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PREFACE

The Central Bureau of Statistics must continuously judge whether

seeming tendencies express underlying realities. In this Article an

attempt is made to develop a systematic method for treatment of such

questions. It aims at situations which are very common in the practice

of the Bureau, where the observations are binary or multinary. The

method is similar to corresponding methods developed by Henry Scheff6

for "linear-normal" situations, where each observation is a measurement.

Central Bureau of Statistics, Oslo, 15 May 1975

Petter Jakob Bjerve



FORORD

Statistisk Sentralbyrå må ofte vurdere hvorvidt tilsynelatende

tendenser i et datamateriale gir uttrykk for underliggende realiteter.

I denne artikkelen er det gjort et forsøk på å utvikle en systematisk

metode for behandling av slike spørsmål, Den tar sikte på situasjoner

som vanligvis opptrer ved Byråets undersøkelser, nemlig binære og multi-

nære situasjoner. Metoden er analog til tilsvarende metoder utviklet

av Henry Scheffe for "lineær-normale" situasjoner hvor enkeltobserva-

sjonene er malinger.

Statistisk Sentralbyrå, Oslo, 15. mai 1975

Petter Jakob Bjerve



CONTENTS

Page

1. Description of the multiple comparison rule  	 7

2. Properties of the general multiple comparison rule  	 19

3. Proof of the assertions about the general rule 	 24

Refrences     
	 33



INNHOLD

Side

1. Beskrivelse av den multiple sammenlikningsregel  
	

7

2. Egenskaper ved den multiple sammenlikningsregel  
	

19

3. Bevis for påstandene om den generelle regel  
	

24

Referanser  
	

33



7

1. Description of the multiple comparison rule 

A.	 We shall be concerned with statistical data where each obser-

vation may take one of several exclusive forms. It is reasonable to call

such observations "multinary", if there are only two forms they may be

called "binary". The following examples will illustrate our point. In

an employment investigation one is interested in observing, for each

employed person, if they remain employed after one year and for each

unemployed if they get employed within a year. Thus the forms are "employed

after one year", "unemployed after one year". - In a general mortality

investigation individuals are observed to die within or survive after one year .

- If the investigation is directed toward death from tuberculosis each

observation takes three forms, "dying within a year from tuberculosis",

"dying within a year from other causes", "surviving the year". - For the

purpose of studying relationships between allergy and type of mental

ailment, each mental patient is observed to be allergic or not and to

have one of three major types of mental ailments (neurotic, psychopatic,

psychogenic). Hence each observation takes one of six different forms.

- By investigation of a certain insecticide, the death or survival of

insects exposed to the insecticide are observed.

In general, each observation can assume one of r exclusive forms

Al , A2 , ... Ar , which are assumed to have probabilities

Pr' i P j =
The observations can, based on a priori considerations, be classi-

fied in s different groups, in each of which the forms A l , A2 , ... are

given, and which are homogeneouswith respect to the probabilities

p l , p 2 , 	 . Thus one shall suppose that in group a, a=1,2, 	 s

the observations can take ra forms

(1) . ., A
ara•

with probabilities

(2) pal'

▪ 	

Par
a
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We assume all the mul ,Anary observations to be independent. We shall

include the case where there is just one group (s=1). That may be the

case in the example of observations of mental patients mentioned above,

in which case r
a
=r=6.

In the above examples of mortality investigations there may be

10 five-year age groups from age 20 to 70. Hence s=10 and all r a=2.

In the example of the employment investigation the data may be

classified in 8 five-year groups from age 20 to age 60. The purpose of

the investigation may be to observe the change in tendency to remain

employed or to obtain employment over 10 years. Thus at the beginning

of each of the 10 years we have employed and unemployed in each age

group and we observe if they are employed at the end of the year. There

are s=8x2x10=160 groups and all r a =2. (We shall use this example below

and then find it convenient to use our method separately for each of the

8x2 groups, still keeping full control of the probability of making an

error. Then we have s=10.)

In the example with insecticide the insects may under 3 different

environmental conditions be exposed to doses of 5 different concentrations.

Hence s=15 and r
a
=2.

B. 	 In the set-up defined above there are certain types of comparisons

we are interested in making.

In the employment example let us confine ourself to one age group

and consider those persons unemployed at the beginning of each of the 10

years. Then p al , pa2 are the probabilities that a person unemployed at

the beginning of the year a shall obtain, resp. not obtain, employment

during the year. Let us write p al =pa , for short, and p a2 =1-p a . Then we

might be interested in changes in the chances p a of obtaining employment.

We are interested in investigating if p a+i -pa > 0 or pa+l -p a < 0;

a=1,2 ..., s. We are of course only interested in making such statements

to the extent to which they are justified by the limited information 

available from our data. Then, however, the situation may arise, where

we are not willing to say that there has been a change over each of the

(say) 4 one-year periods from 1970-1974, but that we are willing to state

that it has been a definite decrease in the chance of obtaining employ-

ment from (say) 1970 to 1973. Thus we are interested in all comparisons
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pb
-p

a 
where a=1,2,... b-1, b=2,3,...,10. Of course,	 are interested

in making the probability of a false statement small. Hence our statis-

tical method ought to be such that the probability for any a and b of

stating that pb > p a when indeed p b < pa , should be small, say at most

0.05. (Note that we consider the probability of the union of all the

(45) statements just pronounced.) Now, for the sake of illustration we

shall stretch i this example further than is perhaps realistic in this

special case. We suggest then, that there might be an interest in whether

the increased chance of obtaining employment is accelerating ("escalated"),

pa+/ -2p a+pa-1 	0, or about to retard, pa+1-2pa +Pa-1 < O. We might also

be interested in the relationship between the chance p a of getting a job

and some other quantity W varying over the 10 years. (And it will not

worry us that perhaps we have "discovered" the possibility of such a

relationship after having looked at the data, I do not think, however ;

