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ABSTRACT

We consider problems of estimating the number of elements having

a specific characteristic, when auxiliary information is available. We find

the optimal strategy under a simple Markov chain "super-population" model,

a model which seems to be relevant in many practical situations, for instance

labour force surveys, where the auxiliary information can be taken from the

last population census, and election surveys, where the auxiliary information

are results from the latest election. We find an optimal estimator if

attention is restricted to model-unbiased estimators. This estimator is

independent of the design, and we also find the design that minimizes the

expected mean square error. The estimator suggested is compared with methods

suggested elsewhere to estimate proportions when supplementary information

is available. It is shown that when the sampling variance of the estimators

is used as the measure of uncertainty, the estimator suggested in the present

paper has the smallest variance when a simple random sample is selected.

When, however, the conditioned mean square error, given the sample, is used

as measure of uncertainty, none of the methods studied are uniformly best.

Key Words and Phrases:

Finite populations. Superpopulation models. Markov chain models,

Optimal strategy. Efficient use of supplementary information.



1. INTRODUCTION

Recently a number of papers have been published in which is taken

the position that many sampling problems can be fruitfully analyzed by

applying appropriate super-population models, i.e. the finite population is

assumed to have been generated from a infinite super-population. This

approach is not new; in Cochran (1953) is used a super-population model to

compare ratio estimation using equal probabilities of selection with unbiased

estimation with unequal probabilities. Other similar studies are done in

Brewer (1963), Foreman and Brewer (1971), Hanurav (1967), Royall (1970),

Scott and Smith (1969, 1975). In these papers various sampling strategies

are compared under a linear regression super-population model given by

Y. 	 a, 4' ?.X. 4' U.,

2 	 2
where x. 0, E(U) = a

E(U.U.)= 0, and E denotes expectation over the super-population. The
N

aims are to make a sample design and to estimate Y = E 	 ,Y.1 where Y i1=1
- 1,2,...,N) is the realization of Y i in the population.

A sample of size n is defined to be a set of population labels

• 	 in , together with the set of their associated observed

characteristic values

(x,Y) = (x. ,Y. ), (x. ,Y. ),
1
1 1 1 	12 1

2

(x. 	 Y. ).'
n n

A sample design is then defined by some finite set,fr, of sets of lables,

s, together with a probability measure assigned by choosing a function

p(s) > 0, Ep(s) = 1, where p(s) is the probability of choosing the sample

s. As estimates of Y is considered the class of estimates

E a
i
(s) Y.

ies
(1.2)

where Y. (iEs) are the observed values of Y., 	 d a
i
(s) are constants.

One strategy, (Ý',p'), is said to be better than another strategy (Ý ", P"),

if the former has the smaller expected mean square error, i.e.

EfE P'(s)( 1-Y) 2 ) < EfE p n (s)("-Y) 2 1. 	 (1.3)

( i=
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In Royall (1970) is considered the class of model-unbiased

estimates, defined in Section 2 below, and it is shown that the best

estimate under model (1.1) within this class is

:s .1* 	E Y. 4- (N-n)	 -I-	 E X. ,

ics
(1.4)

A A

where a, 	 are the usual weighted least squares estimators of a and

and E denotes the sum of all labels not included in the sample. Y is
i s

2 . 2
independent of the design, and when a 	 ai 	its expected mean square

error is minimized if the sample is selected such that

N
11(- E x.	 - E x 4 )

2	
E (x.-	 E x•)

2

N	 n	 J	 n -	 J
i=1	 jes	 ics 	 ics

is minimum.

In this paper we shall consider situations in which the population

under study can be divided into classes on the basis of such things as

occupation, social status or voting behaviour. Instead of using models like

(1.1), we shall assume that the movements over time between the classes

can be adequately described by a Markov chain model. This, we believe, is

often the case as such models often are used to study social processes,

Bartholomew (1973).

We shall assume that to each element in the population is associated

two sets of binary variables (x

	

, •
11 

, • • • x.
k ;
	 ) where the x..i 	 Yil'k 	 k

are known and E x.. = E Y.. = 1
j=1 1J 	j=1

We assume that the relationship between the two sets of variables

can be expressed in the following simple model

p (Y. = 1 lx. =1)
= Pkie i = 1,2,. .,N

m = 1,2,...,k
k = 1,2,...,k

(1-5)

k
E p 	 = 1, 	 = 1,2,...,k

m=1

We now want to select a sample to estimate the number of persons
N

having a specific characteristic The problems we are facingY =h 	E Y ih ,
i=1

are how the sample should be selected and how we can utilize the fact that

x. i is known for all elements in the population.



