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Al3STRACT OF TESTING HYPOTHESES IN UNBALANCED VARIANCE COMPONENTS MODELS

FOR TWO-WAY LAYOUTS:

CmIsiderthemodelecluation-Y ijk =P+ a. + ß. + y.. +e. 
j
.
k 

(i = 1, 2, .	 , r;
13	 i

= 1, 2, . • , S; k = 1, 2, . . • ., n..), where pis a constant and a.,
ij

y..
13 

, e..
ijk

 are distributed independently and normally with zero means and

2
variances 0

2
' 
2 

a
AB' G

2
'
 respectively. In this paper procedures for

A 	 B' 
2, 2 	 2, 2 	 2 	 2

testing hypotheses on aA/a , OB / a , and a
AB

/ a are given. The test

2procedure for GAB / a 
2
 is compared with the corresponding test procedures

when a. ß., and y.. are fixed effects instead of being random.
j 	 1 j

Key words and phrases. Testing hypotheses, unbalanced variance components
model, two-way layouts
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1. Introduction

The analysis of variance method of estimating variance components

from balanced data is based on equating mean squares of analyses of variance

to their expected values. Futhermore, expected values of mean squares will

suggest which mean squares are the appropriate denominators for testing

hypotheses concerning the variance components. Searle(1971, pp 411-15).

However, with unbalanced data no uniquely set of sums of squares or quadratic

forms in the observations can be optimally used for estimating variance

components.

In this paper we shall find some exact tests concerning the variance

components in an unbalanced, random two-way layout by modifying an approach

suggested by Graybill and Hultquist (1961), who describe a variance

components model as follows:

A (n x 1) vector of observations Y is assumed to be a linear sum

of k+2 quantities,

k
(1.1) 	 Y = J a + E 	 B..Nn 0	 i=1 N ir‘,1 	 fx,

distributed random variables with mean 0 and covariance matrix a
2 T

fk, 	 i etPi*
(1: denotes a k-dimensional identity matrix and 0 a null matrix).Nk 	 A,

	The vectors, 	...4(\,1' ,	(J0-1 are stochastically indenendent. J 	 a (kx1)

vectorwithallelernentsequalt""n"Trlatrix3. 	 Pi

of known constants.

Some general theorems concerning this model have been derived by

Graybill and Hultquist (1061) under one or both of the following assumptions

(i) A. and A. commute, where A. = B. BI	 (i =	 1,2,...,k)
N1 	 AZ 	 AA- 	 NI N1 	 (j =	 1,2k)

(ii) The matrix B. is such that JÝ E.	 r.Tt 	and B.	 J	 = J
N 	r.	 NPI

where r. is a positive integer.

The assumptions (i) are not satisfied in most unbalanced models.

In this paper we will consider e special case of model (1.1) without

assumptions (i) viz. the common variance components model for a complete

two-way layout. Spjotvoll (1968) has treated the same model in a diffevent

Here t3 0
i

isafixedunknownconstar41) vector of multinormally
N



variables with means 0 and variances a 2 
' 	 'a2 aAB'

2 and a
2 , respectively.A B 

= 1,2,...,r; j = 1,2,...,s. Then-
	 nu

Define irij = (1/n..) 	 yi.0
17) k=1

4

manner. Bush and Anderson (1963) suggest a similar procedure as proposed

in this paper, but they are primarily concerned with estimation.

In section 2 we shall transform our model to a "semi-canonical"

form and find a method for obtaining confidence intervals and testing hypo-

theses concerning the a ? . In section 3 these tests are compared with the

corresponding tests in a fixed effects model. In section 4 the test

statistics are expressed in terms of the original observations. In sections

2-4 we assume that there is at least one observation in each cell. This

assumption is removed in section 5.

