


ABSTRACT OF TESTING HYPOTHESES IN UNBALANCED VARIANCE COMPONENTS MODELS
FOR TWO-WAY LAYOUTS:

Consider the model equation Vi = wt oo, ¥ Bj +y i1=1, 2, «...p 13

.. te.
1] %Jk
j =1, 2, ¢eeey, 85 k=1, 2, cc.., nij)’ where yis a constant and oy, Bj,

Yoo eijk are distributed independently and normally with zero means and

1]
variances cz, og, oAé, 02, respectively. In this paper procedures for
2 2/ 02 are given. The test

2 2
, oB/ ¢, and o,

testing hypotheses on oi/o

procedure for OAE/ 02 is compared with the corresponding test procedures

when a;s Bj, and Yij are fixed effects instead of being random.
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1. Introduction

The analysis of variance method of estimating variance components
from balanced data is based on equating mean squares of analyses of variance
to their expected values. Futhermore, expected values of mean squares will
suggest which mean squares are the appropriate denominators for testing
hypotheses concerning the variance components. Searle(1971, pp 411-15) .
However, with unbalanced data no uniquely set of sums of squares or quadratic
forms in the observations can be optimally used for estimating variance
components.

In this paper we shall find some exact tests concerning the variance
components in an unbalanced, random two-way layout by modifying an approach
suggested by Graybill and Hultquist (1961), who describe a variance
components model as follows:

A (n x 1) vector of observations Y is assumed to be a linear sum

of k+2 quantities,

(1.1) "{ =z gnso + *21 Eiﬁi + §k+l°

Here B, is a fixed unknown constant. gi is a (piXI) vactor cf multinormally

. . . . . . 2
distributed random variables with mean 2 and covariance matrix ai %p.-
i

(I, denotes a k-dimensional identity matrix and 0 a null matrix).

The vectors §1’§2""’£k+1 are stochastically independent. J, is a (k*1)

nk
vector with all elements equal to 1. B; (i =1,2,0.0,k) a (n*pi) matrix

of known constants.

Scme general theorems concerning this model have been derived by

Graybill and Hultquist (1961) under cne or both of the following assumptions

(i) Qi and Qj commute, where ﬁi = Ei Ei (i-= i,i,...,k)

G

(ii) The matrix B. is such that J' BR. = pr.J°¢ and B. J_ =
ad A Dl iV v, Al Ap

where ry is a positive integer.

The assumptions (i) are not satisfied in most unbalanced models.
In this paper we will consider a special case of model (1.1) without
assumptions(i), viz. the common variance components model for a complete

two-way layout. Spjotvcll (1968) has treated the same model in a different



manner. Bush and Anderson (1963) suggest a similar procedure as proposed
in this paper, but they are primarily concerned with estimation.

In section 2 we shall transform our model to a "semi-canonical"
form and find a method for obtaining confidence intervals and testing hypo-
theses concerning the oi. In section 3 these tests are compared with the
corresponding tests in a fixed effects model. In section 4 the test
statistics are expressed in terms of the original observations. In sections
2-4 we assume that there is at least one observation in each cell. This

assumption is removed in section 5.

2. HModification of the model of Graybill and Hultquist

We consider the following model:

(2.1) = u+ o, + B, t+ y.. toe.

Yidk A B E T IR F T
i=21,2,e00,r3 3 =1,2,...,8, and k = 1’2""’nij' Here ¥ is a ccnstant,

while ai’ B > Y::s 2n¢ e, are independent normally distributed random

ij ijk

variables with means 0 and variances di, og, OiB’ and 02, respectively.
nij
Define y = (1/n..) 1 Yiss 32 1,2,000,05 3 = 1,2,.00,s. Then
13 k=1 3¢
(2.2) yij =Mt 4 Bj + Yij + eij}
h = (1/ ) P
wit e 1 n, I e;.,.
k=1 ijk |
For any set of variables a.j (1 =1,2,000,r3 j =1,2,...,8), let a
t . '. i i Y
be the vector (all’ 12° s ls ?1,...,a ) Then with this ordering
é is multivariate normally dlstrlbuted with mean 0 and covariance matrix
N
z (g) =K 02, where
n
-1
(2.3) = Diag (n,l, nl2""’ nrs)'

Fermula (2.2) may be written in matrix form as

v=2J
(2.4) % Jeg W F %1 o + %2% +‘B3% +

o, L . | B .
with %1 = Diag (gs,...,%s), ?,2 = E]vls,...,Is]



and B N3 = %r » which is of the same form as (1.1). The covariance matrix for
x turns out as

b (§) = B B! 2 + B ¢ 2 2 2
N x R Op B 22 g + I s %ap T 5 o .