In Section 3 below we apply an approach similar to the approach

in Royall (1970). Among all model-unbiased estimators we find that the

estimator that minimizes the conditioned mean square error can be written
k

as Yh = E
iEs I"

Y.,_+	 E 
1
	, Where j.. h estimates p jh . The best

1.s j=	 P

estimator beinc, f). = ( E x.. Y. )/( E x..). We also discuss what design
jh	 iEs ij ih	 iEs 1J

is optimal. We find that an approximately optimal design consists of

stratifying the population into k strata according to the values of xij

(i= 1,2, . ,k) , and apply the usual estimate of the population total when

a stratified random sample is selected. The approximately optimal allocation

for fixed sample-size consists of choosing the number of observations in
N

stratum k proportional with	 E x	 (1-p kid .	 This strategy seems

	

i=1	 a
promising as it suggests to the sampler that he identifies sub-populations

within which good predictions can be made, i.e. with transition probabilities

close to 0 or 1, and allocates relatively few observations to these sub-populations.

Formally post-stratification is not a new estimation method, but it

seems as if the efficiency of post-stratification in our situation is

neglected, and other methods are suggested when the aim is to estimate

proportions when auxiliary information is available. In Section 6,	 is

compared with other methods suggested elsewhere for k = 2.

In our model we have that

E (Y. ix	 x
i2, il i2

k
,x ik) =

j=1 1J JZ
i = 1,2, .,N

k
var(Y. (x. x	 x ) = E x..p. (1-p )	 i = 1,2,...,N.

it 11' i2" . " ik	 ij jk	 jk
j=1

A question of interest is what strategy would have been the result

from using themodel (1.1), generalized to the case with k dependent variables.

In Section 4 we show that the strategy found in Section 3 is identical to

the optimal strategy under a generalized version of model (1.1) if one dis-

regards the fact that the variance of Y 	 on xand uses unweighted

least squares estimates instead of weighted least squares estimates.

In Thomsen (1977) it is suggested to use the estimator developed

in this paper in connection with the political barometres in Norway.

In this paper we make little real use of Markov chain theory. What

we use is a matrix of transition probabilities and the strongest assumption

is for the homogeneity of each transition probability for all members (or

for any particular subgroup) of the population. In a paper aiming at using

the same approach in connection with repeated surveys we intend to make

more use of Markov chain theory.

and



2. DEFINITIONS AND NOTATIONS

We shall use the following notations:

X. 	=)',
(,1

(x
11 , 	ik

X =r‘, 

i = 1,2,...,N

[

P 11' 1312" •• '

P21 ,P22 ,• •,P 2k

' kk

Under model (1.5) we then have that

k
E (Yih 10 = E x. p. •ij jh

j=1

P

(2.1)

Further we assume that

k
cov (Y 	 , Y 	 I x) = E x p. (1-p. ) 	 if u=w and v=2,,uv wk 	 j=1 UjJV	 jV

k
1x pjvj

	

= E 	 p 	 if u =w and v4 Z, 	 (2.2)
j= uj 	 9,

	

0 	 if u +w

Following Royall (1970) we shall distinguish between alternative

definitions of unbiasednes. 	 An estimate 42h is said to be design-unbiased

or p-unbiased for Yh if

E 10(s) =
sE y)	 h 	 h •

An estimate is called model-unbiased or 	 -unbiased if for each sample i

is unbiased under a given model such as (1.1) or (1.5), i.e. if '2h 
satisfies

E Cfh- Yh l);\,c) = 0 for all se V° .
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3. OPTIMAL STRATEGY WITHIN THE CLASS OF MODEL UNBIASED ESTIMATORS

3.a. Minimalization of the conditioned mean square error

Following Royall (1970, 1971) we shall restrict our attention to

the class of model unbiased estimators, i.e. the class of estimators

k
<L'h = E	 E a. (s)Y.	 for whichikh	 iZiEs 1=1

E {'d h (s) -Yh IS = sl = 0	 for all s E 	 . 	 (3.1)

This is equivalent to

k 	 k 	 N k
EEa.(s) E x. p 	 = E 	 E x. p

	in	 im ml 	 rm. mh
iEsZ=1 	 m=1 	 i=1 n=1

for all s, and all p. This can be written as

k k 	 k
E 	 EpoEa.„1„(s)x. 	

