STATISTISK SEHTRALBYRÅ BIBLIOTERST 2 0 DES 1993

93/24

RAPPORTER

ANTHROPOGENIC EMISSIONS OF THE GREENHOUSE GASES CO₂, CH₄ AND N₂O IN NORWAY

A DOCUMENTATION OF METHODS OF ESTIMATION, ACTIVITY DATA AND EMISSION FACTORS

BY KRISTIN RYPDAL

STATISTISK SENTRALBYRÅ CENTRAL BUREAU OF STATISTICS OF NORWAY

Til salgs hos:

Akademika - avdeling for offentlige publikasjoner Møllergt. 17 Postboks 8134 Dep 0033 Oslo

Tlf.:22 11 67 70Telefax:22 42 05 51

RAPPORTER FRA STATISTISK SENTRALBYRÅ 93/24 REPORTS FROM STATISTICS NORWAY 93/24

Anthropogenic Emissions of the Greenhouse Gases CO₂, CH₄ and N₂O in Norway

A documentation of methods of estimation, activity data and emission factors

By Kristin Rypdal Statistics Norway

STATISTISK SENTRALBYRÅ STATISTICS NORWAY OSLO-KONGSVINGER 1993

> ISBN 82-537-3917-6 ISSN 0332-8422

EMNEGRUPPE 10 Ressurs- og miljøregnskap og andre generelle ressurs- og miljøemner

EMNEORD Drivhusgasser Forurensning Klimagasser Luft Utslipp

Foto: Forside: Frode Brunvoll

Omslaget er trykt ved Aasens Trykkerier A.S.

Publikasjonen er trykt i Statistisk sentralbyrå

Preface

The methodology for calculating the anthropogenic emissions to air of the greenhouse gases CO_2 , CH_4 and N_2O in the Norwegian national emission inventory for 1990 is presented in this report. The emission sources, emission factors, activity data, measurements and other sources for emission estimates are described and the trends in the emissions are discussed.

The emission figures are estimated in collaboration between The State Pollution Control Authority (SFT) and Statistics Norway. SFT is responsible for industrial emissions and emission factors generally. Statistics Norway is responsible for activity data (e.g. on energy use), emissions models and calculations.

The author is grateful to the following individuals for helpful comments and assistance: Ketil Flugsrud, Lisbet Høgset and Trond Sandmo (Statistics Norway), Audun Rosland (State Pollution Control Authority) and Jon Fredrik Hanssen (Norwegian University of Agriculture).

Statistics Norway, Oslo 6 September 1993

Svein Longva

Table of contents

1.	Introduction		5
2.	Summary		5
3	Calculations of e	missions to air in Norway	10
	3.1. The No	rwegian emission model	10
	3.1.1.	Structure	10
	3.1.2.	Sources, sectors, emission carriers and components	12
	3.1.3.	Emission model for road traffic	14
	3.2. Emissio	ons from combustion	18
	3.2.1.	Energy data	18
	3.2.2.	Emission factors	23
	3.2.3.	Emission rates from combustion	27
	3.3. Non-co	mbustion emissions	
	3.3.1.	Methane from oil and gas extraction and drilling	
	3.3.2.	Methane from coal mining	
	3.3.3.	Methane from domestic animals and manure	33
	3.3.4.	Methane and CO ₂ from landfills	35
	3.3.5.	Nitrous oxide from use of N-fertilizers and manure	
	3.3.6.	Nitrous oxide from manufacture of nitric acid	
	3.3.7.	CO ₂ from production of fertilizers	
	3.3.8.	CO ₂ from cement production	
	3.3.9.	CO ₂ from metal production	
	3.3.10). CO ₂ and CH ₄ from carbide production	
	3.3.11	L. CO ₂ from liming	41
	3.3.12	2. Summary, non-combustion emissions	
	Appendix 1.	Economic sectors in the Norwegian emission model	
	Appendix 2.	Background data for estimating emissions from road traffic	
	Appendix 3.	Balance sheets of energy for Norway. 1990	
	Appendix 4.	Energy accounts 1990	54
	Appendix 5.	Basic emission factors for road traffic	57
	Light	vehicles	57
	Heavy	vehicles	62

1. Introduction

The methodology for estimating anthropogenic emissions of greenhouse gases in Norway in 1990 will be reviewed in this report. The scope is to cover all emissions of CO_2 , CH_4 and N_2O . The emission figures are estimated in collaboration between The State Pollution Control Authority (SFT) and Statistics Norway (SN). SFT is responsible for industrial emissions and emission factors generally. SN is responsible for activity data (*e.g.* on energy use), emissions models and calculations.

National inventories may differ with respect to the emission sources included, methodologies of estimation, selection of activity data, emission factors and the limit of a national emission (what to be included). We will try to describe and justify the choices made in the Norwegian emission model. The 1989 emission methodology was described in the report "Emissions of Greenhouse Gases in Norway -1990. National versus IPCC estimation method (Transparency study)". The current report is an extension of the first half of this report; the combustion emissions of CH₄ and N₂O are described more thoroughly, the trends in emissions are shown and improvements since the 1989 inventory have been taken into account. The documentation of the emission estimates of the pollutants SO₂, NO_x, NMVOC and NH₃ will be published in a separate report.

2. Summary

In the Norwegian emission inventory all emissions are calculated in a four dimensional cube model, with the axes components, technical emission sources, emission carriers (*e.g.* fuels) and economic sectors. Thus, emissions may be listed by a multitude of combinations of fuels, sources and sectors. The combustion emissions are calculated by combining the fuel consumption distributed on emission sources and economic sectors with fuel, source, sector and pollutant specific emission factors. If measured emission estimates are available, these are used instead of the calculated emissions. Emissions from road traffic are calculated in a special model in a detailed manner. Aggregated emission factors are input to the main emission model. The non-combustion emissions are estimated by combining activity data with emission factors, by more complicated calculations, estimated from measurements or taken from special investigations. The non-combustion emissions are fitted into the cube model by an appropriate emission carrier, emission source and economic sector.

The main factors that have influenced the trends in the emissions are:

- An overall increase in the fossil energy consumption for most purposes in this century
- A decrease in use of oils for heating the last 15 years
- A decrease in use of gasoline for transport the last few years
- A large increase of natural gas combusted in the North Sea
- A large increase in extraction and transport of crude oil and natural gas
- An increase in landfilled waste in this century
- An increase in use of N-fertilizers in this century
- Increased production of mineral fertilizers
- Measures to reduce emissions: Mainly in the production process of mineral fertilzers and on landfills (incineration of waste and utilization of landfill gas)

The combustion and non-combustion emissions, as estimated in the Norwegian emission

inventory for 1990, are summarized in table 2.1.

Totally 35.2 mill.tonnes CO₂, 281.8 ktonnes CH₄ and 15.6 ktonnes N₂O were emitted in 1990.

The trends in the emissions are shown in figures 2.1, 2.2 and 2.3 for CO_2 , CH_4 and N_2O , respectively. The emissions of these greenhouse gases have overall increased in the time periods considered. The emissions of CO_2 have decreased slightly the last few years, mainly due to reduced consumption of heating oils and gasoline in addition to reduced industrial production. The emissions of N_2O have clearly decreased the last three years due to reduced contributions from fertilizer production.

All historical emission figures are updated when emission factors, definitions or methodologies are changed.

Figure 2.1. Emissions of CO₂ by source 1973-1992

Source: Statistics Norway and the State Pollution Control Authority

Figure 2.2. Emissions of CH₄ by source 1950-1992

Source: Statistics Norway and the State Pollution Control Authority

Figure 2.3. Emissions of N₂O by source 1950-1992

Source: Statistics Norway and the State Pollution Control Authority

The Norwegian national inventory seems to cover all the recognized important sources for the emissions of these three components. The industrial emissions are fairly well covered by measurements or emission factors, although there are some weaknesses. The emissions from extraction of oil and gas are estimated with the best available data. However, we have recognized uncertainties in many of the emission factors, particularly for the non-combustion emissions of CH₄ and N₂O. Further research is needed in this field to reduce these uncertainties.

Summary tables of emission factors are given in tables 3.2 (CO ₂ from combustion), 3.3. (C	Ή4
from combustion), 3.4 (N ₂ O from combustion) and 3.10 (non-combustion).	

Table 2.1	Emissions of greenhouse gases by source. 1990.
	Units: CO_2 in mill. tonnes, CH_4 and N_2O in ktonnes.

	CO ₂	CH ₄	N ₂ O
Total	35.2	281.8	15.6
Stationary combustion	13.9	13.9	1.5
Industrial combustion	4.3	0.4	0.8
Gas turbines	5.3	2.2	0.0
Flares	1.6	0.3	0.0
Non-industrial combustion	2.6	11.0	0.6
Incineration of waste	0.1	0.1	-
Mobile combustion	13.9	3.1	0.9
Road traffic	8.0	1.8	0.6
- Gasoline	5.3	1.7	0.3
- Diesel	2.6	0.1	0.3
Motorcycles, two-stroke engines,			
tractors and motor-driven tools	0.9	0.2	0.0
Railways	0.1	0.0	0.0
Air traffic	1.3	0.0	0.1
Ships and boats	3.7	1.0	0.2
Non-combustion	7.3	264.8	13.1
Oil & gas extraction and drilling	0.0	5.3	-
Loading of crude oil, offshore	0.2	2.4	-
Loading of crude oil, land	0.1	0.1	-
Coal mining	0.0	5.5	-
Gas terminal	0.0	0.4	-
Cement production	0.7	-	-
Metal production	4.7	-	-
- Ferroalloys	2.8	-	-
- Aluminium	1.6	-	-
- Magnesium	0.1	-	-
- Other metals	0.2	-	-
Carbide production	0.4	1.0	-
Fertilizer production	0.6	-	6.7
Liming	0.2	-	-
- Industrial	0.0		-
- Agriculture	0.2	-	-
- Lakes	0.0	-	-
Domestic animals	-	76.2	-
Manure	-	14.8	4.7
Use of mineral fertilizers	-	-	1.7
Waste	0.1	159.2	-

Source: Statistics Norway and the State Pollution Control Authority

Source: Statistics Norway and the State Pollution Control Authority

3 Calculations of emissions to air in Norway

The structure of the Norwegian emission model will be introduced in section 3.1. The methodology, energy data and emission factors for calculating combustion emissions are reviewed in section 3.2. The sources and calculation methods for the non-combustion emissions are described in section 3.3.

3.1. The Norwegian emission model¹

3.1.1. Structure

The main activity data for calculating emissions to air is energy use. In the Norwegian energy account the consumption of different forms of energy is distributed between economic sectors. In order to calculate emissions to air, the energy consumption has to be distributed between the technical combustion sources as well (*i.e.* equipment). Hence, the energy account after this distribution may be viewed as a cube with three axes: fuels, sectors, and sources.

The combustion emission factors for each pollutant depend on the fuels, sectors, and technical sources. Hence, they may fit into a four-dimensional cube with pollutant as the fourth dimension in addition to fuel, sector and source. In principle there should be one factor for each combination of fuel, sector, source, and pollutant. However, most of the cells will be empty (with no consumption), and many cells will use equal factors.

Thus, the Norwegian model for estimating emissions to air is constructed as a "cube" with four axes, see figure 3.1. The axes are emission carriers (*e.g.* fuels), economic sectors, technical sources, and pollutants, respectively. The model is easy to understand with respect to emissions from combustion: A fuel (the emission carrier) is combusted in an equipment (the technical source) in a certain economic sector. For non-combustion activities the definition of emission carrier and source is less straightforward. A spatial distribution of emissions will introduce another dimension (axis) to this model.

The calculations take place in three steps:

- The combustion emission factors are multiplied by the energy consumption of the energy account, cell by cell, giving the calculated combustion emissions of each pollutant.
- Emissions of some pollutants are measured directly at major manufacturing plants (point sources). When such measured data are available it is possible to replace the calculated values with the measured.
- The non-combustion emissions are calculated by combining appropriate activity data with emission factors or by more complicated methods, they may be taken from current reports and investigations or they are directly measured. These emissions are added to the appropriate cells in the cube.

These steps are expressed mathematically in equation 3.1.

¹ L. Daasvatn, K. Flugsrud, H. Høie, K. Rypdal and T. Sandmo, Modell for beregning av nasjonale utslipp til luft. Interne notater 92/17. Statistics Norway.

Figure 3.1. The cube model for calculating emissions to air. There will be one such cube for each pollutant.

$$E_{ijkl} = \left[C_{jkl} - CPS_{jkl}\right] * EF_{ijkl} + EPS_{ijkl} + ENC_{ijkl}$$
(3.1.)

Where

Eiikl	=	Emission of pollutant <i>i</i> from combustion of fuel <i>j</i> in source <i>k</i> in sector <i>l</i> .
C_{ikl}	=	Consumption of fuel j in source k in sector l .
CPS _{ikl}	=	Consumption of fuel j in source k in point sources in sector l .
EFiikl	=	Emission factor for pollutant <i>i</i> from combustion of fuel <i>j</i> in source <i>k</i> in sector <i>l</i> .
EPS _{ijkl}	=	Emission of pollutant i from combustion of fuel j in source k in point sources in sector l .
ENC _{iikl}	=	Non-combustion emission of pollutant i from emission carrier j , source k in sector l .

The advantage of this model is that the calculation procedure is very straightforward. The emissions of all pollutants are calculated in a uniform manner. The cell structure gives very disaggregated data, with flexible possibilities for aggregation. Thus, emissions may be listed for a multitude of combinations of sectors, sources and fuels. Very detailed analysis of origins of emissions are possible, *e.g.* within a certain sector or for a particular pollutant, source or fuel. We have also calculated emission estimates useful for economical analysis without losing the accuracy of more technical approaches.

The main disadvantage is the difficulty in handling several dimensions.

3.1.2. Sources, sectors, emission carriers and components

The emission carriers used in the model are shown in box 3.1. Most of them are fuels. Some fuels also are used in non-combustion activities, *e.g.* extraction of coal. Other gases include refinery gas and an excess gas (mainly methane and hydrogen) produced and consumed in the chemical industry. These two gases are chemically different, but may be distinguished by sector.

Box 3.1	Emission carri	ers in the Nor	wegian emission	n model. Sour	ces in brackets.
---------	----------------	----------------	-----------------	---------------	------------------

Emission carrier	Sources
Coal	[Combustion, Redox, Extraction, Transformation]
Coal coke	[Combustion, Redox]
Petrol coke	[Combustion, Redox, Carbide production]
Fuel wood, wood waste, black liquor	[Heating]
Natural gas	[Combustion, Flaring, Extraction]
Other gases	[Heating, Flaring, Transformation]
LPG (liquefied petroleum gas)	[Heating, Transformation]
Motor gasoline	[Road traffic, Boats, Motor equipment, Evaporation]
Aviation gasoline	[Air traffic]
Kerosene (heating)	[Heating]
Jet fuel (kerosene)	[Air traffic]
Auto diesel	[Road traffic]
Marine fuel	[Ships, Fishing vessels]
Light fuel oils	[Heating]
Heavy fuel oils	[Ships, Fishing vessels, Heating]
Waste	[Combustion, Bioprocesses, Transformation]
Crude oil	[Extraction, Oil loading, Transformation]
Nitrogen compounds/products	[Fertilizer production, Bioprocesses]
Manure	[Bioprocesses]
Animals	[Bioprocesses]
Solvents	[Evaporation]
Article of food	[Bioprocesses]
Sulphur compounds	[Boiling, Redox]
Lime and Ca-compounds	[Liming, Transformation]
Clay	[Transformation]
Ore	[Redox, Transformation]

The model uses approximately 120 economic sectors. The classification is from a Norwegian economic model called MODIS(IV) (MOdel DISaggregated) which is aggregated from the ISIC classification. This classification is close to the one used in the national accounts. The high number of sectors is an advantage in dealing with important emissions from manufacturing. The disadvantage is an unnecessary disaggregation into sectors with very small emissions. To make the standard sectors more appropriate for emission calculation a few changes have been made, e.g. "Private households" is defined as a sector. The sector list is shown in appendix 1.