As BlBl and B232 commute, it follows that there exists an

orthogonal matrix P with the property that P A1 P' and P A P' are diagonal

matrices with the eigenvalues on the diagonal (Herbach, 1959). P may be

N2 N
5
chosen so that the first row in R is (ré)_%(l,l,...,l). (Q

= .
1 %1 %1’
o \}
%2 - %2 %2)°
IfZ=7P i, the covariance matrix for Z is
n n N
N
2 2 2 2
P 9 P! .
E@ERME ot R ptlsomtEKEC

Lemma 1: (i) Rank (%l
(ii) Rank (@2)
s s 9 = -1
(iii) Rank (21352) =y + 5 -1 :
s ~ = ! .
(iv) Rank (él + ég) rank (31432)

rs

S35

Proof: (i), (ii), and (iii) are seen from (2.4). (iv) follcws from

the proof of Gravbill and Hultquist's (1961) theorem 1. [_]

From the fact that renk (A,) = rank (B.) = r and because A, has the
’\Jl f\,l r\,l

eigenvalues s of multiplicity r and 0 of multiplicity (rs - r) = r(s -1), it
follows that E él P' has r diagonal elements ail equal to s and the rest equal
v

to 0. In the same way it is seen that P éz g' has s diagcnal elements all

equal to r and the other elements equal to C.
From (iii) and (iv) it is seen that the matrix (P Ay P' + P n2P') has
N ot A N neny
(r + s - 1) diagenal elements different from zero. Thus when the diagonal

element in P PA A P’ is different from zero, the corresponding element in P A2 N'

is equal to zero e\cent in one place (in the first row).
We now partition Z in the rollow1ng way: _
(1) z, (rs)% y +-., which is the first element in Z.
(ii) %A consists of the (r -~ 1) elements in % whose covariance matrix is
independent of Ug. _
(iii) %B consists of the (5 - 1) elements in % whose covariance matrix
is independent of oi.
(iv) %AB consists of the (r - 1)(s - 1) elements in % whose covariance

- 2]
matrix is independent of Gi and og.



Le H 4 = =
mma 2 ENA E%B EAB 0.

Proof: ThlS follows from the fact that P is orthogonal with a first
row which is (rs) %(1 cees). ]

We have
2 2 2
L (Z)) =
P@) s oyt optk e,
(2.5)
2 2 2
z =
L Eg) mr I st I *K O
2 2
d I (z =
an L Cap) = Ir-1)(s-1) %2 * Ko O
Here Kl, 5 and K3 are the corresponding submatrices of P K P'.
) 4] 4Y) L VIR VN V)
In wba't fellows, Z., Z, and Z . will be used for testing hypotheses
5 VA? B 5 AB
concerning 3 /c s cB/c , and AB/U .

2.a Test for c /c

2 2 2
z ) : .
x (zAB} may be written as (I(r—l)(s l) 53)0 , where AAB oAB/o
Then
-1
= 1
(2.6) QAB/° aB (r-1) (s-1) 2ap * K3) mAB/O

2 . . . . .
has a X -distribution with (r-1)(s-1) degrees of freedom. There exists an

orthogenal matrix Q such that Q K, A' = D, is a diagonal matrix. Introduce

A3 A ~l
¥ o . . 2
%AB = é %AB' The covariance matrix for 2.8 is (I(r 1)(s-1) AB + D ) and
7' (1 + Ky y~L =721 +Dp) 1o
nAB A (r-1)(s-1) Aam mAB NAB A(r-1)(s-1) AsB NAB
(r-1)(s-1) u 5
= jzl (Z jAB) /(AAB + dj).