that will be the case in such typical social applications as the present

example represents. After all, the economists are aware of so many

relationships.) Suppose that W takes the values 141, W2 , ..., Wio over

the 10 years of observation. Then we may be interested in whether there

is positive or negative covariation between p and W, measured, say, by the

10 	 _ 	 _
covariance E p (W -W) (W = mean of W). - Summing up, we are interested

a=la a 	 a

in discovering "contrasts" f among the p a , i.e. relations

(Note that Xf
a 

= 0 in all the

relations mentioned above, 1-1 = 0, 1-2+1 = 0, E(W a-W) = O.) We want to

construct a method which is such that the probability is at most (say) 

0.05 of stating f(p) = Ef a pa > 0 for at least one (f 1 , 	 flo) for

which Ef apa < O. We shall give a formal general definition of a contrast

below.

Consider now, the above example of mental patients. Let p il , p i2

be the probabilities that a specific patient has mental ailment i and

does not suffer, resp. suffers, from allergy. Thus p il +p i2 = p i is the

probability of suffering from i; whereas, q i = lI p il , q 2 = E p i2 are the

probabilities of not suffering, resp. suffering from allergy. Now, if

mental ailment and allergy where independent events, then p ij = p i sq j .

Thus p i2 > p i q 2 means that mental patients of type i are apt to have

allergy. We are interested in finding positive ties between type of

ailments and allergy type. Thus a typical contrast f is the following

type of function of all p, f(p) = p. - E p. E pij
ij 	 k ik	 k 3

10 	 10
f(p) = E f p > 0, where E f = O.

a=laa 	 a=la
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C. 	 Refering to the general set-up in A with independent multinary

observations, we shall now define the class of "contrasts" we are inter-

ested in. Note that in the above example of employment investigation all

the interesting contrasts we were interested in were zero if there was

no change over time, i.e. p a = constant. In the example of mental

patients the contrasts were zero in case of independence. We shall call

such specifications of our model "null-states". It does not mean that

we have any a priori belief in those special states, perhaps we even know

for certain that they cannot be true.

In the general set up we shall define the null-state by the

following restrictions on the parameters p aj ,

(3) Paj = 'Paj (e l' • .., e t ), j=1,2,..., r a , a=1,2,...,s.

We shall include the case where the null state has the form p . = 	 .
aj 	 a]

with (1) . fixed numbers. Then we set t =0. For t 	 0 we assume that
aj

0 = (O 	 e t ) can take any value in an open set 0 in the t-dimensional

space. - Now, any function f(p) of 
P = (P 11' 	 Psr) 

which is such

that if we insert p = cP = ((l) 	 (I) 	 ) then 	 s
11' w ' sr

(4) f((p(e)) = 0

identically in 0, will be called a contrast relatively to the null state.

Thus, in the employment example we may let the scaiar 0 be the

copstant probability of being employed within a year, hence

Pa = Pal = °

1-Pa = Pa2 = 1-0

We have t=1 and we see that any form If 
apa

with Efa = 0 is a contrast

since Ef
a
0 = eEf

a 
= 0.

In the example with mental patients we let 0 1 , 0 2 , 1-0 1 -8 2 be

the probabilities of having ailments 1, 2, 3 respectively and 0', 1-0'

the probabilities of not having, resp. having allergy. Thus (I) is defined

by

Pil = e i 0', p i2 = 0.(1O), 	 i=1,2,

P31 = (1-8 1 -0 2)V, P32 = (1-0 1 -0 2 ) (1-8').

Thus t=3 in this case and we easily see that any p ij -p•qj is a contrast.

Let us also consider the problem of what we can read out of a

mortality table for a certain period. The table gives the probability

qx for a person x years of age of dying within a year, for
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x = x0,0 	x
0 +s-1. Let Lx 

be the number of persons reaching x years of

age in the period and let Dx be the number og those who die before age

x+1. Then q
x 

is estimated by q = D /L . Suppose we are interested in
x 	 x x

studying the change in q x with age. Then the null state is that q x = 0.

Any qb-qa is a contrast, and s=s, r a=2, t=1. Suppose, however, that from

age xo to x0+s-1 we were pretty sure that q
x 

increases with age. We are

interested in how it changes, then we may put q x = 0 1 +0 2x and

(qa+1-qa ) 	(qb+1-qb)' cla+1- 2q
a+q a are contrasts, but qb-qa is not.

Returning to the general set-up we shall be interested in linear 

contrasts f, where f has the form

r a

(5) 	 f(p) = E 	 E f .p .
a=1 j=1 aj aJ

with the f ai as constants, independent of p. We shall, however, also

be interested in smooth contrasts where f has continuous first order

derivatives.

D. 	 The multiple comparison method we shall propose has two versions.

Version 1. (null state estimated variance). Pick out any special

contrast in which you have become interested, perhaps after having looked

at the data. Treat it by the classical normal approximation theory (with

oneexception,seebelow),i.e.replacetheprobabilitiesp aj in the

contrast by the relative frequencies from our data. We then obtain an

"estimated contrast". Find the variance of this estimated contrast.

This will again depend on the probabilities paj 	Replace again these

p.bythernaxiintrfllikelihoodestirnatesS aj of.in the nullstate. The
aj 	 Paj
square root of this quantity is the "estimated standard deviation".