The technical sources used in the model are shown in box 3.2. Most of the sources are easily understood. Others are not meaningful if not connected to an emission carrier or sector. Only anthropogenic sources are covered.

Source	Emission carrier		
Stationary combustion			
Direct fired furnaces	[Coal, Coke, Heavy oil, Gas]		
Boilers	[Coal, Coke, Fuel oils, Kerosene, Gas, Wood etc.]		
Small stoves	[Coal, Gasoline, LPG, Wood]		
Gas turbines	[Gas, Marine diesel]		
Flares	[Gas]		
Mobile combustion			
Road traffic (several categories)	[Gasoline, Auto diesel]		
Motorcycles	[Gasoline]		
Mopeds and snow scooters	[Gasoline]		
Two stroke boats	[Gasoline]		
Four stroke boats	[Gasoline, Diesel]		
Ships	[Marine diesel, Heavy oil]		
Railway	[Diesel]		
Air traffic (landing/take-off)	[Jet fuel (kerosene), Aviation gasoline]		
Air traffic (cruise)	[Jet fuel (kerosene), Aviation gasoline]		
Motorized tools (two stroke)	[Gasoline]		
Motorized tools (four stroke)	[Gasoline, Auto diesel]		
Non-Combustion			
Oil loading (offshore)	[Crude oil]		
Oil loading (onshore)	[Crude oil]		
Fertilizer, ammonia and nitric acid prod.	[Nitrogen compounds/products]		
Transformation	[Crude oil, Gas, LPG, Lime and Ca-compounds, Clay, Coal, Waste, Ore]		
Bioprocesses	[Nitrogen compounds/products, Animals, Manure, Waste, Food articles]		
Liming	[Lime and Ca-compounds]		
Extraction	[Crude oil, Natural gas, Coal]		
Evaporation	[Solvents, Gasoline]		
Boiling	[Sulphur compounds, Ore]		
Redox processes	[Sulphur compounds, Ore]		
Calcium carbide production	production [Petrolcoke]		
Silicon carbide production	[Petrolcoke]		

Box 3.2 Sources in the Norwegian emission model. Emission carriers in brackets.

Currently ten pollutants are covered by this emission model. In addition to the gases to be discussed in this study (CO₂, CH₄ and N₂O), emissions of SO₂, CO, NOx, Pb, airborne particles, NMVOC and NH₃ are calculated in a uniform manner. This means that the procedure we use for calculating CO₂ emissions is unnecessarily detailed for giving an overall picture. However, nothing is lost in accuracy, and the disaggregation of the various CO₂ sources is important for analysis of the results.

3.1.3. Emission model for road traffic

A model for estimating emissions from road traffic has been developed.² The results (as average aggregated emission factors) from this model give input to the general emission model.

Choice of model

A fuel-based model was chosen, where the total consumption of various fuels is the main parameter for determining the emissions. The emission factors will depend on the kind of vehicle, technology, age, fuel type and driving pattern. The total number of vehicle-kilometres driven does not enter the calculations directly, but fractions of it are distributed between the listed parameters. Emission factors may be given as emission per vehicle-kilometres or as emission per unit fuel consumed.

The total emission (Q) of pollutant j from combustion of fuel k while driving with a hot motor may be calculated from equation 3.2. or 3.3.

$$Q_{jk} = M_k \sum_{i} p_{ijk} \frac{l_{ik}}{\bar{l}_k} \left(\frac{T_{ik}}{T_k}\right)$$
(3.2.)

$$Q_{jk} = M_k \sum_{i} q_{ijk} \frac{1}{\bar{l}_k} \left(\frac{T_{ik}}{T_k} \right)$$
(3.3.)

Where:

 M_k is total fuel consumption

 p_{ijk} is the emission factor [g/kg] for pollutant *j* from fuel *k* for the combination *i* of vehicle category/ driving pattern

 q_{ijk} is emission factor [g/km] of pollutant *j* from fuel *k* for combination *i* of vehicle category/driving pattern

 T_{ik}/T_k is the fraction of vehicle-kilometres of fuel k for the combination i of vehicle category/driving pattern.

 l_{ik} is the fuel consumption [kg/km]

 \bar{l}_k is the average fuel consumption (in kg/km) of fuel k, and is determined by $\sum_{k} l_{ik} \left(\frac{T_{ik}}{T_i}\right)$

The fuel based model determines changes in emissions from changes in M_k (the total fuel consumption) and changes in

- the composition of the vehicle categories
- technologies
- annual average of kilometres driven per vehicle
- driving patterns

² J. Bang, E. Figenbaum, K. Flugsrud, S. Larssen, K. Rypdal and C. Torp. Utslipp fra veitrafikken i Norge - Dokumentasjon av beregningsmetode, data og resultater. Statens forurensningstilsyn 93:12.

Parameters

The following variables are considered:

- All ten pollutants in the general Norwegian emission model
- Fuels: Gasoline, diesel, LPG (propane) and natural gas
- Total fuel used for road traffic the current year
- Vehicle categories: 15 classes are considered combining fuels, weight and vehicle categories:

Fuel	Category	Fotal weight	Duty weight	
Gasoline	"Passenger car"	< 3.5 t	< 760 kg	
"	Light duty	< 2.7 t	> 760 kg	
	Heavy light duty	2.7 - 3.5 t	> 760 kg	
"	Heavy duty	> 3.5 t	••	
**	Bus	> 3.5 t	••	
Diesel	"Passenger car"	< 3.5 t	< 760 kg	
"	Light duty	< 2.7 t	> 760 kg	
"	Heavy light duty	2.7 - 3.5 t	> 760 kg	
"	Light heavy duty	3.5 - 10 t		
**	Medium heavy duty	10 - 20 t	••	
	Heavy heavy duty	> 20 t	••	
"	Bus	> 3.5 t	••	
LPG	"Passenger car"	< 3.5 t	< 760 kg	
**	Bus	> 3.5 t		
Natural gas	Bus	> 3.5 t		

The number of vehicles in each class aids the distribution of vehicle-kilometres driven between each class.

- Technology classes: Emission estimates are made from the distribution of vehicles between age classes within each vehicle class. The technology class is determined from the year of registration and vehicle class. It is corrected for changes in emissions due to ageing of the vehicles.
- Average annual mileage for the various vehicle categories: Aids the distribution of vehiclekilometres driven between each class.
- Average annual mileage distributed between the age classes within each vehicle category.
- Driving pattern: Three ways of driving are considered:

Urban	Speed limit	less than 50 km/h
Rural	**	60 and 70 km/h
Rural	11	80 km/h
Highway	**	90 km/h

NB! The driving pattern does not tell where the driving actually takes place. E.g. we name it urban driving outside an urban area if the speed limit is less than 50 km/h.

- Fuel consumption factors: The average fuel consumption (per km) depends on the vehicle category, technology class, ageing of the vehicle and driving pattern.
- Emission factors: Emission factors expressed as g/km or g/kg fuel depend on vehicle

category, technology class, ageing of the vehicle and driving pattern.

- Ageing: Emission factors and fuel consumption factors are corrected to take into account that the values will change as the vehicle is ageing.
- Cold start emissions: Driving with a cold engine the emissions, of particularly CO and NMVOC, will in most instances be higher than if it was hot. The difference in emission is called the cold start emission. The emissions are calculated as an additional emission contribution per start. Thus, the actual number of trips starting with a cold engine has to be determined. The cold start emissions depend on vehicle category and technology class.
- NMVOC-evaporation from gasoline vehicles: Emissions from running losses, hot soak emissions and daily emissions are taken into account. Average emission factors have been calculated, taking Norwegian climatic conditions into account. The emission factors depend on the vehicle category and technology class.

Sources of data

All data are, as far as possible, changed for every year of inventory. Some of the data are, however, based on assumptions.

- Total fuel consumption: The total amounts of fuels consumed are corrected for off-road use (e.g. in small boats, snow scooters, motorized tools etc.). This consumption is estimated from assumptions on the number of units, average use and average fuel consumption or from assumptions on the fraction of consumption within each sector for non-road traffic applications.
- Number of vehicles: The number of vehicles in the various vehicle categories is taken from the official register in the Norwegian Directorate of Public Roads.
- Average annual mileages for the various vehicle categories: Most are determined by surveys in the Statistics Norway or TØI (Institute of Transport Economics). In some instances assumptions are needed.
- Ageing: The age of the vehicles is given directly from the vehicle register. The average annual mileage driven will decrease as the vehicle age increases. Surveys from SN, combined with some assumptions give this distribution.
- Driving pattern: The Directorate of Public Roads have data on the annual number of vehicle-kilometres driven on national and provincial roads. These data are distributed on speed limits and are roughly distributed on vehicle size. Similar data exists for municipal roads in the ten largest cities. The same distribution is assumed on the remainder municipal roads.
- Annual numbers of trips (for the calculation of cold start emissions): TØI has determined the number of trips per vehicle. We have assumed that 2/3 of these trips starts with a cold engine.
- Average temperature: This parameter is needed for the estimation of emissions from cold starts and NMVOC evaporation. An annual average of 6.0°C has been chosen for Norway.
- Emission factors and fuel use factors: See section 3.2.2. and Appendix 5.

Some basic data applied in the calculation for 1990 are shown in Appendix 2. The age profile of the Norwegian passenger cars in 1991 is shown in figure 3.2. The sale of new cars has been quite low the last years. Hence, the percentage of cars equipped with three way catalysts was relatively low in 1990 and 1991.

Figure 3.2. The age distribution of the passenger cars in 1991.

Source: The Directorate of Public Roads

3.2. Emissions from combustion

3.2.1. Energy data

Norway has two ways of presenting official energy data. The *energy balance* analyses production, transformation, import, export and consumption of energy in Norway. It has an aggregated classification of energy consumption by purpose. The energy balance follows international guidelines and is reported to OECD and UN. The *energy account* is made with a much more detailed sector split. It is based on the energy balance, but the figures are corrected for Norwegian consumption abroad and foreign consumption in Norway, *i.e.*, it is supposed to cover Norwegian economical activity. The energy balances and energy accounts for 1990 are shown in appendix 3 and 4, respectively.

The figures reported for emissions to air are based upon the energy accounts. Hence, the calculated emissions cover all Norwegian activity. However, the calculated emissions may, if necessary, be corrected to correspond with international guidelines as determined by ECE.³ *E.g.* emissions from fuel consumed as bunkers in foreign ship traffic or in air transport abroad are calculated, but are subtracted before reporting. The energy accounts also include fuels consumed as raw materials or reducing agents. This consumption is subtracted before calculating the combustion emissions. Emissions from fuel used as raw materials or reducing agents are treated as non-combustion emissions.

The energy balance and accounts use several data sources. The Norwegian Petroleum Institute (NP) in collaboration with Statistics Norway (SN) makes an official sales statistics for liquid commercial fuels. The sales statistics give reliable figures for total consumption in Norway. For some sectors, the consumption in the energy accounts will diverge from the energy balance, especially air transport and fishing. Overall consumption in these sectors has to be determined by special investigations.

About half of the energy consumed for inland use in Norway is electricity made from hydropower. The fractions of various sources of energy used in inland Norway in 1976 and 1991 are shown in figure 3.3.

Solid fuels

Coal or oil fired power plants do not have any importance in Norway. Coal and coke are mainly consumed in manufacturing. The most important applications are as reducing agents in metal production and as raw materials in the production of carbides. In addition, there is a small consumption in greenhouses and private households. The figures for these sectors are uncertain. Wood is an important source of energy in Norway. The industrial consumption is reported directly to SN, but the data for the most important consumers are determined in special investigations. The consumption in private households is more uncertain. It is determined in yearly sample surveys. About 14 percent of the energy used in private households is wood. Three quarters of the households have a wood fuel stove or an open fireplace. In farmhouses, wood is still the most important source of heating in Norway. Waste is partly included in the energy balance and accounts. The amount of waste combusted in large plants is reported to the State Pollution Control Authority (SFT) and SN each year. SFT also has made an estimate of the amount combusted in smaller waste combustion plants. A fraction

³ Proceedings on the EMEP workshop on emission inventory techniques. Regensburg, Germany. 2-5 july 1991.

of the methane gas produced from solid waste is utilized as energy (section 3.3.4.) or flared. This amount is currently not included in the official energy statistics.

Gaseous fuels

Gas is burned in the manufacturing industries only. The amount of natural gas utilized and flared in the oil and gas sector is reported by the Norwegian Petroleum Directorate. Most of the energy used in this sector is natural gas, but there is in addition a consumption of diesel for stationary use. The figures include consumption on all platforms in the Norwegian part of the continental shelf and the Norwegian economic part of the platforms shared with Great Britain. The oil refineries consume mainly refinery gas. A fraction of this gas is also flared. Some large industrial plants use a petrochemical excess gas which is composed of mainly methane and hydrogen. Liquefied gas is used as a raw material for manufacture of plastics and ammonia. A small amount is combusted in private households.

Liquid fuels

7 per cent of the inland consumption of energy in 1991 was oils for residential, commercial or process heating. Oils for transport amount to a quarter of the inland energy use. The largest fraction of this is marine gas oil (mainly used in ships and fishing vessels), followed by gasoline and diesel for road traffic.

Figure 3.3. Inland energy consumption in Norway (including energy used as raw materials). Distribution on energy source. a) 1976 and b) 1991. The total inland energy consumption was 607 PJ in 1976 and 726 PJ in 1992

Source: Statistics Norway

The figures on production and transformation of commercial fuels are reported to SN by the appropriate industry. Production of crude oil and natural gas is reported by the Norwegian Petroleum Directorate. The figures include production on all platforms in the Norwegian part of the continental shelf and the Norwegian economic part of the platforms shared with Great Britain. Import, export and changes in stock are taken into account as well.

All major manufacturers report their consumption of all forms of energy directly to SN each year. Energy used as fuel and energy used as raw materials or reducing agents are reported separately.

The total consumption from which the emissions in 1990 are calculated and the theoretical energy content of fuels are shown in table 3.1.

