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Abstract 

The paper analyzes the effects of uncertainty and learning on

investment decisions when the information gain is a by-product of

planned economic activity. We consider two resources, a and 0, one of

which must be extracted before the other. During the production of a,

information relevant to the development and production of (3 is

obtained. The aim of the paper is to study the impact of this

information on the optimal production time of a. The analysis shows

that several different classes of optimal solutions are possible:

which class the optimal decision belongs to depends, among other

factors, on the rate of information gain relative to the discount

rate.
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I. INTRODUCTION 

The economic literature on the extraction of exhaustible

resources has grown appreciably over the last few years (see the

reference list for a partial list of some relevant works). One of the

main themes in these investigations has been how to incorporate the

effect of uncertainty and learning into the theoretical framework in a

'sensible' way. The concept of option value, or quasi option value

[Henry, 1974a,b; Arrow and Fisher, 19743 has come to the forefront in

these -discussions. As Conrad [1980], among others, has shown,

(quasi)-option value is essentially the expected value of information

gained by delaying irreversible decisions. One of the main conclusions

which emerges from these studies is that the prospect of getting

fuller information works against irreversible decisions, i.e. the

prospect of fuller information combined with the irreversibility of

the planned investment, brings forth a positive option value in favour

of preservation [Henry, 1974a]. However, more often than not, useful

information is not gained by just postponing decisions. Some sort of

economic actift, with associated costs, is usually required.

Furthermore, the amount and type of information gained is seldom

independent of the outcome of previous decisions. Thus option value is

not a one-sided argument for slower, or less, development and greater

preservation [Freeman, 1984; Miller and Lad, 1984].

The present note is an attempt to study the problem of

individual decision-making under uncertainty in the context of natural

resource extraction when learning is possible. More specifically, we

adress the problem of when the prospect of more information justifies

the added costs necessary to obtain this information. We shall do this

within the framework of a simple model describing the optimal

extraction of two non-renewable resources, here denoted a and p

respectively. We will be thinking of the resources as oil and gas, but

other types of deposits of resources will surely also fit the model.

Because of technical considerations, e.g. a rapid fall in pressure as

gas is produced, one of the resources (a or oil) will have to be

produced before the main extraction of the other resource -( or gas)

starts, if it is to be produced at all. Similar situations may arise
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during exploitation of other resources, e.g. mining of minerals. The

model is a generalization of the model analyzed in Hoel [1978].
•

We remark that the model may also apply to more general

situations if a and O are viewed as two activities, one which by

necessity must be performed before the other and where the first

activity produces information which is valueable for the next

activity. Examples of such situations are marked research done before

a new product is released, and wildcat drilling for oil and gas.

During the production of resource a (oil), information will be

gained concerning the reservoir characteristics. Estimates of future

costs asociated with the production of resource f3 will also be

affected, and some of the uncertainty associated with this production

will probably diminish. Future prices obtainable for the second

resource will also generally be less uncertain. We shall restrict our-

selves to the situation where the information gain is a function of 

the production time of resource a alone. This may be reasonable in

situations where the production rate of a is constant, or

alternatively, where the activity level of process a is fixed. The

problem we shall consider is the determination of the optimal

production time T, taking the above information gain into account.

Formally, we want to optimize the total net discounted profit W(T)

with respect to T:

W(T) = F(T) + exp(-rT)EG(X) 	 (1)

!II 	 The profit function is composed of two parts:

F(T) 	 : The net discounted profit of developing and

producing resource a from time zero to T.

F(T) may have a local maximum at time T=T

*

exp(-rT)EG(X) 	 : Discounted (to time zero) expected net

profit obtained from the sdevelopment and

production of resource p.

r being the discount rate, asumed constant for simplicity, and EG(X)
• 	

is the expected net profit from the extraction of resource 0 dis-

counted to time T. X is a stochastic vector with components consisting
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of the variables determining the profit of resource p through the
functional expression G. We assume that the joint probability density

of X, 4p(X;T5, is known. The learning process is represented by the

time dependence of the probability distribution, i.e. it depends on

the length of the interval over which resource a is produced. In order

not to complicate the mathematical expressions unduly, we have

supressed T as an argument in the function EG.

