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1. Introduction

The data commonly applied when estimating complete systems of
consumer demand functions are time series of aggregate household expendi-
tures (per capita) at current and constant prices. Since the consumer
demand function, as derived from classical utility theory, is in essence
a micro concept, this approach inevitably raises well-known problems
of aggregation. Micro data from household budget surveys have proved
very useful in analysing the effect on theconsumption of different commodities
resulting from changes in income, family size, age, etc. However, as such
data are usually collected during a fairly short time span, e.g. one year,
prices and other variables with essentially time specific variation, show .
virtually no variation, and we cannot estimate their effect with an accept-
able degree of precision.

In this situation, the idea of combining data from several house-
hold budget surveys naturally comes to mind. Provided that the different
surveys do *hot differ substantially with respect to the saﬁpling plan, the
definition of variables, the length of the period in which each household
is under observation etc., this approach may be fruitful. Unfortunately,

L)

such conformity is not always satisfied in practice. Recently, however,
attempts at a more or less continuous registration of household expenditures
according to a unified plan have been made in several countries. The Central
Bureau of Statistics of Norway, for instance, 1S continuously collecting
expenditure reports on a sample survey basis from the year 1974 on. This .
sheds a new light on many problems related to empirical consumer demand
analysis, and should accordingly induce econometricians working in this
field to look their models and methods over again.

From the outset, we should make the following clear: It is practi-
cally very difficult - and probably impossible - to obtain household expendi-
ture data which conform with those dealt with in the standard models for

2)

analysing 'complete cross-section/time series data'. We cannot expect
all - not even the majority of = the households selected for observation
in one year to accept participating in the next five or ten years as well.

As the reporting of consumption expenditures is rather time-consuming - at

1) The design of the Norwegian Surveys of Consumer Expenditure of 1958, 1967,
and 1973, for instance, differed significantly in several respects.

2) For instance, the error components models of Balestra and Nerlove[}] and
others.



least if it is based on detailed book-keeping, as in Norway - the data-
collecting agency will hardly be able to persuade households to participate
more that once, or at most twice.It jg worth mentioning that the proportion

of non-respondents in the Norwegian household budget surveys is as high as 30
per cent, even when the households are asked to report only once (and even
though the book-keeping period of these households is only two weeks).

Thus, the data we can obtain in practice, constitute what may be
properly called 'incomplete cross-section/time-series data': different house-
holds as well as different periods (years) are represented, but the sample
of households changes over time. The purpose of this paper is to discuss
problems relating to model formulation and estimation in such situationms.
In order to put our results in perspective, reference will also be made
to the (hypothetic) case where complete cross-section/time-series data
exist. Our plan is to try to implement, by means of Norwegian data, some
of the theoretical results obtained in the paper at a later stage.

Chapter 2 discusses the model formulation in rather general terms,
with one section devoted to the classification of variables, one section
devoted to the decomposition of the disturbances and one section dealing
with the parametrization of the demand functions. Chapter 3 concentrates
on the special case where only one commodity group is under consideration.
The disturbance variance-covariance matrix of the model are discussed sepa-
rately for three different sampling schemes: disjointed samples, complete
cross—section/time-series data, and samples where the households "rotate".
In chapter 4,these results are generalized to a complete demand model.
Finally, chapter 5 is devoted to estimation, taking the Full Information

Maximum Likelihood principle as the point of departure.



2. The system of demand functions

e . 2 > o -

Assume that the consumption commodities are divided into N groups,
and let the vector x symbolize the quantities consumed (expenditures at
constant prices) by a 'typical' household to be explained by our model.
The set of exogenous (explanatory) variables can be separated into three
subvectors:

q: a vector of individual (household specific) variables; i.e.
variables showing variation across individuals (households),
but (for practical purposes) no variation over time,

s: a vector of time specific variables; 1i.e. variables showing
variation over time, but (for practical purposes) no variation
across individuals,

z: a vector of combined variables; 1i.e. variables showing
simultaneous variation across individuals and over time.

The q vector may, for instance, include the year of birth and the sex of
the head of household, his (or her) socioeconomic group, the geographic
location of the household etc., provided that the same househd’ld member is
considered the head in all the periods of observation and that his
socioeconomic group and the location of the household do not change over
time. If the latter assumptions seem too restrictive, the relevant
variables should be included into the z vector. Examples of variables
belonging to the s vector may be: consumer prices (disregarding geogranhic
price differences), tax rates, indicators of the general economic situation
etc. Of course, different individuals may evaluate the economic outlook
differently and have different expectations about the future. Variables
of this kind, provided they can be quantified, should be included into the
z vector. Finally, the z vector may represent the income and wealth
position of the household, (and, possibly, lagged values of these variables),
the stock of durables, the number of household members, the week(s) in
each distinct period (e.g. year) during which the consumption expenditures
are reported D etc.

Let subscript i denote the commodity number (no. of the element of
the x vector), and let h symbolize the number of the individual (household)
and t the number of the period. The system of demand equations can then

be written in the following general form:

1) The variable 'week(s) of reporting' may be "individualized'", i.e.
transferred from z to q, by adopting an observation (sample) plan in
Which each household reports in the same week(s) in all the periods (years)
it participates in the investigation.
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1
. . = f, s + €, i=1, ..., N)
Q.1 xgpe = £i(ap s 7)) iht G=1, >
' .
where €ihe is a stochastic disturbance supposed to be uncorrelated with
4, S and Ze e We assume that the vectors of exogenous variables are

1
properly specified, i.e. that the structural parts of the fi functions do
not shift across households or over time.
Let pjt denote the price (index) of the j'th commodity in the t'th

period and let

N
(2.2) Tht iElpitxiht

represent the total consumption expenditure of the h'th household in the

t'th period. The price vector (p,_, .. ) is a part of the "time
periol 1t

*» Pye

specific'' vector s and is an element in the "combined'" vector z
p b yht

t ht’
Defining
P. . X.
(2.3) a, =-iC1bC Gi=1, ..., N),
iht Yhe

i.e. the budget share of the i'th commodity for the h'th individual in the

t'th period, we respecify eqs. (2.1) as follows:

(2.4) a.

= 1 = oo N
ine = 510y S 2 * Eipe @=1, > W,

1

?
where  £,(*) = p; £,(*)/y, ., and €ihe Pi Cine/ Tne

It seems more plausible to assume that the variances of €ine

are constant across individuals and over time than it is to make this
7

assumption for €ihe This rests on the fact that homoscedasticity of €ine
(across h and t) (i) pays regard to the notion that the scope for variations
in consumption habits is larger the higher is the real income, and (ii)

ensures that a proportional change of prices and income does not affect the

second order moments of the distribution of the disturbances.z) Therefore,
we shall stick to the formulation given in (2.4).
2.2. The structure of disturbances: preliminary remarks
The disturbances €. represent the net effect of several non-

iht
observable variables not included in the argument list of fi' One possible

specification of the stochastic structure might be, for each value of i, to

2) See Bigrn E‘*]’ pp. 4-7, for a further elaboration of this point.



let all eiht be independenly and identically distributed. However,
recalling that the effects taken care of by the disturbances may be partly
purely individual (e.g., "tastes", "habits" etc.), partly purely time
specific (e.g., general expectations concerning the economic development)

3)

and partly combined effects™ , this does not appear as the preferable
solution.

Rather, we shall take the 'error components approach' previously
used by several authors in the context of single equation regression
models (cf. e.g., Balestra [2], Balestra and NerloveB ], ChettyEﬁ ],
Kuh [9] s Maddala[_-_l]_] , Nerlove [13] R [14] , and Wallace and HussainES:i),

specifying €;

he 28 the sum of three components:

2. . =u, + v, +w. i=1, ..., N).
(2.5) €int ih it = “iht ( ? > ¥)
Here uy is the individual component, Vi is the time specific component
and LI is the combined component respectively associated with commodity 1i.

The structure of the disturbances will be discussed in some detail
in chapters 3 and 4, so we leave this problem here. Only one remark: If
the parametric speeification of the demand functions conforms "exactly"

with constrained utility maximization, the adding-up condition

N
(2.6) iElfi(qh, S, > th) =1
will be satisfied identically in G2 Ses and Zpe Then, in view of
(2.2)-(2.4), the distribution of the disturbances should obey
N N
(2.7) izlsiht = izl(uih + Vi + Wiht) = 0 for all h and t.

On the other hand, if the functional forms chosen imply satisfaction of
(2.6) only approximately, then (2.7) does not represent an exact and

absolute constraint.

e s S . i S . e o g s e i e et o S . . e 0 o e o " T o — —— ot 2o W 2t T oo T o o ot o o 2 e o g o g .

The choice of parametric specification of the budget share func-
tions fi clearly deserves particular attention. Briefly stated, our problem
is to establish functional forms that a) are sufficiently flexible to reflect

adequately the variations in consumption pattern across the individual as

3) Compare the formally similar disaggregation of the vector of (the
observable) exogenous variables.




well as the time "dimension'', b) agree reasonably well with commonly
accepted theory of consumer's demand, and c) permit econometric estimation
with the Aitken Generalized Least Squares or' the Maximum Likelihood

methodology.

We shall not attempt to give a definite solution to this problem;
that is partly an empirical matter, of course. At this stage, we confine
ourselves to a list of selected functions which may be worth investigating.
We concentrate on the parametrization of the income and price responses.
Demographic and socioeconomic variables, as well as the possible effect

of expectational variables will:-not be introduced at this stage.

All the equation systems A-H below satisfy the homogeneity con-—
straints of the static theory of choice; A-D satisfy the adding-up
condition identically. Among these, only A-C satisfy the conditions

4)

of symmetry and negative definiteness of the Slutzky substitution matrix.

A.__Linear Expenditure Functions 3 la Stome

This specification implies

P. .
(2.8) a. = ci—l—t +b,(1- £ =1t

Replace the constants cy in (2.8) by

P. - Yy
(2.9) . = t,(S5B1 c(l—}‘%,

S t
Y 8. 1/8
where Pt = I (tjpjt) and C(*) is an unspecified function obeying
j=1

certain constraints. (Cf. Johansen [8], Nasse [}2],)

4) In the rest of this chapter, all disturbance terms are, for simplicity,
omitted.



C.__Carlevaro's generalization of the Stone_system

—— B e i s e e e e

Replace the constants bi in (2.8) by

y, ~L.p..C.
= ht j 3t = =
(2.10) bi bi@ + bil¢( Pt ) (ZbiO 1, Zbil 0,
where $(*) and the price index function Pt = P(plt, ces pNt) satisfy

certain conditions. (Cf. Carlevaro [5].)

Notice, in passing, that (2.3), (2.8) and (2.10) imply

-c.)

(Xiht i

P . Ve 2iP 3
v <F.p. . Pio * PP )
ht “j53t7] t

it

i.e., the 'supernumerary budget shares' are linear functions of a

transformation ¢ (.) of the 'supernumerary real income’.