2. Modification of the model of ClEabILLEILLIESHilE

We consider the following model:

(2.1) 	 yijk = p + ai + Oi + yij + eijk ;

1.1 is a constant,

while a. $., y 	 and ei are independent normally distributed random1 , 	ij '

(2.2)Y
	

:: II 	 .i- a. + y..lj	 3 	 13lj )

nij
with ;ij 	ii	

k1
e(1/n) 	 E 	 .i3k

For any set of variables a.. (i

=

= 1,2,...,r; j = 1,2,..., ․ ), let a
be the vector (a ll , al2,..., a

ls
, a

21'
...,a

rs
)'. 	 Then with this ordering

-16 is multivariate normally distributed with mean 0 and covariance matrix

= K a
2

, 	 whereA) 	 (1J%
-1 -1(2.3) 	 K = Diag (n11 n12' • • •

-1
n ).
rs

Formula (2.2) may be written in matrix form as

(2.4) -

	

= 
J 	+B

	(b	 + 112 + 3 	 %rs 	 %1
%

E.4; 	• • • 	 s]with B = Diag (J 	 ) B' =
rbs' 	 rbs ' fb2
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anaB .7. INrs' which is of the same form as (1.1). The covariance matrix forN3 -
x turns out as

E G) 	B Bi a2 + B B1 a
2 
+ I a

2 
+ K a

2
.,‘,1 4,1 	 A 	 ,.‘,2 ik,2 B 	 rurs AB 	 qj

As B B 	 and B B' commute,it follows that there exists an
2fb2

orthogonal matrix k, with the property that p A l p i and p A2 p' are diagonal

matrices with the eigenvalues on the diagonal (Herbach, 1959). k may be
chosen so that the first row in P is (rs) 2 (1,1,...,1). (A = B B'.

N1
A = B B').
%2 	 rk, 2 	 2

If Z.T. P ir", the ,xmariance matrix for Z is
fk, 	 N N 	 N

N

2
E (Z) := P A P' a + P A P' 	 a

2 
+ I 	 a

2 
+ P K Pt a

2

N 	 N1 N A N '2' 	B Nrs AB N

Lemma 1: (i) Rank CP ) r;

(ii) Rank (k2 ) 	 s;

(iii)Rank (Bip,) 	 r + s -1;',1,' 2	7
(iv) Rank (A + A )..:.. rank (B '13 ).

(J1 	 N2

Proof: (i), (ii), and (iii) are seen from (2.4). (iv) follows from

the proof of Graybill and Hultquist's (1961) theorem 1. El

From the fact that rank (A ) rank (B ) r and because A has the
N1

eigenvalues s of multiplicity r and 0 of multiplicity (rs r) 	 r(s -1), it

follows that P A, P' has r diagonal elements all equal to s and the rest equal
"J fkl

to O. In the same way it is seen that P A P' has s diagonal elements all
f\J q, 2

equal to r and the other elements equal to O.

From (iii) and (iv) it is seen that the matrix (P A, P' + P A,P) has
N 	 N rti4N

(r + s 1) diagonal elements different from zero. Thus when the diagonal

element in P A PI is different from zero, the corresponding element in P A PI
A, N1 N 	 N N2 N

is equal to zero except in one place (in the first row).

We now partition Z in the following way:

(i)(rs) 3 171) ..., which is the first element in Z.

(ii) Z. consists of the (1, - 1) elements in Z whose covariance matrix is
NA
independent of

(iii) Z consists of the (s - 1) elements in Z whose covariance matrixNB
2

is independent of aA
•

(iv)consists of the (r - 1)(s - 1) elements in Z whose covariance
- 2 	 2

matrix is independent of a
A and aB.
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Lemma  : EZ = EZ = EZ = O.NA 	 NB 	 NAB

Proof: 	 This follows from the fact that P is orthogonal with a first

row which is (1-'0 -1 (1 ) ...,1). ED

We have

E (ZA ) = s I 	 a
2 + I 	 a2 + K a2r-1 A 	 r-1 AB ,1elr

(2.5)

E (Z ) = r I 	 a2 + I 	 a 2 	 + K
 e

2 ,qis-1 B 	 s-1 AB 	 1,2

2 	 2and 	E (Z ) = I
	AAB	 ,N,(r-1)(s-1) eAB 	 k`,3 e •

Here K1 ' K and K3 are the corresponding submatrices of P K P'.	N 	,1 ,2 	 qi A, N