We shall allow the (co-)variances (denoted by a
2
) to vary with

the production time T of resource a, while the mean values of X

(denoted by g) is kept constant. This is a generalization of the

approach taken by Hoel [1978], where no change in the probability

distribution is made before resource a is completly depleted. At this

point in time Hoel assumes that the decision makers obtain perfect

knowledge of stock size and extraction costs of deposit p (the two

variables considered by Hoel).

The optimal production time of resource a is formally found

from the following set of equations:

First order condition:

W'(T) = F(T) - exp(-rT) [rEG(X) - 3(EG(X))/811 = 0
	

(2)

Second order condition:

W"(T)= F"(T) -afexp(-rT) [rEG(X) 	 3(EG(X))0TDOT < 0
	

(3)

Note that the solution of (2) and (3) should be compared to

the situation where resource a is not produced, i.e. with the profit

W 	 = EG(), and With the profit of producing a alone, W = F(T ),a 
where T is the optimal production time of resource a. In this note we

shall assume that W is larger than W
a
, thus indicating that resource

a is in some sense an inferior resource compared to p. The profit of

extracting a alone may even be negative. This is typically the case

when 'production of a is a pure information gathering process.

Before proceeding with the study of the effects of the

learning process and the solution of the above equations, let us say a
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few words about the net discounted profit, F(T), of resource a, and

discuss some possible functional forms of the profit function of

resource O.

1.1 The profit function of resource a. 

Our aim in this section is to find a reasonable description of

the general shape of the utility function for resouice a, F, con-

sidered as a function of the production time T alone. We do this by

noting that a reasonable expression for the utility function as-

sociated with resource a is the discounted net profit:

F(T) = ffq(t)z(t) 	 c(z(t),Z(t),Y(t))}exp(-rt)dt
	

(4)

o

where q(t) is the price, z(t) the production rate, and Z(t) the

accumulated production of resource a. The vector Y(t) in eq.(4)

indicates that the cost may depend on other variables than those

directly associated with the production volume.

By making reasonable assumptions about the the various terms

entering (4) it is possible to say something about the general form of

the profit function F(T).

First of all we assume a smooth price trend. This is a pre-

requisite in order to be able to say anything meaningful about the

global structure of F(T). In the following analysis the price is, for

simplicity, set equal to a constant (figure la).

Secondly, the production rate z(t) is assumed to be single

peaked with zero as a limit as t 4 0° (figure lb).

Finally, the cost term of the profit function is assumed to be

composed of three parts:

i) Investment or capital costs c l pr. unit time. This
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contributes to the total costs at the initial stage

of the project.

ii) Production costs pr. unit time, c 2 , which follows

the production rate z(t) closely.

iii) Depletion costs pr. unit time, c 
3
 , which takes ac-

count of the increased production costs as the re-

source is depleted. The last barrel of oil is

more expensive to produce than an earlier one. Also

dismantling of the production equipment has a cost.

The shape of the total cost function ,c=c
1
 +c

2
 +c

3 "
, as

function of time, is shown in figure lc. Discounting the instant

profit produce a profit profile similar to the one shown in figure ld.

a)



•
(qz-c)e    

•
Figure 1. Components of the profit function for resource a. a) The

price profile. b) The production profile. c) The cost

profile. d) Discounted profit rate.

Finally, integrating the discounted profit rate over time from

t = 0 to t = T we obtain a function of the form shown in figure 2.



Figure 2. A profit function for resource a.

Taken by itself, i.e 	 neglecting the possible impacts on

resource p, the net discounted profit of resource a is maximized by

producing up to time T = T . Note that the maximized profit, F(T ),

may be positive or negative. A negative profit may be acceptable if it

is needed to obtain a bigger positive profit in the utilization of

resource p.

We note in passing, that the shape of the profit function F(T)

is very similar to what is sometimes assumed to be the shape of the

'net value of information as a function of the amount of information

[Dasgupta, 1982].

Occasionally, when we want to illustrate some of our results

with numerical calculations, we will have the need for a specific

discounted profit function for resource a. 'A simple example of such a

function is:

F(T) = -S [T 3 /3 - (T* +T * )T2 /2 + T
*
T * T]
	

(5)

This function has the general shape shown in figure 2, where

also the locations of the parameters T* and T* are shown. At T=T* the

profit from a stops declining, while T t is the optimal production

time. S is a scaling factor. We have assumed that the discount rate r

is constant, and have neglected it in (5). This is reasonable if
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current prices and costs increase with a rate equal to the discount

rate. We shall return to this model when we illustrate some of our

results below.