. | 2
Here dl""’d(r—l)(s—l) are the diagonal elements of Ri' We see that QAB/O
is a decreasing function of AﬁB‘
: 2 2
Define Q = I (y. yij )2. Then Q/c” has a X =-distribution with

i,3,k ) ‘
(n-rs) degrees of freedom. Q is stochastically independent of QAB' Thus
. : 2
F(AAB) = (n-rs) Qup/(r-1)(s-1) Q has an F-distribution. Since Qp/0” decreases
- A .

with 4,0, F(A,5) decreases with 4

in the usual way.

ijk

Hence a confidence interval can be obtained

AB.



When testing the hypothesi

<
A = L, against A

AB B~ oo

we reject when F(AO) is larger than the upper c-quantile, f,_ ., of the corre-

sponding F-distribution. The power function is

n
B(L,yp) = P{(n-rs) ['Zl 72 /by dﬂ/ [(r-1)(s-1) Q)] > fl_a}
1=

n
= P{(n-rs) [;51 (2,5 + dp) Ry/(B + di{]/[(r~l)(s-l)1 > £ b,

where Rl,... are independent xz—distributed random variables

Rr-1) (s-1)

with 1 degree of freedom. B (AAB) increases with A The test is unbiased,

AB®
size o , but with no established optimality properties.

2 2
2.b. Test £ “/s” umi =
b. Test for gA/g assuming ¢, 0

Z
When onR = 0 the covariance matrix for ; is equal to
~AB
s I K, K
mA "u(l’.‘"l) r?, 2 r\,l .\,4 2
bX = a, + : o
Z 0 of A K" K, ?
v (~AB n N N RN
: o p 0 . s . . K, X 1.
where E{Z, Z' } = K . {r-1) ~| is positive semi-definite, and Jal At | is
'\/A ’VAB r\,u
0 0 K. K
~ n Al A3
positive definite, so we can find a non-singular matrix H such that
oKy Kyl we = T, and H)S A(r-1) S\ v = 2 = diag{, yeeesr oy Oyeea,0}e
VI G n N oy n 1 r-1°
K, K 0 0
¥ PG ~ N

%A . If A
Nap Zan

s e . - _ ‘ Koo
has a X2 distribution with (r-1) degrecs of freedom, and Qg EAB i(r-l)(s-l) EAB
has a X -distribution with (r-1)(s-1) degrees of freedom. Qq, QjB and Q are

Define U = RA
Qv

"
o

2.2 o -1 2
0,/0%,Q /0" = U3 (a8, + I 1)) " Uy/o

/02

stochastically independent.

To test the hypothesis AA a against AA > AO,-we reject when

0

(2.7)  &(4,) = q,{(a-rs) + (r-1)(s~1)}/(Q + Q,)(r-1)

is larger than the upper o-quantile, fl

This test is not the same as the test given by Spj¢tvoll (1968).

- of the corresponding F-distribution,



In the same way as above it may be proved that the test is unbiased.

. : . . 2,2
A corresponding test exists concerning oB/o .

3. Comparison with corresponding tests in fixed effects models

A two-way layout in fixed effects models may be described as

e T M+ O+ B, Y., t e, s
yljk 3 3 i3 iik?

i = 2,000,503 7 = 290 0s S5 = 2,.4.,0.., Where a,, B., and v.. are
l 15 ® ’rﬁ :' 15?9 .SS k 19 H) b lj’ f s u’ 19 JS Yl:]
unknown constants such that

(3.1) La, = ZB,=Lvy,,=Ly,, =0,
P S B & B
and the eijk have a joint normal distribution with mean 0 and covariance matrix
2 %
I_o°,
AN
The null hypothesis Yig = 0 (i=1,2,00esr3 J ==1,2,...,8) is tested
2
= I (y,o -u=-a -B. - v.) und
by minimizing the sum of squares Q (yi]k L Bj 13) under

1,3,k
the null hypothesis and under the a priori specificaticns. Let the two minima of

Q be Qw and QQ, respectively. The null hypothesis is rejected when
(3.2)  (Q, - Q) (n-rs)/Q,(r-1)(s-1)

is larger than the upper a-quantile f of the corresponding F-distribution.

