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THEORETICAL AND EMPIRICAL RESULTS

ON THE ANALYTIC GRADUATION OF FERTILITY CURVES

by Jan M. Hoem and Erling Berge

1. INTRODUCTION

1 A. 	 The diagram of age-specific fertility rates for a population, based on data for a calendar

period, say, will typically picture a curve which looks much like a left-skewed unimodal probability

density, such as a gamma density or some of the beta densities (starting just below age 15), for

instance, but with superposed fluctuations. Unless the population is very large, the diagram of the

sequence of fertility rates, plotted against age, will have quite a ragged appearance. It is

frequently assumed that "real fertility" would be portrayed by a smooth curve and that the

irregularities of the observed curves are due to accidental circumstances. The observed fertility

rates are then regarded as "raw" or primary estimates of the underlying "real" rates, and graduation

is employed to get a smoother curve.

L• 	 When the smooth curve is produced by fitting a nice, parametric function to the original

data, we call it analytic graduation. The present paper reports some findings on the following

question: Given that one has chosen a particular graduating function with a specified parametrization,

which method should one select to fit the function to the observed fertility data?

Some previous research (Hoem, 1972) has shown that a modified minimum chi-square method

cannot be outdone by any other weighted or unweighted least squares method or by any moment method,

in the sense that asymptotically as the population size increases the modified minimum chi-square

estimators have minimal variances within the class of estimators considered. This holds for the

estimators of the parameters of the fitting function as well as for the estimators of the function

values (i.e., of the "true" fertility rates at all ages). So far, one has not known, however, to

what extent this theoretical result has practical consequences in that the numerical values of the

asymptotic variances of chi-square estimators are noticeably smaller than the corresponding variance

values for reasonable competitors like least squares estimators.

1 C. We have applied analytic graduation methods to a number of empirical fertility curves, and

this paper reports briefly on some selected typical findings. It turns out that estimated asymptotic

variances (and the corresponding estimated coefficients of variation) almost without exception are

much smaller for rates graduated by least squares than for the original ungraduated rates. In every

case which we have investigated, there is also some further real gain in estimated variance in going

from least squares graduation to minimum chi-square graduation. On a rare occasion, the extra gain

in variance is as "low" as some 10 per cent, but it frequently is higher, and it can be substantial.

Thus the optimality (in terms of estimated asymptotic variances) of the modified minimum chi-square

method does have considerable practical interest.

1 D. The presentation goes as follows:

In Section 2 we summarize results given in the previous paper, but restated here in a form

meant to be more easily accessible. The account is largely phrased in terms of fertility graduation,

and it is of course relevant to this problem, but the reader should bear in mind that the theory

is by no means limited to the case of fertility. It can be applied to any type of occurrence/

exposure rate.
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Section 3 then contains the selected empirical results. They are based on curves of observed

fertility rates, and they are relevant for such curves as well as for other curves of vital rates of

a similar form, such as marriage rates, rates of migration, etc.

2. THEORETICAL RESULTS

2 A. The "raw" age-specific fertility rates in a set will have been calculated for a number of

age groups, which for simplicity we shall take to be the single-year age intervals a, a+1, ..., (3.

Let 	 = 	 5■0t+1,•y' denote the vector of "raw" rates, the prime signifying a transpose.
ek,

These rates are to be graduated by means of some sequence of parametric functions

k(o) = {ga(f?,), gm-1 (2 ), .."

A
that is, one is required to select some value 6 of the vector 0 = (0 1 , 	 r

)' such that g(0)
q„

fits as well as possible to the "raw" rates in 'i' . In our particular empirical situation, g (0)x q,
is the value of, say, the Hadwiger function at argument x, so that

RH 	 T 3/2 	 2 T 	 x-D
g (0) = ( -)	 exp H (- + 	 - 2)1.x

T 	 x-
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Other investigations (Hoem and Berge, 1974) have shown that it pays to take
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as the basic parameters of the graduation. 	 (If we regard g (0) as a function of a continuous x,
x

g (0)/R then becomes a probability density with mode 02' mean 03' 	 .
and variance 0 )x 	 4

We shall take this to mean that there is some underlying "true" vector Xo = {X 1'

of fertility rates for the age intervals in question, and that the task at hand is to remove as

well as possible the random deviation X - À . For our purposes, X
o 

can be represented with
A 	 0

sufficient accuracy by g(0°), where e is a corresponding "true" value of O. Then, 0° is
%

2 B. The fitting can be done in various ways, but the ordinary (i.a., unweighted) least squares

method and the modified minimum chi-square method are immediate and prominent candidates. They

consist, of course, of minimizing

f3 A 	 2
QLS ( 2 ) = N EfX x - gx ( 2 )1x=ot

estimated by 5, and X ° l'A;sy g(6).