1.2 Some possible profit functions for resource B. 

We have represented the physical and economic variables

associated with resource 0 by the stochastic vector X. The components

of X may be reservoir size (volume, tonnes of oil, cubicmeters gas

etc.), total (integrated) development and production costs, price

obtainable for the produced stock etc. At this point we shall not

specify X further, only assume that it has a joint probability density

CX;T) which also depends on the total production time of resource a.

Below we shall study in more detail the case where X is a scalar

variable. This is done for illustrative purposes, since in this case

the complicating correlations between the elements of X disappear.

The expected profit of resource f3 enters in the expression (1)

for the total discounted net profit. It is possible to relate the

expected value of G(X) to known properties of the distribution of X in

three situations: when the function G is quadratic in its argument,

when G is of an exponential type, and when the distribution function (1)

is sharply peaked.

1.2.1 Quadratic profit function. 

A quadratic profit function for resource O has the form:

1
G(X) = a + tb.X. + 	 EEX,c..X.1 	 j 	 13 j

1= a + bX + XicK (6)
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where a, b, andcareaconstant scalar, avector, andanxnmatrix,

respectively. The expected value of G(X) is giwen by

2
EG(X) = G(k) + 2 	 13 ijij

where

= a(T) = S .

2
1

ci
lj 	 1
2 	

= 0..(T) = f[x.-p (T)][X. - P (T)]P(X;T)dX
] 

Thus, OT) is the expected value of X and a 2 (T) is the covariance

matrix of X. T is the life time of resource a.

Assuming, for a scalar X, b>0 and c<0 the form of G(X) is

shown in figure 3. Marginal utility is decreasing and the absolute

risk aversion

R A = -G"(X)/G'(X) = - c/(b + a) 	 (9)

is increasing with X and tend towards infinity at the point of maximal

profit. Although a quadratic function is easy to handle analytically

the two last implications can be serious drawbacks.

G

4%.

(7)

(8a)

(8b)

X-b/c

a

Figure 3. A quadratic profit function.

Note that in the .simple case with a scalar X and c<0, an

increased uncertainty (variance) leads to a decreased expectation

value of G. This is 'a simple consequence of the concavity of G



•

10

(Jensen's inequality).

We also remark that for sufficiently sharply peaked density

functions (p(X,T), the expected value of a general profit function G(X)

can, to a good approximation, be written as in eq. (7), with c.. =
1)

8
2
GOX.aX..

1

1.2.2 Exponential profit function. 

, 	 A profit function which has a constant absolute risk aversion,

.(equal to -a), is

G(X) = b + c exp(Ea.X.) 	 (10)
i. 	1.

If the X's are assumed to be normally distributed (but not

necessarily independent) with mean k and covariance 0 2 , then

2
EG(X) = b + c exp(Ea.p i ) expti 	 ij 	 13 3

If X is a scalar and c and a are negative constants, (see

figure 4 below), G is concave and an increased uncertainty implies a

decrease in the expected value of G.

G

b

b+c

Figure 4. An exponential profit function.



2. FIRST ORDER CONDITIONS. 

Returning to the analysis of the first order condition, M,

we rewrite it to yield

H(T;r) = EG(X) 	 (1/r)aEG(X)/aT
	

(12)

where the function H(T;r) is defined by -

H(T,r) = (1/r)F 1 (T)exp(rT)
	

(13)

We have indicated that the discount rite r enters as a parameter in

the defining equation.

Eq.(12) says that the optimal production time of resource a is

obtained when the marginal profit of continued production of a,

divided by the discount rate, equals the discounted expected utility

of p adjusted for learning. The optimal production time is thus

determined by balancing the cost of postponing the production of O

against the value of information obtained by extending the production

time of a.

Not much can be said about the effects of uncertainty and

learning without specifying the functional form of G further. The

results will be sensitive td the formulation (properties) of the

function G and the covariance structure of the stochastic vector X.

For this reason we restrict ourselves to a situation where the net

profit obtainable from resource p depends on a scalar variable. X and

the profit function G(X) is concave. X may, for instance, bé the

reservoir size of an oil field (cfr. Hoel [1978]). Illustrations of

our results will be based on examples using one of the functional

forms discussed in the last section. Both of these are of the above

type.

In order to isolate the effects of uncertainty and learning on

the optimal production time of resource a, it is useful to have as

reference case the situation where uncertainty, and hence learning,
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is absent. We now proceed with the description of such a situation.