—— o e e o 2 o s e s e e e e e e B e ——— e o ——— s 50 o o

expenditure
We postulates)
y y y
_D D “ht D,’ht, 2 D, ’ht,3
(2.1 a;, =o; + B; P " Yi(Pt )+ 6i(Pt )7

where Pt is a consumer price index homogeneous of the first degree, and

D _ D _ D _ D _
Ziui =1, ZiBi = ZiYi = Zidi = 0.

et B o s . s e s B o e o . e S S i T o T T S o T Ty

This specification implies that Xipe is a

polynomial of the third degree in yht/Pt’ i.e.,

rather than a.
’ iht’

2
P. p P..¥ P.. .Y
E E
(2.12) a, = af—ig + BfFLE + y?—iEEEE + 5?—LE§EE.
Yht t Py 1 P;

This parametrization does not, in contrast with A-D, satisfy the adding-
up constraint (2.6) exactly. It will, however, hold reasonably well if in_ the

period of interest prices change in such a way that

E __ E _ _E

Li%Pie = I;YiPie = L;8;iP; = 05
E _

ZiBiPie = Pp

are satisfied approximately.

5) Of course, this specification may be generalized to polynomials of any
degree.
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In this case, the budget share functions take the form

P, g Yt . Pit
i0 ilPt i2Pt :

(2.13) ahe =8
Neither in this case will the adding-up constraint be satisfied
exactly, but it will hold approximately if
F F F
ZiBio ™ 1s 238y ~ 0, I;Biops &0

F

. F F
or if ZiBiO ~ 0, ZiBil ~ 0, ZiBiZPit ~4Pt.

. e . s . s i s o ot S o S ot S o S s . T o e o o T T — T T — " T " S T ——— —— o 2t > Fo s e T S S i "

e e e o o o e 00 s B o oo e

Specification G differs from F in a similar way as E differs from

D, i.e. we postulate

2
P P. P
G "it G it G “it
(2.14) a, =B, — + B..—0— + B. .
iht 1Oyht 11Pt 12yhtPt

Approximate satisfaction of the adding-up constraint in this case is
ensured if

¢ G ¢ 2
LiBioPie ™ O ZiBi1Pe ™ Pp> IiBiopye ¥ O.

A drawback with specifications D-G is that cross—price responses
are rather summarily represented. For some levels of aggregation this may
be felt a serious lack of realism. A possible remedy might of course be
to extend (2.13), or (2.14), to a full quadratic form in yht/Pt and
pjt/Pt(j=1’ ..y, N), or in pit/yht and pjt/Pt(j=1’ ..., N), respectively.
Such extensions would, however, imply a lavish increase in the number
of coefficients, even for moderate values of N.

The following specification, proposed by Lybeck [}d] in connection
with aggregate time series data:

P P N p. P.
H "it H "1t H "it t
(2.15) a, . =B, — + B..=—— + ZIv.. - A5
iht ].Oyht 11Pt j=llJPt P



represent an intermediate solution. (Lybeck, however, presents and uses

his equation with P %1 /p. ie’ i.e. the budget shares at

int/Vhe = 3inete
constant prices, as 1eft~hand variables.) In this case, approximate satis-

faction of the adding-up constraint would be ensured if

H

~ 0, L Bllplt w P it 13 it ™

t’
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3. The single—equation (one commodity) model approach

3.1 The_structure of disturbances: Basic_assumptions

In this chapter , our attention is devoted to one commodity only. Let
€ denote the disturbance of the demand function for this commodity relating

to the h'th household and the t'th period. Assuming that €, may be decom-

ht
posed into three additive components, a household specific (individual) com-—

poment u , a period (time) specific component v_, and a combined component

t

(a remainder) , we have

Yhe

(3.1) eﬁt = uy + v, + Ve for all h and t.

(Notice that the symbols correspond tO those used in ch. 2 with the commo-
dity subscript i omitted.) ' All components are supposed to have zero ex-—
pectations,

(3.2) E(uh) = E(vt) = E(wht) for all h and t,

and to be mutually uncorrelated, with constant variances, i.e.,

\
_ 2
(3.3a) E(uhuk = thGI"
(3.3b) E(vtvs) = 6thT ,
> for all h,k,s and t,
_ 2
(3.3¢) E(whtwks) = thStSGC,
(3.34d) E(uhvt) = E(uhwks) = E<Vtwks) = 01/
where th and Sts denote Kronecker deltas
(8, = 6tt = 1, 8, 0 for k % h, .o = 0 for s + t).

The subscripts I,T, and C symbolize "individual", "time specific'" and "com-

bined", respectively.

From assumptions (3.1) - (3.3) follows

(3.4) E(eht) = 0,
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2

) 2 2
(3.5) E(shteks) = ShkOI + StSOT + 5hk5 o

ts C*

The variances/covariances may be written, more explic{tly, as

~
02 for k =h & s = t,
2
_1 PO for k =h & s F t,
(3.5a) E(ehteks) - 2 .
wo fork $+hds =t,
0 for k + h & s +t,
where 2 _ 2 2 2
0% =07 * Op * Tp,
(3.6) - 05/02’
_ 2,2
w = OT/O ,

o - - T o 2 B o oo s 2 s 2 o o i o o S S

Of course, we do not observe all households in the population in all
periods; i.e. observations for all possible combinations of h ahd t do not
exist in the sample at our disposal. Only selected (h,t) comstellations are
represented. It is useful to distinguish between the following three main -
categories of data:

A. Pure cross section (Cs) data.

B. Pure time series (TS) data.

C. Combined cross section/time series (CS/TS) data.

In pure cross section data , all observations are taken from one period, .

i.e., observations for which s + t do not exist. Assuming that the period in

question has number 1, the first and second order moments of the disturbances

are completely described by (cf.(3.4)-(3.5))

E(e,, ) =0,

“h1
2
g for k=h,

BCen1%1) ") wo?  for kin,

We notice that all disturbances are correlated, since they have vy as 2
common stochastic component. At a first glance this seems to be in ~conflict
with the specification commonly adopted when analysing cross section data. The

solution is, of course, that the usual assumptions should be interpreted as
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conditional with respect to the value of the time specific component in

period no. 1. From (3.1)-(3.3) follows

Eey vy = vy

2 2
or * GC = (1-w)02 for k=h,
0 for k#h,

E(ey ] vp) =
I.e., €1 and &1 (k#h) are uncorrelated in the distribution conditional on vy
The non-zero expectation v, causes no problem, as this is an unidentifiable
constant that cannot be distinguished from the constant term of the "structural”
part of the equation; E(ehl[vl) may be set equal to zero without loss of
generality.

Correspondingly, in pure time series data, all observations relate to

one individual, i.e., observations for which k%h do not exist. If the indi-
vidual in question has number 1, the structure of the disturbances in the
sample may be described as (cf. (3.4)-(3.5))
E(elt) = 0,
gz for s=t,

E(Eltels) - p02 for s+t,

Also in this situation all disturbances are correlated, since they have the
individual stochastic component ug in common. The corresponding first and

second order moments conditional on the value of this component are

E(eq,fup) = ups

o% + oé = (l-p)c2 for s=t,

E(eqeeqglup) =
0 for s+t.

f.e., €1t and €1q (s$¥t) are uncorrelated in the distribution conditional on uy

A sample of combined cross section/time series data contains observa-’

tions from different individuals as well as observations from different time
periods. Assume that the observations relate to the periods 1,2,...,T re-
spectively, and let the set It denote the members of the households selected
from the population in the t'th period. Adopting this notation, we may distin-
guish between three types of combine dcross section/time series data, which

can be formally described as follows:
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C 1. CS/TS data with disjointed samples:

Data in which the sets IgﬂIs are empty for all t and s+t.

C 2. Complete CS/TS data:

1 i = =...-..=I~
Data in which Il I2

C 3. Incomplete CS/TS data:

Data in which the sets Il, Iz, ...,IT are not identical, and

the sets ItﬂIs are not empty for all t and sft. "Rotation
samples'" i.e., samples for which 110120..ZF§TA15 egpty?Whereas
I.NI._, is not empty, (t=2,-«-,T),’C0nStitute a particularly in-
teresting subclass of incomplete CS/TS data.

Stated in words: In CS/TS data with disjointed samples, different --
individuals are selected for investigation each period; i.e., we find no
observations for which k=h and s+t . In complete CS/TS data, the individuals
selected in each of the T pefiods are identically the same. In incomplete
CS/TS data, some, but not all, of the individuals selected in one period are
included in the sample for one or more of the subsequent periods. In rota-
tion samples, in particula;, some of the individuals selected in period 1
are included also in period 2, while the remaining ones are replaced by
a fresh sample drawn from the (updated) population. A subset of this
sample is kept for investigation in period 3 and combined with a fresh
sample from the (updated) population in period 2, etc. Thus, in complete as
well as in 'incomplete CS/TS data sets, observations for which k=h and stt
exist. 7 '

Obviously, the form of the variance/covariance matrix of the complete
sample vector of disturbances does strongly depend on the choice of sampling
plan. We have already pointed out the differences in this respect between CS
data, TS data, and CS/TS data. In sections 3.3-3.5, we shall discuss the co-
variance structure within the CS/TS class, assuming,for simplicity, that all
data sets include H observations (individual household reports) from each
of the periods 1,2,...,T. I.e., the total number of observations is HT. Assume,
further, that the individuals are numbered conmsecutively from no. 1 onwards,
and that the number of individuals in the population by far exceeds HT.

We shall consider the following three sampling schemes:
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CS/TS data with disjointed samples:

1, = {1,2,...,H},

12 ={g+1, H+2,...,28},
I, = {(e-1) B+ 1, (t=1) B + 2, ..., tH},
I = {(t-1) # + 1, (T-1) H + 2,...,TH}.

- s e e e . s e e o S B o o Pt

H ., H 3H
Iz {‘2‘ + 1,"2—+ 2, -,2 },
: H H H
It {<t_1) —2' + 1, (t_l) "2' + 2""’ (t+1) 5},
- -y 2 -1y 8 H
I, = {(T-1) 7+ 1, (T-1) 5 + 2,000, (T+1) 2}.

(H is supposed to be an even number .)

The total number of individuals investigated is‘strongly different,
being TH when using disjointed samples, H when using complete CS/TS data,
and (T+1)H/2 when using rotation samples. Thus, the first sampling plan
involves the least "intensive" investigation of the micro units, the second
is the most "intensive', while the third is situated "in between'.

In the discussion so far, we have used the subscript h to indicate

the number of the individual (household) in the population. From now on,

this letter will be reserved to denote the number of the individual ob-

servation (household report) in the sample from each period under investi-

gation, i.e. e is reinterpreted as the disturbance of the h'th observa-
tion (household report) collected in the t'th period (h=1,...,H;t=1,...,T).
Indicating the disturbances relating to the individuals as numbered in the

population by the superscript A, we thus have:



- o . o o W o oy et e s o 1 o s 0 brm e o o

A
*h1 T Gmr |

A (h=1,...,H),
*h2 T CheH,2,
etc

(ii) complete CS/TS data

A . s
Eht eht (h=1,...,H; t=1,...,T),

A
a1 T &1’
€ = EA
h2 ~ She/2,2, (h=1,...,H),
etc.

