indexes for coffee
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Figure 19. Price indexes for a particular type of bread
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6. Conclusions
In this paper we have discussed possible theoretical justifications for a class of price indexes for

elementary aggregates. Two different approaches have been discussed. The first one is based on a

particular representation of preferences for heterogeneous consumers in which goods are allowed to be

differentiated with product variants that are perfect substitutes to the individual consumers. Moreover,

this representation allows prices to depend on latent “quality” attributes of the variants. This is of

particular interest for product variants where price is perceived by the consumers as a signal of quality.

From the stated assumptions, a convenient class of prices indexes for elementary aggregates follows.

Second, we demonstrate that the same class of indexes can be derived from a representative consumer

approach. Many of the indexes for elementary aggregates proposed in the literature emerge as special

cases within this class. An example of a case of particular interest is the geometric mean.
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Appendix A

Proof of the result that Assumption 3 implies that λ j(p) is a power function
For analytic convenience we shall present a proof for the continuous case where λ j(p) is a continuous

function. Let $ ( )g pjθ  denote the density of unit values within commodity group j after the prices have

been multiplied by a common positive scale θ . The corresponding density of prices equals ( )g pj θ θ .

Hence, by (2.15)

(A.1)
( )
( )

$ ( )
( )

( )

.g p
p p g p

x x g x dx
j

j j

j j

j

j

θ

α

α

λ θ

λ θ
=

− −

∞
− −∫

1

0

1

By change of variable in the integral in the denominator of (A.1) we get

(A.2) $ ( )
( ) ( )

( ) ( )

.g p
p p g p

x x g x dx
j

j j

j j

j

j

θ

α

α
θ

λ θ

θ λ θ
=

−

∞
−∫

0

Under Assumption 3 it follows readily that

( )$ ( ) $g p g pj jθ θ θ= − −
1

1 1

which implies that for all p ∈ ∞( , )0

(A.3)
$ ( )
$ ( )

$ ( )
$ ( )

.
g p

g

g p

g
j

j

j

j

θ

θ

θ
θ

= 1

1 1

When (A.2) and (A.3) are combined we obtain that

(A.4)
λ θ
λ θ

λ
λ

j

j

j

j

p p( )

( )

( )

( )
.=

1

Let f p pj j j( ) ( ) ( )= λ λ 1 . Then (A.4) yields

(A.5) f p f p fj j j( ) ( ) ( ) .θ θ=
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Eq. (A.5) is a Cauchy type of functional equation which only continuous solution is f p pj
j( ) = β  (see for

example Aczél (1966)). Hence λ β
j jp a p j( ) = , where a j > 0  and β j are constants.

Q.E.D.
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Appendix B

Derivation of the mean of $ $R Rjt j0

Since $R jt  and $R j0  are Weibull distributed it seems reasonable to assume that $R jt  and $R j0  are

bivariate Weibull distributed, i.e., $ $R E Rjt jt jt= ⋅η , where

(B.1) ( ) ( )F x y P x y k x yj jt
j j j j j

( , ) , exp≡ ≤ ≤ = − +





− −η η α ρ α ρ ρ
0 ,

x y k> > >0 0 0, ,  is a constant and ( ]ρ j ∈ 0 1,  is a constant which has the interpretation

(B.2) ( ) ( )ρ η ηj jt j jt jcorr corr R R2
0 01 1= − = −log , log log $ , log $

where ′F2  denotes the partial derivative with respect to the second variable. From (B.1) it follows by

straight forward calculus that

(B.3) P v F
y
v

y dy
v

jt

j
j j

η
η α ρ

0 0
2

1

1
>









 = ′



 =

+

∞

∫ , .

Accordingly, we obtain

E P v dv
dv

v
jt

j

jt

j

j

j
j

j

j j

η
η

η
η

ρ π

α
ρ π
α

α ρ
0 0 0 0 1







 = >







 =

+
=









∞ ∞

∫ ∫
sin

provided ρ αj j< . Hence the proof of (3.6) is complete.

Q.E.D.