Declare now the contrast to be positive if the estimated contrast is 

1 multiplied by the estimated standard deviation; where z is 1-E

fractile of the chi-square distribution with 

R-s-t, (R = 	ra)i a

degrees of freedom and c is the level of significance. Repeat the same

for all the other interesting contrasts. Thus the one important distinct-

ion from the classical normal approximation theory is that we should use

/-z- defined above in place of the 1-e fractile of the normal distribution.

Then it will be shown below that asymptotically the probability of making 

a false statement among all the statements we might possibly make is at 

most e.
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Let us take an example to illustrate our method. In the employ-

ment example above we were interested in a contrast of the type pb-p a .

The estimated contrast is p:-p:, where p: (p:) is the relative number of

unemployed at the beginning of the year a (b) which obtain employment

during the year. Now the variance of the estimated contrast is

P ( 1-Pa ) 	 Pb (1 -Pb )
var (P:-P:) 	 a n

a 	 nb

where na (nb ) is the number of unemployed at the beginning of the year

a (b). Let now N
a 
be those out of the n

a 
unemployed which obtain employ-

A 	10	 10
ment during the year a. Then (I) = E N./E n. would be the maximum likeli-

lJ1J
hood estimate of any p a , a=1,2,...,10 in the null state (when all p a are

assumed equal). Hence the estimated variance is

A2 	 1 	 A
a = est.var (p-p) = (-- + --

1
)(1)(1-$)b a	 na nb

We have R=20, s=10, t=1. Hence the number of degrees of freedom is

R-s-t=9. With 6=0.05 we get z=16.9. Thus p: should be declared > p: if
m „ 	 ,

p
b
-p

a 
> 4.l'&.(In the normal approximation theory we would have used

10
2 in stead of 4.1). In general we declare that E c.p. > 0 if

1 J J

„
Ec.p. > 4.1 • V(1)(1-0 Ec. 2

In.
33 	3	 3

Let us return to the general method. It is noteworthy that R-s-t

is the number of degrees of freedom you would have used if you would test

the null state as a "null hypothesis" by the chi-square7podness-of-fit 

test. Now it will be shown below that there exists no significant linear

contrast by the rule above unless we get significance by the chi-square-

goodness-of-fit test. (This is a strict algebraic relationship. There

are no approximations or probabilities involved.) The chi-square statistic

in question is given below in section 2.E equation (14) (where

6aj = (p ai (8) is given by equation (7) in section 2.C).

Since it is sometimes rather time consuming to look around for

significant contrasts (there may be none), it is therefore occasionally

time saving to start by erformin a chi-s uare- oodness-of-fit test of

the null-state. If significance is not obtained, we can just declare 

the data uninteresting.



13

Version 2. We proceed as by version 1, but after having found

the expression for the variance of the contrast, the p
aj 

in this

expression is replaced by relative frequencies from our data, instead

of Cf) 
a]

Also in this case there exists no significant contrast unless we

get significance by the chi-square-goodness-of-fit test, but now the

modified chi-square statistic defined by equation (15) in section 2.E

mustb.2usual,a aj inthisequationequals.(6) where F) is given by

equation (8) in section 2.C.)

E. 	 We shall go into details with some specific examples, using ver-

sion 1 of our rule.

Example 1. Seasonal variation in birth rate. We shall study

births by month and to simplify we shall confine ourself to one year.

Live born children in Norway in 1970 had the following distribution on

months.

Jan. 	 Febr. 	 March April 	 May 	 June 	 July 	 Aug.

5 384 	 4 977 	 5 866 	 6 150 	 5 617 	 5 404 	 5 321 	 5 279

Sept. 	 Oct. 	 Nov. 	 Dec. 	 Sum

5 390 	 4 957 	 4 837 	 5 369 	 64 551

We denote these numbers by N 1 , ..., N12 , n = EN..

We are interested in knowing if there are any months with high

"fertility" or low fertility and any significant changes of fertility

over months. This very manner of formulating the  pIELLTLIELLEJILIIILI:g .

uniform distribution over month as null state. It is the only reason for

being interested in such a null state, we are not interested in testing

it as a "null hypothesis". Let p i be the probability that a child born

in 1970 shall be born in month j. Our null state is

1
P 1 = 	 = P 12 =

and hence t=0. We order the months according to decreasing frequencies of

births,



14

Month	 Births

April	 6 150
March	 5 866
May	 5 617
June	 5 404
September	 5 390
January	 5 384
December	 5 369
July	 5 321
August 	 5 279
February	 4 977
October	 4 957
November	 4 837

Differences

284)
249 533

213
462

14

338
6

15
48
42

302
20

120

640 

64 551  

We are above all interested in comparing any pair of two months, hence

f = p i -pj . We have p7 = Ni /n, R-s-t = 11, I/Z = 4.4 with r = 0.05 and

1	 1	 11	 1	 1,	 1 1
a
2 

= var (p	
12

7-p7) = — ( 2 —	 + 2	 • — = — —
f	 n	 12	 12	 12 )	n 6

1
We find ,/"' a

f = — 1.796. It is convenient to operate with absolute
vn

2
numbers. Hence no = var (N.-N.) = n/60/i171 Cy f = 456. Comparing with the

table above, it is seen that we should be willing state that April is more

fertile than all other months except March. March is more fertile than

the other 10 months except May. Between the 10 other months there are no

clear distinction except that May is more fertile than February, October

and November.