2.1 The certain case. 

Without uncertainty the first order condition (12) takes the

form

H(T,r) =EG 	(14)

where now EG = G(p), independent of T, and p = X.

From the generic form of the profit function F(T) for resource

Œ (figure 2), we deduce that H(T;r) have a shape similar to the curve

shown in figure 5. It is negative for T < T* and T T , positive when

T < T < T .

'	 H (11 ;r )

e

•
EG

0

Figure 5. Illustration of the function H(T;r) and the first order

condition in cases where learning effects are absent.

The (constant) value EG is represented as a straight horizontal line

in the figure. If this line is above the maximum of H, we conclude

that the production of f3 should start right away without any

production of resource a. Total net profit is W = EG in this case.
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If the EG-line crosses the H-curve, however, production of

resource a for a time T
o 
could be optimal. From the second order

condition it follows that it is the rightmost solution, i.e. the

solution where the H-curve approach the EG curve from above, that

gives a (local) maximum of the total net discounted profit. If we

denote the time where H(T;r) is maximal by T', we conclude that T' <

T
o 

< T . Whether T=0 or T=T
o is the global optimum of the total net

discounted profit W(T), depends, among other things, on the absolute

level of the profit function F(T) of resource a.

2.2 The effects of a fixed uncertainty and changes in the discount rate. 

As pointed out previously, EG is a decreasing function of o
2

.

Introducing a T-independent uncertainty alters the expected value of G

to a new constant EG < G(p). We shall assume EG to be independent of
0

the discount rate r. This, of course, is unrealistic, but is done in

order to simplify the following discussion.

The possible solutions of the problem when a T-independent

uncertainty is included are as in the certain case, only now there is

an increased likelihood for production of both resource a and p (since

the horizontal line in figure 5 is lowered). In other words, we may 

have situations where without uncertaint no •roduction of a should be

undertaken, while inclusion of uncertainty makes such production 

profitable.

If we denote the solution of the first order condition with

uncertainty by T 1 , it can be shown that T o < T 1 < T* . This is done by

proving, from the first and second order conditions(2) and (3), that

T
1
 is an increasing function of the variance. It is also easy to

deduce from figure 5. Thus, in our model ungertplaty_itstats_ta_ft&ttnd
the roduction •eriod of resource com ared to the certain

situation.

It is sometimes assumed that the effect of uncertainty can be
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captured by increasing the discount rate. Next we shall show that this

is not always the case. Increasing the discount rate changes the

H-curve in a rather complicated manner. Since

aH(T;r)/or = H(T.,r)(T - 1/r)	 (15)

H will increase where T > 1/r and F'(T) > 0, and where T < hr and

Fl(T) < O. (Remember that we have assumed F(T) to be independet of r).

A , typical result of increasing r is shown as the dotted curve in

figure 6.

(r;r)

EG

0  

Figure 6. The effect of a changed discount rate on the first

order condition.

If 1/r < T
o ,

 we conclude that an increased discount rate will

increase the production time To . This is an effect similar to an

increase in the uncertainty. However, the opposite may take place when

1/r > T
0
 . Hence, only for large enough discount rates is it in 

principle possible to represent the effect of uncertainty by an 

increased discount rate, in the sense that they affect the outcome in

the same direction. The actual increase in r needed to represent a

given uncertainty depends in a complicated manner on the discount rate

itself, the profit functions F and G, and the uncertainty.
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2.3 The effect of learning. 

Allowing a T-dependent variance in the distribution of X,

introduces a new term in addition to those already considered in the

first order condition (cfr. eq. 12). Since learning implies that

aso
2 OT < 0, and EG is a decreasing function of the variance o2

, we

conclude that 'BEGOT > 0, i.e. the marginal expected profit from

resource p due to an increase in the production time of a is positive.
The effect of learning on the first order condition, eq. (12), is,

therefore, to increase the first term on the right hand side, EG, but

at the same time subtract a . positive term, (1/r)bEGOT. Apriori it is

difficult to predict the net outcome.

We note that for 'small' discount rates, r < r o , where

ro = (EGOT)/EG = a(lnEG)/BT	 (16)

the right hand side of eq.(12) becomes negative. r o could be termed

the learning rate. Without learning r o is zero. Generally, r o will

depend on the production time T. When we below discuss the types of

solutions we get when r
o is in certain intervals, we are referring to

the value of ro at the (local) optimal production time.