In what follows , 7,7, and(utta

A
2 , 2

concerning ng u /a
2 

' a
2

B
2la , and aAB/a

will be ugod for testing hypotheses

2 	 22.a Test for a /aAB     

E CZ ) may be written as (I, 	 A 	 K )a2 where A = a2 /a2
q, (IA 	 Nkr-1)(s-1) AB 	 N3 	 ' 	 AB 	 AB 	 •

Then

7 	 (T 	,-1	 , 2(2.6)
- 	 'AB / a2 = kA 	 3

) /B ‘t(r-1)(s-1) AAB 
+ K a

has a x
2
-distribution with (r-1)(s-1) degrees of freedom. There exists an

orthogonal matrix A such that A K A' = D is a diagonal matrix. Introduce
N 	 N 3 N

	= A ZThe covariance matrix for Zx is (Z ( 	A + D ) andAB 	 N 'AB ° 	 q,AB 	 r 1)(s-1) AB 	 4,1

Z' (I 	 A 	 + K) -1 Z 	 = r7xl (I 	 A 	 D )l m+,,AB ,x,(r-1)(s-1) AB 	 ,v3 	 N(r-1)(s-1) AB 	 ,1,1 	 NAB

(r-1)(s-1)
E 	 (ZxjAB )2/(AAB 	 j+ d.).

Here d1
'°'''d(r-1)(s-1)

 are the diagonal elements of D] : We see that QAB la
2

As 

Define Q = z 	
13- - y

ij. ) 2 . Then Q/a - has a X
2 
distributionwith

i,j,k 
(n-rs) degrees of freedom. Q is stochastically independent of Q A,. Thus

F(AAB ) = (n-rs) QABgr-1)(s-1) Q has an F-distribution. Since QAB
/a 2 decreases

with AAB' F(AAB) decreases with AAB . Hence a confidence interval can be obtained

in the usual way.

i=1

is a decreasing function of AAB'
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When testing the hypothesis

A 	<
n 	 against AAB 	 0 	 AB 

we reject when F(
0

A ) is larger than the upper a-quantile, fl_a , of the corre-

sponding F-distribution. The power function is

n
0(A )

AB 	 P{(n-rs) 	 E 	 Z\ß /(o 	 2.L + d.)
i=1

/ [(r-1)(s-1) Q)] > 

n
.7.: 	

AB
P{(n 	

111.--:i
-rs) 	 E (ll 	 + d.) R../(A + di) /[(r-1)(s-1):1 > fl_al )

. , 	 1 	 1 	 0

where 
R1,...,R(r-1)(s-1) 

are independent x
2
-distributed random variables

with 1 degree of freedom. (3. (AAB) increases with A
AB .

 The test is unbiased,

size a , but with no established optimality properties.

2.b. Test for c 2/ 2 	a 
B

When	 a
AB 

= 0 the covariance matrix for ri- AB*.} is equal to
,A

	is. I, ,, 	 K„A 	 N;r-1) r‘, Jr)- N
a

I2=
0 A + 	 K a

2
,0 	 K' 	 ,

rtJ 	 N4 No

	where E{Z 21' } r. K ° 1 ilfr-1) 	 is positive semi-definite, and 	 1 1.;Li. is
NA NAB 	 N4 	 '0 	 ol K K

$1, 	 rtjj 	11,L  N3
positive definite, so we can find a non-singular matrix H such that

H til 64 H' 7: Ic. and H s Z (r-1) R, H/ ..: X :1. diag{ÄN - 	'''''À-'qi K K 	 q., 	 N 	
0 	 0 N 	

, 	 rl
N4 N3 	 q, 	 q,

) -1 U /a2NA 	 . If A 	 a2/a Q2 la2 =CPCXA
A 	 A 	A	 1.,A 	 A 	 N(r1)

NAB

Define U = Y,A =
'1) 	 UNAB

has a X 2-distribution with (r-1) degrees of freedom, and Qm =U?AB 11B
2

has a X -distribution with (r-1)(s-1) degrees of freedom. Q
A 

Q
AB

(r-1)(s-1)

and Q are

stochastically independent.