Having looked at the data it is reasonable to ask if the period

March-April-May is more fertile than the other months. This amounts to

asking if the probability of beeing born in one of these three months
1

is > 3/12 = -IT. The estimated contrast is then given by

2	 1	 3
N? = N

3
+N

4
+N

5
-N/4 = 17633-16138 = 1495, a

f 
= N • — • — = 12103, a

f 
= 110,

4	 4

V;
f 

= 484. Since 1495 > 484 we can state that these three months are

more fertile than the others. (We might, of course, have pooled the

months of March and April with any other month than May and obtained a

similar result, but these results would not be interesting.)

Example 2. We have observed the following frequencies of live

births (indigeneous) in Oslo.



15

Month 1943 1944 1945 1946

January 	 282 339 433 355
February 	 253 351 330 414
March 	 271 356 319 529

April 	 299 372 439 539
May 	 313 341 342 463
June 	 260 368 351 425

July 	 290 404 319 408
August 	 277 322 362 371
September 	 284 351 331 40$

October 	 341 346 265 429
November 	 362 335 324 352
December 	 297 264 391 358

Jan.-Dec 	 3 529 4 	 149 4 206 5 051

Table 1

Percentages

Month 1943 1944 1945 1946

January 	 7.99 8.17 10.29 7.03
February 	 7.17 8.46 7.85 8.20
March 	 7.68 8.58 7.58 10.47

April 	 8.47 8.97 10.44 10.67
May 	 8.87 8.28 8.13 9.17
June 	 7.37 8.87 8.35 8.41

July 	 8.22 9.74 7.58 8.08
August 	 7.85 7.76 8.61 7.35
September 	 8.05 8.46 7.87 8.08

October 	 9.66 8.34 6.30 8.49
November 	 10.26 8.07 7.70 6.97
December 	 8.41 6.36 9.30 7.09

Jan.-Dec 	 100.00 100.00 100.00 100.00

1943-46

1 409
1 348
1 475

1 649
1 459
1 404

1 421
1 332
1 374

1 381
1 373
1 310

16 935

1943-46
-

8.32
7.96
$.71

9.74
8.61
8.29

8.39
7.87
8.11

8,15
8.11
7.74

100.00

Table 2

We are interested in "irregular" changes in births apart from a

possible regular seasonal variation and the trend of increased number of

births from one year to another.

Having looked at the data, we become specially interested in the

figur from March 1946 (table 2), which is far above what seems to have

been normal for the month of March.
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Let paj be the probability that a birth in the year a takes place

the actual

number of births in (a, j) (Table 1). Obviously we are interested in

contrasts relatively to the nullstate

P •= (I) • = 0 .;aj	 aj
j= 1, 2, ..., 11

(1)
al2 

= 1-e
1
- . . - e

11

Let us write (1) . = (I). and introduce
aj	 J

n = E N .; N. = E N .; N = En = EN.
a	 j aj	 j	 a aj	 a

A

	The paj = Naj /na are given in table 2.	 = Nj /N is the maximum likeli-

hood in the nullstate and is given in the last column in table 2.

We are interested in a contrast of the form f = p .-p . We have
aj bj

	P ( 1-P .)	 Pb] (1 - 	)2	 m	 aj	 aj 	 Pbj 
ci
f 

= var (p -p. .) =
aj	 n

a	
n

b

and

.2	 1	 1	 A 	 -
g f = 	 717-) 4) ( 1 -4) )

a	 b

The number of degrees of freedom is R-s-t = 48-4-11 = 33 = (3x11) and the

0.95 fractile of the chi-square distribution with 33 degrees of freedom is

z = 47.4, fz = 6.88. With a=4 (1946), b=1 (1943), j=3, we get a f = 0.0062,

IZ a f = 0.0426, whereas the difference p:3-43 = 0.0282. The difference

is not significant. It should be emphasized that even i f

and did not investisate any other contrasts, we should use VZ = 6.88 and 

not 1.96 (the level 5% critical value in the normal distribution), since

we looked at the data before we decided to be interested in just the month

of March. (With 1.96 instead of fz, we would have got

1.96&
f 

= 0.0121 < 0.0282, hence significance.)

However, since we use fz, we are free to use "any means" to make

10.49 significant. It is then natural to look at

M 3 H 	 3
f(pH) = p

43
-Ep C ,EC = 1

1 a3 a	 1 a

Hence
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^2 	 1 	 3 2
u
f 

= 	 + E C
a
/n

a
) $

3 
(1-6

3
)

P 4 	 1

and hopefully minimize this with respect to Cl, C
2' 

C
3' 

giving Ca . a m,

3
m = E n and

la

-2_ 	 1 	 1 	 ^ 	 3 	 3
o f 	+ 	(l-33) 	E p

m 
C = I N /m

	

n 	 m 	 3 	
3) 
	 i a3 a 	 i a3

Hence 	 = 0.0251, Ci f = 0.0473, I; a f = 3.25. Still there is no sig-

nificance. We have to be satisfied with that. Could we have obtained

significance at all? Perhaps we should have asked that question at once.

We get for the chi-square-goodness-of-fit

N .2
Z = I (N -n (i).)

2
/n (T)= 	 Z 	 a .3 	- 171 	 192.1 , 40.6

	a, i	aj aj 	aj	 a n 
J
1 N.

a 

Hence some less interesting significant contrasts must be hidden in the

material. It is important, however, that anybody who finds something

interesting is free to test it, provided he uses 1/-z- = 6.88 and not 1.96

as fractile.

Example 3. We return to the employment investigation mentioned

in section A above. Employed and unemployed (2 groups) in 8 five-year

age-groups from age 20-60 at the beginning of each of 10 years are

observed through the year to see of they remain (obtain) employment.