E P h N
mm=1 1=1 ' iEs 	 im 	

m=1 m m
(3.2)

for all s, and all p, where

N
Nm 	 E x. .

i=1
im

As (3.2) must be fulfilled for all values of p, (3.2) is equivalent to

E ain (s)(s)x
. 

= Nm 62,hits

for all m, 2,, and s, where (S zh =1 if Z =h, and 6 ,zh = 0 if Z +h.

Applying (2.2) and (3.1) it follows that the conditioned mean

square error of -la given the sample s, is

k 	 N 	 2
s 	 l .= E i E 	 E a. a ( ) Y. - E Y. }

l 	 a111iEs 2,=1 	 1=1

= var { E (a.
hh 

(s) - 1) Y 
ih 

+ E	 E a 4 oi,(s) Y
Es 

i iEs Z h I ' ll 	1i

E Y. }
ih

h

(3.3)
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2 k

	

E 	 ( 1 	 E x. p	 p )	 4-Ea lhh	 m=1 im mh (1 - mh
is
	s) 1

k
2

	

sE 	 E a.
h
 ) E x. p (1-p • )12, 	 im 	 m2,iEs h 	 m=1

(3.4)

E 	 E X. pinh(1 -Pmh)
iEs m=1 1m

- E

iEs i

k
E

a 
. 	 (s) a. 	 (s) 	 E x. p	 p	 _

h n=i ikh 	 in 	 im m2, mn
m=1

k
- 2 E 	 E Ea. 	 (s) 	 (s) 	 E p	 p 	 x. -

ihh 	 iih 	 mi mh im
iEs 2,4h 	 m=1

Theorem 1

The estimator Yh(s) that has the mailest conditioned mean square

error among all model unbiased estimators is given by

(
s) 	 E Y + E Y. 	 E 	  x.

h 	
,

ih 	 ih 	 n (s) imiEs 	 iEs 	 m=1 m

where

N
m
(s) = 	 E x. , and nim (s) = 	 E x. .

. 	 im
s 	 iEs

Proof

To minimize (3.4) under conditions (3.1) we apply the Lagrange

technique, and find that the following equations must be fulfilled under

the side conditions (3.3).

k
s2 {

a i. 0-1] E x. p (1 - p )hh 	 rm mh 	 mh
m=1

k 	 k
- 2 E a. (s) E p p x. - 2 E X 	 (s) x

im	
0

k+ 11, 	1117=1 ml mh im	 k=1 mhh

and for 	 -IL h

•
k Nin (s)

k
2a. 	(s) E x. p (1 - p ) - 2 	 Eith 	 im mi 	 mim=1 	 n+2,

k
a
i 

(s) E p p x. 	 -
mn Tra um

h 	 m=1

k 	• 	k
- 2a lhh 	 m

. (s) 1] E p p 	 x. - 2 E X(s)x i 	0mI mh 	 mal 	 ,
m=1 	 m=1
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where XmZh (s) are Lagrangian multipliers. 
The optimal values of

a.. (s) must satisfy (3.2) andik

k
(s) - 1] E x. p (1-p )ihh 	 im mh 	 mh

m=1

	

k 	 k
= E a. (s) Ep p x. + E Xmhh 	 m(s) '	lZh	 mZ mh imZth 	 m=1 	 m=1

and for Z h we must have

k 	 k
. 	 (s) 	 . p 	 p ) = r. 	 (s) - 	 palZh 	 E x 	 (1-im mk 	 no12 	

1] E p 	X. 	+

	

. 	 alhh 	 mZ mh im
m=1 	 m=1

	A 	 k 	 k
a
i
 (s) E p 	 p 	 x. 	 + E(s) x.

mn mk 	 m2,hrm 	 im
n+2,4h 	 m=1 	 m=1

(3.5)

(3.6)

cSmj x i.

We MOW mult iply 'with ip 	 and use the fact that x. X. =xii , 	 im ij
We then must have that

E 6. (s) - 
1)jh

x. p (1-p. )
iEs ihh 	 ij 	 jh 	

=

	

= E 	 E
2,h is 

ah(5)(s) x p. p 	 + jX.hh (s) E x.