When r < r 0 , corresponding to a high learning rate, we can

only have interior solutions with either 0 < T < T * or T > T . The

first interval contains solutions where the value of learning obtained

from the production of resource a outweighs the cost of producing a

for a short time. These solutions have no counterpart in the case

without learning. Thus, no production of a would take place if

learning effects were disregarded. We observe that if the production

of resource a shows a negative marginal profit for all T, i.e. T * is

effectively infinite, solutions of this type are the only ones

possible with T > O. Examples of such situations are wildcat and

appraisal drilling for oil and gas, and mineral exploration. In order 

for learning tohave an effect on the production time in this case, 

the learning rate r must exceed the discount rate r. 

Solutions in the second interval (T > T ) are of a different

nature in that they extend the production time of resource a beyond
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the optimal single-resource time T . The small discount rate (or high

learning f rate) assumed (r < r o ) makes the costs associated with the

delay in the production of resource (3 lower than the value of added

information obtained from the extended production period of a.

When r > ro' corresponding to a low learning rate, the first

order condition (12) gives solutions located in the interval between

T and T . In this case the costs of delaying the production of f3

beyond T are larger. than the benefit of added information. This is

reasonable since a small learning rate implies a relatively high

uncertainty and, hence, a relatively low expected profit from resource

p. By increasing the learning rate (but still r > ro ), the expected

profit increases and together with it the cost of delaying *the

production start of p. The production tinté of a will, therefore,

decrease with increasing learning rate as long as r > ro . This is

perhaps opposite to what one intuitively would think the effect of

learning should be.

If we interpret the right hand side of the first order

condition (12) as expected net profit from resource p adjusted for

learning effects, we observe that for small T it will be lower than

the expected profit when learning is disregarded. Only after a time

TL, where TL is defined implicitly as the solution of the equation

EG(T) (1/r)3EG(T)/3T = EG(T=0) (17)

is the expected adjusted profit equal to the unadjusted profit. (Here,

the argument T signifies that the expected value is to be calculated

with the probability density at time T). Thus, only after a time TL is

the learning process able to reduce the effects on uncertainty below

the analogous T-independent level. We shall return to this when we

illustrate some of our results' with a specified profit function G

below.

So far, we have only assumed a discounted profit function for

resource a of the general form shown in figure 2, and a single vari-

able, concave profit function for resource O. In order to illustrate

our results, we now turn to a study of some concrete examples.



3. EXAMPLES. 

We shall now evaluate the effect of learning in the cases

where the utility of resource 13 is represented by a quadratic and

exponential function of X, respectively. We assume the profit function

for resource a to be of the form given in eq. (5).

We specify the T-dependence of the variance of the variable X

by

o 	 exp(--(T)
2 (T) = o

0

2 	
(18)

A high decay rate i indicates that the variance, i.e., the un-

certainty, decrease fast with increasing production time T. In other

words, much is learned in a relatively short time under the production

of resource a.

3.1 Quadratic profit function. 

The quadratic profit function for resource p was given in

eq.(6) as

G(X) = a + bX + 	 cX2
	

(19)

where now a, b, and c are scalar constants. The expected profit from

resource p after having produced a for a time*T is

EG = G(p) + 	 co 2 (T)
	

(20)

From eqs.(12) and (20) we obtain the first order condition for

a maximal total net discounted profit in the following form:

H(T;r) = G(p) + 1 co2 (1 + .y/r)exP( -)q)

	

2 	 o
■■■■

With a T-independent uncertainty, i.e. no learning (-(=0), the

first order condition takes the form:

1 	 2
H(T;r) = G(p) 4 	 coo (22)

17

(21)
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Thus, provided the marginal profit of resource O is a

decreasing -function of X (c(0), the T-independent uncertainty

decreases the expected profit. By including a learning effect this

lowering of the expected profit is enhanced by a factor (1 + .y/r), but

at the same time reduced by a factor exp(--yT). The final outcome is

that only for production times T greater than a time TL, where TL is

defined by

TL = (1//)1n(1 + i y/r) 	 (23)

is the learning process able to reduce the effect of uncertainty below

the analogous T-independent level. TL is plotted in figure 7 for

various values of the discount rate r.

TL

10

5

r. 0.05

0.1

0.25

0

0,5 1,0 1,5 ,

Figure 7. The 'learning time' TL as function of the decay rate -y for

variouš values of r.
•

We observe that TL is a decreasing function of both r and -y.