Thus there are 2x8x10 = 160 groups and the observations are binary. Let

paT (resp. p' aI ) be the probability of an employed (resp. unemployed)

person in age-group a at the beginning of the year T to be employed a

year later; a = 1, 2, ..., 8; T = 1, 2, ..., 10. Since we are interested

in the change over time, it is natural to let the null state be

PUT = 0 a , PUT =

Thus there are t=16 parameters, R=320 cells and s=160 distributions,

R-s-t = 144. Following our general rule, we have R-s-t = 144 and with level

c=0.05 that z=173, /=13.2. Let now n	 (n' ) be the number of employed
aT 	 UT

(unemployed) in age-group a at the beginning of the year T and Nai

(Nc:ti ) number of those who are employed at the end of the year. Then
H 	 _ 	 Y

OT 	
ai ai 	ai0, 	ai / ai 	ai	= N/n, p	 - N/ n/ are the a priori estimates of p 	 and p c:4i ,

whereas $ = E, N /E n	 and 6' = E N' /1 n' are our nullstate esti-
a	 T ai	 UT 	 aT 	 UT 	 ai

mates. According to our rule we should declareEpf 	 +Ep' f' > Q,
, ,T UT UT 	 a,T UT ai
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where E f 	 = E f' = 0 for all a, for which
T aT 	 T

pt( 	+ Ep mf 	 > 13.2
ar at 	 aT aT

-3 )Ef In +E$' (1-3' )Ef' 2 /n'
a T UT UT a aT 	ar 	at UT

This would make it possible to study not only the variation of p

p (cr over time for each age group a, but also to compare the changes for

different age groups.

If we are not interested in comparisons of changes for different

age groups, then we could proceed as follows. Treat each of 16 groups

according to age and state of employment separately and use level

1-(1-E) 1/16 =0.0031. Use a Vi corresponding to this level with 9 degrees

of freedom. That gives V; = 5.0. Thus we shall declare EpaT f aT > 0 if

Ep
m 

f 	 > 5\j$ (1-3 )Ef 2 /n
T UT aT 	 U 	 a T aT OT

(and similarly with 	 The corresponding chi-square test is

(N -n 3 )
2

at at a Z = E 	 z = 24.8
a	 T

 nn
	(1-$ )
T 	 Ot

(and Z' > 24.8 where Z' defined as Z but with N', n', (p' instead of N,
a 	 a 	 a

n, q.

It is clear that both methods suggested would have a level E, but

that the last method would be more sensitive to contrasts of special

interest.

F. 	 The statistical method proposed can be said to suffer from two

shortcomings.

(i). 	 In particular in social applications it will usually be natural

to relate the multinary variables considered to some other variables and

thus construct some kind of econometric model where the multinary variables

are involved. In principle one should then be able to construct a more

sensitive method, i.e. a method which would reveal more contrasts then

with our present method. Often the work in constructing such an econo-

metric model and a statistical rule based on it, is formidable. In the

present authors opinion the method proposed above could therefore be

useful. Suppose the method does not select a certain contrast as signifi-

cant, then an economist is warned. If he wants to declare it significant

anyhow, he must do so with expressed reference to some other variables or

circumstances which are not taken into account.
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(ii). 	Another objection to the method proposed is that it safeguard$

against false statements not only about interesting contrasts, but also

some uninteresting contrasts. Having defined a null state, you have to

drag along with all contrasts relatively to that nullstate. This again

would also impair sensitivity. This is really a problem inherent in many

statistical methods. It is difficult to gauge both the model and the

decision space to fit the special situation you are interested in, There

are, however, some flexibility in our method, as demonstrated by example

3 above. We obtained higher sensitivity by kicking out some uninterest-,

ing contrasts a priori.

2. Properties of the general multiple comparison rule,

In 1953 Henry Scheffe [1: proposed a method of judging all

contrasts in a linear-normal situation in such a manner that the prol?ar

bility of making a false statement is kept under control. It is note-

worthy that this can be shown to be true for any values of the parameters,

not only under the null-hypothesis (see also [2]).

The present paper extends this result to the multinomial situation.

A.	 The result of n independent multinary trials are observed. The

series of trials may be divided into s sequences such that there are na

trials in the i-th sequence; a = 1, 2, 	 s; 1a = n, Each of the

trials in the i-th sequence may result in one of r
a 
mutually exclusive

events

Aal' 	 Aara

with propabilities

(1)
ra

Pal, 	 Par 	 EF• ' 1

	

a 	 j=1
 aj

We assume a priori that all p
aj are between 0 and 1. The observed number

of times the r
i events occur are

ra
(2) Nal' 	 Nara' 	 E N . = n,j=1 aj 	 a

respectively. Let R = E r .
a=1 a
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Thenull-statellistoeffectthatthe—are specified functions
Paj

(3) "ai
. =	 .0

a j
); 	 et(); 	 j = 1, 2, ..., r

a
;	 a = 1, 2, ..., s

of a parameter 0 = (0 1 , ..., e t ), where e varies in an open set 0 in the

t-space.Weassumethatthe.a] have continuous second order derivatives,(P
and that the rank of the Rxt matrix

{7aj (0) 
(4)

DO.
(a,j) = (1,1),...,(s,r s ), i = 1, . .	 t•,

is t.

A function f(p) of p = {1) 11 ,	 p} is a contrast relatively

to H if f(gb) = 0 for all O. It will be called smooth if it has continuous

first order derivatives

Df
(5) f	 =aj	 3	 .

P aj

We shall consider a class IT of smooth contrasts. Two cases will be treated.

Case (i). g'is the set of all (or some) linear contrasts

(6) f = E faj P aj

Thus in this case the faj 
are independent of p. Case (ii).	is

such that the class of all faj obtained by varying f in	 is equicontinous.