To test the hypothesis L
A

- A against A
A > 0'

A we reject when
0 

(2.7) 	 G(AA) 	 QAf(n-rs) + (r-1)(s-1)1/(4 + QAB)(r-1)

is larger than the upper a-quantile, f, , of the corresponding F-distribution.1-a
This test is not the same as the test given by Spjotvoll (1968).
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In the same way as above it may be proved that the test is unbiased.
2, 2A corresponding test exists concerning

3. Comparison with corresponding tests in fixed effects models

A two-way layout in fixed effects models may be described as

e..,
	ljK	 1 	 17) 	 1jK

i = 1,2,...,r; i = 1,2,...,s; k = 1,2,..., 	 where 1.1 a 	 , and yij 
arenil, 	

5 i'
unknown constants such that

(3.1) 	 E a. 	 E 	 = 	 y.. = 0,. 	 3
"

and the

n a
2

.

e
ijk 

have a joint normal distribution with mean 0 and covariance matrix

The null hypothesis y.. = 0 (i = 1,2,...,r; j = = 1,2,..., ․ ) is tested
2

1

by minimizing the sum of squares 	 = E 	
'` 
	 under

i,j,k iJ 	 33

the null hypothesis and under the a priori specificatiens. Let the two minima of

Q be Q
w 
and Q

Q ,
 respectively. The null hypothesis is rejected when

(3 . 2 ) 	 - QQ )(n-rs)/R1 (r-1)(s-1)

is larger than the upper a-quantile f
1-a 

of the corresponding F-distribution.

The reader is refered to Scheffé (1959).

We will prove that the quantity in (3.2) is equal to the test-statistic

F(0) in section 2a.

If as in section 2 we introduce y, we have that
f‘,

(3.3) 	=P	 k3AX 	 Tirs(1, 	Ts
(1,

The only difference from the random effects model (2.4) is that a., (3 , and

	

i 	 j
here are fixed constants with the side conditions (3.1).Yij
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(3.3) may be written on the form

* * 	 -
(3.4) 	 = (J B, A

%
, 

2
B B, 	

*
C)(11, a , B 	 ) • 

rk,% 	 %

where * 
= (a

1
0 ...,a

r-1
) t .9	 =

= (Y 11	 (r_1)(s_1), and A, B, and C are defined such that
N 	 elr

(a
1
0
2r

) . A
(r x (r-1)) a*

rk,

(4 a 	..	 ö \ I . B (s x (s-1)),*
1"2' 	• ' P s' 	 k ,

I (rs x (r-1) (s-1) *
(y

11'
...,y

rs
) 	 = 	 C' •

(It is possibel to write (3.3) in several other ways. This will lead to

formally different k, 	 and (Ç, matrices, and formally different a
*
, k* and

* 
in (3.4) and (3.5)).

Denote B,A=	
'

B,B =W C=W and (J B A BB, C)= W. Then%I 	 rk,z- %z% 	 rk,3 , (1, 	 4,	 (b' 	 rk, 	 %2Ék, 	rk,

377 = 	 at, 	 e)1 	 e(3.5) 	 •
(rLj

Define V = 	 then

(3.6) 	 V = K W (11, .a* P.* 9 y*)' +rJ 	 e
*

r,, 	 „j r‘„	 rk,

where e* 
is normally distributed with mean 0 and covariance matrix I e 2 .%rs

We have that

(3.7)	 Q 1=. ,3,k ijk(y	 - Y. )

2 
+ (V - EV)' (V - EV).

ij

Define Q =(V - EVY(V - EX), and let Q and Qp0 denote thep 	 rb 	 % 	 (AJ 	 Pw
minima of Q under the null hypothesis and under the a priori specifications,

P
respectively. Then it follows that Qw - Q, = Q - Q ,.

	

46 	 Pw 	 Fq6

and
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From the general theory for linear models is known that

AI ( E ,-1.*
(3.8)

Pw 	
Q
pO 

= 	 (
%4

)

where 	 is the least squares estimate of
*
, and E 	 the covariance

matrix for 	 The least squares estimate of (p, 	 *)' is

* * * (p , 	 k 	), = (147A 	2v)	 vl..fbari 2y = ,114T,

The reader is refered to Searle (1971; p 120).