	

ij 31Z,4 	 iEs

and for Z h

(3.7)

E(s) 	 p. (1-- • )
is 	= jZ 	 Pj

=E [L1hh (s)- 	 x ij Pjk PjhiEs 
+ 	 E 	 Ea

i
(s)x. p. p.

j
n+Z+h ies

nh 	 i jn ji

X. 	 E x
jih iEs ij

(3.8)

Inserting (3.3) into (3.7) and (3.8) it follows that

Xjhh (s) n j (s) = Ni (s) p jh

and for Z h

XjZh (s) n.(s)
J
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Inserting this into (3.5) and (3.6) gives the following equations:

k

s{ihh	
1] E p 	 x. 	 =

a

k 	 k Nm(s)
n (1 - p )= 	 E å. (s)

kh
	E p	

mu 
x• + E 	 00 , mh 	 mhk+11 i 	 m=1 ml 	 im m=1 nm

and for k h

A
	(s) - 1] E P 	 P 	 x.aihh 	 ml mh imm=1

kA 	 A 	 k
a. 	 (s) E x. p (1-p )- 	 E a. 	 (s) E pm 	mp x.ikh 	 mk 	 mk noih 	m1In tl 	 = 	 n mxm=1

k N(s)m
+ E 	  p p x.

n (s) mk mh imm=1 m

	k 	 kA 	 A= a. 	 (s) E X. p (1-p ) - E a. 	 (s) E p	 p 	 x. 	 +ikh 	 rm mk 	 mk 	 ih inh 	 mn ml um
m 	 n

	

=1 	 m=1

k
+ 	 (s) E p 2 x. 	

4. 1 Nm (s)

	

ikh 	 m=1 nm (s)m=1 	
PmZ Pmh xim111.2' im

kA 	 A 	 k
= a. 	 (s) E X. p 	 _ E a. 	 (s) 	 E p	 p 	 x.ikh 	 im mk 	 inh 	 mn mk um	m=1	 n+h 	 m=1

k Nm (s)
+ E 	 ( \PPx

m=1 ninksi mk mh im

m= l*
1M.

k

(3.9)

(3.10)

Define w such that 
xiw = 1. Then (3.9) and (3.10) can be

written as

. 	 (s) - 1] p (1 - p ) =wh 	 wh

Nw (s) 	 (3.11)
= 	 E

+11 
å.ikh 	 wh 	 nw(s)

	

(s) p p 	 + 	  p
wh

(1-p
whZ 	 wk 

and for k h

(s) - I] p 	 pihh 	 wZ wh

N
W
(s)

a ikh (s) Pwk 	 E a inh (s) Pwn Pwk 	 n(s) Pwk Pwhn h 	 w

(3.12)
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From (3.11) and (3.12) follows that

	k 	 N
m
(s)A 	 A

a. 	 (s) -1 = a. 	 (s) + 
m=1
E x.

	

ihh	 im -nm (s)

A
from which follows that a(s) is independent of Z for Z + h.

Inserting this into (3.3), it follows that we must have

A

	E a 	 (s) = 0 for all £4 h.
iEs

We fiow have that

k A

y	 = E	 E a. 	 (s) Y.
h 	 12,h 	 1Z

iEs Z=1

= E /a'.	 E Y.	 + E â . 	 (s) Y. 	 =
iEs	2,=h 12,
	 . 	 ihhiEs

A
k 	 N

m
(s)

= E a. 	 (s) (1-Y.	 + E (a. 	 + 1+ E x.	 Y.
1,Zh 	 ih 	 12,h 	 im n 	 ih

	

iEs 	 iEs 	 m=1

E a. (s) - E a in (s) Y
ih

+ E a in (s ih
) Y. + E Y

iEs 12,h 	 iEs 
ih

iEs 	 iEs
k N (s)

+ E Y. 	 E 	
iEs "m=1 il "-)m

X.
im

k Nm(s)
= E Y. + E Y.	 E 	  x.	 .

ih 	 ih 	 n (s) im
iEs 	 iEs 	 m=1 m E

(3.14)

The estimate (3.14) has the same structure as (1.4). It includes

the observed values of Yih and predicts the unobserved values.

3.b. Optimal design 

The estimator (3.14) minimizes the conditioned mean square error

for any sample selected, independent of the design. A natural question

to raise is what design is optimal in the sense that it minimizes the

expected mean square error, expectation taken over all possible samples.