C.	 The statistical method can be described as follows. First the

maximum likelihood estimates 6 under H are found as solutions of

N .E 	. 94,aj 
(7)

=	 .
u;	 = 1, 2, ..., t

a,j aj

Alternatively 6 is a modified minimum chi-square estimator, given by

Naj -na cpaj 	Dcp
aj

(6)
(8) E	 n 

	Dei	
= 0;	 i = 1, 2, ..., t,

a,j	 N
aj	

a

We do not care whether ê actually maximizes the likelihood

N .
L = F-1 aj (0) aJ

or, alternatively, minimizes,
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2	 (N .-n	 .(0))
2

,	 aj  a aj 
X	 N.

aj

WeassumethatforallIN aj ), (7) (or (8)) has either one or no solution.

We shall let all na go to infinity in such a manner that na /n = g a > O.

We assume that the probability that (7) (or (8)) has one solution goes to

1. When (7) (wt. (8)) has no solution we can let 6 have any value (e.g.

such that it actually maximizes L). It can then be proved that plim 6.7e.

That is what ve aeed. It is rather trivial that something mucb stronger

can be proved.)

Let
x = Naj a	a/p and (Ap j 	ai= cp(6). We find in case (i),134j

(9) 4.(p) = var f(p) = I na E . f alpaj 	(If	
2-

In case (ii), 4(p) can be found by linearizing f(p) with respect to

p
m
-p. Now define

(10) 5f = uf(E3) 	 Of = ci f (pN )

These two quantities will be called respectively the null state estimated 
rr,

and a priori estimated standard deviation.

The rule consists in stating that f(p) > 0 for all those f E for

which

(IA)	 f(P) > /i Of

where z is the l-c fractile of the chi-square distribution with  Ri- $ - t

degrees of freedom. Alternatively we may use o7 on the right hand st4e

of (11).

It should be noted that if we want to test f(p)	 0 with a

specified form f selected in advance, then we would have used the 1-e

fractile (or perhaps 1 -	 fractile) for the normal distribution instead

of /Z (one degree of freedom for z).

D.	 We shall prove below in case (i) and (ii) that in the limit the r,
probability of makinß one false statement i.e. stating that f ,r > 0 for an 

f ( 	for which f < 0; is asymptotically < r. More precisely

(12)	 limsup Pr( ■-) (f(PN ) > 	 4)) < E
n 4- ...	 f(p)<0

if p = p (n) 
approaches some p

(o) 
as n 	 ... Of course this includes the
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particular case when p is kept constant. The reason for stating the more

general result is that it is sometimes desirable to let p go to some (I) as

n goes to infinity (e.g. in such a manner that all 4 (pai -cpaj ) are kept

constant).

We shall prove that (12) still holds with C5f instead of

now we must let p
(n) approach some 1).

It will also be seen that if the p
aj 

are kept constant such that

f(p) 	 0 for all f E9', then the left hand side of (12) is 0. (in case

(i) this can only take place if 	 is some subset of all linear contrasts).

If in particular p = qh then all statements f(p) > 0 are wrong and

in case (i) we shall prove that the probability of making such a statement

approaches E, i.e.

(13) 	 lim Pr(U (f(P N) > f )) = E

(13) is also true with a f replaced by 4.
E. 	 In case (i) with 	 consisting of all linear contrasts, it will be

proved that if the null state estimated variance is used then some contrast 

will be declared positive if and only if 

(N .-n 	 .) 2
(14) Z= E	

aj a aj
> z

a,j 	 n6aia 

where (i) 
aj 

= (I) .0) is a maximum likelihood estimate. If an a priori
aj

estimated variance is used then a contrast will be declared positive if 

and only if 

	aj
-na (T)

aj 	
)

(15) 	Z= E	 > z

	

a,j 	 Naj

where 6 
aj 

= 
aj
0) is a modified minimum chi-square estimate.

Note that these relations between the multiple comparison rules

on the one hand side and (14) and (15) on the other hand side are purely

algebraic. They are strictly true, there are no approximations involved

and it is not a probability statement.

In case (ii) asymptotically (11) takes place for some f ET- only

if (14) (or (15)) is true.

This suggests that both in case (i) and case (ii) one might first

check if (14) (or (15)) is true and only if such is the case go on to

apply (11). Thus the test proposed is a refinement of the classical Karl

Pearsson's significance test.

of, but

2
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Note that if the a priori estimated variance is used, then the

estimate	 is not needed in connection with the multiple comparison rule,

It is only needed for checking (15).

It is of interest to consicler the special case of homogeneity

testing. Then r 1 =	 rs = r and we choose as a null state that

..., par are independent of a. This can be written
Pal'

(Paj	 e j ; j =l ,	 r-1 ,

ar 
= 1-0 1 	r6	 =

r-1	 r

We then get from (7) the maximum likelihood estimates

A 	 A
(16) = 	 =	 N Jr' = N./n14) aj 	a	 a.]	 J

and from (8) the minimum modified chi-square estimates

^
r

(17) P 
iai	 J	 J 

where . is the harmonic mean of the	 = N ./p ; a	 1, 2, ..., S.=Tj	 aj	 aj a

n
(18) p. = n/Y, --2-

a pHa.i

The chi-square statistics are respectively for null-state estimated and

a priori estimated variances,

- 2(19) Z= n(E-7,8-13I-rt 	1),	 = n(-1+1/(E .) )P j
as

They are found from (14) and (15) respectively. Now it is seen that

lp .f	 is a contrast if and only if If = 0 for j = 1, 2,	 r.aj aj	 a aj
According to the general rule with a priori estimated variances this

should be declared > 0 if

I	 .	 /Z VF(Zf 2 . m . -	 . -H.N2■(20)
	aj aj	 a	 aJvaJ	 I

where z is determined with (r-1) (s-1) degrees of freedom. (20) will take

placeforsomef
aj
 if and only if

(1, ) 2 4,c (1(21)

where p. is given by (18).
J

2
N .



aj (1-Paj ) if h =

P aj Pak if k 4 j.
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This special case has been treated by Goodman [4] • Reiers31 [3]

has treated a situation from probit-analysis with multiple comparison,

which is, however, not completely covered by the present set-up.