To prove that a
-2 

(Q - Q) = QAB when AAB = 0, where 
QAB isPw 	 PO 

defined as in section 2, we introduce the transformation k, where p is
the orthogonal matrix with which the cell mean values were transformed in

the random effect model. The following lemma is usefull.

Lemma 3. Partition P into submatrices corresponding to the partitioning of W,

P
 . 1.7.(1 x rs)' p ((r-1) x rs)' 	 p ((s-1) x rs)' p ((r-1)(s-1) x rs)]
% 	

,

LN,1 	 rb2 	 (\J ,

For any choice of W we have that

(i) The rows of P
2
 are orthogonal to the columns of W

rb 	 (1,3*

(ii) The rows of P are orthogonal to the columns of W
q.,2*

(iii) The rows of P are orthogonal to the columns of W and
(AA	 r\-,2

r1.13

Proof:

From the results in section 2 we have that P B B' P' = 0, then
%2 (b2 4,2 fb2 	 %

P B = 0, and thus P W = 0 because W = B B. The rest of the lemma now
'1,2 rb2 	 % 	 rb2 %3 	 % 	 '‘,3 	 %2 %
follows by treating P and P in a similar way. E]

From lemma 3 and from the facts that ki 	= pi 	= pl 	= Q it

follows that P W
, 

has the form
rk

klrs 2 	 2 	 (,)

(3. 9 ) 	 PW =
(r?, 	

P W
22

P W
%2

3

0 0 	o 	P W
rb4 "04



=(P w)-1
% 	 (1, rtj

Now	 is the (r-1)(s-1) lower elements of W
-IA* 

From (3.9) it follows that (k W) -1 is a triangular matrix with zeroes to the

left of the diagonal from which follows that

A*	 -1=(P W) P v
n j 	r\4%4 	(\)4

From (3.9) it also follows that the covariance matrix for E , is
' 	 4r‘,

4
E = ( AP W ) -1 (p Y P

1 )
4
 (P

4
 W )

-1	
4

where (p K P ), is the
r\, 	A	 AA 	 t‘; rb  	'

(r-1)(s-1)x(r-1)(s-1) submatrix in the lower right hand corner of P K P in

section 2.

(3.8) may then be written in the form

-	 -1	 -1 -
k4 (4 W4) ' 1 (P W )' (P K P ') (P W )(P W) P 	

2
yo

(IA (IA 	 % % A, 4 ral. %4 qi4

, -1	 -
= 	 ,P,;4 (k 	 1,), ) 4 k4 z

2
CY

This quadratic form is independent of W, a
*

,
*
, and y 	 and is equal to

	% 	 r‘, 	 r\,

	AB in 	AB	 A
(2.6) when AAB = 0, because Z 	 = P 	 and K3 = (k k') 4 .Q 	% 	 'I

4 . The test statistics exorcssed by_thc original observations

Lemma 4: With the choice of

kii

	,V made in section 3, the least squares
, 	 m ,x x 	 A 	 Alt 	 1-7,3t i 	 restimates for 	 , 	 :.	 k , i. ,Y )*

, 
are 1.1 = y...,{a.}={y. - 	 iy 	 J, 11) J :: Ly o j o - Y ... 1 2

and {y1 .x} = {y.. - 	
j

y 	 -y 	 +yl, (i ::: 1,2,...,r-1;j=

	

3 	 13. 	 i.. 	 .. 	 ...
A 	 Amm 	 Am

Proof: If we insert p, {0.}, 	 and {y 1 for p, { . },{f3.1
ij-

and{y1 .} in (3.7) Q reduces to 	 2; 	 Cy.. 	 y.. ) 2 	EI
	±,j,k "k 	 " 	 •

When testing the null hypothesis- 0 againstAAB 	 AAB> 0, we reject when
4.}0 -1x

(41-1) 	 (Tv-rs) Y 	 (E 4 ) 	 y / E 	 - . )2 (r-1)(s-1)q, 	 q,
t. 	 % i;jk (YijkY ij., 
is larger than the ulyper , a-quantile of the corresponding F-distribution. This

test is the same as the one suggested by Spjotvoll (1968).