We find that

k p (1-p )
Ef E p(s) (Y*-Y ) 2 } =

LI 	h	 E p(s) 	 E ran
E x 

m
,

sd sa 	 m=1 	 im
ies

+ E p(s) E X.
Os 1 Jse9

Pjh (1 -"" •
Pjh )



The expected mean square error is minimized if the sample is

selected such that

1-1 N 	\2
I E x i .

J
) -1

\ 	

-

1=1 J 	iCs  
. (1 -p. )

Pjh	 jh 

is constant for all values of j . When N is large compared with n,

this is approximately equivalent to the conditions that

N
( E x. / E x..) V.
i=1	 i	

Pjh
es 

should be constant for all j .

. 	 (3.15)

It follows that an approximately optimal design consists of

stratifying the population into k strata within which the values of x.

are identical. The optimal number of observations from each stratum is

proportional with the size of the stratum and V ,
jh -pjh 

. This
P

allocation is similar to the optimal allocation in stratified sampling,

the only difference is that the within stratum variance is substituted

with V pih (1 -pih) in (3.15). As in stratified sampling the gains from

using optimal allocation instead of proportional allocation are trivial

except in cases where p
jh 

assume values less than 0.20 or larger than

0.80. If, however, it is known that certain of the transition

probabilities are close to 1 or 0, it is efficient to undersample the

corresponding strata.

It should be noted that one does not need to know all x.

i = 1,2,...,N) to apply (3.14), as Y* can be written in the following way:
h

E
k	 ih

x.
19, N

ri* * .	 E i 

Y.
cs 

E x.h	Ex.
k=1

ics
ii,	 i=1

N
All we need to know are the values of x. in. the sample and E x.

'(0.	 1=1 12'

1,2,...,k). This is important if we want to apply Y	 in election
h

surveys, where x.
h
 is chosen equal to 1 if person i voted for party h

i	 N
at the last election. In such cases	 E x	 ( = 1,2,...,k) are known,

i=1
and knowledge about x. for all persons in the sample usually can be found

‘1,1

from the questionnaire.
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As a conclusion we have found the following results: There are

two situations, one where the population can be stratified beforehand

into k strata and it is reasonable to expect different values of pjh ,

and one where these two conditions do not hold. In the former situation

we have, in Fisher's terms, "relevant and recognizable subsets". We would

then opt for a stratified design and, if reasonable guesses of the pjh

were available, differential sample fractions. In the second case, post-

stratification is all that is possible. There is no need for randomized

selection if the nodel (1.5) is to be used for inference, but it may be

useful to ensure public acceptance of the model's validity. From a

practical point of view it is worth noticing that the efficiency of post-

stratification when estimating proportions has received very little

attention, and that other estimation methods are recommended. In Section 6

below we shall compare these estimators with post-stratification,



and

I 	
(\!,1 	

p
lh

(1- p
lh

P f2h (1-P2h )var (Y. x) = x i = 1,2,.. .,N.

4. COMPARING THE OPTIMAL STRATEGY WITH A GENERALIZATION OF THE RESULTS

BY ROYALL

Our model can be stated as follows:

E(Y.	 x) 	 x'
ih 	 (\j.

i = 1 2

p
kh
(1 p

kh

This model is similar to the model (1.1) extended to k independent
k

variables, a = 0, and a2 = E x. .p. (1-pjh ). 	 In this section we shall
j=1 1J J h

generalize model (1.1), and compare the optimal strategy under this

generalized model with the strategy in Section 3.

We assume the following linear "super-population" model

(3, + E ; E (c) = 0, E WO = a2 
E ,

(\a	 ,A.rm.	 %	 (ka
(4.1)

where U, the dependent variable, is the object of the survey, and v(\,k.
is a set of k variables. The subscripts in (4.1) and in the rest of this

section indicate the dimensions of matrices and vectors. We further assume

that a finite population of size N has been drawn

U = v 	 a +E .
(\,N 	 %Nk 	 qiN

Before the survey is conducted U is unknown, while v and E
NN 

are

N
fk,Nk 	 (‘)

known. To estimate U = E U. a sample of size n is selected from the
1= 1
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finite population, and the dependent variable is observed for each

element. We shall think of the sample procedure as a partitioning of the

matrices in (4.1) as follows:

E	 E
%nn %n(N-n)

(1.1 U E =
%N	 %n %(N-	 (A, E 	 E

(),(N-n)n % (N-n)(N-n)

v =
%Nk

(Znk

r\'‘r,(N-n)k

Theorem 2

Among the model-unbiased estimates D = E b$4(s) U
i' 

the estimate
ics

that minimizes the expected mean square error (1.3) is given by

n
U =	

%n	 (N-n) Z(N-n)k
U + (4.2)

where 1
n 

denotes the n-dimensional vector (1,1,...,1)', v
(N-n)k

denotes the matrix of v values that are not included in the sample,
r J

and (3k denotes the weighted least squares estimate of	 , estimatesmates in
%

the selected sample, i.e.

rvk
-1	 -1

= (v' E	 v )	 v' E
-1 

U .
%nk %nn %nk	 %nk %nn %n

(4.3)

Proof

The proof follows the lines of the proof of theorem 1 in Royal1

(1970).	 [I]
If we use the estimate (4.2) with U = Y, v	 = x, and a

i%n	 %	 r‘iNk	 %
	 2

k
j .! 1 xii p j11 (1-p jh), the estimate will depend on p i ., and is therefore

of little practical interest. If we, however, disregard the fact that the

variance of Y.. depend on x.. and use the unweighted estimate in (4.3)
ij 	1.]

instead of the weighted one, it is easily seen that the two models lead to

the same optimal strategies.
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5. UNCERTAINTY IN THE ESTIMATE

In Royall (1971) is discussed the appropriateness of the sampling

variance as a measure of uncertainty after the sample is selected. Both

on theoretical and empirical grounds he ends up with favouring the

conditioned mean square error as the most relevant when using ratio

estimators.

In what follows we shall give a short discussion concerning the

appropriateness of the two measures of uncertainty in our situation with

binomial variables.

In the case of Yi ,...,YN being independent and p(Y.= 1) = p,

the optimal estimator for Y is the simple expansion estimator
A
Y = (N/n) E Y., where n is the sample size. In this case we have that

iEs 1

the conditioned mean square error is

^ 	 N
2

E(Ý-Y) 2 = 	 (1 --n) p(1 -p)n 	 N
(5.1)

This is correct for any sampling plan. All the (1\1) samples of size n

lead to the same value of (5.1). There seems, however, many good reasons

for simple random selection. If such a plan is adopted, the expansion

estimate is also the conventional choice, and we have that the sampling

mean square error is

N
2 N 	 v 2

E p(s) 	 -Y)2 = 	 (1 -L-1) (	 ) E (Y. 	 .N 	 N-1 	 .1=1 	
N (5.2)

Both (5.1) and (5.2) are unknown and must be estimated. A

design-unbiased estimate of (5.2) is

	2 	 2n 	 1 

	

-N 	 (Y ( E

	

n 	 N 	 n-1 	• i
i 	 Yi 	 '
Cs 	 iEs

which is also an 	 -unbiased estimate of (5.1). In this case the two

approaches basicly lead to the same estimate of accuracy.
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Let the superpopulation model be as given in (1.5), and let k= 2

In this case we have that x 1 2 = (1 - x1 1), x-• = 	 ; 	 >2, Yi2 =

and Y ij = 0 	 j > 2. Denoting Y il = Yi and xil = xi, the estimate

(3.14) can be written as

E Y x. 	 E Y• (1 - x.)
i i N 	 1 	 i 	 N„ 	 iEs 	 iEs 	

Y * . 	 E x. + 	 E (1 - x.).
E x.i 	 E (1 - x.)	 i

i i=1 	 i 	 i=1
iEs 	 iEs

It is seen that the conditioned mean square error is

(5.3)

AE (y * - Y)
2 

=
P ll 	 Pll 	N	 2 	 P01 - P01 ) ( E x.)

E x. 	 E 	 _xj.)
i=1iEs 	 iEs

N 	 2
E (1 -xi )	 (5.4)

i=1

This measure of accuracy depends on the sample selected, which

is consistent with intuition. The smallest value occurs when the sample

is allocated according to the rule given by (3.15).