In this way, we ensure that ‘the values of the subscript variables h and t form
a HxT matrix regardless of the choice of sampling plan (provided, of course,

that the sample includes H observations from each period).

- T - S o " — " G St - s P " S T o o L VoD T s W0 S Tk s A G A TP M Y G T o P S S D S g D S T G T S T g T o W) vy W WD O e o

Let €, denote the (colummn) vector of disturbances relating to the

individuals observed in the t'th period, i.e.,

€1t

(3.7) € = (tgl,noo,T)o
t E:zt

He

We find
R :
(3.8) E(stsg ) 5 5 = g“A (t=1,...,T),
g g
T
2 2
Tp eveseed

where A is the HxH matrix
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Lw...ee.. w

w1 .
(3.9) A = Wi, ,..... w

W W esessss 1

. . 2 .. .
with w representing the proportion of the total variance o which is due
to the time specific component. (Compare eq. (3.6).) In compact notationm,

the matrix A may be written as
t
(3.2a) A= (1-w) IH + m(eHeﬁ)?

where IH is the identity matrix of order H and ey is the Hxl unit vector
(i.e., the vector consisting entirely of ones). Moreover, since all ob-

servations relate to different individuals, all disturbances with diffe-

. rent time subscripts are uncorrelated, i.e.,
|
(3.10) E(e,e ) = oH’H (t=1,...,T;s%t),
where O is the HxH zero matrix.
H,H :

Defining the THx1 vector

consisting of all the disturbances in the sample ordered first by period

and then by observation within each period, the variance/covariance struc-

. ture may be expressed as
AO....O
1
(3-12)_ E(€€ ) = 0'2 0 A ese.0 ,
00 ....A

or, by using the Kronecker product operator X} as

(3.12a) E(ee ) = 0_2%2 021T®A,

where IT is the identity matrix of order T. (The subscript D is an abbre-
viation of "disjointed".) From (3.92) and (3.12a) and well-known proper-—

ties of Kronecker productsl) follows

1) See e.g., Theil [J7], pp. 303-306.
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(3.1 E(se) = 020 = {1 Iy + (I, ® eye, )Y,

where ITH = IT,cb IH is the identity matrix of order TH.
We conclude that the variance/covariance matrix of the disturbances
when using CS/TS data with disjointed samples is block-diagonal with
identical blocks, whose elementes may be expressed fairly simply by the two
parameters O and w. If no time specific effect is present, i.e. w =0,

the matrix degenerates to the diagonal matrix GZITH'

Using this sort of data, where all the T subsamples contain identi-

cally the same individuals (i.e., the subscript h identifies the individual),

the variance/covariance matrix of the disturbances may be formulated in .
two different ways, corresponding to two different ways of ordering the
disturbances: (i) ordering first by period, second by individual, and

(ii) ordering first by individual, second by period. Principle (ii) is

the one commonly used in the context of complete CS/TS data (see, for in-
stance, Nerlove [13 ],[:14_17,and it may, of course , be applied also

when déaling with rotation designs. However, in the latter case, prin-
ciple (i) appears to be the most convenient, giving somewhat simpler alge-
bra. (This is at least the case with the particular sampling plan con-
‘sideredin section 3.5.)2)In this section, both principles will be considered,
partly for the sake of completeness, and partly in order to facilitate
comparisons with sections 3.3 and 3.5.

Needless to say, the distinction between the different ways of

ordering the observations is of formal significance only: Changes

in the ordering of the elements of the € vector do not affect its density
function. Although the variance/covariance matrix Q = E(se') is changed,
neither the value of the determinant || nor the quadratic form E'Q—ls

is altered. Consequently, the likelihood function of the observations is

the same as before,

-t 0 e s s e i i s o e, e . s e s 2 Yot e s et o 1 e o e e o e ot o S o S 2t ot e <2t e S s T T i

We start by noticing that the choice of sampling plan does not in-

fluence the properties of the contemporaneous variances and covariances, i.e.

the vector £, (defined in (3.7)) has the variance/covariance matrix (3.8)

2) As regards disjointed samples, there is only one natural way of ordering

the observations. Differences between principles (i) and (ii) do not
exist.
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with A given by (3.9). The matrices of non-contemporaneous covariances,
\
E(stes ) (s+t), however are not zero matrices as in section 3.3, but

scalar matrices,

00 .evte 0
. ' 2 2
(3.14) E(etss) =g 00 vounn 0| = oI, (t=1,...,T; stt),
O O LIEY Q

with the diagonal elements representing disturbances relating to the same
household (recalling that p is the proportion of the total variance which
is due to the individual component).

Combining (3.8) and (3.14), we find that the variance/covariance

matrix of the disturbance vector ¢ (as defined in (3.11)) takes the form

\i
(3.15) E(ge ) = OZQC =0 [pI A ..... ol

pI pI ..... A

(The subscript C is an abbreviation of "complete'.) Using Kronecker pro-

duct notation, this matrix can be written as

O'ZQC = g% {IT ® (a-pI)) + (eTe,;) ®@ (11,

or, when inserting for A from (3.9a), as

(3.16) E(ea') = OZQC = 02{,(,1—0)-9)1'['3 + w(IT®eHeE'I) + p(eTe;®IH)}.

3.4.2__Ordering first by individual, second by period

e ot o . e e e e . e o e s o] s . e s e e s 2 s S e s e e ot o S e it ot ST s 2 e e e s e B sy S o ey s e o B

N . .
Let € denote the vector of the T disturbances relating to the h'th

individual, i.e.

€
V]
(3.17) E = hl (h=1,...,H).
€h2
ChT

We find
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02 02 02
(3.18) E(RY) = 2 g | ; = % (b=l H)
. e o 0 «....0] = C A
2 2 2
OI OIo--acg
where B is the TxT matrix
1 pee.ep
S B < o\ - (1o !
(3.19) B - : (1 p)IT + p(eTeT).

P Pevonsl
The matrices of covariances relating to different individuals are diagonal

matrices, the diagonal elements representing covariances between distur-

bances from the same period:

w 0 v6ose 0

2, T X AN
% 21 - GZwIT (h=1,...,H; kih).

’
]
.
0
.

(3.20) E(%h%;) . g

R REE e

O 0.«..,&)

The HTx1 vector

g
(3.21) & =|- '
. € = n 4
€
a¥}

consisting of all- the disturbances ordered first by individual, second by

period, thus has the following variance/covariance matrix:

(3.22) B(X) = ol =

This may be written compactly as
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2 2 _ '
Qe = I @ (B-wIp) + ee, @ WI},
or, when inserting for B from (3.19), as
(3.23) E(s%') = o2 =02{(1——> + o( ®ee')+w(e e'®1>}
: € Cxe omw) Iyp + oIy @ eqep wg & /0

Disregarding a few differences with respect to the choice of symbols,
this expression is identical with the one derived by Nerlove [: 7 Ceq.
(1.7), p. 385).

Summing up: 1. The variance/covariance matrix of €, as well as
that of %, have identical blocks, of dimensions TxT and HxH respectively,
along the main diagonal. The blocks outside the main diagonal are identi-
cal scalar matrices.

2. In the absence of individual effects, i.e. p=0, all off-diagonal blocks
the variance/covariance matrix of € become zero, and the matrix is identi-
cal with the one we get when using disjointed samples (QC = QD).

3. In the absence of time svecific effects, i.e. w=0, all off-diagonal
blocks of the variance/covariance matrix of & become zero.

4. 1In the absence of both individual and time specific effects, the vari-
ance/covariance matrice of € and that of 2 are both scalar matrices (QC =

Qe = Try) -

3.5 The disturbance variance/covariance matrix: Rotation samples

— o e . . —— g . i s S S, S S ot S Tt o S S S T o o s T S S < S S S s ot ot ey e s T

We focus on the particular rotation scheme outlined in section
3.2, i.e., the one in which half of the H individuals reporting in period
t-1 also report in period t (t=2,...,T) For the sake of convenience, the
observations will be ordered first by period, second by individual. (Cf,
the beginning of section 3.4. In appendix A , however, we shall briefly
discuss the opposite ordering, confining our attention to the individuals
reporting twice, i.e. omitting those reporting in period 1 only and those
reporting in period T only.)

It is readily observed (a) that the matrices of contemporaneous
variances/covariances, E(eteé), have the form (3.8); and (b) that matrices
of covariances between vectors €, and €, more than one period apart are

t
zero matrices, since all elements relate to different individuals, i.e.

of



(3.24) E(e_ €' = 0 (t=1,...,T3)
t's) H,H (s=1. ... t=2,t42,...,T)

The only difference between this case and the case with disjointed samples
relates to the structure of the covariance matrices of vectors for two ad-
joining periods. Recalling that the h'th observation in period t and the
(h+H/2) 'th observation in period t-1 come from the same individual, we have
_ 2 Ve .
Egeht€h+H/2,t-1) = 0] (h=1,...,H/2; t=2,...,T). Similarly, E(c
(o)

htgh—H/Z,t+1)=

I (h=H/2+1,...,H; t=1,...,T-1). Thus,

~
'v_ 2(0 TY)_ 2 _
E(etet_l) = 01 (0 0) = 070Cy (t=2,...,T)
(3.25)7
's_ 2({0 0}y _ 2" _ _
E(etst+1) = 01 (I O) =g pCH (t=1,...,T-1),

where CH is the HxH matrix

, 0 I
(3.26) CH = (0 0 )

(The four submatrices of(%{are of the orders H/2 x H/2.)
Combining (3.8), (3.24) and (3.25), we get

A o C Oievenen 0 0
H
QCH A pcH ..... 0 0
0 o C A ... 0 0
1 2 2 . H o
(3.27) E(ee ) = o QR =g :
: : : : Sy
0 O O s v A.OCH
0 0 0 cevvnn pCH A

(The subscript R is an abbreviation of "rotating".)

This matrix can also be written in compact Kronecker product notation by
introducing the TxT matrix

Op,7-1 ©

(3.28) D
;-1 %111

T )

i.e., the identity matrix of order T-1 bordered by zero vectors in the

first row and the last column. We find
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(3.29) E(ee ) OZQR = GZ{IT @A + D, ® (oCy) + D;_,® (pC)}5

2 1 1 !
o (1~ Iy + w(IT@eHeH) + p(d, @y + D@ T,
when inserting for A from (3.9a).

By partitioning A as follows

(l-w)IH/Z + WE WE Ae uE
(3.30) A = =
WE (1) Ty 1y / WE A

1
where E = y/2%/2 ° and using (3.25) the matrix QR can be reformulated as

3=

/k wEO 00 0 O
wE A _pI 00 O O
=
0 pI A wE«+0 0 0
x

(3.31) %7 o 0 uE Ast0 0 0

0 0 Oeee>e> Ax pI O
0 0 O++*+pI A wE
x
0 O O¢+¢*+*0 wWE A
k-3

where all submatrices have dimension H/2 x H/2.