Here, N denotes the total number of women under observation, i.e., the number of women who are

potential contributors to the numbers of liveborn babies counted. Bx is the number of liveborn

babies with mothers at age x at the time of childbearing, and Lx is the total number of person-
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A 	 2.
years observed at age x, so that X

x 
= B IL . 	 Furthermore, a = 	 /L . 	 We can regard

x x 	 x x
A2
a /N as an estimator of the asymptotic variance of X

x
. These two methods are members of a whole

x
class of procedures which are generated in the following way:

Let M be a square matrix of elements m 	 (x, y = a, a+1, 	 (3) which may (but need
xy

not) be random variables (by depending on the data). Let

Q (0) = 	 g(0)1' 	 g(8)1M . 	 (A, (1, 	 A, A,

= NEEm 	 -g (e)}{: -g(0)),
x y xy x x q, 	 y y

	and assume that there exists a value of 0, say 6(M), which minimizes Q_(0). 	 Then 0041))1
A, A,

A
represents one possible graduation of X.

If M = I, the graduation is by means of least squares.
%
A 	 A 	 A2 	 A2 	 A-1 	 A2 	 .2

Let a = diag (
2

aa , a ot+1 , ..., ad. Then, if M = a 	 = diag( 1/a a , ..., 1/a),

represents a graduation by modified minimum chi-square.

q„
know something about their statistical properties. A framework for a discussion of these can be

found in a previous paper (Hoem, 1972), and we shall recapitulate a few of the main results stated

there. These results hold under assumptions which were given in that paper, and which we shall not

repeat in full here, but which we can reasonably assume to hold for the kind of practical situation

which we have in mind.

We shall assume, then, that as the population size N increases, 5: is asymptotically
multinormally distributed with mean X O and some covariance matrix Eo/N. 	 [In our empirical

studies of fertility, we take E0 to be diagonal, i.e., we take the Xx to be asymptotically

independent.]

We shall assume also that as N m, M converges in probability to some positive definite

matrix Mo.

Then 3(M) is asymptotically multinormally distributed with mean OO and a covariance
(A, q,

matrix EIN, which satisfies
(A,

(2.1)

with

(2.2)

E = A E n A',

A = (J' M J ) -1 J' M .
%0 %0 %0 	 q,0 (b0

Here, J = J(0 ) ), where
o 	 %

ga (2 ) ' 	 s'' 	 ga(2)

J(0) =

a
	k,”' ***	 g (e)

2 C. 	 In order to choose between the various possible methods of fitting g(0) to X, we must
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0 	 0Similarly, g((M)) is asymptotically multinormally distributed with mean X = g(0 )

	

% 	 (1,
and (singular) covariance matrix J, E J'/N. 	 If, in particular, M = E

-1 
then E is equal to

(A)A) 	 (\,ki 	 (0 	 %0 '
r‘,

-1 	 -1
= (J' E 	 J )	o,o 	 .

%0 %0 %0

This will be the case in our practical situation if we use the modified minimum chi-square method.

In the general case, E will equal E 	 if M = 2-1 where 2 is a consistent estimator of E
r\i 	 rb 	 0 ' 	 '1Sr

One can prove that for any M0' 	 E 	 will be positive semidefinite, and so will q0,0
J, E 	 - J, E 	 Ji.