Energy	Consumed ^a	Unit	Energy content	Unit
Coal ^b	180	ktonnes	28.1	TJ/ktonnes
Coal coke	15	ktonnes	28.5	TJ/ktonnes
Petrol coke	10	ktonnes	35.0	TJ/ktonnes
Wood etc.	859	ktoe		
- Fuelwood			16.8	TJ/1000 tonnes ^C
- Black liquor			12.6-15.5	TJ/1000 tonnes ^C
- Wood waste			15.0-18.5	TJ/1000 tonnes ^C
Waste	398	ktonnes	10.5	TJ/ktonnes
Gasoline, cars	1,789	ktonnes	43.9	TJ/ktonnes
Gasoline, aviation	3	ktonnes	43.9	TJ/ktonnes
Kerosene, heating	159	ktonnes	43.1	TJ/ktonnes
Kerosene, jet ^d	409	ktonnes	43.1	TJ/ktonnes
Auto diesel	1,067	ktonnes	43.1	TJ/ktonnes
Marine fuel	1,060	ktonnes	43.1	TJ/ktonnes
Heating oils, light	904	ktonnes	43.1	TJ/ktonnes
Heavy oil	477	ktonnes	40.6	TJ/ktonnes
Crude oil	-		39.8-46.2	TJ/ktonnes
Refinery gas	554	ktonnes	48.6	TJ/ktonnes
Refinery gas (flaring)	54	ktonnes	48.6	TJ/ktonnes
LPG	29	ktonnes	46.1	TJ/ktonnes
Excess gas	85	ktonnes	40.0	TJ/ktonnes
Natural gas	2,258	mill.Sm ³	40.5 ^e	TJ/mill.Sm ³
Natural gas (flaring)	556	mill.Sm ³	40.5 ^e	TJ/mill.Sm ³
Landfill gas	0.8	ktonnes		

Table 3.1.Energy consumption for calculating emissions from combustion to air, 1990.Energy content of fuels.

a Combustion only. Excluding bunkers.

b Hard coal

c Dry solid fuel

d Consumption of Norwegian aircarft in Norway, all phases of the flight.

e Average 1990. Upper heating value

Due to the increasing level of activity in the North sea (figure 3.4.), the amount combusted has increased steadily the last years (figure 3.5.). However, the amount combusted per unit production has decreased. The level of flaring of natural gas has been relatively stable.

Figure 3.4. Production of energy in Norway. 1970-1992. PJ.

Figure 3.5. Combustion of natural gas in the Norwegian part of the North Sea. 1976-1992. Gas turbines and flares. Billion Sm³.

Source: Norwegian Petroleum Directorate

The total inland energy consumption has overall increased the last 20 years. However, since 1987 there has been a decrease (figure 3.6.). Throughout the last 20 years the consumption of oils have been substituted by the consumption of electricity. The reduction in use of heating oils has been more than 70 per cent in the period 1976-1992. The consumption of gasoline has decreased since 1989, while the increase in the consumption of auto diesel has stopped.

Figure 3.6. Inland use of energy in Norway. 1976-1992. PJ.

Source: Statistics Norway

In order to calculate the emissions of CH_4 and N_2O we need to differentiate between sources of combustion. Within each economic sector the consumption of each fuel is distributed between the sources available in this model. The distribution is based on knowledge of the activities in the sectors or, if necessary, on special calculations or surveys. The fuels gasoline, auto diesel and marine fuels are generally used for transport. Marine diesel is also used on drilling and extraction platforms (stationary combustion). The consumption of gasoline and auto diesel has to be distributed between motorized tools and various kinds of road traffic with the aid of calculations. Heavy oil is used in ships in the transport, fishing and extraction sectors. Solid fuels and kerosene are combusted in small stoves in private households. Coal, coke and heavy fuel oil are combusted in direct fired furnaces in certain industries, *e.g.* metal and cement production. Light fuel oil is generally combusted in boilers.

3.2.2. Emission factors

*CO*₂

For liquid fuels, coal and coke we generally use internationally accepted emission factors reflecting the average carbon content.⁴ We do not usually consider net CO₂ emissions from wood/biomass burning since these are regarded as renewable sources of energy. This assumption is appropriate in Norway as the amount of forest is net increasing corresponding to a sink of about 8 million tonnes of CO₂ each year, or about 22 per cent of the total national anthropogenic emission.⁵ However, emissions from wood/biomass will be calculated here for comparison. The CO₂ emission factors for combustion of waste and methane from landfills include only the fossil part of the emissions (assumed to be 10 per cent). The CO₂ emission factors for combustion of gases and the gas densities presented in this study have been calculated for the year 1989 from the average chemical compositions of these gases in Norway. Carbon emitted in compounds other than CO₂, *e.g.* as CO, CH₄ and NMVOC, is included in the CO₂ emission estimates. The emission factors applied for the year 1990 are shown in table 3.2.

	tonnes CO ₂ /tonne	tonnes CO ₂ /Sm ³	tonnes CO ₂ /TJ
Coal	2.42		86.1
Coal coke	3.19		111.9
Petrol coke	3.59		102.6
Wood, black liquor etc. Waste ¹	0.0 (1.8) 0.3		0.0 (96) 28.6
Gasoline	3.13		71.3
Gasoline (aviation)	3.13		71.3
Kerosene (heating)	3.15		73.1
Jet fuel (kerosene)	3.15		73.1
Auto diesel	3.17		73.5
Marine diesel	3.17		73.5
Light heating oils	3.17		73.5
Heavy oil	3.20		78.8
Natural gas	2.75	2.34	57.7
Natural gas (flaring)	2.86	2.43	-
LPG	3.00		65.1
Refinery gas	2.80		57.6
Excess gas	2.50		62.5
Landfill gas (methane) ¹	0.27		

Table 3.2.	Emission factors,	CO_2 from combustion.	tonnes CO ₂ /tonne energ	y and tonnes
	CO ₂ /TJ energy.	•		

¹ Only taking into account fossil carbon (plastic, rubber, PVC, polyethylene etc.)

⁴ Klimagassregnskap, Beskrivelse av utslippsmengder, drivhusstyrke og utslippsfaktorer. Statens forurensningstilsyn 1990. Some of the emission factors have been slightly revised according to information from the Norwegian Petroleum Institute.

⁵ A. Lunnan, S. Navrud, P.K. Rørstad, K. Simensen and B. Solberg, Skog og skogproduksjon i Norge som virkemiddel mot CO₂-opphopning i atmosfæren. Skogforsk nr. 6, 1991.

CH_4 and N_2O :

The emission factors applied will in principle depend on the sector/source combination. Unfortunately, the knowledge about the N_2O and CH_4 emission factors is limited and we have not been able to apply a very differentiated set. The emission factors applied for the year 1990 are shown in tables 3.3 and 3.4 for CH_4 and N_2O , respectively. Most of the emission factors for combustion are taken from reference ⁶. The emission factor for methane from fuel wood has been derived from a study by NILU.⁷ Emission factors for methane from combustion and flaring of natural gas are taken from the OLF study presented in section 3.3.1.

The choice of emission factors and fuel consumption factors for road traffic are explained in reference ⁸. Data are determined from driving cycles. Measurements have been performed in Norway, or in Sweden, Germany, EC (CORINAIR) or USA. Methane emission factors are derived from VOC data, applying results from measurements on NMVOC to methane ratios. As far as possible values representative for the situation in Norway have been chosen. Ageing has been taken into account by introducing ageing factors for emission factors and fuel consumption factors. The basic factors are shown in appendix 5.

⁶ Klimagassregnskap, Beskrivelse av utslippsmengder, drivhusstyrke og utslippsfaktorer. Statens forurensningstilsyn 1990. Some of the emission factors have been slightly revised according to information from the Norwegian Petroleum Institute.

⁷ O.A. Braathen, N. Schmidbauer and O. Hermansen, Utslipp av metan og hydrokarboner fra vedfyring. NILU ok28/91 ref:o-89 93. April 1991.

⁸ J. Bang, E. Figenbaum, K. Flugsrud, S. Larssen, K. Rypdal and C. Torp. Utslipp fra veitrafikken i Norge - Dokumentasjon av beregningsmetode, data og resultater. Statens forurensningstilsyn 93:12.

Source	Sector	Coal	Coal coke	Petrol coke	Wood etc.	Natu- ral gas	Other gas	LPG	Gaso- line (cars)	Gaso- line (avia- tion)	Kero- sene (heat- ing)	Kero- sene (avia- tion)	Diesel (road trans- nort)	Mar- ine diesel	Light fuel oil	Heavy oil
Direct	Generally Structural clay	0.03	0.0 0.0	0.0		0.0	0.1 0			tiony	10 G)	(101)	Porty	0.8		0.04
	Refineries	0.002	0.0	0.0		0.0	0.1									0.04
Turbines	Generally					0.5	0.5									
	Oil and gas extraction					1.1	0.5							0.9		
	Gas terminal					0.8	0.5									
Flaring	Generally					4.2	4.2									
N.	Oil and gas extraction					0.3	4.2							•		
Boiler	Generally	0.05	0.05	0.05	0.2	4.2	1.5	0.1			0.1				0.1	0.1
Doners	Industry	0.05	0.05	0.05	0.2	0.1	0.1	0.1			0.1				0.1	0.1
	Private	0.05	0.05	0.05	0.2	0.1	0.1	0.1			0.1				0.1	0.1
Small stoves	Generally				9.0						0.1				0.1	•••
	Private	0.3	0.3	0.05	9.0	0.1	0.1	0.1			0.1					
Passenger cars ¹									1.0				0.2			
Vans									1.0				0.2			
Heavy duty									0.7				0.1			
Aviation I TO										0.1		0.1	0.1			
Aviation, cruise										0.1		0.1				
Motorcycles									5.0	••••		•••				
Mopeds									6.0							
Boat, 2 stroke									1.7							
Boat, 4 stroke									1.7				0.1			
Ships	Generally Drilling													0.9 0.8	0.9	0.9 1.9
Tools, 2 stroke									1.7							
Tools, 4 stroke	Generally Agriculture/forestry								1.7 1.7				0.3 0.3			

Table 3.3CH4, emission factors, kg/tonne fuel

¹ Average values

٠

Source	Sector	Coal	Coal coke	Petroi coke	Wood etc.	Natu- ral gas	Other gas	LPG	Gaso- line (cars)	Gaso- line (avia- tion)	Kero- sene (heat- ing)	Kero- sene (avia- tion)	Diesel (road trans- port)	Mar- ine diesel	Light fuel oil	Heavy oil
Direct	Generally		0.0				0.2			,	8	,		0.02		0.6
	Structural clay	0.0	0.0	0.0		0.2	0.2									0.6
Turbines	Generally					0.2								0.02		
Flaring	Generally					0.2	0.2							0.02		
Boilers	Generally	0.4	0.4	0.4	0.3	0.2	0.2	0.2			0.6				0.6	0.6
	Industry	0.4	0.4	0.4	0.3	0.2	0.2	0.2			0.6				0.6	0.6
	Private														0.6	0.6
Small stoves	Generally										0.6				0.6	
	Private	0.4	0.4		0.1			0.2			0.6					
Passenger cars ¹									0.1				0.2			
Vans									0.1				0.2			
Heavy duty ¹									0.03				0.4			
Railway													0.2			
Aviation, LTO										0.2		0.2				
Aviation, cruise										0.2		0.2				
Motorcycles									0.05							
Mopeds									0.06							
Boat, 2 stroke									0.04							
Boat, 4 stroke									0.04				0.8			
Ships	Generally Drilling													0.2 0.02	0.2	0.2
Tools, 2 stroke									0.04							
Tools, 4 stroke	Generally Agriculture/forestry								0.04 0.04				0.2 0.2			

Table 3.4	N2O.	emission	factors.	kg/tonne	fuel
A GOIO OF	· · · · · · · · · · · · · · · · · · ·	oundoion	Iucioib,		1 uoi

¹ Average values

3.2.3. Emission rates from combustion

The emissions are calculated as described in section 3.1.1. and 3.1.3. (road traffic). The unit of energy is ktonne, and the unit of emission factors is tonnes emission/tonne fuel. An exception is the combustion of natural gas, for which emissions are calculated from consumption measured in kSm³. Because of the large consumption of natural gas, small inaccuracies in conversion factors may lead to serious errors. The emissions by source, fuel and main sector are shown in tables 3.5, 3.6, and 3.7, respectively.

The gross CO_2 emission from combustion of wood, wood waste, and black liquor was approximately 4.2 mill. tonnes in 1990. The bio mass part of the CO_2 emissions from incineration of waste was about 1100 ktonnes.

Source	CO2	CH₄	N20
Total combustion	27.8	17.0	2 .4
Stationary	13.9	13.9	1.5
Oil and gas extraction	6.6	2.2	0.1
Natural gas	5.0	1.9	0.0
Flaring	1.4	0.2	0.0
Diesel	0.2	0.1	0.0
Oil refineries/gas terminal	2.0	0.2	0.1
Other industry	2.6	0.3	0.7
Non-industry	2.6	11.0	0.6
Incineration of waste	0.1	0.1	-
Mobile	13.9	3.1	0.9
Road traffic	8.0	1.8	0.6
-Gasoline	5.4	1.7	0.3
Passenger cars	5.0	1.6	0.2
Light duty	0.4	0.1	0.0
Heavy duty	0.1	0.0	0.0
-Diesel	2.6	0.1	0.3
Passenger cars	0.2	0.0	0.0
Light duty	0.3	0.0	0.0
Trucks	1.6	0.0	0.2
Buses	0.5	0.0	0.0
Motorbikes	0.0	0.0	0.0
Mopeds, snow scooters	0.0	0.1	0.0
Leisure boats	0.1	0.0	0.0
Motorized tools	0.7	0.1	0.0
Railways	0.1	0.0	0.0
Aviation	1.3	0.0	0.1
Ships and boats	3.7	1.0	0.2
- Coastal traffic	1.9	0.5	0.1
- Fishing vessels	1.5	0.4	0.1
- Mobile oil drilling	0.2	0.1	0.0

Table 3.5	Emissions of greenhouse gases from combustion by source. 1990.
	Units: CO_2 in mill. tonnes, N_2O and CH_4 in ktonnes.

Source: Statistics Norway and State Pollution Control Authority

Table 3.6 Emissions of CO2from combustion by fuel. 1990.Mill. tonnes

Total	27.9
Coal	0.4
Coke from coal	0.0
Petrolcoke	0.0
Wood, black liquor	-
Waste	0.1
Natural gas	6.7
Other gas	1.9
LPG	0.1
Gasoline (cars)	5.6
Gasoline (aviation)	0.0
Kerosene (heating)	0.5
Kerosene (aviation)	1.3
Diesel (road)	3.4
Marine fuel	3.4
Light heating oil	2.8
Heavy oil	1.6

Figure 3.7. Emissions of CO₂ from combustion by fuel. 1990.