The properties of QR can be stated as follows:
1) The main diagonal consists of 2T identical blocks, each having the form Ax'
2) The sub-diagonals just below and above the main diagonal consist of 2T-1
blocks alternating between wE and pI, beginning (and ending) with wE. 3) The
remaining submatrices of QR are zero matrices. TFrom this followB34) In the
absence of individual effets, i.e. p=0, then QR is block-diagonal with T

identical HxH dimensional blocks of the form A = (A* wE)

WE Ax‘.
5) In the absence of time specific effects, i.e. w=0, then QR is block-

diagonal with T+1 blocks; the first and last ones are identity matrices

oI I
(recalling that Ax = IH/2 when w = 0). 6) In the absence of both individual

. . . . I oI
of dimension H/2 x H/2, the remaining are HxH matrices of the form 0 )

and time specific effects, QR degenerates to the identity matrix of dimension
HT x HT.
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4. The simultaneous equations (multi-commodity) model approach

In this chapter, we generalize the one-commodity model in chapter
3 to the case where a complete set of consumer demand equations is speci-
fied. We start, as in chapter 3, with discussing the covariance structure
of the disturbances corresponding to different sampling schemes (sections
4.1-4.5). The final section (section 4.6) deals with interesting special
cases and compares the main results derived in this chapter with those ob-

tained in chapter 3.

- 9 s T ot S T G S v ot ot B S ——— - o o o S22 o o S S S S i s Sy o W G s S

The disturbance of the demand function for the i'th commodity

relating to the h'th household and the t'th period, €.

ihe? DAy be decomposed

into a household specific component, a period specific component, and a

combined component (a remainder) (cf. eq. (2.5)):

(4.1) €ine = Yip + A + Vine gfi all g and t, and
T Ly e e giVe

We assume that all components have zero expectations:

(4.2) E(uih) = E(Vit) = E<wiht) =0 ?or all h and t, and
i=1,...,N,
and that the second order moments satisfy
\
(4.3a) E(u. u.) = 8.0,
ih jk hk“ij
T
(4.3b) E(v, v.) = & o.., for all h,k,s,t,
it Js ts 1] and 1,5 = 1,...,N.
- C
(4.3e) E(wip e Wips) Shles%i;
4, L V. = LW, = . W, =
(4.34) E(ulhv_]s> E(ulhwjks) Ew].t‘”’]k:s) 0 )

The superscripts I, T and C symbolize individual (household specific), time
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(period) specific, and combined, respectively. Assumptions (4.3a-d) imply:
. I
(i) homoscedasticity of all components of the disturbances (Var(uih) = Oii s

T C .. .
. = g,. . = 0.. and t 11) constant covarian-
var (vlt) Osss var(wlht) 011 for all h and t), (ii)

ces between components relating to different commodities but to the same

v. ) =0 T cov(w, \* )
’73 ij ? iht’"jht

. B I
household and period (COV(Uih’ujh) Gi. , cov(vit it

J

= Gi.c for all h and t), and (iii) no correlation between components relating

to different households and/or periods). These are straightforward general-

izations of the corresponding single-equation assumptions in chapter 3, (3.1)-

(3.3).
From (4.1)-(4.3) follows
4, . =
(4.4) E(Elht) 0,
I T C
4.5 E(e. ; = .. .. ..
( ) (elhtejks) 6hk013 * 6t3013 * shkdtsclj d
or more explicitly
(‘
I T C
i3 + Oij + Oij for k=h & s = t,
(4.52) < I for k=h & s #t
.5a = i3 =
BB ks) ] :
T
Oij for k¢h & s = t,
0 for k#h & s # t.
.
Defining
( I T C
g.. = 0.. .. ..
1] OlJ * O1J ¥ U1J
(4.6) S o0..=0..Y.. .
1] 1] "7ij (i, j=1,...,M),
w,. = o..T/O..
i] ij ij
—

the variance/covariance structure may alternatively be expressed as
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(‘

a.. for k=h & s=t,
1]

(4.5b)  E( for k=h & s#t,

€ineSiks) T ﬁ 0393

W, .0, . for k#h & s=t,
13713

0 for kth & s#t,

S~

Owing to the adding-up restrictions (2.7 ), the 0's have to satisfy

N N
4.7) Do = I (g Teo, Teo, 90 (o1,...,m

i=1 M i=1 *J ] =

We shall also consider the stronger set of restrictions
(4.8) 0.t =1%0..T =35..5=0 (G=1,...,N).

it i H it

Before proceeding further, it is convenient to rewrite the formu-

lae above in matrix notation. Defining the Nxl disturbance vectors

€1nt Y1h V1t Y1ht
(49 e =] Cone | > U T Ym0 Ve ™| Voe |0 meT | Yope |
ENhe UNh Nt “Nht

n

and the NxN matrices of "contemporaneous" variances/covariances

+(D _ I (T) _ T © _
z - (Oij ) ’ z = (cij ) Y z = (Uij
(0 ') = Z(I) + Z(T) + Z(C) ,

ij

),
(4.10)

[ae}
]

equations (4.1)-(4.5), (4.7) and (4.8) may be formulated as
(4.1 e S U, VLt Vi o
(4.2%) E(uh) = E(vt) = E(wht) = ON’

(4.3a %) E(uhu;) -5, 2P,
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(4.3b %) E(vv) = atszm,

'S oo (€
(4.3c =) E(whtwks) = dhkﬁtsz ,

1

]
= = ' = O

(4.4 %) E(g,) = O,
t
€hefks) = Ohkt

(1) (T) c) .
(4.5 %) E( + 6. L + 8,8, I .

-
z for k=h & s=t,
(D
' =
(4.5a %) E(e, e ) =3 ° for k=h & stt,
ht ks T
Z for k+h & s=t,
Oy, for kth & stt,
“~—

(for all h, k, t, and s)

(4.7 %) e, =0

(4.8 =) Z(I)eN - Z(T)eN - Z(C)eN = 0

Here 0N N and 0N are zero matrices of orders NxN and Nxl respectively, and
s

ey is the Nx1 unit vector.

Again we shall consider the following three sampling schemes: (i)
cross—section/time~series (CS/TS) data with disjointed samples, (ii) complete
CS/TS data sets, and (iii) rotation samples with one half of the individuals
"in rotation" each period. (Compare the formal definitions of the sets
Iiseeesl given in section 3.2.) Using from now on the symbol €ipe O denote

the disturbance of the i'th demand function in period t relating to the h'th

observation (household report) from this period, and letting the superscript

A indicate the corresponding disturbances when the individuals (households)

are numbered as in the population, we have the following correspondence;
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(i) disjointed samples
_ A
®in1 = fin1,
€ = EZ} (h=’1 H)
ih2 i,h+H,2, 2000
etc.

(ii)  complete CS/TS data

A
iht

€. = € (h=1,...,H; t=1,...,T),

iht

(iii) rotation samples

€ = eA
ihl ihl,
€ = sA (h=1 H)
ih2 i,h+H/2,2, ? ’
etc.

e o s . S v Qs W T 2 S S — S~ — — ——— o———— " —— — T " ot T T o A T . o ot T T 2 —— T s S Wt 1 o o — —— - ————— o — O o — -

Let €t be the HNx1 vector of digturbances of the individuals observed

in period t, ordered first by individual, second by commodity, i.e.,

€1t

(4.11) e = (t=1,...,T),
t €

St

where the subvectors Eht are defined in (4.9). From (4.5a xs follows

“ (T)
r M. g

Z(T)¥ . 2?(T)

"

(4.12) E(ste;)

GRS SN

-

IH®(Z~Z(T)) . EHQZ(T) =7 (t=1,...,T),

1
where EH( = eHeH) is the HxH matrig consisting entirely of ones, and where the

last equality defines J. Furthermore
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. .
(4.13) E(etes) = OHN,HN (t=1,...,T; s+t),

since all disturbances with different time subscripts come from different

individuals.

Let
€1
(4.14) e =
€2
1
. denote the THNx1 vector consisting of all disturbances ordered first by

period, second by individual, and third by commodity. Its variance/covariance

matrix 1s JO «++ 0
i
(4.15) E(es)=AD= 0J «++ 0 =IT®J
00 ++¢ J

1]

. ® ™) + 1 @5 01",

after inserting for J from (4.12). (As previously, the subscript D is an
. abbreviation of "disjointed"). This equation generalizes eq. (3.13). In the

absence of time specific effects, AD takes the form ITH® z.

4.4 _The_disturbance_variance/covariance matrix: Complete CS/TS data

In this section, as in section 3.4, we shall consider ordering the
observations first by period, second by individual, as well as the opposite
ordering. The ordering by commodity is supposed to take place after the order-
ing by period and individual; i.e. we discuss, as in section 4.3, the ordering
of the vectors €ht (defined in (4.9)). 1In appendix B, we shall, however,
briefly comment on the covariance structure when the ordering by commodity

precedes the ordering by period and individual.
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—— e . D e e e e e e e e o Ve S e s o e e e s o

The vector €,» as defined in (4.11), obviously has the variance/co-
variance matrix (4.12) in the present case as well. All the matrices of non-

contemperaneous covariances are of the form

t@o . 0

1 (I)"'
| o =x 0 ~
(4.16) E(etes) =1 . . =
06 0 -.r 3(D
= IH®Z(I) =L (t=1,...,T; s$t),

where the blocks along the main diagonal contain covariances relating to the
same households. (The zero matrices have dimension NxN.)
Combining (4.12) and (4.16), we get
JL «+-* L

1 .
(4.17) E(ee ) = A 1 v

C

LL »e+« J

L® U-L) +E.®L

with € defined in (4.14). (The subscript C is an abbreviationof "complete".)

Inserting for J and L from ¢.12) and (4.16) yields

N i} (D) _ (D) (1)
(4.18) E(ee) = A, = ITH@(ZZ z )+IT®EH®Z +

+ ET@IH®Z(1),

which is a generalization of equation (3.16).

s Yo . s o e e e 2 S S o o S S o s e s ot e o T e it s i v

The TNx1 vector of disturbances relating to the h'th individual
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€hT

wiﬂIEMbvectorseht defined in (4.9), has the following variance/covariance
matrix:
S ... (D

Dy eer 5D

(4.20) E(Ehgﬁ)

»
- .
. ’
.

2D DL,

1]

Lo v ei? -k we,.W,

the last equality defining K. The matrices of covariances relating to

different individuals are block diagonal matrices

™ 0 o

0 Z(T)-a. 0
' : :
(4.21) E(ehek) : 3 E
0 0 ... 3D
= IT®Z(T) = M (h=1,...,H; k#h),

the last equality defining M. The blocks along the main diagonal contain
covariances betweenobservations from the same period. (The zero matrices
have dimension NxN.)

The HTNx1 vector

2\

(4.22) € =
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containing all disturbances ordered first by individual, second by period,

and third by commodity, thus has the variance/covariance matrix

]
(4.23) E(ge ) = AC—x = M K M =
M M-+-. K
= IH®(K-M) +E @M,
or
o'y L ) (I) _ (1) (1)
(4.26) E(€€) = A, = LHT®(Z-Z -z )+IH®ET®Z +

(T)
+EH@IT®Z s
when inserting for K and M from (4.20) and (4.21). This equation generali-

zes (3.23).