	

% 	 This means, among other things, that the asymptotic variance of each *4).(M)(A) k) (1, ,A.,v 	
, , (w

will be minimized if M is chosen such that M = E-1 	Similarly, the asymptotic variance of

each g ((M)) will be minimized by the same choice of M. 	 Thus, in our particular empiricalx (A, 
investigation, the use of this criterion of optimality will imply that one should use modified

minimum chi-square graduation or some other method with the same asymptotic properties, such as the

maximum likelihood method described by Hoem (1972).

One can prove also thatis positive semidefinite, so that chi-square'(-10
graduation must result in some non-negative gain in asymptotic variance of the age-specific

fertility rates.

3. SOME EMPIRICAL RESULTS

3 A. We have applied the theory of the previous Section to a substantial number of Norwegian

fertility curves, and a comprehensive presentation of our empirical results will be given in a

forthcoming Working Paper. The present Section contains a brief account of two such cases for

purposes of illustration.

3 B. We have selected the fertility curve for the city of Oslo, 1968-71, as well as the curve

for the same period for an aggregate of 13 communes on the Norwegian West Coast, viz., Kvits0y,

Bokn, Utsira, Austevoll, Sund, øygarden, Austrheim, Fedje, Solund, Askvoll, Selje, Sande, and Giske.

The observed fertility curves have been plotted in Figures 1 and 2, respectively. The curve for

Oslo represents a low level of fertility and a rather symmetrical age pattern of fertility for

present-day Norway. (The total fertility rate by the chi-square fit is 1.9, while the corresponding

modal and mean ages at childbearing are 25.2 and 27.3, respectively.) In contrast to this, the

other curve represents a high fertility level for the Norway of to-day (TFR = 3.5) and a particular-

ly skew age-pattern. (The modal and mean ages at childbearing by the chi-square fit are 24.1 and

28.4, respectively.) These curves thus correspond to quite different patterns of fertility.

3 C. 	 For each set of data, the "raw" fertility rates
x 
have been calculated for females for

single-year age intervals, counting live offspring of both sexes. Age x corresponds to age as of

December 31 in any observational year, and the contribution to Lx of any year is the arithmetic

mean of the number of x-year olds at the beginning and end of the year, age being calculated as of

Dec. 31 of that year.

The Hadwiger function of Subsection 2 A, with the parametrization 0 = (O le ..., 0 4 ) given

there, has been fitted to the rates for ages 16 to 44. Then 0 1 corresponds to the total fertility

rate, 0 2 to the modal age of childbearing, 0 3 to the corresponding mean age, and 0 4 to the

variance of the age-pattern of fertility.

We have made graduations based on the method of least squares as well as separate

graduations of the same data based on the modified minimum chi-square method. The graduated rates

have been plotted in both Figures. Eyeball inspection judges the fit to be acceptable. As com-

pared with the fit to other curves we have investigated, that of the two examples is about average.
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The numerical calculations have been carried out on a Honeywell-Bull H6060 computer by

means of a program developed by Berge (1974) on the basis of various algorithms previously published

by others.

!J• 	Let us denote the min. X 2 estimator for 0 by 5, and the least squares estimator by 0 .
rts

The corresponding estimates for the two sets of data mentioned have been listed in Table 1. In

the case of the curve for Oslo, the estimates are pretty much the same for both methods. For the

other curve, the two methods give somewhat different parameter estimates.

3 E. We now turn to variance estimation. We have proceeded as follows.	 Let 3 = J(8),
(1,

11: = {3,
(

/N)1	 3,0/N51 	 A, A 	 ^, 	 A 	
A A 	A

	A = (J J) 	 J ,	 E/N = A(a/N) A', and EN /N = AN O/N)(AN )'.
(1,

Then, 'i'/N is our estimator of the asymptotic covariance matrix of 66, and EK/N is our estimator
(A, 	 q, 	 q.,

of the corresponding matrix for ON, on the assumption that the true age-specific fertility rates
rNJ

are represented adequately by the Hadwiger curve. Similarly,

A A 	 A

J(E/N) J' and	 (EN /N) 3'

are our estimators of the asymptotic covariance matrices of g(0) and g(0 ), respectively.
r 1 rt,

Estimatesoftheasymptoticvariancesofthed 0 4! have been computed and listed in

Table 2. The chi-square method seems impressively much better than the method of least squares for

these estimands.