Hence, the 'learning time' TL is decreased by either an increase in

the speed of learning (-0 or an increase in the discount rate (r).

The solution of the first order condition (21) is illustrated

in figure 8 for two values of -y, keeping r fixed.
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02 o

•
0

•

•

•

Figure 8. The first order condition when learning effects are

included.

In this figure we have used a profit function for resource a

of the form given in (5) with scale factor S = 0.0002, T* 	5, T

20, and a quadratic profit function for resource p (eq. 19) with
parameters a = -0.497, b . 0.547, and c = 	 We note that the

maximum net profit from a alone is rather low: F(T ) = 0.07. The mean

value of X was equal to 2.3, while the initial variance was ci
o
2 = 4.

The discount rate r was 0.10 throughout the calculations.

As shown in the figure, G(p) is above the maximum of H(T;r)

(upper horizontal line), indicating that development and production

of resource a should not take place in a situation without

uncertainty. The optimal net profit in the example is G(p) :-. 0.50 in

this case_

Including a T-independent uncertainty, o 0 2 ,make possible an•

interior (T > 0) solution of the first order 6ondition at T = T1
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18.20 (lower horizontal line in figure 8). In our example, the total

net discounted profit.from producing a for a time T
1
 followed by the

production of O, is W(T ) A: 0.11. The net expected profit from a

production of resource p alone is W = W(0) :t 0.30. This last solution -

is, of course, preferable to the interior (or a + p) solution.

Finally, including learning by letting the decay rate of the

variance of X, be equal to 0.1, results in a right hand side of the

first order condition (eq.21) as shown by the broken curve in figure

8. The interior solution is now at T = Tay .1.4 16.50 < T1 
1
 with

associated profit W(Tay) 0.14. This is still below the profit

obtainable from the production of resource O alone.

Increasing the decay rate ay to 0.5 changes the situation

rather dramatically, as illustrated by the dash-dotted curve in figure

8. The new interior solution at Tay' 	 1.20 is now in a region where

the production of resource a considered by itself gives a net loss.

Nevertheless, the total net discounted profit from the production of

both a and 0 is approximatly W(Ty) 	 0.32, i.e. above the maximum

profit obtainable from resource p alone. Qualitative chan'cles in 

decisions 	 ma 	 thus be brou ht about when the •ossibilit

'amin' information durin economic activities is reco nized.

3.2 Exponential profit function. 

The results described above remains largely unchanged when we

assume an exponential profit function for resource O,

G(X) = b + cexp(aX) 	 (24)

In our example we have used the following parameters: a =

ln(0.5), b= 1.0, and c = -2.0. The mean value and variance of X and

the discout rate r were as in the previous example. The first order

condition for optimal production time T is now

2 2
H(T) = b + 	 + .ya 0

o
exp(-0)/(2r)]exp[ap + 	 a

2
0
2
(T)] 	 (25)
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In comparison, a T-independent uncertainty gives as first

order condition:

1 	 2H(T) 	 b + cexp(ap + 	 a2 00) (26)

Again, we observe a double effect of a T-dependent variance.

The constant c is enhanced by a factor [1 + ('y/r)exp(-/T)], while the

variance in the exponential part of (25) decrease with increasing T.

It is, thus, possible to define a 'learning time' TL analogous to the

case with the quadratic profit function. This time, however, TL is

only defined implicitly by the equation.

1 2 2 2 2a a cjexpt--)1L)-1] = -ln[l+Ha 0 0 /2r)exp(--,(TL)] (27)

From the graphical representation of H(T;r) (figure 5) it is

again possible to obtain the optimal production time for resource a.

The picture that emerges is very similar to what was presented in

figure 8 for the quadratic profit function and is, for this reason,

omitted.

This similarity is hardly surprising, since the exponential

and the quadratic profit functions are quite similar in global

behaviour. The main difference that emerges is that the profit from f3

when uncertainty, but not learning, is included, is lower in the

exponential case than in the quadratic example (-0.06 and 0.30,

respectively). This behaviour, which do not alter the optimal solution

described in the last - section, is due to the difference in absolute

risk aversion associated with the two functions.



4. SUMMARY AND CONCLUSIONS 

We have in this paper considered the extraction of two

resources, a and 0, one of which must be produced before the other.