——————— o~ o — 1 e o S o 2o S s o S S . o . VS S S P T T T " S (o o Tt e S (o S o o

In view of the results derivedin sections 3.3-3.5, and 4.3-4.4, the
variance/covariance formulae corresponding with rotation samples may be
readily established. First, we notice that the matrices of contemporaneous
variances/covariances are identical with those in sections 4.3 and 4.4, i.e.
E "V o= () (T : .

(8t€t ) =J = @ @-I°7) + Ey ®I'"’. Second, all matrices of covari-

ances between disturbance vectors more than one period apart are zero matri-

ces, since their elements relate to different individuals, i,e.

. ]
(4.25) E(etss ) = OHN,HN (t=1,...,T38=1,...,t=2, t+2,...,T),
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Third, E(e y = 1D (w=1,.,8/2; £=2,...,D),

] .
ht€h+H/ 2,t-1

and E(e ) Z(I) (h=H/2+1, ..., H; t=1,...,T-1),

€ -1
ht h-H/2,t+1

. ' . .
all other submatrices of E(etgt—'l) and E(€t£t+1) are zero matrices, 1l.e.
~ 0 I
(D (D
! = =
E(e:te:t_1 (0 O)@ z | CH®Z s
R 00 (1 (D)
' = = !
E(€t€t+l) = ®Z CH RI
I O
.

(cf. (3.25) and (3.26)).

Thus, the complete variance/covariance matrix takes the form

J Q' 0-..0 O

(4.27) E(ee'") = A Q J Q'+ 0 0

[}
-

0 Q J -0 O

s eqg ee

0 0 0:«-+J Q'
0O 0 0--+Q J

where Q = CH® Z(I), or in Kronecker product notation

(4.28) E(ee') = AR=IT®J+DT®Q+D,}_,®Q'

-1, ® s-2(Dy 4 I, @E, @ £ (D

I
+ (DT®CH+D,E®C}'{)®Z()

4.6__Special cases: comparison with the single-equation model

s e s e e . T o . o e e e e e e e o o o o s e W e e e St D o P . s T o o

The THN x THN variance/covariance matrices A.D AC A and AR (de-
s bl

C=,
fined in eqs. (4.15), (4.18), (4.24), and (4.28)) are in general rather com-
plicated and may prove inconvenient to deal with empirically, at least when
T, H, and N are not very small. This motivates simplifying the structure by

imposing restrictions on Z(I), Z(T), and Z(C), reducing the number of free

parameters.
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What is the maximal number of elements in the matrices Z(I), Z(T),

Z(C), and I that may be chosen freely? First, the definitional equations
I T o . I 1 T_ T
Oij = Oij + Oij + Oij and the symmetry conditions Oji = Oij ’ cji Oij s

djic = Oijc yield N2 + 3N (N-1)/2 = (SN2 - 3N)/2 restrictions. Second, the

adding-up conditions (4.7), or the stronger set (4.8), impose N and 3N

restrictions respectively. The maximal number of "degrees of freedom' is

thus

iN? - (-g-N2 - %N +N) = %—N (3N+1)

when using (4.7), and

2_ 52 3 _ 3¢
N - GNT - 3N+ 3N) = N (1)

when using (4.8).
Suppose that ‘the matrices (pij) and (wij), containing the shares in

the "total" variance/covariance of the individual and time specific compo-

nents respectively, have one set of '"row specific'" and one set of "column

specific" components:

]

P.. ALAL
1] 1]
(4.29) : (i,5=1,...,N).

R

(Cf.eq. (4.6).) This implies

.. = A.\.O..
1] 1] 1]
(4.30) T
935 T HiMy9i5,
or
D 2
(4.30%)
Z(T) =z,
where
>\1 O“" O ul 0 oo O
(4.31) A= 9 ?\2"' ? , u = (.) 1;1.2.'- 0
0 0 **~ 0 0 ***un
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Since Giic 2 0, the inequalities Xi + ui < 1 should be satisfied for all 1i.

With this reparametrization. the strong set of adding-up restric-—

tions, (4.8), will not be satisfied in general: Zigijl = ZigijT = 0 would

imply Zikigij = Zi“igij = 0( j=1,...,N), which cannot hold unless Ai and u;
have the same value for all i (assuming that I has rank N-1). The number

of degrees of freedom is: N(N—l)/z (= the maximal number of cij's that can

be varied freely) + 2N (= the number of li's and ui's), i.e.

2 (N+3),

Example: N=3

The number of degrees of freedom in the Gij's is N(N-1)/2=3. Choose

011, 022 and 033 freely. The 6 covariances then must satisfy

91 % %31 =T 01
a1t T %3 7T Op
931 7 932 = T 933

921 = 912

931 = O3

932 = 923

which implies

g =0

12 = O91 =(70y1 = 0yp + 033)/2,

O13 = 037 =(=0y1 + 09y = 033)/2,

Onpng = 0,, =( 0

23 = 932 11 7 T92 T I39)/2-

In addition, the 6 A’s and u's can be varied freely. Thus, the total number

of degrees of freedom is 3+6=9.
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We now impose the following stronger set of constraints:

A, =V
1 P

(4.32) (i=1,...,N),
- Lgi - 4:

where, of course, p and w are non-negative. In view of (4.30), this implies

I

°ij T 9%
(4.33 o..T = W0, .,
1] 1]

or
2D < o5
(4.330) (D _ o

Inserting (4.33%) into eqs. (4.15), (4.18), (4.24), and (4.28), using (3.13)

(3.16), (3.23), and (3.29), respectively, we get

(4.38) Ay = {10, + I, @EJI®L = 9, RI,
(4.35) A, = {(1-w—p)ITH + wIT®EH + pET®IH} @I = QL
(4.36) AC-x ={(1-p—w)IHT + pIH® Ep + wEH® 1@ = QCx® z,

(4.37) Ap = {(l—u))ITH +wl ®E; + 0D, @Cy + D%@Cé)}@iﬁ & 2@ .

In this way, we obtain that the variance/covariance matrix of the
complete vector of residuals in the multi-equation model can be written as
the Kronecker product of two matrices: one of dimension THxTH and propor-
tional with the variance/covariance matrix in the single-equation model,

"contemporaneous'

the other of dimension NxN and equal to the I matrix of
variances/covariances in the multi-equation model. In view of the simple rules
that exist for inverting and alculating determinant values of matrices ex-

pressed in terms of Kronecker products (cf.eqs7 (C.2) and (C.3) in appendix

C), this simplification represents a considerable gain when it comes to
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estimation. The specification (4.32), admittedly restrictive since it im-
plies that the relative importance of the individual and time specific com-—
ponents of the variances and covariances is the same for all commodities,

should be interpreted on this background. The structure of the I matrices

in this case has
1
-fN (N"l) + 2

degrees of freedom, and we notice that restrictions (4.8) are satisfied

automatically when (4.7) is imposed.
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5. Estimation

Combining the specification of the demand structure (chapter 2)
with the stochastic spécification of the_diézurbanqgs (chapters 3 and 4)
we now proceed to the problem of estimation. e shall first sketch the
problem in general terws (section 5.1) and then discuss practically

interesting special cases insome detail (sections 5.2 and 5.3).

5.1. Preliminaries: The Full Information Maximuam

S o - —— — T — —— - - - —————— - T ——— . " — - " - — — — "

B it Do T PP PSSP Sapu SR putpupepuguary puephey

Provided that the disturbances are normally distributed, the follo-
wing general scheme contains all the models and situations considered in the .

previous chapters as particular cases:

(5.1) x = f (238) +w,

where w is distributed as ¥(0,0).

Here, x denotes the vector of budget shares (ordered in a prescribed way),
w is the corresponding vector of disturbances, f is a vector function,
z is the vector containing all the values of the exogenous variables,
3 is the vector containing all the coefficients of the budget share
functions, and{l is the variance/covariance matrix of w.
Letting, in general, n denote the dimension of x and w, the log- ‘

likelinood function (i.e., the (natural) logarithm of the density function)

of x is

(5.2) L = L (%,2,6,0) = -5 log (27) - 3 log |2

- .é_ Ex-f (z;s}‘ﬁ'l {x-f(z;S)} )

!

provided Q) is non-singular. The symmetry constraint, @ = Q, leaves

n(n+l)/2 free elements in Q. Meaningful estimation requires some additio-
nal restrictions on this matrix.

The Full Information Maximum Likelihood (FIML) estimators of (the
unknown coefficients of)3 and i are those which maximise L simultaneously,

given the values of x and z. If, in particular,lis known up to a factor
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of proportionality, the FIML estimator of 8§ is found by minimising the

quadratic form

5. Q = w2l = fx£(z )p a7t {x-t (2380} .

We shall now turn our attention more specifically to three particular

cases:
(1) Disjointed CS/TS data.
. (ii) Complete CS/TS data in the absence of time specific distur-
bance effects.
(iii) Rotation samples in the absence of time specific disturbance
. effects. '

The single equation case is discussed in section 5.2, section 5.3 deals

with simultaneous estimation of the complete model in the particular
case where the time specific and individual component resnectively of

the variances/covariances represent the same proportion of the corresponding

. - T _ I . . . .
total: gij = woij, resp. Gij = poij for all i and j; cf. section 4.6,

-~~~ ——— - o T o o WD o s e 2o ] o~ W T

o — T > v —— > < o O S

. Let a denote the vector of budget shares of the commodity comsidered,

ordered first by period, second by individual, i.e.

1) Evidently, disjointed CS/TS data are formally identical with both
complete CS/TS data and data from rotation samples in the absence
of individual disturbance components. Thus, the results obtained
in this section are valid for the two latter categories of data as well.
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1
(5.4) a =[2%2 . ’
ar
where a
1t
(5.5) at = (¢ = 1, ) T);
%He

omitting, for simplicity, the commoditysubscript(cf. sectioms 2.1, 3.1

and 3.3). We then have the following situation:

n = TH,
X = a,
w = € (as defined in eq. (3.11)),
Q

OZQD (as defined in eq. (3.13)).

In order to establish the likelihood function, it is necessary
to derive expressions for the determinantiﬂl and the quadratic form Q.

From egs. (3.12a) and (C.3) we obtain

IQI = GZTH IQDI =02TH lIT @Al =O'2TH lAlT

By induction we find that the determinant value of A (as defined in eq.

2)

(3.9)) is equal to

(5.6) [a] = =0 {1+ @Do).

This gives

(5.7 |9] GHH(lwﬁHHﬂ){l+(RdM)ﬁ

Moreover, using eq. (C.6), we find

e 208l 1, -1 1
Q € (070 T e = e’ (I®A) e

]
b
o~

™

[
b
m

(n3

2) Cf. also Balestra [2],p. 125.
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3)

The inverse of A is equal to

-1 1 w

5.8 A = 1 Uy~ ToEne e
Thus,
1 T ? ) ’
(5.9) Q = — (e I e — € E. eg)
02(1-w) c-z-l t "H't 1+(H-Dw "t Ht
H
= —2—-—1;-—-— 12782 E,Z--—-(S—-—————L 218 )2}
&% (1-w) t=1 h=1 0t 1+(H-Dw h=1 ht .
Inserting (5.7) and (5.9) into (5.2), we obtain
TH . 1. 2
(5.10) L - = log (4M) - = {TH log 0~ + T(H-1) log (1-w)
"+ T log (1+(H~L)w)}
S S { Q, _ _w Q
2 B},
207 (1-w) 1+(H-1w
where
T H ’
(5.11) Q, = £ I g°,
A =l pe1 OF
T  H
(5.1 Qg = ;41 ¢ 37,
t=lh=1 ht

interpreting the €'s as shorthand expressions for the corresponding diffe-
P g P

rences when inserting eq. (2.4).

e e . . 2 .., .
Maximising L partially with respect to ¢~ with w and B fixed,

find the conditional estimator

2 _ 1 W
(5.13) 8 = = QA— —_— QB }.