Corresponding variance estimates for graduated age-specific fertility rates for selected

ages have been listed in Table 3, along with estimates for coefficients of variation. Column 4

shows that chi-square graduation of the "raw" rates can result in a substantial reduction in

variance, by a factor of 2 to 18 in the cases reported here.	 Column 3 shows that there is some

real gain in using the chi-square method rather than least squares for these estimands as well.

For the central ages (in the twenties), the gain is some ten to twenty per cent. In the tails of

the curve, the chi-square method is at least twice as good as least squares, as judged by the

variance estimates. Given the much larger weight placed on the tail ages by the former method than

by the latter, such a pattern is not surprising, of course.

The variance reduction achieved by using least squares estimates rather than the "raw" rates

can be gauged by dividing each of the entries in column 4 by the corresponding entry in column 3.

For most ages, the variance is reduced by a factor of 2 to 12. For age 16 in each of the two cases

reported, however, the estimated asymptotic variance of the least squares estimate of the fertility

rate exceeds that of the "raw" rate (by 15 and 48 per cent for the two curves, respectively). Such

"reversals" occur occasionally at isolated ages in our data sets.

Columns 7 and 8 give similar results for the coefficient of variation.

These numerical estimates show that for this type of fertility curves, the optimality of

the modified minimum chi-square method is of practical importance and is not only of theoretical

interest. This conclusion is substantiated by the rest of our experience with fertility curves.

3 F. The variance estimators introduced above are functions of the chi-square estimator O.
%

We have computed similar variance estimates based on the least squares estimator O. The
%

numerical rebults do not seem to contain much beyond what we report here.
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3 G. 	 The modified minimum chi-square value for the curve of the 13 communes is 41.9, which

corresponds to the upper 1.8 percentage point of the chi-square distribution with 25 (= 29- 4) degrees

of freedom. Most of the chi-square values which we have calculated for curves of regional populations

in Norway are better than this. For the larger communities, the chi-square value is invariably big,

however, and our curve for Oslo is a case in point. (See line 5 of Table 1.) We take this as an

indication of systematic deviations between the observed and the graduated curves. This corresponds

to earlier findings by others in attempts at analytic graduation of mortality rates.

Sometimes, deviations between the observed and the graduated curve are regarded as caused

at least in part by particular historical events of some substantive interest, or as an effect of

cohort differences. In such a case, the graduated curve can still be useful in providing a

"standard" with which the observed curve is compared to bring out systematic deviations more clearly.

We regard this as an important aspect of fertility graduation (and a potentially more realistic one

than the straightforward superposed random fluctuations interpretation), and we plan to discuss it

in a future communication.
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13 communes on the West Coast
of Norway 1968-71 

By min.-X2	 By least
scivares

Oslo, 1968-71

By least
squares

Estimand Min.
statistic

By min. - X 2

1.88 1.93 3.50 3.72

25.23 25.28 24.12 23.62

27.28 27.40 28.44 29.70

32.46 35.53 54.00 83.04

186.1 41.9

2.7 • 10-4
	

42.8. 10
-4

R

0
2

= mode

9
3

= mean

0
4

= variance

X 
2

LSQ

Oslo, 1968-71 13 Norwegian communes, 1968-71

Parameter
Min.-X 2 
graduation' )

Least squares
graduation

(NB: In per cent
of (3).)

Least squares
Min.-X

2	
2)	

graduation
graduation	 (NB: In per cent

of (1).)

ELx
369 178.0 18 900.5

(1) (2) (3) (4)

R 142 117 6 283 122

mode 3 609 132 44 281 166

mean 1 720 186 50 255 182

variance 201 572 216 17 999 297 201

e l
0 =2
0

3
=

0
4

=

9

TABLE 1. ESTIMATES OF BASIC GRADUATION PARAMETERS

' Graduation of fertility curves by means of the Hadwiger function.

Single-year age intervals for ages 16-44. Rates per 1 female, counting live offspring of both sexes.

TABLE 2. ESTIMATED ASYMPTOTIC VARIANCES OF ESTIMATORS OF BASIC GRADUATION PARAMETERS '

)

1) Corresponding to min.-X 2 estimates of Table 1.

2) Multiplied by 10 6 .