Source: SN and SFT

Source: SN and SFT

Table 3.7Emissions of greenhouse gases from combustion by main sector. 1990.
Units: CO2 in mill. tonnes, N2O and CH4 in 1 000 tonnes

	CO ₂	CH ₄	N ₂ O
Stationary combustion	13.9	13.9	1.5
Energy sectors	8.8	2.6	0.2
Agriculture, forestry and fisheries	0.2	0.0	0.0
Manufacturing and mining	2.6	0.3	0.7
Services	1.0	0.0	0.2
Private households	1.4	11.0	0.4
Mobile combustion	13.9	3.1	0.9
Energy sectors	0.7	0.2	0.0
Agriculture, forestry and fisheries	2.0	0.5	0.1
Manufacturing and mining	0.4	0.1	0.0
Services	6.4	0.9	0.5
Private households	4.5	1.5	0.2

Source: Statistics Norway and State Pollution Control Authority

Figure 3.8. CO₂ from combustion. 1973-1991. Stationary sources (except oil and gas extraction), Oil and gas extraction (stationary), Mobile sources. Million tonnes

Source: Statistics Norway and State Pollution Control Authority

3.3. Non-combustion emissions

The Norwegian emission inventory covers emissions of SO_2 , CO, NO_x , Pb, airborne particles, NMVOC and NH₃, in addition to CO₂, CH₄ and N₂O, from extraction of oil, gas and coal, oil refineries, agriculture, liming, municipal solid waste, evaporation of gasoline and solvents, fermentation, ores and manufacture. Emission sources from manufacture include the production processes of fertilizers, plastic, sulphuric acid, paper and pulp, titanium dioxide, silicon carbide, calcium carbide, explosives, mineral wool, cement, concrete pumice stone, prebaked anodes, ferroalloys, silicon metal, aluminium, magnesium, zinc and nickel. The sources of relevance for greenhouse gas emissions will be presented in the following sections.

All emissions from use of coal and coke as reducing agents and LPG for ammonia (hydrogen) production are defined as non-combustion emissions.

3.3.1. Methane from oil and gas extraction and drilling

Extraction of crude oil and natural gas is a source of emissions of methane (and non-methane VOC). Methane emissions from turbines and flares are calculated as described in section 3.2.

Test drilling (pre-production), production and transportation are activities that have to be considered. Cold vent is direct, controlled emissions of methane to the atmosphere. For various reasons these emissions cannot yet be avoided. However, the companies will of economic reasons keep these emissions as small as possible when it is possible to sell the natural gas. Natural gas from oil fields without pipelines is mainly flared instead of cold vented. There are also many smaller sources of direct, uncontrolled emissions. We classify these as diffuse emissions. Gas is transported in pipelines. Crude oil is transported on pipelines or by ships. The emissions from pipelines are usually small, and they are included in the diffuse emissions. We do not have any inland pipelines for natural gas in Norway. Loading of crude oil for transportation by ships, offshore and at land terminals, is an important methane source.

The Norwegian oil industry association (OLF) has made a thorough report on emissions from oil and gas extraction activities.⁹ They have included emissions from stationary combustion and non-combustion activities, except parts of the loading of crude oil onshore. The emission estimates presented for 1990 have been evaluated by SFT and the Ministry of Environment, taking information from OLF, SINTEF and other experts into account. The emission estimates in the OLF report are based on data from the oil companies. The cold vent and fugitive emissions are determined by collecting information from the operators through questionnaires and by analysis of process flowsheets provided by the companies. The collected information was evaluated and analyzed, and specific simulations performed to quantify the emissions. 17 different sub-emission sources were quantified. Younger platforms generally emit less than the older (older than 10 years) by a factor of about 50 per cent. The part of the diffuse emissions originating from transportation of natural gas may mainly be located to the gas terminal (only one in Norway). From measurements this methane emission may be estimated to 0.5 ktonnes in 1990. The CH₄/NMVOC ratio of the emissions varies, but average values may be calculated from the available measurements.

⁹ OLF, Environmental Programme, Emissions to air, Report Phase II

The direct emissions estimated from the OLF project for 1990 were 5.1 tonnes methane and 3.6 tonnes NMVOC. The production of crude oil and natural gas, respectively, were 80.6 million tonnes and 37.1 billion Sm³. About the same quantities were emitted in 1991 and 1992, in spite of an increasing rate of production, due to improvements in technology.

The following emission factors may be derived (tonnes/ktoe produced oil and gas):

NMVOC 0.031 CH₄ 0.044

The estimated emission of methane from testing (pre-production) is 160 tonnes.

The diffuse emissions from oil loading are approximately proportional to the amount crude oil transported by ships. Only two fields use this kind of transportation in Norway, Statfjord and Gullfaks. The amount of crude oil transported is equal to the production at these fields. The VOC evaporation rates have been estimated by the relevant operators from measurements at the two fields, and include emissions from all stages of the process (loading and washing of tanks). The methane content of the VOC, which varies from field to field, also has been measured. The evaporation rate will depend heavily upon recovery systems and crude oil washing procedures. *E.g.* the specific VOC-emissions from this source are reduced by 15% from 1989 to 1990 in Norway due to changes in the crude oil washing procedure. Installing recovery systems may reduce these emissions to any considerable extent.

The calculation methodology is to calculate a total VOC evaporation from the estimated evaporation rate combined with the amount of crude oil transported. The total estimated VOC evaporated from each field is distributed between methane and NMVOC from the measured methane/NMVOC ratio. Calculation of emissions from offshore loading of crude oil:

Field	Evaporation rate (%)	Production (Mtonnes)	Methane content (%)	tonnes NMVOC	tonnes methane
Statfjord	0.2	32.9*	1.2	65,010	790
Gullfaks	0.07	13.0	17.2	7,535	1,565
Total				72,545	2,355

* Total production at Statfjord (Norwegian *and* British share), because everything is loaded at Norwegian installations.

A similar method is used for calculating the emissions from loading of crude oil at land terminals. There are two relevant terminals in Norway, Sture and Mongstad. The amount of crude oil loaded at these terminals is reported to SN.

The evaporation rate is estimated to be 0.11%. Reduced movements of the ships in port favour smaller evaporation rates than offshore. The methane content of the VOC is estimated to 0.55% at both terminals. The calculation of emissions from crude oil terminals:

Evaporationrate (%)Total0.11	Loaded (Mtonnes) 23.1	Methane content (%) 0.55	tonnes NMVOC 25,270	tonnes methane 140	
------------------------------	-----------------------------	--------------------------------	---------------------------	--	--

NMVOC and methane emitted (from non-biological sources) may be considered as indirect CO_2 -emissions. These species will be oxidized to CO_2 in the atmosphere. The indirect CO_2 -emissions from oil loading amount to 0.3 mill. tonnes.

The gas terminal at Kårstø receives natural gas from pipelines. There is a fairly constant amount of diffuse emissions from various processes in this terminal. The emission estimate is based on measurements. The emissions were estimated to 410 tonnes of methane and 1,580 tonnes of NMVOC in 1990.

A summary of the methane emission estimates from oil and gas extraction activities is given in table 3.8.

 Table 3.8.
 Methane emissions from oil and gas extraction activities. 1990. Tonnes.

Total	8,165
Venting and fugitive	5,100
Oil loading, offshore	2,355
Oil loading, on shore	140
Pre-production	160
Gas terminal	410

The Norwegian production of oil and gas has increased as shown in figure 3.4. The methane emissions from oil and gas extraction activities have also increased the last years.

3.3.2. Methane from coal mining

Norway produces coal at Svalbard. The emissions of methane from the mining process are unknown due to lack of relevant measurements. For 1990 we used the IPCC/OECD method for estimating the emission.¹⁰ The amount of coal produced is chosen as activity rate in the report. The emission factors will depend upon several variables. The report recommends to calculate them from the methane content of the coal. The methane content of the Svalbard coal has been measured by "Store Norske Spitsbergen Kulkompani". However, this methane content, about 10% by weight, is extremely high compared with the typical values suggested in the IPCC report. We believe that the scientific definition of "methane content" is unclear.

The Svalbard mines are underground, the coal is hard, although young. We chose to apply the standard method outlined for underground mines in the IPCC report, using the factor 27.1 m³ CH₄ per tonne coal produced.

¹⁰ OECD. Estimation of greenhouse gas emissions and sinks. Final report. Prepared for IPCC. August 1991.

Production	Coefficient	Emission
(tonnes)	(tonne/tonne)	(tonnes)
302,804	0.018	5,450.5

We have not made any attempts to estimate emissions from the degasification system or from post-mining activities.

The activities at Svalbard include Norwegian and Russian extraction of coal. Only the Norwegian emissions are included in our estimates. However, it is not evident that emissions from Svalbard should be included in the Norwegian emission inventory. Emissions at Svalbard are not controlled by Norwegian Authority.

3.3.3. Methane from domestic animals and manure

Domestic animals, especially ruminants, emit CH₄. Although these emissions depend on several factors and vary from individual to individual within one species, we have chosen to apply average emission factors for each species. The chosen emission factors are in reasonable agreement with, although somewhat lower than, those applied in Denmark, the Netherlands and Canada. The emission factor for reindeer has been estimated by scaling the factor for sheep by the animal weights. The appropriate activity data are the average numbers of individuals of each species for a given year. SN publishes official statistics on agriculture each year. The data are based upon sample surveys. The number of animals is recorded at a selected date (1st of July), and does not necessarily equal the yearly average.

Calculation:

Species	Number:	Emission factor (tonne/animal/year)	Emission (tonnes)
Cattle	953,100	0.055	
Sheep	2,231,200	0.008	
Goats	91,500	0.008	
Reindeer	231,501	0.015	
Horses	18,000	0.018	
Pigs	709,700	0.0015	
Humans	4,241,473	5.0*10 ⁻⁵	
Hens	3,763,400	2.0*10 ⁻⁵	
Chickens	1,659,200	0	
Duck	500	0	
Turkey	30,000	1.0*10 ⁻⁵	
Total			76.151

Source: Statistics Norway

Organic material in the manure is transformed to methane with the aid of microbiological processes. Emissions from cattle are most important in Norway. The emissions from manure also depend on several factors; kind of animal, feeding, manure managing, manure storing and the climatic conditions (temperature and humidity).

The emissions are estimated from equation 3.4.

$$Emission = GM * \% VS * B_0 * \% MCF * \rho_{methane}$$
(3.4)

an an Angelan an Angela

Where:

GM	=	Annual production of manure
%VS	=	Fraction volatile solids
B ₀	=	Maximum theoretical methane production(m ³ methane/kg-VS)
%MCF	=	Fraction of theoretical potential emitted
ρ _{methane}	=	Density of methane

The number of animals is taken from SN's Agricultural Statistics. The values of the other parameters in the calculation have been determined in co-operation with Jon Fredrik Hanssen at the Norwegian University of Agriculture. The values chosen are, as far as possible, corresponding to Norwegian climatic conditions and agricultural procedures. The main uncertainty in this calculation lies in the %MCF (the fraction of the theoretical methane production actually emitted).

Calculation:

	Number	Production	VS	Bn	Max	MCF	Emission
				•	prod.		
		kg/animal/day	%	m ³ /kg-VS	Tonnes	%	Tonnes
Horse	18,000	25.5	16.4	0.21	3,820	8	306
Cattle							10,306
-Ox < 1 year	175,200	15	9.2	0.21	12,268	8	981
-Heifer < 1 year	176,900	15	9.2	0.21	12,387	8	991
-Ox > 1 year	95,000	45	9.2	0.21	19,957	8	1,597
-Heifer > 1 year	172,500	30	9.2	0.21	24,158	8	1,933
-Dairy cow	333,500	45	9.2	0.18	60,051	8	4,804
Sheep							1,404
-< 1 year	1,326,100	1	19.5	0.19	11,872	5	594
-> 1 year	905,100	2	19.5	0.19	16,206	5	810
Goat							74
-Dairy	61,000	1.8	23	0.19	1,159	5	58
-Other	30,500	1	23	0.19	322	5	16
Pig							1,729
-> 6 months.	87,500	9	9.5	0.21	3,796	10	380
-For slaughter	622,200	4.5	9.5	0.21	13,497	10	1,350
Poultry							904
-Hen	3,763,400	0.16	15.6	0.3	6,809	10	681
-Chicken	1,659,200	0.085	19.4	0.3	1,983	10	198
-Duck	500	0.17	16	0.3	1	10	0
-Turkey	30,000	0.7	16	0.3	244	10	24
Reindeer, domestic	231,501	2	19.5	0.19	4,145	2	83
Total					192,675		14,805

During this century the numbers of cattle and horses have decreased, while the numbers of sheep and pigs have increased (figure 3.9.). Another important factor is that the size and feeding of animals also have changed. Thus, the emission per animal per year has probably increased.

Figure 3.9. Numbers of selected domestic animals. 1900-1989

Source: Statistics Norway

3.3.4. Methane and CO₂ from landfills

The biological destruction of waste contributes to emissions of CH_4 and CO_2 . This transformation of organic matter takes place in several steps, and the process may last 50-100 years or more. The actual emissions depend on several factors. We use an estimate of 159 ktonnes of CH_4 and 79 ktonnes of CO_2 emitted in 1990.

These values are based on a study made by Berdal Strømme for the State Pollution Control Authority (SFT).¹¹ Their calculation of emissions are based on several assumptions. Various sources suggest that the theoretical maximum production of gas from waste is approximately 400 Nm³/tonne waste. A more realistic value for Norway will lay in the interval 100-300 Nm³/tonne waste. 250 Nm³/tonne waste has been chosen. The composition of the emitted gas will vary throughout the transformation. As average values 55% methane and 45% CO₂ was chosen. The gas emission reaches its maximum value the first year after deposition. The next 20-30 years the production of gas will be lower and fairly constant. Although the emissions may last 50-100 years or more, it is assumed that the average "lifetime" of gas production is 40 years. The amount of waste deposited is currently approximately 0.5 tonne/citizen each year, but it was lower earlier in the century. An increasing amount of combusted waste has been taken into account. The yearly emissions are estimated to 160,000 tonnes of CH₄ and 36,000 tonnes of CO₂ from the described assumptions and data.

The actual calculated CO_2 emission is 360 ktonnes each year. However, based upon the composition of Norwegian municipal solid waste, it was assumed that only 10% was from fossil carbon. In addition, the methane emitted is a source of indirect CO_2 -emissions, as the

¹¹ Berdal Strømme, Gass fra avfallsfyllinger i Norge. SFT 1990.

methane will be oxidized in the atmosphere. The fossil part of the indirect emissions amounts to 43,000 tonnes CO₂.

800 tonnes of the methane produced were combusted in 1990. This amount is expected to increase the next years.

The emissions have increased substantially the last 40 years due to the increased amount of waste landfilled. However, utilization of the methane has caused a decrease the last few years (figure 3.10).

Figure 3.10. Methane from landfills. 1950-1992. ktonnes

Source: State Pollution Control Authority

Preliminary estimates of emissions from waste water treatment indicate that these are small in Norway.

3.3.5. Nitrous oxide from use of N-fertilizers and manure

Microbiological processes in soil lead to emissions of N_2O . The man-made part of these emissions is usually considered as proportional to the use of nitrogen fertilizers and manure.

The consumption of mineral fertilizers in Norway for a given year is published in the Agricultural Statistics from SN. In 1990 this consumption was 110,600 ktonnes N. The consumption of manure has been estimated to approximately 100,000 tonnes N each year by the SFT.

The denitrification rate leading to N_2O has been studied by Bakken at the Norwegian University of Agriculture. His results are in good agreement with a Swedish study.¹²

 $^{^{12}}$ K. Robertsson, Emissions of N₂O in Sweden - Natural and anthropogenic sources, AMBIO, vol 20, 3-4 may 1991, p 151-155.

However, both the emission factors and methods of estimation are highly uncertain. More research is needed in this field.