TH(1-w) 1+ (H-1)

The concentrated log-likelihood function thus has the form (cf. Rothenberg

and Leenders [16])
(5.14) L = constant - %-{TH log { (1+(H-1)w) QA~wQB}

- T (H-1) log (1+(H-1)w)-T log (l-w)}

3) Cf. Balestra [2], Appendix B, or Nerlove [14], eq. (4.3).
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. e * . . . .
Maximising L~ partially with respect tow, with ffixed, we get, after

some algebra, the conditional estimator

1 Qg

(5.15) w =-}?—l—- ( 6;

-1).

A

Insertingw= w into (5.13) we obtain

Q
a2 A
(5.16) o = "

Thus, the FIML estimators of w and 02 satisfy

T BZ 2_HT 2
(5.17) o = 212 2O g_{ht }’
’ H-1 T H R )
L Ley
t=1 h:—.l
T HAN2
2 1
(5.18) & I
TH =] h=1ht

the 'hats' denoting the residuals calculated from the estimated equation.

: . . ; 2 .
. 'Simultaneous FIML estimation of 8 , w and 0~ may prove practi-
cally troublesome. The following approximate three-stage procedure,

however, seems useful:

(i) Estimate B by (non-linear) OLS, i.e. by minimising QA.A)
(ii) Estimate w and 02 from theresiduals by using (5.17) and (5.18).

(iii) Reestimate B by minimising

.l I |
Q = 02 (1-w) {QA I+(3-Dw QB} ’

5)

with w set equal to the estimate obtained at stage (ii).

A practical way to proceed when carrying out stage (iii) is the

following: Noticing that the matrix A_1 can be factorised as followsé)

-1 1 1-R
5- ]. = ? 1 = - .————A-— = $?
( 9) A oRdl] s Wnere 0] —71—:55 iIH H EH} D

4) Any other consistent method might be used.

5) 1In order to obtain a better approximation, we might return to stage

(ii) and repeat the process.

6) Cf. Balestra [ 2], section 5.2.3.
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with
_ /1l-w
(5.20) RA = TTEDe
then Q can be written as
T .
T H H
- 2
(5.21) @ = L= I ()’ (e =1 I le, - A e
g o (1-w) t=1 h=1 k=1
i.e. minimisation of Q is equivalent to minimisation of the sum of squares
of the transformed disturbances
H
Ep - 2 (T € )
k=1 kt
5:2.2. Complete CS/TS data with no_ time specific effects.
With reference to the general scheme (5.1), this special case is
the following:
n = TH,
X = a,
w =g,
Q=02§2 =02{(1-O)I + PE, I}=02B I
C/ w=0 TH T®H @’
where QC and B are defined in eqs. (3.16) and (3.19) respectively.
Using the analogy between this case and the previous one, we directly
obtain (cf. (5.7) and (5.9))
H(T- H
5.22) |a| = T8 (1-pH(T7D) {1+(T—l)p}
H T T
: 2
(5.23) Q = —p——12 iz e? - 2 — @ e }
07 (l-w) h=1 t=1 ht 1+(T-1)p s=1
which when inserted into (5.2) yields
TH 1 v 2 T - 1+ T_l) )
(5.24) L= - 5 log (2m)- 5 TH log o° + H(T-1) log (l-p) + H log (1+( o)
A (A
207 (1-p) 1+(T-1)p

where QA is as defined in (5.11), and
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H T ]
(5.25) Q= I I ehtgz.
C h=1 t=1

As before, the €'s are interpreted as shorthand expressions for the corre-
sponding differences when inserting (2.4).

Partial maximisation of L with respect to p and 02 , with B fixed,
yields (cf. the derivation of eqs. (5.17) and (5.18))
H T A T -
Zg(ZE)Z— I e 2}
a1 h=1 t=1 ht - t=1 ht ,
(5.26) P =773 T A

T I ¢ ?
h=1 t=1 ht

1 H
(5.27) 8" =g L
h

This suggests the following procedure as an approximation to FIML

estimation:

(i) Estimate B by (non-linear) OLS, i.e. by minimising QA.
(ii) ZEstimate 0 from the residuals by using eq. (5.26).

(iii) Reestimate B by minimising
1
@ L o2y
o”(1~p) 1+(T-1)p

with p set equal to the estimate obtained at stage (ii).

Minimisation of Q is equivalent to minimisation of the following sum of

squares:

H T l-rs T 2
(5.28) I I Eeht - —Trﬁ— (Z € )% ,
h=1 t=1 s=1 hs

where

(5.29) R. = /<28

B 1+(T-1)p.

- — o ———— v T o S0 T o e e o S W s S St S T e B ) e o B e e e et s e . . 1 i O o o o o S T o T

In this case, the specification is the following:
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n = TH,
X = a,
W =€,
2
=09 Rlw=0,

where QR is defined in eq. (3.29). We have

IG (0 00
0 ....00
2
Q=0 F ......00
D oo ‘F O
0 00 s¢one OIG

where G = H/2, F = (é @)Q;IG. (The number of F's is T-1.)

Then
(5.30) |o] = *™M | [T 1] = FTH |p| T
(T-1)G
1 T-1 2TH (1
= g2TH | (& E)@IG l =0 |6 ‘f|
- G2TE (1 2(T-DG
and
I,0...00
0 FL..00
-1 1
Q = ;2' )
0 0+ Flp
0 +-- 0 I
where
-1 1 1 -o
S (0 1)0%:

In order to simplify the expression for Q, we write
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€1(1)
£1(2)
€2(1)
€2(2)

“r(1)
€r(2)

where

1t Se+1,t

fe(1)= ; . » Ee)” ; (t=1, ...,T).

Ht
Gt

We then have

2 N T
(53D Q=¢’ (0%, _ ol = O2 8 1(1) &
T
’ €e-1(2)
* i ggt -1(2)’ €t(l)
t(l)
G
1 2
= -——-—Z E + Z ( -
o’ Eh 1 hl 1-02 t=2 E 10, e
G ) G 2
+ L g ) +I €
n=1 ht h=1 h+G,T}

or altermatively,
1 Q, - 200, - 0% Q
(5.32) Q= ————)a " % TP gl
#(1- )

where Q is defined as in eq, (5.11) and

(1)

’

-
€
RICIA

G
20 ¥ €
h=1 h+G,t-1 €ht
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) T G

(339 % = €=2 §=1€h+G,t—l “ne’
G 2 G 2

(5.34) Q = §1=1€h1 * §=l€h+G,T'

The log-likelihood function thus takes the form

(5.3 L = -8 (m - %—i’ru logo® + (T-1) G log (1—92)}
1 { 2
-—5—13Q, - 2pQ, - p Q}-
2Zaoh L D E

Partial maximisation of L with respect to<3%with p and B fixed)yields the

conditional estimator

a2 1 . 2
(5.36) 07 = ———rr g—Q - 20Q, - p Q,},
TH(1-0%) A D E

which when inserted into (5.35) gives the concentrated log-likelihood

function
® _ l N _ _2
(5.37) L = constant 2S{TH log (QA ZQQD 0 QE)

SECSL IR

. . .. . ®
We find, after some algebra,that partial maximisation of L= with respect

to p , with B fixed, implies solution of the following equation:
(5.38) (T-1)Q ;;—ZQ ;3 +4Q, (T+1) - 2TQ_¢p - 2TQ. =0.
E D A “E D

By utilizing the fact that QE is approximately equal to QA/T’

provided T is not too small, an approximate solution to (5.38) can be

found. GSetting QE = QA/T, (5.38) can be written as
(5.383) (& o%+1) ((T-1)Q,0-2TQ.) = O
T A D ?

which has
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as its only real solution. Inserting D=d*into eq. (5.36), letting QE =

QA/T, the variance estimator reduces to

A2 Qp
(5.40) g = ‘;fﬁ.

. . . 2 .
Thus, when using rotation samples, the FIML estimators of p and 0 satisfy

approximately

T G ~
X r € €
# _ 2T t=2 h=1 h+G,t-1 ht (G = H/2),
(5.41) o = o1 T m >
T I &
t=1 h=1 ht
T H
(5.42) 8% = %ﬁ . shi
t=1 h=1 " °

If we omit all observations from households observed only once,
i.e. observations for which t=1 & h=1,...,G, and t=T & h=G+1,...,H, it

can be shown that the FIML estimators satisfy the following equations

exactly: T G
2L I g A
(5.43) %2 = 200 _ t=2 h=1"hG,t-1 "ht
QA—QE T G n 9 T-1 H N 2’
z z eht + ) €ht
t=2 h=1 t=1 h=G+1
T G T-1 H
~2 1 A 2 A 2
(5.44) G = —4=———— (Q,-Q.) =1I T £ + X
(T-DE A BT =1 P t2] h=G+l ht

We propose the following approximate estimation procedure:

(1) Estimate B by means of (non-linear) OLS.
(ii) Estimate p from the residuals by using eq. (5.41) or (5.43).

(iii) Reestimate B by minimising
1 2
Q=—-—-——-——{Q-20Q -.OQS,
02(1_02) A D E

or

’ 1 Qg
Q=-———-———-——-—-{Q-Q 'ZDQ}=Q+-—,
02(1—p2) A CE D 52
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with p set equal to the estimate obtained at stage (ii).

The minimisation of Q’ can be carried out practically as follows:

We have

G
1 - €
§=1 (€h+G,t—l’ Sht)<;p {) h+G, t-1

Noticing that

1 1+a =(1-a)
(5.45) M = ——— o
2¥/1-p -(1-a) 1+a
where
-/ 10
(5.46) o T

has the property that

1 1 -p

1—02 -0 1

M’M =

]

then Q’ can be written as

T
(5.47) Q = —-2—1——— 5 g %mz N Ethg,
o (1-p) t=2 h=1 t t

.. - fe \
where glnt = /Vl-p M €h+G’t-l , OF
2ht ht

=1 -(1-
*lac ° 2 gfl+a) “h+G, t-1 (1-a) Eht;g

€ -1 (e + e, )
h+G, t-1 2 h+G, t-1 ht

1
1 = - £ - -
2ht = = £f1+a) ht (1-a) €h+G,t—y}

_ _ 1=
= e T 7 Chag,e-1 T Ene -

Thus minimisation of Q’ is equivalent to minimisation of the sum of squares

disturb £ &
of the transformed disturbances 1ht and “ont
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i —— o o o o v o ——— e s b e e o e o iy o ot o o

Let a denote the vector of budget shares ordered first by period,

second by individual, third by commodity, i.e.

bl
(5.48) a = 32 ’
ar
where
%1t he
(5.49) 4 < § , with G = (h=1,...,H)
: H (t=1,...,T)
®at 4Nht

With reference to the general scheme (5.1), we have the following situation:

h = THN,
X = a,
w = ¢ (as defined in eq. (4.14)),

Q

QD®Z (as defined in eqs. (3.13) and (4.10));

assuming mij = w for all i and j (cf. eq. (4.34)).