	5.87	 150 	 273

	

2.20 	 132 	 210

	

1.26 	 106 	 224

	

0.75 	 106 	 261

	

0.88 	 107 	 292

	

1.33 	 123 	 358

	

2.50 	 150 	 315

	

4.15 	 154 	 440

1968-71

42.76

7.59

4.65

2.77

3.03

3.68

5.99

8.93

197

152

109

108

107

118

134

141

135

199

204

273

320

367

356

396

1 0

TABLE 3. ESTIMATED ASYMPTOTIC VARIANCES AND COEFFICIENTS OF VARIATION
1) 

OF ESTIMATORS OF FERTILITY
RATES FOR SOME SELECTED AGES

Variances 	 Coefficients of variationAge
as
of
Dec.
31

X

A2 A

2Min. -X
a 	 X

N Lx graduation

(1)2) 	 (2)2) 

Least squares
graduation
(NB: In per
cent of (2).)

(3) 3)

(1) in
per cent
of (2)

(4)
3)

Least squares
graduation
(NB: In per
cent of (6).)

(7) 3 )

(5) in
per cent
of (6)

(8) 3)

Min. -X 2
graduation

(5)
4) 	

(6)
4)

16

18

20

24

28

35

40

44

16

18

20

24

28

35

40

44

a. 	 Oslo, 	 1968-71

0.360 0.186 224 194 	 16.01

3.144 0.454 175 692 	 4.63

4.836 0.795 112 608 	 2.83

6.424 1.053 112 610 	 1.95

9.775 1.198 115 816 	 2.56

5.572 0.325 152 1 	 713 	 4.77

1.425 0.117 225 1 215 	 7.88

0.202 0.040 238 501 	 18.26

b. 13 Norwegian communes,

2.206 0.839 390 263 	 57.75

51.202 13.548 231 378 	 15.08

219.575 45.390 119 484 	 9.49

393.465 44.963 117 875 	 7.58

317.285 35.990 116 882 	 9.71

173.826 9.776 138 1 	 778 	 13.48

63.956 5.960 180 1 073 	 21.32

18.703 3.836 203 488 	 35.36

1) Corresponding to the min.-x 2 estimates of Table 1.

2) Multiplied by 10 6 , i.e., corresponding to rates per 1 000 females.

3) Calculated from figures with six effective digits.

4) Multiplied by 100.
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ON THE OPTIMALITY OF MODIFIED MINIMUM

CHI-SQUARE ANALYTIC GRADUATION

by Jan M. Hoem*)

ABSTRACT

It has been shown previously that the modified minimum chi-square method of analytic

graduation of vital rates produces estimators with minimum variance asymptotically as the population

size increases. In the present paper, it is shown that these estimators are similarly optimal

according to a different criterion, viz., one where one sets up a quadratic form of deviations

between the "true" underlying fertility curve and the graduated curve, and seeks to minimize the

mean of the asymptotic distribution of the quadratic form.

1. INTRODUCTION

.LÀ. A number of methods useful for the analytic graduation of vital rates can be found in

the literature. Most of these can be described as moment methods, or as weighted or unweighted least

squares methods, including chi-square methods. Some previous research (Hoem, 1972) has shown that a

modified minimum chi-square method cannot be outdone by any other method readily available in practice,

in the sense that asymptotically as the population size increases the modified minimum chi-square

estimators have minimal variances within the class of estimators considered. This holds for the

estimators of the parameters of the fitting function as well as for the estimators of the function

values (i.e., of the "true" fertility rates at all ages).

1 B. The author has been involved in a project where curves of age-specific fertility rates

have been graduated analytically. (See, e.g., Hoem, 1974.) The diagram of such rates for a population,

based on data for a calendar period, say, will typically look much like a left-skewed unimodal

probability density, such as a gamma density or some of the beta densities (starting just below age 15),

for instance, but with superposed fluctuations. In this connection, the author has had to give some

consideration to arguments which appear to suggest that something must be wrong with a line of

reasoning which results in bringing out a chi-square method as optimal. The modified minimum chi-

square method gives more weight to deviations between the empirical and the fitted fertility rates at

ages where fertility is low than it does to equally large absolute deviations at the ages of high

fertility. This is said to be undesirable on intuitive grounds, as it is more important to get a

good fit at the highly fertile ages than at the tail ends of the fertility curve. Such a fit, so the

argument goes, necessitates the use of unweighted least squares estimates, or even weighted least

squares estimates where the weights at the central fertile ages are larger than in the tails.