The estimate (5.3) is a post-stratified mean, where the sample

is post-stratified according to the values of the x- variable. An

approximation to the design variance when a simple random sample is

selected is given in Cochran (1963), and can in our notation be written

as 

N
A* 	 2 	 j -
	 P11(1. PI1) 	 N

PO)	 Y) .%) N) E x 	 ( E (1-x i ))
q=1	 n 	 i=1 

5.5)

where

n

=

N
E Y. X.
i=1 
N
E x.
i=1 1

and 	cl =

N
E Yi (1 x i )

i=1
N
E (1 - xi )

i=1

This quantity is constant for all samples, which contradicts intuition.

In both cases the measure of uncertainty is unknown, and must be

estimates from the sample. In (5.4) we need an estimate of P11 and P01 .
Natural estimators are

A

P ll

E Y. (1-x i )
iEs 

and p01 =	 E (1 x i )
iEs

A 	 A
p 11 and p01 

are E - unbiased estimates of p
11 

and p
01 

respectively. They
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are also approximately p -unbiased estimates of p.1 1 and pA i Nrhen the,,_
sample is a simple random sample. Inserting p 11 and pol into (5.4)

and (5.5) we find the following estimates of accuracy.

A 	 A
p
11 	 2 	 P01 (1 - P01 ) 	N

(1 - p
11

) 	N	 2
1/ 	 __ 	 ( E x i) + 	 ( E (1-x.) )

1	 ,	E xi	 E (1-x.)	 .	 i
i=1	 i	 1=1i Es	 iEs

and
A

f P11 (1 P11 ) N	
p-p

01	 01
) N

V
2	

N )	 E x. +	 E (1 -xi) 1 .
n	 i=1 1 	 n	 i=1

V
1 

and V
2 

are not identical in general. If we,' however, consider the

	conditioned sampling variance given	 E x4 instead of the unconditioned
iEs -

sampling variance over all samples, the two approaches lead to the same

estimate of uncertainty.

Recently Holt and Smith (1978) have given an interesting discussion
of the appropriateness of the conditioned mean square error in connection

with post-stratification in general.

6. COMPARING ih WITH METHODS USUALLY APPLIED

Formally the estimate (3.14) is not new, as post-stratification

is a wellknown estimation method. However, in the sampling literature

and in practical survey work the proposed estimate seems to have received

very little attention in connection with estimation of proportions when

supplementary information is available. On the contrary, other methods

are proposed and used. In this section we shall therefore compare the

estimate (3.14) with the commonly used ratio-estimate, the usual mean,

and an estimate which is a special case of the modified Horwitz-Thompson

estimator discussed by Basu (1971), and suggested by Wynn (1976), and

by Rao (1977).

Again we shall restrict our attention to cases with k=2, and denote

=.
il 	 i

X. =	 x.), and Y. =Y.12

E Y. N
iEs 

R	 Ex
Ex.

i=1 1
iEs

Y	 (N n) E Y.
iEs 1 ,

(the ratio-estimate)

(the inflated sample mean)

N
N

Ex.+-(EY-Ex.)
n	 i

i=1	 iEs	 iEs



It is worth observing that in cases where one chooses 	 E xi = np,
iCs

N
where p =	 IN) E xi, all four estimates are identical.

i=1

Comparing the estimates by their sampling variance

First, we shall compare the four estimates by comparing their sample

variances. Applying the usual approximations for ratio estimates and post

stratification, it is easily shown that

where

N
1var (R) — E Y.

nN
i=1

N
E Y.

i.=1 	* 1
N	 +	 2 P 115
E x.

i=1

p li
=

N	 N
E Y.
=1

	X. / E xi .
i 	1	 .

1=1

For large N and n we have that

N	 N
1var	 = —

N 
E Y.	 — E Yi ) / n.1 	 Ni=1	 i=1

In Wynn (1976) we find the following result, ignoring the finite

population coefficient.

var (W) = {p(1 py) px (1 px) - 2 
P x (P*11 Py )} n

N	 N	 .1 N	 N1
var (w) =	 E Y. (1	 E Y i )	 E xi(1 -..r\-T E x i )

i=1Ni=1	 i=1	 i=1

N	 N
1	 *

E xi(P11 1 E Y i )} ni=1 	 i=1

Applying the usual approximation for the variance of a post-stratified

mean, we also find that

N
	1 ,	 Nvar (T) 	

{TT Li=1
xi
- 

P*11 (1 P*11 )	(1 
1
 . E x i ) PÔ1 (1 PO* 1 ) 1 n '