For FIML estimation to be possible, Q must be nonsingular, i.e. the
rank of I must be equal to N. This will,however, not be satisfied if the para-
metric specification of the budget share functions implies satisfaction of (2.6)
identically, as is the case with e.g.specifications A-D in section 2.3. Then
(2.7) must hold, and the rank of I can at most be N-1. In‘such cases, we de-
lete one commodity from the model, redefine x, w and Q correspondingly,and re-
place N by N-1. The likelihood function and, consequently, the FIML estimators

7)

are independent of which commodity is deleted. We shall not comment further

7) Cf. Pollak and Wales [_15 |, Appendix A, and Deaton |_ 7_|, section 4.2.
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on this way of reformulating the model in the subsequent sections.
We start, as in section 5.2.1, by deriving expressions for || and

Q. We have (cf. (5.7))

- T(H-1)N
w)

TN, . TH
™= (- lz]7.

(5.50) la| = loy@z| =0 (1+(H=1)w)

Moreover,

e @@ he
T
S RS |
I e, (AT®I e,
t=1 t - t

[l

(5.51) Q = 565®Zf1e=e%%®A®Zfl

Using (5.8), this can be written as

(5.52) Q

1 ,‘T ! w -1
15 o1 (T - 1+(H-1)wEH)®Z Ye,

T -1 . T H H o,

H '
L—Fgl hE1%e ¥ fhe T I5@De 21 nf1 kE1%hed kel

———

=
.,H
€

Inserting (5.50) and (5.52) into (5.2), the log-likelihood function

takes the form

(5.53) L = - I%E log (27) - 3{{T(H-1)N log (1-w)+TN log (1+(H-1)w) +

_ 1 _ W
+ T log [} = 5505 9, - wmnys %

where

TOH o,
G380 = oLy phohed Ene

T W oH o,
5-35) Q% = Iy ny elifhe T Ske
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The €'s are, as before, shorthand expressions for the corresponding differen-
ces when inserting (2.4).
Simultaneous maximisation of L with respect to w and the elements of
B and I is even more awkward than in the single-commodity case. The following
five-stage procedure may be a practically applicable substitute:
(1) Estimate B by (non-linear) OLS to each demand equation Separately
(disregarding restrictions between coefficients in different equations).

These estimates are consistent (although, of course, not efficient).

(ii) Estimate I from the residuals from stage (i): N
r = (Oij) s
where
= ...-_l_ '2]‘:; I; - A -
ij TH t21 h21 Sint&ine’

(1i1) Calculate estimates of w from the residuals from stage (i) as in the
single equation case. The estimate obtained from the i'th demand

equation is (cf. eq. (5.17))

T OH. o, H .,
s o1 B lGhsD el Sine! (1.t 1)
]'- H—l $ H R ’ . o0 ’ L
' z L, € 2
t=1 h=1 "iht

The estimates are consistent, by will, of course, generally differ.

(iv) Form a "compromise estimate' of u:

where the w's are weights adding up to unity. We may, for instance
Ai N ~
let w. b 1t .. . L)
; be equal to 1/N or (1/011) / J21(1/0”)

?
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(v) Reestimate B by minimising Q (as given by (5.51)) with I and & set

).

equal to the estimates derived at stages (ii) - (iv)8 This stage

is similar to a (non-linear) Zellner '"Seemingly Unrelatéd Regressions"
method (cf. Zellner [19]).
Stages (iii) and (iv) may be replaced by:

(1iii') Estimate w by solving 3L/%w = 0, with B and I set equal to the estimates
obtained at stages (i) and (ii). (This involves solution of an equ-
ation of the third degree.)

Stage (v) may be carried out éractically in the following way: Since

1. . . .. . .
X is symmetric and positive definite, there exists a N x N matrix Z such

that

(5.56) z Z

1]
™

The Z matrix can be found numerically by computer routines. Then, Q as given

by (5.51), can be written as

T 1 ! ! T l' 1 !
(5.57) Q@ =  Le{(0e )®(Z 2)}e, = _Ije {(&@ @2)(®Dle,

paying regard to the factorisation of A-l given by (5.19). Thus, minimisation

of Q is equivalent to minimisation of the sum of squares

1
1 Ve Ve o where v, = (@@Z)et.

i 3

t t

8) By repeating stages (ii)-(v) better approximation might be obtained.
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5.3.2 Complete CS/TS data with no time specific effects and with pi: =P

o — e - —— ——— —— —————— ——

Our specification in this case is the following:

n = THN,
X = a,
w = g,

Q = Qc!m=o®z:’={(1—9)1T+QET}®IH®Z =BRI;®,
(cf. eqs. (4.34) and (3.19)).

In complete analogy with the derivation of (5.51)-(5.53), we find

5.58) la| = (o) TN (1)) ™| 2| TH,

1 H T - 0 H T T v
(5590 Q@ = 15 | pI1 ef1®he T Cne, T TR-Dp bE1 ef1 sBifhe T Cpslo
(5.60) L = - E%E log(2m) - L{H(T-1)N log (1-p) + HN log(l+(T-1)p) +

1 P

+ TH log |2} - e {QA EETIGEOT) QC}’

where QA is as defined in (5.54), and

BT T,
(G-61) Qg = By oIy Gy e T e
The estimation procedure is
(1)-(ii): TIdentical with stages (i) and (ii) in section 5.3.1.
(iii) Calculate equation specific estimates of p from the OLS residuals

from stage (i). The estimate corresponding to the i'th equation 1is

(cf. (5.26))
Iz{{(g;. )2—222}
© _ _1 h31 ‘t317iht t=1"iht (i=1 N
pi T..]_ H T . 9 o0y .
nE1 ef) Sint
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(iv) Form a "compromise estimate" of p:
~ N A
= L,L,W.p.:
P i21"iPi’

where the w's are weights adding up to unity.

(v) Reestimate fby minimising Q (as given by (5.59))with T and p set equal

to the estimates obtained at stages (ii) - (iv).

5.3.3 Rotation samples with no time specific effects and with pi: = 0o

e o s T ——— —— " So20 " S T~ — e o —

We have
n = THN,
X = a,
w = g,
@ = QR|w=0®z’
where QR is defined in eq. (3.29). Then (cdmpare the derivation of (5.30),

(5.32) and (5.35))

_ N,.TH 2. (T-1)GN, . TH
(5.62) la| = !QR|w=Ol o™ = (1-p9) lz|™%,
1 T H ' _1 T G 1 -1
(5.63) Q = IT? €51 nE1 She T She T 2P¢Zg pi1 fheg,e-1 She T
" L
e G
2 'o-1 | -1
P E1%h1% o1 * nkithe, 1t Eh+c;,'ﬂ’
(5.64) L = - I%E-log (2m) - {{(T-1)GN log (l-pz) + TH log |z|} -

1 2
- ETT:EQT'{QA = ZDQD -p QE}’

where G = H/2, Q, is defined as in (5.54), and
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T G '

-1
(5.65) Qy = Ly L1fug -1 1 Ene

G "1 G 1 -1
(5.66) Qg = Iy eiT &1t uLiheg, T T Sheq,T.

Also in this case, simultaneous FIML estimation is numerically rather

awkward, and we propose the following approximative procedure:

(1)-(ii) Identical with stages (i) and (ii) in section 5.3.1.
(iii) Calculate estimates of p from the OLS residuals from stage (i) as in
the single equation case (cf. eqs. (5.38), (5.41), and (5.43)). Let

p; denote the estimate corresponding to the i'th equation.

(iv) Form the '"compromise estimate"
- N ~
p = iél wips (where Ziwi =1).
1
() Reestimate B by minimising Q (as given by (5.63)) or Q =

{QA - Qg - ZdQD}/(l-pz) with £ and p set equal to the estimates ob-

tained at stages (ii)-(iv).
Stages (iii) and (iv) may be replaced by:
(iii') Estimate p by solving 38L/3p = 0, with B and I set equal to the esti-
mates obtained at stages (i) and (ii).
1

A practical way of minimising @ 1is the following (cf. the derivation

of (5.47)): By means of the factorisation (5.56),defining

Y1ht
“Yht * : = Zeyeo

. YNht

Q can be written as
\ , T ¢ N 170\ [Vheg,e-1,1

.6 = — ; . .

(5.67) Q 1__pz ) hgl 1gl(vh+G,t—1,1,vht1>
B I e
T G N
_ 1 _l-a 2
15 tf2 ni1 141 {Vh+G,t—l,i 7 Onsg,e-1,1 F Vueidd *
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1
where o is defined as in (5.46). Thus minimisation of Q 1is equivalent to

minimisation of a sum of squares of transformed disturbances, as in the single

equation case.
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THE DISTURBANCE VARIANCE/COVARIANCE MATRIX CORRESPONDING WITH ROTATION
SAMPLES, WHEN ORDERING THE OBSERVATIONS FIRST BY INDIVIDUAL, SECOND BY PERIOD.
ADDENDUM TO SECTION 3.5

Disregarding the individuals reporting only once, i.e. the first H/2
individuals reporting in period 1 and the last H/2 individuals reporting in
period T (H is supposed to be an even number)l), the sample considered in
section 3.5 can be described as follows: One set of G = H/2 individuals
report in periodes 1 and 2, a second set of G individuals report in periods
2 and 3,...,a (T-1)th set of G individuals report in periods T-1 and T.

Consider the 2 x 1 vector

i . h + G,t-1 h
A.1) € =

ht €t t=2,.,.,T

1,...G=H/2

where the second element is the disturbance’in period t of the individual
reporting as no. h in this period, and the first element is the disturbance
of the same individual in period t-1. Arrange these individual vectors along

one2G x 1 (H x 1) vector,

3%

€1t

= >y

(A.2) e = &9 (t=2,...,T),
*x
ers

T

containing the disturbances of all the individuals reporting in periods t-1
and t, ordered by individual.