*) Discussions with Peter Anderson, Lucien Le Cam, and Herman Chernoff have been helpful.
Erling Berge kindly checked the manuscript.
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The present author believes that a different line of common-sense reasoning can throw some

doubt on this type of argument and even support the modified minimum chi-square method on intuitive

grounds. The point is that this method consists of minimizing the sum of squares of deviations

when the latter are measured in terms of their estimated standard deviations rather than in

"absolute" terms. At the less fertile ages, the standard deviations will tend to be smaller than

at the highly fertile ages (given a reasonably even age distribution in the population), so that

the empirical age-specific fertility rates correspondingly will be more accurate estimators for the

"true" rates at the tails than at the central ages. Not to normalize by the standard deviations

would then be to underestimate the importance of the less fertile ages, so it seems to me. This

argument is not particular to the present application of chi-square methods, of course, nor is it

new with me. Indeed, I have only picked it up on the statistical "grapevine".

1 C. More important to the present author, though, is the fact that I believe that I am

able to reduce the credibility of the counter-argument on a technical basis: The formulation of the

argument suggests that there is something the matter with the criterion according to which the

modified minimum chi-square estimator is optimal. Perhaps one should not focus on minimizing the

asymptotic variances of the estimators, but on some other criterion which measures the fit of the

curve directly rather than possibly indirectly. Such a measure might take the form of a weighted

sum of squares (or, more generally, a quadratic form) of deviations between the "true", underlying

fertility curve which we are trying to estimate on the one hand, and the curve actually fitted to

the raw fertility rates on the other hand.

It turns out that as long as the fitting criterion (or loss function) is of this type, no

moment or (possibly weighted) least squares method can do better in the long run than the modified

minimum chi-square method, in the sense that the loss function has an asymptotic distribution whose

mean is minimized by the latter. On this criterion the modified minimum chi-square method fares at

least as well as even its most obvious contender, viz., the procedure which consists of minimizing

the weighted sum of squares of deviations with weights which are (estimators of) those of the

fitting criterion. On this basis as well, therefore, the modified minimum chi-square procedure

seems to be at least as good as any alternative that has been suggested so far.

Of course, this does not settle once and for all the question of selecting the graduation

procedure. It is quite possible to suggest other criteria according to which modified minimum

chi-square graduation may not be optimal, even asymptotically, and we have not investigated

small-sample properties of any method,	 I do feel, however, that a result like the one mentioned

above reinforces our trust in the usefulness of graduation by means of modified minimum chi-square.

1 D. The purpose of the present paper is to present the results mentioned above. In

order to simplify our presentation, and because they do not generally give satisfactory empirical

fits, moment methods will be left aside in most of the paper. For the sake of completeness,

however, the theory is extended to such methods also in Subsection 3 D.

The problem arose in connection with a study of fertility rates, and our results are

directly relevant to this situation, but they apply similarly to vital rates in general. Our

account will be for the general case,
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2. PREVIOUS RESULTS

2
---- . The "raw" age-specific vital rates in a set of observations will have been calculated

for a number of age groups, which for simplicity we shall take to be the single year age intervals

OL, a+1, (3. Let 5, = a
a
,  denote the vector of "raw" rates, the prime signifying aR

transpose. These rates are to be graduated by means of some sequence of parametric functions

,(2) 	 = 	 fga (2), ..., g (e)}R rk,

that is, one is required to select somevalue Ô of the vector 0 = (0..., 0
r
)' such that k(0rx,A 	 0

fits as well as possible to the "raw" rates in X, We denote the "true" value of 2 by 2 , and
rk,

2 B. We shall suppose that the fitting will be done as follows, Let M be a square matrix

of elements m 	 (x, y = a, a+1, ..., ) which may be random variables. Let
xy

= 	 g(2)/ 	 g(2)},
fAJ

where N denotes the number of individuals under observation, i.e., the number of persons who are

potential contributors to the vital rates. Assume that there exists a value of 0, say ;k6, (A!), which