It should be noted that the test statistic reduces to the usual one

when the model is balanced..
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5. Empty cells 

In section 1-4 we have assumed that there is at least one

observation pr. cell. In this section we shall remove this assumption. We

shall show that the results in sections 2a and 3 are not affected by empty

cells (except that the number of degrees of freedom has to be adjusted),

while the test given in 2b has to be modifyed.

As in section 2 we define Y = 	
Y

E .. for all cells withii 	
ijk

n.. 	 O. Then we have that
ij

(5.1) 	= 4, (rs-p) 11 ql 	 q2 	 q3 	 -4* k
(1,

where p is the number of empty cells. (5.1) is of the same form as (2.4),

but C C' (i = 1, 2) do not commute as did B. B. in section 2. We still	%i %i 	 %1r)1
have that

(i) rank (C i ) = r
%

(ii) rank (C ) = s

(iii) rank 1 	r+s-1
(q q2 ) =

(iv) rank (D + D ) =1	 rank (
1

C I
2

C )%	 %2	 r\-, %

where D. = C. C.' (i = 1,2).
	(kJi.	 rt)]..

Instead of applying the transformation P as in section 2, we now

apply the matrix of contrast vectors, C, suggested by Bush and Anderson (1963).

Define z = 	 . Then

(5.3) EZ -=CD C
, 

a
2 
+CD C

1
 a

2 
+CC a

2 
+CKC' a

(‚J ('J 	 (A. % 	 A 	 % %2 % 	 B 	\\i 	AB
2

As in section 2 	 may be partitioned such that

2 	 2
(i) Z

1
 has a variance dependent of a2A! 	 '

a 	 G B and a
2

B 	 •

(ii) Z
A
 consists of the (r-1) elements whose covariance matrix is%

2
independent of a

B •

(iii) B 
consists of the (s-1) elements whose covariance matrix is

%
2

independent of a
A 

.

(iv) Z
AB
 consists of the ((r-1)(s-1) -p ) elements whose covariance%

2
matrix is independent of a

2 
and a

B 
.

A
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The only difference from section 2 is that q D. q' (i = 1,2) is not
diagonal like in section 2.

The covariance matrix of z 	 is of the form

n 2
E 

2 
= 	 + E) a

2
KAB = k GAB+a
	 (D A
 % AB

where D and E are matrices of known constants.% 	 (k,

In the same way as in section 2 it is seen that

-

F(A ) = Z	 (D A	 + E)
1 Z (n	 (rs-p))/ Q ((r-1)(s-1) - p)AB	 AB % AB %	 %AB

has a F-distribution. When testing the hypothesis AAB s Ao against

AAB AO we reject when F(A
0
 ) is larger than the upper a-quantile,

of the corresponding f-distribution.

For A
0
 = 0 this test is the same as the corresponding test in a fixed

effects model, which is seen by applying C instead of Pr‘, in the(\,

discussion in section 3.

The covariance matrix of Z can be written
%A

EZ=1,
r 

a
2
+Fa 2- =

I-% A 	 %
2 	

a 
2

A +A 	T‘',J

where L and E are matrices of known constants.(\,

2
Then Z .;i, (k, AA + F) 	 ZA/ a

2 
has a x

2
-distribution and is independent of Q.

When testing the hypothesis A
A 

A
O 
against AA. > A0 we reject when

K(A0) is larger than the upper a-quantile, f l_a , of the corresponding

F-distribution, where

	K (Ao ) = z' (k Ao 	0 -1 KA (n - (rs 	 p))/ Q (r-l) •

It should be noted that this test is not the same as the test given

in section 2b.

If nij := lm for all non-empty cells it is possible to test

	

2	 2	 2	 2	 2
hypotheses concerning GAI a and a B/ a without assuming G

AB 
= 0 because

2the factors of a
AB and a

2 
are proportional matrices in (5.3).

The tests suggested in this section are the same as the tests

suggested by Spjotvo11 (1968).
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