For 1990 the calculations are:

	% loss as N ₂ O-N	Consumption (ktonnes N)	Emission N ₂ O-N (ktonnes)	Emission N ₂ O (ktonnes)
N-fertilizers:	1	110	1.1	1.7
Manure:	3	100	3.0	4.7
Total:				6.4

Figure 3.11. Application of mineral fertilizers. 1900-1990. Tonnes N

Source: Statistics Norway

3.3.6. Nitrous oxide from manufacture of nitric acid

Nitric acid is mainly produced in Norway as a step in the fertilizer production. Norsk Hydro, the only producer in Norway, has estimated the emissions in 1990 from measurements. In the newest plants emissions are measured continuously. These measurements show that the N₂O emissions vary considerably from plant to plant and also within one plant. However, as the reported emission estimate is based on many representative measurements, we believe it is reasonable accurate. The emissions were approximately 6,650 tonnes in 1990. The emissions were reduced from this level in 1991, and particularly in 1992.

3.3.7. CO₂ from production of fertilizers

Hydrogen for the ammonia production is produced from hydrocarbon gases (LPG), and CO_2 is emitted. All consumption of gas in this production process is considered as non-energy use. The total amount of gas consumed is known. The chemical composition of this gas is, however, uncertain. We have chosen an average emission factor of 3.0 tonnes CO_2 /tonne LPG.

650 ktonnes of CO_2 were emitted in 1990.

The emissions from this source has increased steadily as ammonia earlier was manufactured without use of gas.

3.3.8. CO₂ from cement production

Calcium carbonate, a raw material in the cement production, is transformed to lime and CO_2 during the process. An emission factor has been calculated assuming a CaO content of 63% (by weight) in the cement produced. This gives an emission factor of 0.5 tonne CO_2 /tonne produced cement. The production of cement is known from national statistics (SN, manufacturing statistics). For 1990 we calculated:

Production (tonnes)	Factor (tonnes/tonne)	Emission (ktonnes)
1,380,143	0.5	690

3.3.9. CO₂ from metal production

Norway has production of ferroalloys, aluminium, nickel, zinc and magnesium. The level of production of iron, steel and ferroalloys has decreased the last few years (figure 3.12.). Coal, coke and/or prebaked anodes are used as reducing agents, and CO_2 is emitted. There are at least two appropriate activity data: The amount of reducing agents consumed or the volume of production. Norway has relatively good data on the volume of production and on consumption of coal and coke as reducing agents. On the other hand, statistics on the use of prebaked anodes is lacking.

For *ferroalloys* the volume of production is the best activity rate, as there is a consumption of prebaked anodes. SINTEF has estimated emission factors for the SFT.¹³ The actual emission factor will depend on the kind of ferroalloy produced.

¹³ SINTEF- Avd. for metallurgi, Ferrolegeringer og CO₂, STF 34 A 91056.

	Production (tonne)	Factor (tonnes/tonne)	Emission (ktonnes)
Ferrosilicon	4,604,31	3.93	1,809
Silicon metal	79,348	4.27	339
Ferromanganese	174,193	1.57	273
Silicon manganese	193,411	1.71	331
Ferrochromium	73,725	1.31	97
Total:			2,849

CO₂ from processes in the *iron and steel industry* is estimated from the use of coal and coke for non-energy purposes as reported to SN. The calculation in 1990 was:

	Non-energetic use (tonnes)	Factor (tonnes/tonne)	Emission (ktonnes)
Coal	70,300	2.42	170
Coal coke	0	3.19	0
Petrol coke	0	3.59	0
Total			170

Also for *aluminium* manufacturing the volume of production seems to be the best activity rate for estimating the CO_2 emissions. The amount produced is known from the manufacturing statistics (SN). Aluminium is manufactured by two main processes in Norway, the traditional Søderberg method (direct use of coal and coke) and with prebaked anodes. The latter method has lower emission per unit of aluminium produced. However, the manufacturing of prebaked anodes from coal or coke leads to additional CO_2 emissions. About 37% of the total production is by the Søderberg method (1990). The fraction produced by this method is steadily increasing.

The emission factors have been estimated by SFT:

Søderberg	1,850 kg CO ₂ /tonne Al	37% of production
Prebaked	1,540 kg CO ₂ /tonne Al	
	<u>230</u> Baking 1,770 kg CO ₂ /tonne Al	63% of production
Average	1,800 kg CO ₂ /tonne Al	

This leads to an average CO₂ emission factor of 1.80 tonnes CO₂/tonne aluminium produced.

Production	Factor (tonne/tonne)	Emission
(tonnes)		(ktonnes)
867,061	1.7996	1,560

Magnesium is produced from dolomite (MgCa(CO₃)₂). Coke is used as an anode in the production process. Carbon in carbonate and coke is emitted as CO₂. The consumption of coke may be chosen as the activity rate in the calculation of the emission from the reduction step. This consumption is reported to the SN and the SFT. The standard CO₂ emission factor for coke from coal, 3.19 tonne CO₂ per tonne coal, is used. 45 ktonnes were emitted from this step in 1990.

The total CO_2 emissions from manufacture of magnesium, reported by Norsk Hydro to SFT, add up to 139 ktonnes in 1990.

The production process of *nickel* and *zinc* does not lead to significant amounts of CO_2 . Nickel and zinc are produced by electrolyte electrolysis without use of coal or coke.

The production of ferroalloys has decreased since 1985. The aluminium production has increased until 1989, and decreased since. Although the emissions are not directly proportional to the production they have developed in approximately the same manner.

Figure 3.12. Production indexes. 1980-1992. 1990=100

Source: Statistics Norway

3.3.10. CO₂ and CH₄ from carbide production

Silicon carbide and calcium carbide are produced in Norway.

In the manufacturing of *silicon carbide*, CO_2 is a by-product from a reaction between quartz and carbon as petrol coke. The consumption of petrol coke in the relevant industries, reported to SN, has been chosen as the appropriate activity rate. The following reaction may be assumed:

$$SiO_2 + 3C \implies SiC + 2CO \implies 2CO_2$$

Some carbon, about 35%, is sequestered in the product for a long period of time. If the

average carbon content of the petrol coke is 97% (by weight), an emission factor of 2.3 tonnes CO_2 /tonne petrol coke may be calculated.¹⁴

The emission of CO_2 was estimated to 230 ktonnes in 1990.

In addition, there is an emission of methane in this process. CH_4 may be emitted from the petrol coke in parts of the process. The emission factor has been estimated to 10 kg/tonne petrol coke.¹⁵

This leads to an emission of 999 tonnes CH₄.

Calcium carbide is made by heating of calcium carbonate, and reduction of the CaO with carbon as petrol coke. Both steps lead to emissions of CO_2 . Some of the carbon from petrol coke will be sequestered in the product, but not permanently. Thus, this carbon is included in the emission estimate. The amount of calcium carbide produced each year is the best activity rate in this case. This production is reported to SN. The emission factor has been estimated to 1.8 tonnes/tonne calcium carbide produced.¹⁶

 $CaCO_3 \Rightarrow CaO + CO_2$, $CaO + C (petrol coke) \Rightarrow CaC_2 + CO (\Rightarrow CO_2)$

The emission of CO_2 was estimated to 206.6 ktonnes in 1990.

3.3.11. CO₂ from liming

Industry

Sulphuric acid waste from a particular plant is neutralized with limestone. From the equation of reaction an emission factor of 0.45 tonne CO_2 /tonne sulphuric acid may be calculated. Approximately 40,000 tonnes sulphuric acid are neutralized each year. This gives an emission of 20 ktonnes CO_2 each year.

Agriculture

Liming of lakes and soil is carried out in Norway in order to reduce the damage from acidification and unbalanced soil. Application of CaCO₃ gives rise to emissions of CO₂. The emission factor will theoretically be 0.44 tonne CO₂/tonne calcium carbonate applied. It is however uncertain if all of this is to be considered as a net emission source.

SFT has estimated the consumption of calcium carbonate in agriculture to be approximately 400,000 tonnes each year. About 20,000 tonnes are used in the lakes.

¹⁴ Ola Kaaness, SINTEF avd. for metallurgi, Silisiumkarbid og CO₂, STF 34 A 91134.

¹⁵ Ola Kaaness, SINTEF avd. for metallurgi, Silisiumkarbid og CO_2^- , STF 34 A 91134.

¹⁶ Sverre E. Olsen, SINTEF avd. for metallurgi, Kalsiumkarbid og CO₂, STF 34 A91142.

	Consumption (tonnes)	Factor (tonnes/tonne)	Emission (tonnes)
Agriculture	400,000	0.44	176,000
Lakes	20,000	0.44	8,800
Total:			184,800

3.3.12. Summary, non-combustion emissions

The complete Norwegian source list and emissions calculated as outlined in section 3.3 are summarized in table 3.9, the most important emission factors are shown in table 3.10.

Source	CO ₂	CH ₄	N_2O
Total	7,265	264.8	13.1
Oil and gas extraction and drilling	25	5.3	-
Loading of oil, offshore	224	2.4	-
Loading of oil, land	76	0.1	-
Coal mining	15	5.5	-
Gas terminal	6	0.4	-
Cement production	690	-	-
Metal production	4,719	-	-
- Ferroalloys	2,849	-	-
- Aluminium	1,560	-	-
- Iron and steel	170	-	-
- Magnesium	139	•	-
Silicon carbide production	230	1.0	-
Calcium carbide production	207	-	-
Fertilizer production	646	-	6.7
Liming	205		
- Industrial	20	-	-
- Agriculture	176	-	-
- Lakes	9	•	-
Domestic animals	-	76.2	-
Manure	-	14.8	4.7
Waste	79	159.2	-
Use of N fertilizers	-	-	1.7
Other indirect	146	-	-

Table 3.9.Non-combustion emissions of greenhouse gases by source. 1990. ktonnes

Source: Statistics Norway and the State Pollution Control Authority

Source	CO ₂	CH ₄	N ₂ O
Oil & gas extraction and drilling	IE	0.044 tonne/ktoe oil and gas	1. .
Loading of oil, offshore	Æ	24-120 tonnes/Mtonne crude oil	-
Loading of oil, land	IE	6 tonnes/Mtonne crude oil	-
Coal mining	IE	0.018 tonne/tonne coal	-
Gas terminal	IE	Measured	-
Cement production	0.5 tonne/tonne cement	-	-
Metal production		-	-
- Ferroalloys	1.3-4.3 tonnes/tonne ferroalloy	-	· _
- Aluminium	1.8 tonnes/tonne Al	-	-
- Iron and steel	2.42 tonnes/tonne coal	-	-
- Magnesium		-	-
Silicon carbide production	2.3 tonnes/tonne petrol	10 kg/tonne petrol	-
-	coke	coke	
Calcium carbide production	1.8 tonnes/tonne calcium carbide	-	-
Fertilizer production	3.0 tonnes/tonne LPG	-	Measured
Liming	0.44 tonne/tonne	-	-
_	CaCO ₃		
Domestic animals			
- Cattle	-	0.055	-
		tonne/animal/year	
- Pigs	-	0.0015	-
		tonne/animal/year	
- Sheep	-	0.008	-
		tonne/animal/year	
Manure			
- Cattle	-	0.011	0.047 tonne/tonne N
		tonne/animal/year	
- Pigs	-	2.4*10 ⁻³	0.047 tonne/tonne N
- Sheep		tonne/animal/year 6.3*10 ⁻⁴	0.047 tonne/tonne N
-		tonne/animal/year	-
Waste	0.019	0.038	-
	tonne/citizen/year	tonne/citizen/year	
Use of N fertilizers	-	-	0.015 tonne/tonne N

Table 3.10. Selected emission factors. Non-combustion emissions. 1990

IE = Indirect emissions of CO₂ as CH₄ and NMVOC will be oxidized in the atmosphere. Indirect emissions are not counted from biological, renewable sources.

.

Figure 3.13. Emissions of CO_2 by source 1973-1992. Million tonnes

Source: Statistics Norway and the State Pollution Control Authority

Figure 3.14. Emissions of CH₄ by source 1950-1992. ktonnes

Source: Statistics Norway and the State Pollution Control Authority

Figure 3.15. Emissions of N_2O by source 1950-1992. ktonnes.

Source: Statistics Norway and the State Pollution Control Authority

2**3.** - 2**4**25. 27.

Appendix 1. Economic sectors in the Norwegian emission model

Agricu	lture, hunting, forestry and fishing	10-2	23 305
23 100	Agriculture, crop production		
23 121	Agriculture, livestock production,		23 310
	hunting and trapping		23 321
23 131	Own-account capital formation in agri-		
	culture, income from transport etc.		23 333
23 145	Forestry and logging		
23 150	Fishing, sealing and whaling		23 346
Oil pro	duction and mining		23 350
-	6		23 355
23 158	Coal mining		23 360
23 159	Metal ore mining		23 365
23 165	Crude petroleum and natural gas		23 370
	production (incl. own-account		
	prospecting and drilling)		23 375
23 176	Stone quarrying, gravel and sand pits,		
	other mining and quarrying		23 380
			23 385
Manufa	acturing		23 390
•	Ū.		23 395
23 201	Slaughtering and other production		23 400
	of meat products, meat canning		
23 210	Manufacture of dairy products		23 405
23 215	Canning and preserving of fruits		23 410
	and vegetables		23 415
23 220	Preserving and processing of fish		23 420
23 225	Canning of fish		
23 230	Manufacture of fish oils and fishmeal		23 425
23 235	Manufacture of vegetable oils		
23 240	Refining and hardening of animal oils		23 430
23 245	Manufacture of margarine		
23 250	Manufacture of grain mill products		23 435
23 255	Manufacture of bakery products		
23 260	Manufacture of cocoa, chocolate and		23 446
	sugar confectionery		
23 265	Manufacture of other food products		
23 270	Manufacture of prepared animal feeds		23 450
23 275	Manufacture of spirits and wine		

- 23 280 Manufacture of malt liquors
- 23 285 Manufacture of soft drinks and carbonated water
- 23 290 Manufacture of tobacco products
- 23 295 Manufacture of yarn
- 23 300 Manufacture of fabrics, narrow fabrics and elastic fabrics