3. Proof  of the assertions about the general rule 

A.	 In sections A-F we shall treat the case (i) when g- consists of

linear contrasts and null-state estimates are used. We introduce

aj aaj

Vna s a

and it is well known that in the limit, when n w; with n
a 

= ng
a

,

ga > 0; then Z = E Y 2 . has a chi-square distribution with R-s-t degrees
a,j a ]

of freedom. We now have in case (i) (see 2.B), since f(3) = 0,

N.
f(p) = Ef (_112. 	 (1; )

	aj na 	aj

\
(4)Ai

We introduce h . = f . V----=4 and get

	

aj	 aj ga

(2) f(p11) = 	 Eh .Y
aj aj

B.	 Let us now consider,

S 1	 ra

(3) 0 2
(p) = var f (P )	 var E f .Nn

a	
aj aj	 a

We have

(4) cov (N ./47-, N	aj 	 a	 a

^2	 ^2 -
We then get for a f = a f ((p)

1 s
(5) a 	 = 	 E 	 E 	 (c1 c p	 hf 	 n a=1 j,h 	 3k	 aj	 ak aj ak

(where we have made use of the KrOneckerd)

(1)	 Y . -
a j



sA 0, 	 , 	 401,

	al	 ‘,a -ra

zeros). We then get from (2)

(0„
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C. 	 Below we shall, in order to facilitate the introduction of matrix

notations, replace (a, j) by a single letter i, such that i = 1, 2, ..., R

represents (a, j) in lexical ordering. Hence Na 	Ni, p aj

(p aj (9 = cp i (0), f 	f i , hal	h	 We writ 41so n i and g i in pla4 pf

n a and g a . Thus n i and g i are constants on sections of length r i ,

r s , respectivelY. We 4engfe tha sectioqs by S,, ..,! S a respectively,

and have

N. 	 n , 	 I p. =
	4 	ifSaa

We can now write (0

N.-n.6.
1. y i =

\// 11.4).y

i 5. 1, 2 r ..„ R

Now, let b denote a matrix of order Rxs 1 the a-th column of which is
a-1

) (The column starts with Y, r
1

1 R
(7) f(p) 	 Z h.Y. =

irn 1 vn

and from (5)

(8) 111(I-bb')h
f 	 n

D. 	 From the contrast property of f we have,

(9) = 0,

hence

R 	 (P.(6)
(10) f. 1 	 = 0; j = 1„ .,„ t

We introduce the matrix

(11) 	B.
gi \ 	(Pi i (0)

(1) i. j

= 1, 2 2 	 .T., R; 1, 2 4 	t

;q)-(6)
It is seen that B = (8. ) is the matrix 1

J

multj.plied lay a diagonal
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non-singular matrix. Hence, by 2.B, B must have rank t. We can write (10)

(12) h'B = 0

From

(13) E	 cp. (j) = 1;	 a = 1, 2, ..., s,
iESa 1

A

we	 = 1, 2, ..., t
J

(14)	 bIB = 0

E.	 Since B has full rank, the space V
t 

spanned by the columns of B

is a t-dimensional subspace of the R-dimensional vector space V R . Let

H be a Rxt matrix such that its columns constitute an orthonormal basis

for V. Then of course H'H = I and since by (12) and (14) h and all columns

of b are perpendicular to Vt we have

h'H = 0, (15); b'H = 0 (16).

From (16) it is seen that the columns of the matrix (H, b) has orthogonal

columns. We complete it and obtain an orthogonal matrix

(17) K = (G, H, b)

of order RxR.

Let us now introduce

(18) d = 1011, V = K'Y

Then we have from (7)

(19)	 Vn f(p li ) = h'Y = d'V

(15) reduces to

0 = h'H = d'K'H = (0, ..., 0, 
dR-s-t+1'

	dR_s, 0 ... 0)

Hence,
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-
(20) dR

-s-t+1	 = 0R-s	 0

From equation (8) we get n4 =	 - h i bb'h = d'd - cl i lObb'Kd. But

K'b =	 H'

Lb'

which combined with b'b	 and (20) gives

^2	 R- s - t 2
(21) flo r 	P	 d.

For V given by (18) we have

r 	 -N

V = 	 H'

But by (6), the a-th component of b'Y is

a

which from (13) and since n i is constant, equals 0. Thus

V
8-5+1 

=	 = V
R 

= 0 and by (19)

x 	R-s-t
(22) 14-1 f(p ) - 	 E d.V.

By (22) and (21) the criterion 2.(11) for stating that f(g) 	 0 reduces to

R - s - t 	I R- s - t 2
(23) P	 d.V.	 d.