	

A 	 A
minimizes	 .(2). Then gfO(M)} represents one possible graduation of X.$) 

%

We shall assume that as the population size N increases,	 converges in probability to a

positive definite matrix M and 5; is asymptotically multinormally distributed with mean X ° and
-

some covariance matrix E 
0
/N. Lin empirical studies, we usually take E 	 to be diagonal, but we

rk, A
will not make use of this here.1 Let	 be a consistent estimator of E	 as N 4. Q.. We shall

-1
call 0(E n ) the modified minimum chi-square estimator of 0,

2 C. The following results have been proved by Hoem (1972) under some natural assumptions

which we shall not repeat here, but which we shall assume to hold.

Let

	[ 

a 	 a
757 	 —T(7-ga (2 ) 9 	 9 	 ga(2)r

0let J =n 	J(0 ),
(,)

(2.1)

and

(2.2)

A = (J' M J ) -1 J' M
(\, 	 ,J0 ,0 	 ,\JO r\,0 '

E = AEA'A'
rk,

Then 6(M) is asymptotically multinormally distributed with mean 0 0 and covariance matrix EIN.
(N)

0
	Similarly, g{e(M)} is asymptotically multinormal with mean X	 and (singular) covariance matrix

( 	 fk,

J E JIN.
q)0 	 q,u

0the corresponding value of the underlying "true" vital rates is kC) 
F k(2 ).

a 	 a

® l g
f3 (2)9 .." 	 gf3(2)



0QA(0), say. It seems plausible, however, that it would be a good idea to minimizeW %

03 B. Since the X
x 

are not known, of course, 0 cannot be found by simply minimizing
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2 D. If, in particular, M = E-1 then E is equal to%0 %0

E 	 = (J' E
-1 J ) -1q,0,0 	 %0 %0 %0 	 •

For any M E-E 	 will be positive semidefinite, and so will J, E 	 - J, 	 .
(1)0' 1, %0,0 	 qiu
[This is Theorem 4 in Hoem (1972). Part (iii) of the proof there rests on the fact that E

is of the form given in (2.2), where A is any matrix such that A J = I. Note that the covarianceAJO
matrix given in (7.11) there is also of the same form, so that the proof of Theorem 6 there and part

(iii) of the proof of Theorem 4 are essentially two versions of the same proof.:

3. OPTIMALITY OF MODIFIED MINIMUM CHI-SQUARE GRADUATION ACCORDING TO A LEAST QUADRATIQ FORM CRITERION

3 A. As we mentioned in Subsection 1 C already, we have had to consider an argument to the

effect that the modified minimum chi-square method should be avoided because it gives too much weight

to deviations at ages x where 5,
x 

is mall. The present anthor believes that the discussion in the

Subsection mentioned at least weakens this argument. Nevertheless, let us accept that some people

(perhaps we ourselves) would like to attach weights to the various age groups different from those

implied by the choice of M 	l ,
Let us assume that somebody specifies weights w

a
, w

a+1'q,0
and that he or she claims that one wants to measure how well the graduated values ga (ô), 	 gi(Ô)

fit the true values X o 
' 

..., Xo by calculating
a

o -Q (0) = NEw {X o - g (6)1 2 .
x x x 	 x rb

Let us assume, furthermore, that it is claimed that Ô should be selected in a way such that in the

long run, Q0 ( ) is as small as possible in the mean. Let us permit our "somebody" (who may be

ourselves) to also specify weights wxy to products {X (,)c 	gx (Ô)} 	 - g(0} of discrepancies at

different ages (x i y), so that his or her measure of goodness of fit becomes

Q0 (ê) = NE Ew {X 0 - g(0) fq, - g y (0) = 	 k(Ô)}ye - kQ)},
x y xy x	 x

,-,
where W is the matrix of the w , with w = w . In statistical parlance, we take Q0() to bexy 	 xx 	 x 	 tb
the loss function applicable, and we want to minimize its asymptotic expected value. We shall assume

that V is positive definite.