1=1
where

N	 N

I) 01	
E Yi (1 - x i ) / E (1-x i ) .

i=1	 i=1

•••••
	 2



(6.1)

•

•
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Using that

N 	 N 	 N
11—E Y. 	 -• E (1 - x.),•
N 	

* - E .	 Pol 	 1

	

= p 11 N 	 X 
+ ' 	 Ni1=1 	 =1

it can be shown that

*2

	

(R) 	
01 1

1 f Poi 	* 2
n 1 	 N 	 - P '

1

	ci) 	i\	 N 	 2zT 
x.(1 	 • E x.) ( P *11 p01-	

n
1

	

i=1 	 1=1

„
var (T) 	 = var (w) 	 px(1 

-1) 	( I) 1 1 P01	
2 + 	 n

x 

From (6.1), (6.2) and (6.3) it follows that T has the smallest

sampling variance. - In what follows we shall compare the four estimates

in two ways both different from the sampling variance. First, we shall

follow Smith (1976) and write the estimates on what has been called their

predicting form, and finally we shall compare the estimates by considering

their expected mean square error given the sample selected 	 We shall

see from the last comparison that T is not always the estimate with the

smallest conditioned mean square error for a given sample.

Any estimate, Y, can be written on the form

Y . 	 E Y.+ E Y.,
 1,iEs 	 iEs

where 	 is the implied predictor of Y. 	 der the model when is. If

k is written on its predictive form, we find that

y i
iEsR 

=E
 y+ 

 Ix. x. 	
x.1

iEs 	 1 4s 1
iEs

E y. + E
iEs 1 is

E y.
•EIn this case Y. = 	
s 

x
Ix. i

jEs

E y.x.
iEs J J 
Ex. xi

jEs

E y. (1-x.)
jEs  •J-I- 	 X..

Ex. 1
jEs J

While 	 E y. x. / E x. is a reasonable estimate of p
11

, the second term
jEs 	 J jEs J

of Y. is hard to identify as a predictor.

var (T) - var

var (T) = var
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If Y is written in a similar way, we find that

E y. + E ( 1	y.) .
iEs 1 4s n jEs

n jEs
predictor, but it makes no use of the x -values .

Compared with (3.14) for k= 2, all the three estimates considered

seem suspicious when written in their predictive form.

In the section above is given arguments in favour of the conditioned

mean square error as the intuitively most appealing measure of uncertainty

as sompared with the more usually applied sampling variance. Finally, in

this section we shall therefore compare the conditioned mean square error

of the estimates R, Y, and W, and compare with that of (3.14).

We easily find the following:

( E x.)
2

E x. 2

	

iEt 1 	ifts 1\E, { R- Y}
2

= p 11 (1-p
11 )
	 + p01 (1-p

01
(

)	 i	 1 E(1 - x
i
 ) +

	

E 
s 

x .	 E x.) .i iEs

	

iEs 1 	iEs

2 2
14) P01 + 

var E Yi )
s

( E x 4 )
2

x.)
2 iEs 

	

E {T-Y} 	= p
11

(1-p
11

)
	E x. 	

p
01

(1 p
01

) 	 E 	 x.	 "4-
	iEs 1 	iEs

+ var ( E y i ) ,
is

	0/'-y1	 =2 	
N 	 2 	 N 	 2p11 (1-p

11 )
	 1) E x. + p01 (1-p

01
 ) (-- 1) E (l - xi )n 	 i 	 n

iEs 	 iEs

	2N 	N	 2
	(p11-p01)

	-n-E	E 
xi) + var 

( Z Y i )iEs 	 i=1 	 i s

and

	2 N	 2	 N 	 2E {W-Y}	 = p
11 

(1-p
11 )

-1) • E x. + p01 (1-p
01 )
	 E 	 +

	n 	 i 	 niEs 	 iEs

	

2 	 N 2

P ll P01)	
( E x. --1\-/- E x.)	 + var	 ( E 37 4 ) •
i=1 1 n iEs 1 	i s

1
In this case Y. = -- E y. , i s, which is an intuitively sensible
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A thoroughly comparison of the four conditioned mean square errors

is very complex, and will not be given here, but it is important to note

that, contrary to what was the case when comparing sampling errors, none

of the estimates have uniformly smallest conditioned mean square error.

This conclusion is in accordance with that of Holt and Smith (1978), who

discuss the efficiency of post-stratification in general.
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