- 23 305 Manufacture of made-up textile goods, except wearing apparel
- 23 310 Manufacture of knitted goods
- 23 321 Manufacture of carpets, mats and rugs, cordage, ropes, nets, other textiles
- 23 333 Manufacture of outer garments of textiles and plastic, other wearing apparel
- 23 346 Manufacture of hats, caps, leatherclothing, fur clothing, other leather products
- 23 350 Manufacture of footwear
- 23 355 Sawing and planing of wood
- 23 360 Manufacture of particle board
- 23 365 Prefabrication of wooden houses
- 23 370 Manufacture of doors, windows, stairs, building materials, wood products
- 23 375 Manufacture of furniture and fixtures of wood
- 23 380 Manufacture of mechanical pulp
- 23 385 Manufacture of sulphate and sulphite pulp
- 23 390 Manufacture of paper and paperboard
- 23 395 Manufacture of fibre board
- 23 400 Manufacture of packing materials and other paper and paperboard articles
- 23 405 Printing and bookbinding
- 23 410 Publishing of newspapers
- 23 415 Other publishing
- 23 420 Manufacture of basic industrial chemicals, except fertilizers
- 23 425 Manufacture of fertilizers and pesticides
- 23 430 Manufacture of basic plastic materials and man-made fibres
- 23 435 Manufacture of paints, varnishes and lacquers
- 23 446 Manufacture of drugs and medicines, soap, cleaning preparations and toilet preparations
- 23 450 Manufacture of explosives and ammunition
- 23 455 Manufacture of other chemical products
- 23 460 Petroleum refining
- 23 461 Gas terminal
- 23 465 Manufacture of products of petroleum and coal
- 23 470 Manufacture and repair of rubber

products

- 23 475 Manufacture of plastic products
- 23 486 Manufacture of ceramics, glass and glass products
- 23 495 Manufacture of cement and lime
- 23 501 Manufacture of structural clay products, concrete and concrete products
- 23 505 Stone cutting, polishing and grinding, manufacture of other stoneware and earthenware
- 23 510 Manufacture of iron and steel
- 23 515 Manufacture of ferroalloys
- 23 520 Iron and steel founding
- 23 525 Manufacture of aluminium
- 23 530 Manufacture of other non-ferrous metals
- 23 535 Rolling of non-ferrous metals and non-ferrous metal founding
- 23 546 Manufacture of cutlery, tools and general hardware, manufacture of furniture and fixtures of metal
- 23 555 Manufacture of structural metal products
- 23 566 Manufacture of metal containers, metal netting, wire, nails and screws
- 23 570 Manufacture of other metal products
- 23 575 Manufacture of turbines and engines and agricultural machinery
- 23 580 Manufacture of machinery for manufacturing, mining, quarrying and construction
- 23 582 Manufacture and repair of oil drilling rigs and ships, oil production platforms etc. and specialized spare parts
- 23 591 Manufacture of office machinery and household machinery
- 23 595 Repair of machinery
- 23 600 Manufacture of other machinery
- 23 605 Manufacture of electric motors and equipment for electricity production
- 23 610 Manufacture of radio, television and communication apparatus
- 23 615 Manufacture of electrical household appliances
- 23 620 Manufacture of insulated cabels and wires
- 23 625 Manufacture of other electrical apparatus and equipment
- 23 630 Building of ships
- 23 635 Building of boats

- 23 640 Manufacture of ship and boat engines and components and fixtures for ships and boats
- 23 645 Manufacture and repair of railway and tramway equipment
- 23 651 Manufacture of motor vehicles, motor cycles and bicycles and other transport equipment, manufacture of aircraft
- 23 681 Manufacture of professional and scientific instruments, photographic and optical goods, jewellery and related goods, musical instruments, sporting and athletic goods, other manufacturing industries

Electricity, gas and water supply

23 689 Electricity, gas and water supply, district heating supply

Construction

- 23 700 Construction
- 23 717 Oil and gas exploration and drilling (separate activity on a contract basis)

Wholesale and retail trade etc., hotels and restaurants

- 23 721 Wholesale and retail trade etc.
- 23 760 Hotels and restaurants

Transport, storage and communication

- 23 801 Railway, tramway and subway transport
- 23 805 Scheduled motor bus transport
- 23 815 Taxi and other unscheduled passenger transport by road
- 23 821 Unscheduled freight transport by road, supporting services to land transport
- 23 824 Pipeline transport for oil and gas
- 23 830 Ocean transport
- 23 835 Coastal and inland water transport
- 23 840 Supporting services to water transport
- 23 845 Air transport, domestic
- 23 846 Air transport, international
- 23 850 Services allied to transport and storage

48

23 855 Postal services

23 860 Telecommunication services

Financing, insurance, real estate and business services

23 865 Banking

£

- 23 869 Imputed service charges of banks
- 23 872 Operation of other financial institutions, financial services
- 23 876 Insurance
- 23 885 Dwellings
- 23 891 Commercial buildings, other real estate services
- 23 901 Business services, machinery and equipment rental and leasing

Community, social and personal services

- 23 920 Sanitary and similar services
- 23 925 Education and research and scientific institutes
- 23 930 Health and veterinary services
- 23 935 Welfare services
- 23 941 Business, professional and labour associations, other social and related community services
- 23 950 Recreational and cultural services
- 23 955 Repair of vehicles, household appliances and goods for personal use
- 23 961 Laundries, laundry services and cleaning and dyeing plants, miscellaneous personal services
- 23 965 Domestic services

Production accounts for general government

Production accounts for central government and social insurance administration

- 21 825 Supporting services to land transport (roads and streets)
- 21 840 Supporting services to water transport
- 21 845 Air transport
- 21 910 Public administration
- 21 915 Defence
- 21 925 Education and research and scientific institutes
- 21 930 Health and veterinary services
- 21 941 Other social and related community services, recreational and cultural services
- 21 991 Other services, central government

Production accounts for local government

- 22 825 Supporting services to land transport (roads and streets)
- 22 910 Public administration
- 22 920 Sanitary and similar services
- 22 925 Education and research and scientific institutes
- 22 930 Health and veterinary services
- 22 935 Welfare services
- 22 941 Other social and related community services, recreational and cultural services
- 22950 Recreational and cultural services
- 33 000 Private households
- 66 000 Foreign activity in Norway

Appendix 2. Background data for estimating emissions from road traffic

	1991	1990	1989	1987	1980	1973
Passenger cars, gasoline	1,612,508	1,613,992	1,618,593	1,604,769	1,210,384	831,225
Light duty, gasoline	94,571	95,902	95,951	90,813	56,182	70,416
Heavy light duty, gasoline	6,511	6,063	5,712	4,876	2,015	681
Heavy duty, gasoline	4,273	4,605	4,919	5,456	6,041	12,429
Heavy buses, gasoline	271	277	278	300	33	114
Passenger cars, diesel	66,769	61,774	58,203	55,289	23,426	5,630
Light duty, diesel	60,983	58,309	55,726	47,508	6,706	1,206
Heavy light duty, diesel	12,224	9,385	7,180	5,451	1,781	443
Light heavy duty, diesel	33,451	32,545	31,762	30,064	22,430	14,124
Medium heavy duty, diesel	20,983	21,961	22,632	24,506	27,374	23,341
Heavy heavy duty, diesel	21,843	22,131	22,350	21,149	10,815	2,910
Heavy buses, diesel	11,011	10,507	10,193	10,119	7,961	6,599
Sum	1,945,396	1,937,448	1,933,499	1,900,297	1,375,148	969,116

Number of vehicles (see section 3.1.3 for definition of categories)

Source: Directorate of Public Roads

Average annual mileage (km per vehicle)

	1991	1990	1989	1987	1980	1973
Passenger cars, gasoline	13,775	13,775	13,796	13,616	13,100	13,200
Light duty, gasoline	13,775	13,775	13,796	13,616	13,100	13,200
Heavy light duty,	13,775	13,775	13,796	13,616	13,100	13,200
gasoline						
Heavy duty, gasoline	15,493	15,842	15,842	16,057	23,819	23,819
Heavy buses, gasoline	41,940	41,940	43,099	41,134	42,591	36,099
Passenger cars, diesel	19,240	20,105	19,596	19,810	18,704	27,220
Light duty, diesel	16,189	17,123	17,123	17,196	13,526	13,526
Heavy light duty, diesel	16,189	17,123	17,123	17,196	13,526	13,526
Light heavy duty, diesel	15,493	15,842	15,842	16,057	23,819	23,819
Medium heavy duty,	15,956	16,125	16,125	16,108	18,723	18,723
diesel						
Heavy heavy duty, diesel	31,771	32,007	32,007	33,777	40,164	40,164
Heavy buses, diesel	41,940	41,940	43,099	41,134	42,591	36,099

Source: Institute of Transport Economics, Statistics Norway

	Urban	Rural	Rural	Highway
	≤ 50 km/h	60-70 km/h	80 km/h	90 km/h
Light	23.64%	22.87%	44.82%	8.66%
Heavy	19.51%	21.38%	48.64%	10.47%

Distribution of vehicle-kilometers on driving pattern 1980-1991

Source: Norwegian Institute for Air Research, Directrate of Public Roads and Statistics Norway

Distribution of vehicle-kilometers. Percentage of each fuel.

	1991	1990	1989	1987	1980	1973
Passenger cars, gasoline	93.793	93.723	93.735	93.967	94.585	89.856
Light duty, gasoline	5.501	5.569	5.557	5.318	4.390	7.612
Heavy light duty, gasoline	0.379	0.352	0.331	0.285	0.157	0.074
Heavy duty, gasoline	0.280	0.308	0.327	0.377	0.858	2.424
Heavy buses, gasoline	0.048	0.049	0.050	0.053	0.008	0.034
Passenger cars, diesel	28.684	28.101	26.896	27.287	18.463	11.753
Light duty, diesel	22.043	22.590	22.502	20.352	3.822	1.251
Heavy light duty, diesel	4.419	3.636	2.899	2.335	1.015	0.459
Light heavy duty, diesel	11.572	11.665	11.866	12.027	22.512	25.797
Medium heavy duty, diesel	7.475	8.012	8.606	9.834	21.596	33.512
Heavy heavy duty, diesel	15.495	16.027	16.870	17.796	18.304	8.961
Heavy buses, diesel	10.311	9.970	10.360	10.369	14.287	18.267
Sum gasoline	100	100	100	100	100	100
Sum diesel	100	100	100	100	100	100

Source: Statistics Norway

Annual number of cold starts

	1991	1990	1989	1987	1980	1973
Number of cold starts	701	701	686	692	567	571

Source: Statistics Norway

Fuel for road traffic (tonnes)

	1991	1990	1989	1987	1980	1973
Gasoline					-	
Sale	1,736,257	1,789,172	1,782,519	1,758,066	1,391,143	1,088,484
Non-road traffic consumption	39,455	39,490	39,353	40,524	39,070	38,989
Road traffic consumption	1,696,802	1,749,682	1,743,174	1,717,542	1,352,073	1,049,495
Diesel						
Sale	1,079,676	1,064,912	1,051,969	1,102,472	740,279	574,871
Non-road traffic consumption	249,562	253,344	226,313	240,303	184,644	137,969
Road traffic consumption	830,114	811,568	825,656	862,169	555,635	436,902

.

Source: Statistics Norway

.

Appendix 3. Balance sheets of energy for Norway. 1990

a) Physical units

-			A											
		Coal	Coke	Fuel- wood, black liquor,	Crude oil	Gaso- line	Kero- sene	Medi- um distil- lates	Heavy fuel	Lique- fied gas	Natu- ral gas	Other gases 1)	Elec- trici- ty	Dis- trict heat- ing
			ç	arbage	1					-	-			-
		1000	1000	1000	1000	1000	1000	1000	1000	1000	Million	1000		
		tonnee	tonnee	too	tonnes	tonnes	tonnee	tonnes	tonnes	tonnee	Sm3	too	GWh	GWh
1	Production	303	161	987	20650	4200	1083	5949	1320	1104	27642	790	121848	1413
	1 1 Prod of primary energy sources	303	101	987	80659	3) 201	1000	0040	3	9,885	27642	/ 30	2)	1415
	1.2 Prod of secondary energy sources		161	307	00003	3000	1083	5949	1320	210	21042	790	121848	1413
2	Imports	713	901	0	1623	642	102	827	593	1031	•	/30	334	1415
3	Exports	254	119	õ	68493	2564	412	3610	973	1043	25380	-	16241	-
4	Bunkering ⁴⁾	-	-	-	-	-	-	227	232	-	-	-	10241	-
5.	Changes in stocks (+ net decrease.												•	
	- net increase)	-13	-18		-1473	0	-12	-4	39	-33		-		
6	Gross inland availabilities (1+2-3-4+5)	749	926	988	12316	2278	761	2936	747	1059	2262	790	105941	1413
8.	Energy converted	21	17	98	12742	211	2	116	525	3		0	304	-
•.	8.1 In blast furnaces		17	-	-		-	-	-		-	-		
	8.2. In crude petroleum refineries	-	-	-	12742	211	2	113	525	з	-	-	-	
	8.3. In thermal power plants	-	-	-	-		-	2	0	-	-	-	•	
	8.4. In power plants for combined							_						
	generation of electric energy and heat	21	-	47	-	-	-	0	-	-	-	-		
	8.5. In district heating plants	-	-	51	-	-	-	2	0	-	-	0	304	-
9.	Consumption by energy													
	producing industries	-	-	-	-	1	1	72	4	-	2037	699	1954	
	9.1. Crude petroleum and													
	natural gas production	-	-	-	-	0	0	61	-	-	2037	-	95	-
	9.2. Coal mines	-	-	-	-	0	0	4	-	-	-	-	22	
	9.3. Petroleum refineries	-	-	-	-	0	-	2	4	-	-	699	448	•
	9.4. Pumping storage power plants	-	-	-	-	-	•	-	-	-	-	-	339	•
	9.5. Hydro electric power plants	-	-	-	-	-	0	5	0	-	-	-	992	•
	9.6. Thermal power plants	-	-	-	-	-	-	-	-	-	-	-	27	•
	9.7. Power plants for combined													
	generation of electric energy and heat	-	-	-	-	-	•	-	-	-	-	-	15	•
	9.8. District heating plants	-	-	-	-	-	•	0	-	-	-	-	17	•
10.	Consumption for non-energy purposes	•	•	•	•	-	•	-	-	1022	-	-	•	•
	10.1. In chemical industry	•	•	•	•	-	-	-	-	1022	-	-	•	•
	10.2. In other industry	•	•	•	•	-	-	-	-	-	-	-	•	•
11.	Losses in transport and distribution			••								-	7237	547
12.	Statistical differences (6-8-9-10-11-13)	-26	10	-	-426	2//	98	-145	-241	4	225		-362	
13.	Net inland consumption	754	899	889	-	1789	661	2892	459	29	-	91	96808	866
14.	Industry, mining and quarrying	/43	897	406	-	13	1	148	343	26	-	91	45280	188
	14.1. Mining and quarrying	-	-	-	-	0	0	36	20	0	-	-	/08	•
	14.2. Manuf. of paper and paper prod	ø	170	298	-	0	0	5	60	0	-	-	6805	
	14.3. Manuf. of Industrial Chemicals	-	1/8	4	-	0	•		49	2	-	64	2109	60
	14.4. Mariul. of fron, steel and	400	410	•		•		•	10	•		10	0100	7
	14.5 Manuf of aluminium and	403	410	U	-	0	•	9	19	U	-	10	0100	'
	other non-ferrous metals	_	165	_	_	0	0	48	25	1	_	17	16641	
	14.6 Other manufacturing industries	253	136	105	-	12	1	43	165	23	-		7849	-
15	Transnort	200	100		-	1765	493	1135	76		-	-	639	
10.	15.1 Bailways and subways	-	-	-	-			30	-	-	-	_	639	-
	15.2 Air transport	-	-	-	-	4	493	-	-	-	-	-	-	
	15.3. Road transport	-	-	-	-	1761	-	839	-	-	-	-	-	-
	15.4. Coastal shipping	-	-	-	-	-	-	266	76	-	-	-	-	-
16.	Fishing	-	-	-	-	11	5	427	14	-	-	-	-	-
17.	Agriculture	5	-	-	-	-	1	64	3	· _	-	-	680	6
18.	Households	7	2	483	-	-				з	-	-	30299	286
19	Other consumers	-	-	-	-	-	160	1117	24	-	-	-	19910	386

1) Includes blast furnace gas, refinery fuel and fuel gas. 2) Of which electricity produced in thermal power plants, 466 GWh. 3) Condensate from crude oil and natural gas production. 4) Delivery to ocean ship traffic, regardless of nationality.