1	 1 1	y	 1 =1 	1

Thus we make no statement if and only if

R-s-t
X d.V. <-

foralld-ButforgivenZZthe maximum of the ‚eft hand side is, by

Schwartz inequality,

b =
b i b

Y
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VR-s-t 2 R-s-t 2
E d. 	 E V.
1 	 1 	1	 1

28

-

Thus we make no statement if and only if

R-s-t 2
(24) E V. < z

1 1-

Now we make use of the fact that 15 is a maximum likelihood estimate in

the null state, i.e. satisfies 2.(7), which can be written

R Ni ah( 6 )
(25) E   - 0; j = 1, 2, .t• •

i=1 ^
1

Byderivationof(13)withrespecttoLmultiplying by na , summing over
J

all a, and subtracting from (25), we get

(26) B'Y = 0

Hence H'Y = 0 and by (18), VR-s-t+1 = 	
= V

R-s 
= 0. Thus (24) is the

same as

R2
(27) z = E Y. < z

1 1 -

Hence we have proved the statement in 2.E in case (i).

F. Since in the null state Z is chi-square distributed with R-s-t

degrees of freedom, we have proved the assertion in 2.D about the probabi-

lity of making a false statement in case (i) when p = (I) and null state

estimated variance is used.

G. We shall still consider case (i), but we now assume that we use

a priori estimated variances in the multi le com arison rule. The deriv-

ation in A-F can then be repeated with the following changes.

h
j 

is now defined = f 	 - and (1) is replaced by
aj 	

aj

 ga

N .-n 6 .
(1)' 	 Y . - aj a ajaj

aj

with the corresponding change in (6). In the definition of b, ĉpai is

replaced by p:j . The definition of Bij in (11) is replaced by



(11)' 	 B..
m 	 A

	

p i 	O.

From 2.(8) we get (26) with Y defined by (1)'. Hence we get the statement

in 2.E and 3.F in case (i) with a priori estimated variance replacing null

state estimated variance.

H. 	 Now let p	 (I) in case (i). We consider the multiple comparison

rule when a priori estimated variance is used. Let

(28) Xi =
6-17

Then

R 	 N. 	 R
(29) f(pii) = 	 E f. 	 = E h.X. + ITT f(p)

1 i n. 	 1

Pi
where h. = 	 . Hence the probability of a false statement can be

g i
written,

R
(30) Pr( L.) 	 {E h.X. + VÇ f(p) > ÆrT 41)

f(p)0 1 1 1

where the union is taken over all f C 	 such that f(p) < 0, for given p.

Obviously for fixed p 	 (I) such that f(p) 	 0 for all f 	 T, (30) goes to O.

Replace now p by p (n) and let p (n) 	p. Then it can be shown that

plim pN = p. Then from (8),

(31) plim naN2 = 	 = a 2 (p) (say)

Pi
where T1. = f. - and 1-; is b with p replaced by p. Now it is seen that

(30) is

< Pr( 	 > 	 o}) <
	f(p)0	 - 	 f 	 -

(32) < Pr(V{h'X >
f

where in the last expression the union is taken over all linear contrasts

f. From (30), (31), (32) we get

(33) limsup Pr (false statement) < Pr6J{Px › 	 af(p) } )

29

N. -n.p.
i il
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where X now denotes a multinormally distributed variable with mean zero

and covariance matrix (I-1;g'). Below we shall drop the bars over h and

b, and we shall define B by

(34) B.
	 4 i (° )

3

instead of by (11) or (11)'. The columns of the matrix H is now an

orthogonal basis for the column space of this new B. Then the relations

(12), (13), (15), (16) still hold. G is such that K = (G, H, b) is an

RxR orthogonal matrix and we define d = Kb, W = 10X. Then h I X = d'W and

the covariance matrix of W equals 10(I-bb')K, which has zero elements

except for the R-s first elements of the main diagonal which equal 1.

Hence WR_s4.1 = 	 = WR_s = 0 with probability 1. From h'H = 0 we get

=d
Rs t+1 	

= d
R-s 

= 0. The right hand side of (33) then reduces to
--

R-s-t 	 R-s-t 2
(35) Pr(ufEd.W. >z 	 Ed 1)

d 	 1 	 .1 	1	 i

where W1" WR-s-t are independent normal (0, 1). As in section E

(eq. 	 (23)-(24)), (35) reduces to

R-s-t 2
(36) 	 Pr( E W. > z) = E

1 	 3

This proves an assertion in 2.D in case (i). The assertion in 2.D

concerning the multiple comparison rule with null state estimated

variances is proved in the same manner.

I. 	 From the fact that the right hand side of (33) equals c and from

(29) we get

(37)	 lim Pr(vtin- f(pK )	 f(p) >pÇ a 3P) = e

which gives us a simultaneous confidence interval for all contrasts.

J. We have above not gone into details about the arguments involving

limits in probability and limits in distribution. We shall be even more

superficial below when using these kinds of argument and we shall defer

a more rigorous treatment to a later publication.

We turn to case (ii) and assume that p 4 (0 as n 4. co. We denote

the partial derivatives of f(p) with respect to p i by f i (p). We can now

go through the derivation as above and note the following alterations.
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Equation (7) is asymptotically true since by the Taylor expansion.

N.
(38) 471 f(p 3() = 471 Ef i (p') 	 - c¢) = Ef.(p')F-L4 Y.

ni 

(where p' is "between" p 	 (3). Thus we can let

A
(39) hi = f i (4))

in (7).

From

R
( 4 0)	 11-7 f(PK) = 14-1 f(P)	 fi(P")(Plit-P)

we see that In- f(p) has asymptotic variance given by (8).

By derivation of the identity f(4(0)) = 0 we get that (10) is

rigorously true with f i = f i (3). The equicontinuity assumption i 2.B leads

to (23) being true in the limit in probability uniformly with respect to

d, and this is needed to obtain that (24) is true in the limit in probabi-

lity.

From (40) it is also seen that (29) is true asymptotically.
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