During the production of the first resource, a, information relevant

to the development and production of the second resource, 0, is

obtained. Our main aim was to study the impact of this information

gain on the determination of the optimal production time T of resource

Œ.

Conditions determining the optimal production time has been

given in the form of first and second order conditions. Not much could

be said from these conditions, however, in the general case where the

net profit of resource p was determined by a multi-component

stochastic vector X. For this reason we explored some of the

consequences of the learning process when a scalar variable (X) could

be assumed to determine the profit obtainable from resource 0, A

decreasing marginal utility of 0 .with respect to X was also assumed.

Under these conditions we showed that several qualitatively different

types of solutions were possible, depending on

- the costs (due to the discounting of future profit)

associated with a delay in the production start of resource

0,

- the benefit of information obtained during the production

of resource a, i.e. the benefit of a decreased uncertainty,

- the profit potential of resource a and 0, considered by

themselves.

We found that production of a only should take place when,

loosely speaking, the profit from O was below a certain threshold

value. Uncertainty lowered the expected profit from the production of

O, thus making a solution with production of both a and O more

probable. By including learning effects, however, the uncertainty was

decreased. This made the delay in the production of 0, due to the

22
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production of a, more expensive. At the same time the production of a

was necessary in order to get the information needed to lower this

uncertainty. Balancing these effects lead to basically -three different

classes of solutions.

One class implied a production of resource p only. This was

found to be optimal when the learning rate was small compared to the

discount rate and the expected profit from (3 was in some sense

'large'. Any delay in the production of p in this situation would be
too expensive to justify the relative small increase in information

one could obtain from a production of a.
5

The second class of solutions was characterized by small

modifications of a scheme where a was produced for a time not very

different from the optimal production time of a, T , When considered

as a single resource, followed by production of P. The modified

optimal production time could be longer or shorter than the single-
*

resource time T , depending on the value of the learning rate relative

to the discount rate. A high learning rate will extend the production

period of a while a low learning rate will shorten it.

Finally, we found a third class of solutions, possible only

when the learning rate was high compared to the discount rate. These

solutions implies production of a for a short time, before the

production of p starts. The benefit of reduced uncertainty outweighs

the costs of a short production time of a in this case. Most of the

information gathering taking place in real life, like marked research,

wildcat drilling and other exploratory activities, presumably

represent solutions of this type. In the resource context described

above we find that the information gain could make it profitable to

develop and produce a resource that otherwise would not have been

exploited.

Most of the above conclusions are based on the assumption of a

concave profit function for resource p. If the profit function instead

is assumed to be convex most of the conclusions would have to be

modified. However, the interesting problem is rather which conclusions

could be made when we have a 'realistic' profit function, e.g. one

that is composed of different parts depending on multicomponent

variables in different manners. The answer is that few general
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statements could be made in this case. Rather, the results will to a

large degree depend on the covariances between the different parts of

the multi-component variables and the functional dependencies on

these variables. It is, of course, very difficult to predict the

effects of uncertainty and learning in such situations. Nevertheless,

as we have shown in this paper, such effects are potentially very

important and should not be disregarded when planning investments

strategies.
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6. SOME COMMENTS ON THE LITERATURE 

Below follows a few short comments and incomplete summaries of

some of the papers listed in the reference list which has most direct

relevance for the discussion in our paper.

HOEL, MICHAEL, Resource extraction, uncertainty, and learning.

Bell Journal of Economics, 9, 642-645, 1978

Hoel considers two resources; A and B. A (=oil) must be extracted

before B (=gas) can be explored. Production rate of A determined

by extraction period T. T is to be decided.

Utility of A: F(T).

Utility of B: U(T;R,b)=g(R,b)exp(-rT)

where

r: constant rate

R: size of reservoir (or other r eservoir

characteristics)

b: cost of production

R and b assumed independently distributed stochastic variables.

Maximize: [ F(T)+EU(T;R,b)

• 	 OCT

Conclusion: Since g depends on R and b in different manners,

the uncertainties in R and b affect T in different ways.

Note: There is no difference between the fixed (no-learning) and

the flexible (sequencial, with learning) strategy in this

case. Furthermore, there are no irreversibility effects,

since A is to be utilized in any case. Therefore, the result

is rather difficult to compare with 'classical' works such

- as Arrow & Fisher (1974).

27
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HENRY, CLAUDE, Option values in the economics of irreplacable

assets.