Source: Statistics Norway

b) Energy units, PJ.

Overall energy balance sheet¹) for Norway. 1990. Petajoule (PJ) = 10^{15} Joule

		Coal	Coke	Fuel- wood, black liquor, garbage	Crude oil	Petro- leum pro- ducts	Natural gas and other gases	Water- fall- energy ²⁾	Elec- trici- ty	District heating	Sum
1.1.	Production of primary energy sources	9	•	42	3412	50	1120	514	-	•	5146
2.	Imports	20	28	0	69	140	-	-	1	-	258
З.	Exports	7	4	0	2897	372	1028	-	58	-	4367
4.	Bunkering	-	-	-	-	19	-	-	-	-	19
5.	Changes in stocks (+ net decrease, - net increase)	0	-1		-62	-1	•	-			-64
7.	Net inland availabilities (1.1+2-3-4+5)	21	23	42	521	-202	92	514	-57	-	953
8.	Energy converted	1	0	4	539	36	0	514	1	-	1096
1.2.	Production of derived energy sources		6			539	33	-	439	5	1022
9.	Consumption by energy producing industries	-	-	-	-	3	112	-	7	-	122
10.	Consumption for non-energy purposes				-	47	-	- ·	-	-	47
11.	Losses in transport and distribution						-	-	26	2	28
12.	Statistical differences (7-8+1.2-9-10-11-13)	-1	0	-	-18	0	9	-	-1	-	-11
13.	Net inland consumption	21	28	38	-	250	4	-	349	3	693
	13.1. Industry, mining and quarrying	21	28	17	-	22	4	•	163	1	256
	13.2. Transport	-	-	-	-	150	-	-	2	-	152
	13.3. Other consumers	0	0	20	-	11	-	-	183	2	284
14.	Calculated energy consumption 3)	17	23	24	-	111	4	-	349	3	530
	14.1. Industry, mining and quarrying	17	23	11	-	19	4	-	163	1	237
	14.2. Transport	-	-	-	-	37	-	-	2	-	40
	14.3. Other consumers	0	0	13	-	54	-	-	183	2	254
15.	Energy losses in final										
	consumption (13-14)	4	6	13	-	139	0	-	-	-	162
	15.1. Industry, mining and quarrying	4	6	6	-	З	0	-	-	-	19
	15.2. Transport	-	-	-	-	113	-	-	-	-	113
	15.3. Other consumers	0	0	7	•	23	-	-	-	-	30

1) The energy balance has been derived from the energy balance of energy sources. 2) Electricity is treated as secondary energy. Waterfall energy is the primary energy source for the electricity produced in hydro power stations. It is estimated that 15 per cent, in average, of the potential energy is lost in production.³⁾ Line 14 "Calculated energy consumption" shows the amount of energy actually utilized. The numbers are estimated by multiplying the values in line 13 with thermal efficiency coefficients.

Source: Statistics Norway

Appendix 4. Energy accounts¹. 1990

a) Energy sectors, physical units

	Coal	Coke ²	Fuel wood, wood waste, waste	Crude oil	Natural gas	Other gases, lique- fied gas	Gaso- line	Kero- sene	Med- ium distill- ates	Heavy fuel oil	Electri- city	District heating
	1000 t	1000 t	1000 toe	1000 t	Mill. Sm ³	1000 toe	1000 t	1000 t	1000 t	1000 t	GWh	GWh
Extraction of energy sources	303	-	-	80659	27642	962 ³	2014	-	-	-	121382	-
Energy use in extraction sectors Imports and Norwegian	-	-	-	-	-2037 ⁵	-	-3	0	-206	-14	-1448	-
purchases abroad Exports and foreign purchases in	713	901	0	1623	-	1121	672	184	1953	6468	334	-
Norway	-254	-119	0	-68493	-25380	-1134	-2594	-492	-3654	-1035	-16241	-
Stocks (+ Decrease, - Increase)	-13	-18		-1473		-36	0	-12	-4	39		
Primary supply	749	764	0	12316	225	913	-1725	-321	-1910	5459	104027	-
Petroleum refineries	-	161	-	-12742	-	234	3733	1066	5834	791	-448	-
Other energy sectors, other												
supply	-21	-	891	-	-	80	54	14	-4	0	103	1413
Registered losses, statistical												
errors Registered use outside energy	26	-10	-	426	-225	-4	-274	-110	213	254	-6875	-547
sectors	754	916	891	-	-	1224	1788	650	4133	6504	96809	866

¹ Including energy goods used as raw materials. ² Including petrol coke. ³ Natural gas liquids from Kårstø. ⁴ Condensate from Kårstø. ⁵ Including gas terminal.

Source: Statistics Norway

. . . .

b) Outside the energy sectors. Physical units

			Fuel	Other					
	Coal	Coke ²	wood,	gases,	Gaso-	Kero-	Med-	Heavy	Electri-
			wood	lique-	line	sene	ium	fuel oil	city
			waste,	fied gas			distill-		
			waste				ates		
	1000 t	1000 t	1000	1000	1000 t	1000 t	1000 t	1000 t	GWh
			toe	toe					
TOTAL	754	916	891	1224	1788	650	4133	6504	96809
PRODUCTION SECTORS,									
ESTABLISHMENTS									
Agriculture and fishery	5	-	-	-	17	1	640	19	680
Agriculture	5	-	-	-	12	1	164	5	680
Forestry	-	-	-	-	1	-	18	-	-
Fishery	-	-	-	-	3	0	458	14	-
Mining	-	-	-	0	0	0	36	20	708
Metal ore mining	-	-	-	0	0	0	12	19	499
Other mining	-	-	-	0	0	0	24	1	209
Manufacturing	743	914	409	1221	13	1	322	323	44572
Manufacturing of food, beverages etc	3	1	1	3	4	0	109	87	2285
Manufacturing of textiles, leather etc	-	-	0	0	0	0	7	5	158
Manufacturing of wood and wood products.	-	-	103	0	1	0	20	9	730
Manufacturing of paper and paper products	6	-	301	0	0	0	6	65	6805
Printing, publishing etc.	-	-	0	2	2	0	3	0	403
Manufacture of industrial chemicals	-	178	4	1177	0	-	7	49	5169
Manufacture of other chemical products, petroleum,					_				
coal, rubber and plastic products	112	114	-	3	1	0	31	25	923
Manufacture of cement and lime	120	10	-	-	0	-	4	4	197
Manufacture of other mineral products	17	10	-	5	0	0	26	28	563
Manufacture of iron and steel	70	2	-	-	-	-	5	18	655
Manufacture of ferro-alloys	413	433	0	0	0	-	4	1	7453
Founding of iron and steel	1	0	-	0	0	0	1	-	148
Manufacture of aluminium	-	151	-	1	0	0	47	6	14431
Manufacture of other metals	-	14	-	17	0	-	2	20	2210
Rolling and founding of non-ferrous metals.	-	-	-	3	0	-	3	0	192
Manufacture of fabricated metal products,									
machinery and equipment, other manufac-turing		•		_				_	
industries	-	0	0	7	4	0	49	7	2250
Construction	-	-	-	-	8	0	207	-	530
Wholesale and retail sale, hotels and restaurants						•	150		500 F
······	-	-	-	-	190	2	178	1	5995
Wholesale and retail sale	-	-	-	-	187	2	164	1	4740
Hotels and restaurants	-	-	-	-	2	-	14	-	1255
I ransport, storage and communication	-	-	-	-	12	405	2201	6132	1449
Kailway, framway and subway	-	-	-	-		-	32	-	640
Scheduled motor bus	-	-	-	-	1	-	106	-	-
laxi and other unscheduled passenger transport by					10		10		
	-	-	-	-	19	-	12	-	-
Other land transport	-	-	-	-	12	-	434	-	12
Ocean transport	-	-	-	-	-	-	1314	6045	-
Coastal and inland water transport	-	-	-	-	-	-	276	8/	-
Air transport	-	-	-	-	3	405	-	-	-
Supporting transport activities	-	-	-	-	4	-	19	-	294
Post and telecommunications	-	-	-	-	55	-	8	-	503
rinancial institutions, insurance, real estate and					E 1	^	10		1504
Dusiness services	-	-	-	-	54	U	18	;	1504
DECEMBER OF THE SERVICE INDUSTRIES	-	-	-	-	43	1	39	4	2244
PRODUCTION SECTORS, GENERAL					-				0005
	-	-	-	-	2	86	144	4	8827
Public administration except defence	-	-	-	-	3	-	13	-	10//
Education and research	-	-	-	-	-	-	26	-	2630
rieaun, social work, veterinary services	-	-	-	-	-	0	36	4	2874
Uner public services	-	-	-	-	1007	80	69	-	2246
PRIVATE HOUSEHOLDS	1	2	482	3	138/	152	321	1	30299

 PRIVATE HOUSEHOLDS
 7
 2
 482
 3
 1387
 152

 ¹ Including energy goods used as raw materials. District heating not included. ² Including petrol coke.

Source: Statistics Norway

c) Energy units (PJ)

	Coal	Coke ²	Fuel wood, wood waste, waste	Crude oil	Natural gas	Other gases, lique- fied gas	Gaso- line	Kero- sene	Med- ium distill- ates	Heavy fuel oil	Electri- city	District heating	Total
Extraction of energy sources	9	-	-	3412	1120	41 ³	94	-	-	-	437	-	5027
Energy use in extraction sectors	-	-	-	-	-835	-	0	0	-9	-1	-5	-	-97
Imports and Norwegian purchases													
abroad	20	28	0	69	-	47	30	8	83	271	1	-	556
Exports and foreign purchases in													
Norway	-7	-4	0	-2897	-1028	-48	-114	-21	-155	-43	-58	-	-4377
Stocks (+ Decrease, - Increase)	0	-1		-62	•	-2	0	0	0	2			-64
Primary supply	21	23	0	521	9	39	-76	-14	-81	229	374		1046
Petroleum refineries	-	6	-	-539	-	10	164	46	247	33	-2	-	-35
Other energy sectors, other supply	-1	-	38	-	-	3	2	1	0	0	0	5	49
Registered losses, statistical errors	1	0	-	18	-9	0	-12	-5	9	11	-25	-2	-14
Registered use outside energy													
sectors	21	29	38	-	-	52	79	28	175	273	349	3	1045
Ocean transport	-	-	-	-	-	-	-	-	56	253	-	-	309
Domestic use	21	29	38	-	-	52	79	28	119	19	349	3	736
Agriculture and fishery	0	-	-	-	-	-	1	0	27	1	2	0	31
Energy intensive manufacturing	14	24	0	-	-	51	0	-	3	4	108	0	203
Other manufacturing and mining	7	5	17	-	-	1	1	0	12	10	55	0	109
Other industries	-	-	-	-	-	-	16	21	63	4	74	1	180
Private households	0	0	20	•	-	0	61	6	14	0	109	1	212

¹ Including energy goods used as raw materials. ² Including petrol coke. ³ Natural gas liquids from Kårstø. ⁴ Condensate from Kårstø. Including gas terminal.

Source: Statistics Norway

Appendix 5. Basic emission factors for road traffic

The original reference to all factors may be found in the report "Utslipp fra veitrafikken i Norge-Dokumentasjon av beregningsmetode, data og resultater" SFT 93:12.

Light vehicles

Cold start emissions

Technology	Model year	Methane	N ₂ O	Consumption
	•	g/start	g/start	l/start
Passenger cars, gasoline				
Pre ECE	-74	0,165	-	0,12
ECE 15.00	74-77	0,129	-	0,11
ECE 15.02	78-79	0,129	-	0,10
ECE 15.03	80-84	0,129	-	0,10
ECE 15.03/04	85-88	0,117	-	0,09
US-83	89-92	0,060	-	0,07
Passenger cars, LPG	92-	0,057	-	0,10
Passenger cars, diesel				
No control	-91	0,009	-	0,06
US-87	91-	0,005	-	0,06
Light duty, gasoline				
L2				
Pre ECE	-74	0,189	-	0,14
ECE 15.00	74-77	0,150	-	0,13
ECE 15.02	78-79	0,150	-	0,12
ECE 15.03	80-84	0,150	-	0,12
ECE 15.03/04	85-92	0,135	-	0,10
US-90	93-	0,120	-	0,08
L3				
Pre ECE	-74	0,219	-	0,16
ECE 15.00	74-77	0,171	-	0,15
ECE 15.02	78-79	0,171	-	0,13
ECE 15.03	80-84	0,171	-	0,13
ECE 15.03/04	85-92	0,156	-	0,12
US-90	93-	0,120	-	0,09
Light duty, LPG	93-	0,120	-	0,10
L2	93-	0,120	-	0,11
L3				
Light duty, diesel				
L2				
No control	-93	0.014	-	0.08
US-87	93-	0.010	-	0.08
		v,viv		0,00
L3				
No control	-93	0,014	. –	0,09
US-87	93-	0,010	-	0,09

Urban emissions

Technology	Model year	Methane	N ₂ O	Consumption
		g/km	mg/km	1/10 km
Passenger cars, gasoline				
Pre ECE	74	0,096	5	1,35
ECE 15.00	74-77	0,075	5	1,25
ECE 15.02	78-79	0,075	5	1,15
ECE 15.03	80-84	0,075	5	1,15
ECE 15.03/04	85-88	0,069	5	1,05
US-83	89-92	0,014	50	1,0
Passenger cars, LPG	92-	0,014	50	1,3
Passenger cars, diesel				
No control	-91	0,006	5	0,7
US-87	91-	0,003	5	0,7
Light duty, gasoline L2				
Pre ECE	-74	0,111	6	1,55
ECE 15.00	74-77	0,087	6	1,44
ECE 15.02	78-79	0,087	6	1,32
ECE 15.03	80-84	0,087	6	1,32
ECE 15.03/04	85-92	0,081	6	1,21
US-90	93-	0,027	60	1,15
	93-	0,027	60	1,50
L3				
Pre ECE	-74	0.129	7	1.80
ECE 15.00	74-77	0.099	7	1,66
ECE 15.02	78-79	0.099	7	1,53
ECE 15.03	80-84	0.099	7	1.53
ECE 15.03/04	85-92	0.093	7	1.40
US-90	93-	0.027	60	1.33
	93-	0,027	60	1,73
Light duty, diesel L2				
No control	-93	0.009	8	0.91
US-87	93-	0.007	8	0.91
		0,007	č	~,~ +
L3				
No control	-93	0,009	9	1,05
US-87	93-	0,007	9	1,05

Technology	Model year	Methane	N ₂ O	Consumption
		g/km	mg/km	1/10 km
Passenger cars, gasoline				
Pre ECE	-74	0,054	9	0,90
ECE 15.00	74-77	0,042	9	0,70
ECE 15.02	78-79	0,042	9	0,68
ECE 15.03	80-84	0,042	9	0,68
ECE 15.03/04	85-88	0,036	9	0,61
US-83	89-92	0,007	20	0,60
LPG	92	0,007	20	0,78
Passenger cars, diesel				
No control	-91	0,008	9	0,50
US-87	91-	0,004	9	0,50
Light duty, gasoline				
	- 4	0.070	10	1.04
Pre ECE	-/4	0,063	10	1,04
ECE 15.00	74-77	0,048	10	0,81
ECE 15.02	78-79	0,048	10	0,78
ECE 15.03	80-84	0,048	10	0,78
ECE 15.03/04	85-92	0,042	10	0,70
05-90	93-	0,014	23	0,69
LPG	93-	0,014	23	0,90
12				
	a 4	0.070	10	10
FTE ECE	-14	0,072	12	1,2
ECE 15.00	/4-// 79.70	0,057	12	0,93
ECE 15.02	10-19	0,057	12	0,90
ECE 15.03	80-84	0,057	12	0,90
ECE 13.03/04	83-92 02	0,048	12	0,81
US-90	93- 02	0,014	23 22	0,80
LFG	73-	0,014	23	1,04
Light duty discol				
Light unity, diesei				
No control	-02	0.011	12	0.65
	-95	0,011	12	0,05
05-07	7.5-	0,000	12	0,05
L3				
No control	-93	0.012	14	0.75
115-87	93-	0.008	14	0.75
	20-	0,000	A T	0,12

Rural 50-70 km/h. Assumed average speed 60 km/h.