We shall permit W to possibly depend on the parameters, but in that case, we shall assume

that it can be estimated by some matrix W which converges in probability to W as N -4- . (If

W is known beforehand, as it will be if one takes W = I, for instance, we define W = W .)q,

„
Q14(2) = N 	- g (0)1'w{x	 g (0)},

%	 (1.,

i.e., to use 6(1) as the estimator for 0° . One might believe that this would minimize the asymptotic
0 ^ " 	 ^

mean of Q {0(M)}, in the sense that as N m, the asymptotic mean of Q{0(0} would be smaller
0 -	 --1

than the asymptotic mean of Q,{0(M)} for any positive definite M, and then certainly for M =E
rb0

It may be surprising, then, at least at first sight, to learn that quite on the contrary, the asymp-

totic mean of Q°{6(M)} is minimized by choosing M = 	 .q,
A A

This implies that instead of using OM or any other 0(M), one should use U(2, ) (or someq,0
method with the same asymptotic properties) if one wishes to optimize one's graduation procedure

according to this criterion. Thus, modified minimum chi-square graduation cannot be outdone by any

other method of the given class by this criterion either.
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3 C. The above result is contained in the following theorem.
0Theorem: The asymptotic mean of Q.,{0(M)} equals
W

(3.1) d(E) = tr( k),%

with F =J'W J 
0
 and E as in (2.2). Here0 

d(E, ,) < d(E)
r,v,u

for all such E .

Proof: We note that the asymptotic distribution (as N 4 co) of

1/2 	 - 	 0N 	 {g(0(M)) - X }

is the same as that of

1/2
N 	 J {0(M) -

o } .

-Thus, the asymptotic distribution of Q0 {0(M)} is the same as that of
q,

N{6(M) - e ° }' F 5(M) - 0,

with F = (f ij
	q
) = JNJA . Now, if X is a random vector of the same dimension as F, with mean 0

	

APNA,u 	 %
and covariance matrix T = (T

ij
), then

E(X'FX) = E(E E f 	 = E E f .T	 = tr(FT)
i j 	 1 	 • . 	 i j ij

Therefore, the asymptotic mean of Q°16(M)) equals d(E) = 	 0, with 	 given in (2.2). This
proves (3.1).

Let T be the class of covariance matrices generated by varying M 	 in (2.1). Then 	 - En n
%V Li

is positive semidefinite for all E c T. Therefore.) the left inequality of (3.2) follows from the

following lemma. E
Lemma: Let T be a class of positive definite nxn matrices, and assume that there exists

a positive definite nxn matrix T 	 such that T - TA is positive semidefinite for all T 	 T.
(x)0

Let F be any positive semidefinite nxn matrix, and let d(T) = tr(FT). Then

d(T ) < d(T) 	 for all T c T—

no matter how F is chosen.

Proof of Lemma: Since F is positive semidefinite, there exists an nxn matrix G such

that F = G'G . Then d(T) = tr(G'GT) = tr(GTG') . Since T - T A is positive semidefinite, so is
'AAA,

G(T - T )G' . The trace of a positive semidefinite matrix equals the sum of its latent roots and is
(1)

therefore non-negative. Thus d(T) 	 d(T
0
 ) = tr{G(T-T n)G'} > 0 .

%

3 D. In the account above, we have only discussed analytic graduation methods which consist

of minimizing some quadratic form. A different class of methods is generated by using some kind of

moment method estimator for e . For an account of this class, we refer to Section 7 in Hoem (1972).
%

In our practical work, we have not found the empirical fits provided by moment methods to fertility

curves generally satisfactory and have therefore left them aside so far. By extending T in the

proof of Theorem 1 to contain also the covariance matrices E of the form given for moment methods

(3.2)
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in (7.11) in Hoem (1972), and by using

-
A = (MJ ) 1Mmv,0

instead of (2.1), we can easily extend Theorem 1 to cover this class as well, however.

Even though graduation by the method of moments will frequently be unsatisfactory, such

estimators do have some practical interest. Graduation through minimization of a quadratic form or

through likelihood maximization typically must be done by means of an iterative numerical procedure.

Moment estimators can then provide starting values for the iterations.
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