Review of Economic Studies„ 89-104, 1974

Henry considers two periods, j=1,2, each with an utility function

of the form U(Y,D). D = development, Y = profit from development.

Y is a concave function of D with negative derivative: Y=f(D),

f'<0, f"<0. U is assumed to be. strictly quasi-concave.

Irreversibility is included by requiering 0 ( D2 < D1 (< Dmax).

Period j=1 has utility function Ul(D1), while the utility

function for period 2 depends on the 'state-of-the-world' through

the stochastic variable w; U2(D2,w). The probability distribution

of w is considered as fixed. -

Problem: Determine the effect of two different decision strategies

(fixed and flexible) on the initial period D1 to be chosen.

Strategy 1: Fixed (without learning):

Maximize [U1(D1) + EU2(D2,w)]

D1,D2

s.t. O<D2010max

Denote solution by D 1 and D 2.

Strategy 2: Flexible (with learning):

This is done in two steps:

(1)Maximize [U2(D2;w)] for given D1 and w.

002 <D 1

Denote solution by D* 2(d1,w).

(2)Maximize [U1(D1) + EU2(D * 2(D1;w);w)]

O<D1Omax

Solution: D
*
1.



29

Henry shows that D * 1 	 D

Remark: It may be possible to interpret D as oil production, Y as

gas production.

Note: The paper also includes a discussion of the concept 'option

value'

HENRY, CLAUDE, Investments decisions under uncertaint: The

'irreversibility effeCt'.

The American Economic Review, 64, 1006-1012, 1974.

Main results:

'Equivalent certainty case' not applicable when

irreversibility is taken into account. This refutes the arguments

of Herbert A: Simon (Econometrica 24,74-81,1956), Henri Theil

(Econometrica,25,346-349,1957), and Edmond Malinvaud

(Econometrica,37,706-718,1969).

Risk-neutral decision maker facing binary decision is led to adopt

irreversible decisions more often than he should if he neglect

irreversibility effects.

If fixed strategy indicates no irreversible decision, then so

does a flexible strategy.

Finally, Henry shows in a concrete example that the

irreversibility effect may be fairly important.

Interpretation: Gas production preclildes oil production and hence

is an irreversible act.
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ARROW, KENNETH J. and ANTHONY C. FISHER,

Enviromental preservation,

uncertaint, and irreversability.

Quartely Journal of Economy, 88, 312-319, 1974.

A 'classical' paper based on the problem of land development over

two time periods. Main conclusions:

i) Uncertainty lower expected benefits.

ii) The effect of irreversibility is like risk aversion.

HANEMANN, W. MICHAEL, On reconciling different concepts of option

value.

Preprint, 1984.

The paper is mainly concerned with the interpretation of different

use of the concept 'option value'. The discussion of the

Arrow-Fisher-Henry option value is close to Henry(1974a).

MILLER, JON R. and FRANK LAD, Flexibility, Learning, and

irreversibility: A Bayesian approach.

Journal of enviromental economics and management,

11, 161-172, 1984.

Miller and Lad points out that a flexible strategy may imply

larger costs than a fixed strategy, and that the learning is .

dependent on decisions in period 1. Thus a conditional probability

distribution should be used when calculating the expected utility

in period 2.

Concludes that a flexible strategy not neccesarily implies a more

conservative decision, i.e. irreversible decisions may under

certain circumstances be taken more often by use of flexible

strategies than by use of a fixed strategy.
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FREEMAN III, A. MYRICK,

The quasi-option value if irreversible development.

Journal of Enviromental Economics and Management,

11,292-295,1984.

Points out that option value is not a one-sided argument for

slower development and greater preservation. Option value is

related to information gain in uncertain situations, and only

occationally is such information obtained by waiting alone.

See also Miller and Lad for similar arguments.

•



7. FIGURE CAPTIONS 

Figure 1. Components of the profit function for resource a. a) The

price profile. b) The production profile. c) The cost

profile. d) Discounted profit rate.

Figure 1. Components of the profit function for resource a.

Figure 2. A profit function for resource a.

Figure 3. A quadratic profit function.

Figure 4. An exponential profit function.

Figure 5. Illustration of the function H(T;r) and the first order

condition in cases where learning effects are absent.

Figure 6. The effect of a changed discount rate on the first order

condition.

Figure 7. The 'learning time' TL as function of the decay rate y for

various valuer of r.

Figure 8. The first order condition when learning effects are

11/ 	 included.
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