Rural/highway, speed 80-90 km/h.

Tecnology	Model year	Methane	N ₂ O	Consumption
		g/km	mg/km	1/10 km
Passenger cars, gasoline				
Pre ECE	-74	0,045	9	0,90
ECE 15.00	74-77	0,036	9	0,70
ECE 15.02	78-79	0,030	9	0,68
ECE 15.03	80-84	0,027	9	0,68
ECE 15.03/04	85-88	0,026	9	0,61
US-83 .	89-92	0,005	20	0,60
LPG	92	0,004	20	0,78
Passenger cars, diesel				
No control	-91	0.006	9	0.5
US-87	91-	0,002	9	0,5
Light duty, gasoline				
		0.054	10	1.04
PTE ECE	-74	0,051	10	1,04
ECE 15.00	74-77	0,042	10	0,81
ECE 15.02	78-79	0,036	10	0,78
ECE 15.03	80-84	0,030	10	0,78
ECE 15.03/04	85-92	0,030	10	0,70
US-90	93-	0,011	23	0,69
LPG	93-	0,011	23	0,90
L3				
Pre ECE	-74	0,060	12	1,2
ECE 15.00	74-77	0,048	12	0,93
ECE 15.02	78-79	0,039	12	0,90
ECE 15.03	80-84	0,036	12	0,90
ECE 15.03/04	85-92	0,033	12	0,81
US-90	93-	0,011	23	0,80
LPG	93-	0,011	23	1,04
Light duty, diesel				
L2				
No control	-93	0.007	12	0.65
US-87	93-	0,004	12	0,65
L3	_			
No control	-93	0,008	14	0,75
US-87	93-	0,004	14	0,75
				1

.

Factors for correcting ageing.

Emission ($X(10\ 000\ \text{km}) = \text{Emission factor} * (1 + X*ageing factor))$

	Model year	Methane	N ₂ O	Consumption
Passenger cars, gasoline				
Pre ECE	-74	0,02	-	0,003
ECE 15.00	74-77	0,02	-	0,003
ECE 15.02	78-79	0,02	-	0,003
ECE 15.03	80-84	0,02	-	0,003
ECE 15.03/04	85-88	0,02	-	0,003
US-83	89-92	0,12	-	0,002
LPG	92	0,12	-	0,002
Passenger cars, diesel				
No control	-91	0	-	0,001
US-87	91-	0	-	0,001
Light duty, gasoline				
L2				
Pre ECE	-74	0,02	-	0,003
ECE 15.00	74-77	0,02	-	0,003
ECE 15.02	78-79	0,02	-	0,003
ECE 15.03	80-84	0,02	-	0,003
ECE 15.03/04	85-92	0,02	-	0,003
US-90	93-	0,035	-	0,001
	93-	0,035	-	0,001
L3				
Pre ECE	-74	0,02	-	0,003
ECE 15.00	74-77	0,02	-	0,003
ECE 15.02	78-79	0,02	-	0,003
ECE 15.03	80-84	0,02	-	0,003
ECE 15.03/04	85-92	0,02	-	0,003
US-90	93-	0,035	-	0,001
	93-	0,035	-	0,001
Light duty, diesel				
L2				
No control	-93	0	-	0,001
US-87	93-	0	-	0,001
L3				
No control	-93	0	-	0,001
US-87	93-	0	-	0,001

Heavy vehicles

	Speed	Fuel consumption	Fuel consumption	CH ₄	N ₂ O
	km/h	g⁄#Wh	kg/km	g/kg	g/kg
Heavy duty, diesel					
Total weight 3.5-10 t					
Before 93					
Urban	32	321	0,22	0,4	0,4
Rural	60	320	0,18	0,0	0,4
Highway	75	250	0,17	0,1	0,5
After 93					
Urban	32	302	0,21	0,4	0,4
Rural	60	314	0,17	0,0	0,4
Highway	75	245	0,17	0,1	0,5
<u>Total weight 10-20 t</u>					
Before 93					
Urban	32	300	0,33	0,3	0,4
Rural	60	310	0,28	0,0	0,4
Highway	75	245	0,25	0,0	0,5
After 93					
Urban	32	294	0,32	0,3	0,4
Rural	60	304	0,27	0,0	0,4
Highway	75	240	0,25	0,0	0,5
<u>Total weight > 20 t</u>					
Before 93					
Urban	32	295	0,34	0,2	0,4
Rural	60	305	0,33	0,0	0,4
Highway	75	240	0,26	0,0	0,5
After 93-					
Urban	32	289	0,34	0,3	0,4
Kural	60 57	299	0,32	0,0	0,4
Highway	75	235	0,25	0,0	0,5
Heavy duty, gasonne					
<u>Iotal weight> 3.5 I</u>	22	417	0.225	0.6	0.02
Urban .	52	417	0,225	0,0	0,03
Rue dissol	00	308	0,15	0,7	0,04
Total weight > 3.5 t					
Refore 03					
Urhan	23	280	0.40	02	04
Rural	2 9 60	229	0.25	0.0	0.5
After 93		*		-,•	- 944
Urban	23	274	0.39	0.2	0.4
Rural	60	224	0.25	0.0	0.5
CNG/LNG/				-,-	- ,
Methane/					
Waste gas, city bus		270	0,40	10	0,03
LPG city bus, with TWC*		292	0,42	0,7	0,03

*Three way catalyst

Ageing factors for heavy duty vehicles (HDV)

Emission ($X(10\ 000\ \text{km}) = \text{Emission factor} * (1 + X*ageing factor))$

Fu	el consumption	Fuel consumption	Methane	N ₂ O
All HDV diesel	0,001	0,001	-0,005	0,000
All HDV gasoline	0,002	0,002	0,002	-0,007
from 93 with	0,002	0,002	0,035	0,010
TWC*				
All HDV gas	0,002	0,002	0,002	-0,007

* Three way catalyst

Utkommet i serien Rapporter fra Statistisk sentralbyrå etter 1. juli 1992 (RAPP)

Issued in the series Reports from the Central Bureau of Statistics since 1 July 1992 (REP) ISSN 0332-8422

- Nr. 92/11 Jan Lyngstad: Økonomiske levekår for barnefamilier og eldre 1970-1986. 1992-80s. 90 kr ISBN 82-537-3660-6
- 92/14 Else Helena Flittig: Folketrygden Utviklingen fra 1967 til 1990. 1992-52s. 90 kr ISBN 82-537-3675-4
- 92/16 Petter Jakob Bjerve: Utviklingshjelp til offisiell statistikk i Bangladesh.
 1992-22s. 75 kr ISBN 82-537-3683-5
- 92/17 Anne Brendemoen, Solveig Glomsrød og Morten Aaserud: Miljøkostnader i makroperspektiv. 1992-46s. 75 kr ISBN 82-537-3684-3
- 92/18 Ida Skogvoll: Folke- og boligtelling 1990 Dokumentasjon av kontroll- og opprettingsregler for skjemakjennemerker. 1992-48s. 75 kr ISBN 82-537-3694-0
- 92/19 Ida Skogvoll: Folke- og boligtelling 1990 Dokumentasjon av kodeopplegget i Folke- og boligtelling 1990. 1992-27s. 75 kr ISBN 82-537-3695-9
- 92/20 Tor Arnt Johnsen: Ressursbruk og produksjon i kraftsektoren. 1992-35s. 75 kr ISBN 82-537-3696-7
- 92/21 Kurt Åge Wass: Prisindeks for ny enebolig. 1992-43s. 75 kr ISBN 82-537-3734-3-
- 92/22 Knut A. Magnussen and Terje Skjerpen: Consumer Demand in MODAG and KVARTS. 1992-73s. 90 kr ISBN 82-537-3774-2
- 92/23 Skatter og overføringer til private Historisk oversikt over satser mv. Årene 1975-1992. 1992-70s. 90 kr ISBN 82-537-3778-5
- 92/24 Pasientstatistikk 1991. 1992-76s. 90 kr ISBN 82-537-3780-7
- 92/25 Astrid Busengdal og Ole O. Moss: Avfallsstatistikk Prøveundersøkelse for kommunalt avfall og gjenvinning. 1992-37s. 75 kr ISBN 82-537-3782-3

- Nr. 92/26 Nils Øyvind Mæhle: Kryssløpsdata og kryssløpsanalyse 1970-1990. 1993-230s. 140 kr ISBN 82-537-3783-1
- 92/27 Terje Erstad og Per Morten Holt: Selskapsbeskatning Analyse og statistikk. 1992-118s. 100 kr ISBN 82-537-3786-6
- 92/28 Terje Skjerpen og Anders Rygh Swensen: Estimering av dynamiske utgiftssystemer med feiljusteringsmekanismer. 1992-60s. 90 kr ISBN 82-537-3792-0
- 92/29 Charlotte Koren og Tom Kornstad: Typehusholdsmodellen ODIN. 1993-34s. 75 kr ISBN 82-537-3797-1
- 92/30 Karl Ove Aarbu: Avskrivningsregler og leiepriser for kapital 1981-1992. 1993-50s. 75 kr ISBN 82-537-3807-2
- 93/1 Naturressurser og miljø 1992.
 1993-144s. 115 kr
 ISBN 82-537-3844-7
- 93/1A Natural Resources and the Environment 1992. 1993-154s. 115 kr ISBN 82-537-3855-2
- 93/2 Anne Brendemoen: Faktoretterspørsel i transportproduserende sektor. 1993-49s. 75 kr ISBN-82-537-3814-5
- 93/3 Jon Holmøy: Pleie- og omsorgstjenesten i kommunene 1989. 1993-136s. 100 kr ISBN 82-537-3811-0
- 93/4 Magnar Lillegård: Folke- og boligtelling 1990 Dokumentasjon av de statistiske metodene. 1993-48s. 90 kr ISBN 82-537-3818-8
- 93/5 Audun Langørgen: En økonometrisk analyse av lønnsdannelsen i Norge. 1993-48s. 100 kr ISBN 82-537-3819-6

Nr. 93/6 Leif Andreassen, Truls Andreassen, Dennis Fredriksen, Gina Spurkland og Yngve Vogt: Framskriving av arbeidsstyrke og utdanning Mikrosimuleringsmodellen MOSART. 1993-100s. 100 kr ISBN 82-537-3821-8

93/7 Anders Barstad: Omfordeling og endring av miljøproblemer på bostedet (Under utgivelse)

- 93/8 Odd Frank Vaage: Feriereiser 1991/92. 1993-44s. 75 kr ISBN 82-537-3831-5
- 93/9 Erling Holmøy, Bodil M. Larsen og Haakon Vennemo: Historiske brukerpriser på realkapital. 1993-63s. 90 kr ISBN 82-537-3832-3
- 93/10 Runa Nesbakken og Steinar Strøm: Energiforbruk til oppvarmingsformål i husholdningene. 1993-41s. 75 kr ISBN 82-537-3836-6
- 93/11 Bodil M. Larsen: Vekst og produktivitet i Norge 1971-1990.
 1993-44s. 75 kr ISBN 82-537-3837-4
- 93/12 Resultatkontroll jordbruk 1992.
 1993-79s. 90 kr ISBN 82-537-3835-8
- 93/13 Odd Frank Vaage: Mediebruk 1992.
 1993-38s. 75 kr ISBN 82-537-3854-4
- 93/14 Kyrre Aamdal: Kommunal ressursbruk og tjenesteyting Makromodellen MAKKO. 1993-94s. 100 kr ISBN 82-537-3857-9
- 93/15 Olav Bjerkholt, Torgeir Johnsen og Knut Thonstad: Muligheter for en bærekraftig utvikling Analyser på World Model. 1993-64s. 90 kr ISBN 82-537-3861-7
 - 93/16 Tom Langer Andersen, Ole Tom Djupskås og Tor Arnt Johnsen: Kraftkontrakter til alminnelig forsyning i 1992 Priser, kvantum og leveringsbetingelser. 1993-42s. 75 kr ISBN 82-537-3864-1

Nr. 93/17 Steinar Strøm, Tom Wennemo og Rolf Aaberge: Inntektsulikhet i Norge 1973-1990. 1993-99s. 100 kr ISBN 82-537-3867-6

 \sim

- 93/18 Kjersti Gro Lindquist: Empirical Modelling of Exports of Manufactures: Norway 1962-1987. 1993-124s. 100 kr ISBN 82-537-3869-2
- 93/19 Knut Røed : Den selvforsterkende arbeidsledigheten Om hystereseeffekter i arbeidsmarkedet. 1993-95s. 90 kr ISBN 82-537-3870-6
- 93/20 Trine Dale, Arne Faye og Kåre Vassenden: Utenlandske statsborgere og kommunestyrevalget 1991 (Under utgivelse)
- 93/21 Sarita Bartlett: The Evolution of Norwegian Energy Use from 1950 to 1991. 1993-142s. 100 kr ISBN 82-537-3890-0
- 93/22 Klaus Mohn: Industrisysselsetting og produksjonsteknologi i norske regioner. 1993-59s. 90 kr ISBN 82-537-3910-9
- 93/23 Torbjørn Eika: Norsk økonomi 1988-1991: Hvorfor steg arbeidsledigheten så mye? (Under utgivelse)
- 93/24 Kristin Rypdal: Anthropogenic Emissions of the Greenhouse Gases CO₂, CH₄ and N₂O in Norway A Documentation of Methods of Estimation, Activity Data and Emission Factors
- 93/25 Skatter og overføringer til private Historisk oversikt over satser mv. Årene 1975-1993 (Under utgivelse)
- 93/26 Thor Olav Thoresen: Fordelingsvirkninger av overføringene til harnefamilier Beregninger ved skattemodellen LOTTE (Under utgivelse)

Pris kr 90,00 Publikasjonen utgis i kommisjon hos Akademika - avdeling for offentlige publikasjoner, Oslo, og er til salgs hos alle bokhandlere.