We then have

2
(A.3) E(éﬁté:t) = ; = 02B (h=l,...,GL

where (cf. eq. (3.19))

1) individuals 1,2,...,H/2, and TH/2+1, TH/2+2,..., (T+1)H/2. (Cf. section

I.e
3.2.)
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(A.4) B, = (; f>= (1-p)1, + o(eéei),

and (cf.eq.(3.20))

2 o 2
(A.5) E(e ) = OT 2 1= 94 (h=1,...,G; kh).
T
Moreover,
i 2
3% * g 2
E(e 1) = T)= o“wC (h,k=1,...,G;
htak,t 1 2 £=3,...,T)
(A.6)< )
* ® 7 _ » _ 2 _ L .
E<€ht€k,t+1) (02 01 = d%uc, (h,k=1,...,G; t=2,...,T-1)
_ OT 0
where (cf.eq. (3.26))
01
(A.7) C =
2 0 0 R
and
* * ’ = = H = LY H
(A.8) E(ehteks ) 02’2 (h,k=1,...,G; t=2, ,T;

§=2,.0.,t=2, t+2,...,T).
From (A.2), (A.3), and (A.5) then follows

82 wI2 TR wIz

(A.9)  E(fey) = o2 = o’ (t=2,...,T),

(L)I‘2 B2 soves wIz

wl wIz creee B2

where

(A.10) P = I, ® (B,0T)) + (eep ) @ Iy = (1-p-)Tpg + oI @ (epe, ) +
+ w(eGeG’) @IZ

after inserting from (A.4). Similarly, from (A.2), and (A.6) we have
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r’
® o« _ ’ 0 = =
E(e.e. ;) " (egep) o wo (£=3,...,T),
‘1 0 O
(A.11) . , 0 0 ,
E(€t£t+l) =0 (eGeG) = g"wQ (t=2,...,T-1),
— w O
where
0 1 ,
(A1) Q= (o2 N @ - | = (egeg ) @,
Moreover, owing to (A.8),
E = = M = - ¢ o
(4.13) E(efe] ) = 0y 40 (£22,...,T5 822,...,t72,042,...,T)

The matrices P and Q have dimension 2G x 2G (H x H).

Finally,»form the 2G(T-1)x1 (i.e.H(T-1)x1) vector

E*
2
(A.14) & = * ,

£

3

.
:-w-

€

containing all the disturbances of the rotation samples ordered first by indivi-
dual then by period. 1In view of (A.9), (A.11), and (A.13), its variance/co-

variance matrix takes the form

wQ P (DQ see 0
(A.15) E(e*éx Y= GZQRx = 02 0 wQ P e O 0
0] 0 0 <+ P wQ
0o 0 0 +++ wQ P
or
®® _ 2 _ 2 ’ ’
(A.16) E(ee” ) = o' = o© fIT_1®P+w(DT_1®Q+DT_1®Q)}.

where DT—l is equal to the matrix DT after deleting its first column and its

last row (cf.eq. (3.28)). By inserting from (A.10) and (A.12), the matrix
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(A.16) can be written explicity in terms of 02, p and w as

(a.17) E(%F) = o, = o? {(1-§—w>IZG<T_l) + 0lg 1y @ (eye,) +

Ree
3
toly g @ () @,

+ 0Dy @ (egel) ®C, *+ Dy, @ (egel) @ G}
The properties of QRx can be stated as follows:

1) The main diagonal consists of T-1 identical blocks P, each of dimension
2G x 2G. 2) The first sub-diagonal below the main diagonal has T-2 identi-
cal blocks wQ, each of dimension 2G x 2G. The first sub-diagonal above the
main diagonal is identical with this, except that all blocks are transposed.
3) The remaining submatrices of QRx are zero matrices. Notice in particular
that when time specific effects are absent, i.e. when w = 0, then QRx gets

a particularly simple form, viz.,

: 1
e 7 Tpo) ©F = Tg(qoyy @LA-DT, + 0lege)} = Tp(q gy @Y,
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THE DISTURBANCE VARIANCE/COVARIANCE MATRIX CORRESPONDING WITH COMPLETE
CS/TS DATA WHEN THE ORDERING BY COMMODITY PRECEDES THE ORDERING BY PERIOD
AND INDIVIDUAL. ADDENDUM TO SECTION 4.4

In developing the variance/covariaﬁce formulae in ch. 4, we
supposed that the ordering by commodity took place after the ordering by
period and individual. In this appendix, we shall examine the covariance
matrix of the disturbances when reversing this ordering, confining our

attention to complete CS/TS data only.

- s S . o . s o e S8 o s e i e . s s Tt e St e et s s . s s Vo S e e e S e o e i e W . s et o ol o St o e . e et Ve e e . . D e T S St g

the CPI ordering

Define the Hxl vector

€i1t
(B.1) €.

B 2
1%t 812t

€iHt
containing the disturbances of the i'th demand function for each of the H

individuals in period t. From (4.5b) we have

1 w. R

ij v Yij (t=1,...,T;
. . . ' = * 40 i!j=19 "QN)
(B.2)  E(Ei0rspey) O3 “i5 ! Wi
Weo oo 1
1] 1]
= Gij (l-wij)IH + wiJEH = gij i3

where EH(=eHeé) is the HxH matrix consisting entirely of ones, and Aij is

the matrix in the square bracket. Furthermore,

(B.3) E(e. .e.. ") =0

txt®ixs’ ~ %13%15Mm £t§1;‘i"T; Sft;
=1,
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From (B.2) and (B.3), we easily find that the THx1 vectors

(B.4) €.

(1]
~~
[
]
-

-
3
-
2
Nt

€isT

have variance/covariance matrices of the form

A3 Pi50q -+~ P15'm
(B.5) E(e. e. = 0..
1R JHX 1] pijIH Aij . on pijIH

cee a,

PisTa PizTa Ay

]

o ; {IT® (Aij - pijIH) + Eg & (pijIH)}

.. “W.,s = P, .. .. I
013 ta wl] le)ITH * leIT®EH * leET® H}
= %15 (1237110

the last equality defining Qcij' Finally, form the NTHx1l vector

%Lxx

(B.6) € e

sNﬁx

consisting of all the disturbances ordered first by commodity, second by

period, third by individual. Its variance/covariance matrix is

f T Onflony

91111

(B.7) E(;xﬁgﬁé) =

INiffent - Oadlen

Generally, this matrix cannot be written in Kronecker product nota-

tion. In the particular case where pij = p, and wij = w for all i and j,
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however, (cf. section 4.6) then QCij = QC (as defined in eq. (3.16)), and

(B.7) degenerates to

(B.8) E(eﬂs*;é) = 1@, =1L ® {(1-—w-p)ITH + wIT@EH + PEq ®IH}.

2.__Ordering first by commodity, second by individual, third by period:

— - o o —

~the CIP ordering

The reversing of the ordering of individuals and periods considered

in section 1 is straightforward. Define the Txl vector

€in1

(B-g) €. = Y
Lhae €ih2

€inT

its elements being the disturbances of the i'th demand function for the h'th

individual in each of the T periods. From (4.5b) follows

(B.10) E(e, s Jh* = Uij[EE—pij)IT + pij%gl = GijBij (h=1,...,H;1,3=1,..,N),

where Bij is the matrix in the square bracket. Moreover,

= = : h: 1.9
(B.11) E(g £ ka OijwijIT (h=1,...,H; k#h; i,j=1,...,M.

From (B.10), and (B.1ll) we find that the HTxl vectors

€.
il

(8.12) s %iZ*

€ it

have variance/covariance matrices given by
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~

(8.13) E(Eiﬁxejxx

cij{IH@)(Bij— wisIp) +EgQ@ (wijIT)}

(-, - W, . ..E I
GIJ{(l pl_] wl])IHT * leIH@ET * le H® T}

-

Q

‘Oxei (i,3=1,....,N),

ag..
1]
*he last equality defining QCxij' Thus, the NHTxl vector

€
~ Clm

(B.14) €

1]

-~

*Naese

containing all the disturbances ordered first by commodity, second by indivi-

dual, third by period, has the following variance/covariance matrix:

911%se11 *T " Tinlcseln

~ o~ ; :

1 = : :

(B.15) E(g*xsx*) § :
N1 a1 TN e

An ordering of disturbances identical with the CIP ordering con-
sidered above is used in a recent article by Avery [_1]. Eq. (B.15)
corresponds with eq. (2. 7) in Avery's article (our matrix QCxij correspon—
ding with Avery's matrix Zij)'

Generally, the right hand side of (B.15) cannot be written in
Kronecker product notation. In the particular case where pij = p, and

w.. = w for all i and j, (cf. section 4.6), we have QC .. = (as defined

1] %1 ] QCHG
in eq. (3.23)), and (B.15) degenerates to

~ -~

(B.16) E(e e ) = I®Q, =I@ {(l-p-w)Iy + ply@E, + wE, @I}
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Appendix C

. e e e . S

SOME USEFUL PROPERTIES OF KRONECKER PRODUCTS

The aim of this appendix is to refer, partly without proofs, some
properties of matrices expressed as Kronecker products, which have been
used in developing the estimation methods in chapter 5.

Let U = (uij) and V = (Vij) be non-singular matrices of dimension

M x M and G x G respectively. By definition we have

ullV‘.... u, .V

(c.1) c

]
"

U@V

The dimension of C is MG x MG.

(1) Matrix inversion

o — s s o o ot o o e o o

(ii) Determinant values

.3 lcl = J[uevl = |ul® |vH

(iii) Ranks

(c.4) rank (C) = rank (U® V) = rank (U)° rank (V)

( = MG, since U and V are non-singular).

(Proofs of (C.2) - (C.4) are found in e.g. Theil [ I7], pp. 304-306.)
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(iv)  Quadratic_forms

Let

o
1}
~
o]
]
H
-

.»G)

X
Mr

be G vectors of dimension M x 1. Form the GM x 1 vector

o
]

Similarly, define the M vectors of dimemsion G x 1

*
~ H
x = : .
M
Then,
(.5 Q = x'"(V@RWx = xX'"URV) X
G G M M
- r§1 s§1 j§1 iglxiruijvrsxjs
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Proof of (C.3):
From the definitions of U, V and x, we have
VllU Cene leU X,

(=)

O
1]
~
o
-
o]
N
»
[}
-

Vel 7 Vgl LXG

. 1 1 '
= (¥vr1er’ EVrZXrU e ZerXrU) %
*2
el
G G ,
= z T v erxs.
r=1 s=1

]
Expanding the bilinear form x Uz we get

, M M

(3e3¢) erXS T

i=1 jglxiruijxjs (r,s=1,...,G)

In a similar way, we find

M M ,

1
(sme2) x (U®V) x = jgl igluijxivxj
and

' G G .
(sezeme3e) X ij = rél sélxirvrsxjs (i,j=1,...,M)

Eq. (C.5) follows by inserting (sx) into (%) and (se=x)into (s=x). Q.E.D.

Eq. (C.5) may be readily generalized to bilinear forms.

1) | V” = IG ; 1.e. vSS=1, Vrs=o for r+s.
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2)

(c.

3)

(c.

4)

(c.

6)

7)

8)

9)
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G M M

1 .
x Tg®Wx = Ly 5L (L% 0y %5

V = IG’ U= EM; l.e. VSS=1, V™ 0 for r # N uij=1 for all 1i,j.
. G. M M G M )

x TI@EPx = Iy 3k i5i%0%5s = Eilili%ed

U = IM; i.e. uii='1’ uij=0 for 3%1.
1 M G G

x (V& IM)X = i-z-l r§1 s-g‘lxirvrsxis'

U = IM’ vV = EG; i.e. uii=1’ uij=0 for j#i; vrs=1 for all r,s.
' M G G M G 2

x Bg@Tx = L L) Iyxgx o = 5L )0
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