1-a
The reader is refered to Scheffé& (1959).

We will prove that the quantity in (3.2) is equal to the test-statistic
F(Q) in section 2a.

If as in section 2 we introduce y, we have that
v

N

(3.3) /%'_"f{rs u+%l%+1\3;2§+']\:;rsx+g e
v n

The only difference from the random effects model (2.4) is that a,, Bj, and

Yij here are fixed constants with the side conditions (3.1).



(3.3) may be written on the form

- % * %,
(3.4) X = (%s %1 l,é9 ,%2,}\3}9 ,%)(U, ST Q s X ) o+

e ’

e
X
"

b *
where @ = (al,az,...,ar_l)'; g = (81,82,...,88_1)
b ' 3
= e e t
X (Yll’ ’Y(r-l)(s-l)) , and ﬁ, %f and E are defined such tha

(al,az,...,ur)' _ At x (1) x

v N
(By58ysererp )’ = BSF T ang
v (rs x (r-1) (s-1) %
(Yll"”’yrs) = ¢ X

(It is possibel to write (3.3) in several other ways. This will lead to
formally different A, B, and C matrices, and formally different %x, Qx and
Y in (3.4) and (3.5)).

Denote By A = HZ’ QZQ = HB’ ¢ = W4’ and (J, %1 A, B,B, g)= W. Then

- x * x ! -
(3.5 ¥ =R0s a5 87 XD *e

N n
Define V= 5— i, then

Y
4 * x  x %

(306) ,\VJ",\KJ X)’I (1"{1’ -(’)‘b’ E ’ Y'\,) +§ ’

. S . . . . . 2
where e~ is normally distributed with mean Q and covariance matrix %rso .

We have that
2

0 =, I -3 - ! -
3.7 =t m ¥ @ ED (- D,

. _ - [ -
Define Qp = (X EX) (X EX), and let pr and QpQ denote the
minima of Qp under the null hypothesis and under the a priori specifications,

respectively. Then it follows that Qw - QQ = pr - QPQ'



10
From the general theory for linear models is known that

- = X1
(3.8) Q- Qo =y (4)

o . b . .
where Y™ is the least squares estimate of X s and %4 is the covariance

. A% . b4 * .
matrix for y”. The least squares estimate of (u, g*, g7, x)' is

(u,a Q 1) = (WK
The reader is refered to Searle (1971; p 120).

._2 .
To prove that o (pr QPQ) = QAB when AAB = 0, where QAB is
defined as in section 2, we introduce the transformation P, where P is

the orthogonal matrix with which the cell mean values were transformed in

the random effect model. The following lemma is usefull.

Lemma 3. Partition P into submatrices corresponding to the partitioning of W,

P = P(l x rs)' ((r 1) x rs)' ((s 1) x rs)' ((r 1) (s-1) x rs)t]

N A1 ’ f\,2 ’ m3 ? ,\,4

For any choice of W we have that

(i) The rows of RZ are orthogonal to the columns of HB'
(ii) The rows of 23 are orthogonal to the columns of @2.
(iii) The rows of 54 are orthogonal to the columns of HZ and
-
Proof:
From the results in section 2 we have that Py B2 B2 Pé = 0, then
RZ %2 O and thus P2 W3 Q because H3 = %2 . The rest of the lemma now

follows by treating P

P3 and 24 in a similar way. [:]

From lemma 3 and from the facts that R

follows that R H has the form

.
Rl {rs Q Q Q )
P P
(3.9) Y = ﬁ Q a2 k{z Q N2 5@4&
Q Y ks ¥3 R3 ¥,
L2 Y 9 Ro ¥y
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a - -1 -
Now xx is the (r-1)(s-1) lower elements of ¥ 1 =W 7P % .
n

From (3.9) it follows that ® Q)_l is a triangular matrix with zeroes to the

left of the diagonal from which follows that

nx -1
% = (Ra ‘&]4) I

k!

. . . x .
From (3.9) it also follows that the covariance matrix for X s §4’ is
N

_ -1 1 -1 1 .
T, = By W) ®KRI,Q®, W) ", where (R KP ), is the
(r-1) (s=1)x(r-1) (s~1) submatrix in the lower right hand corner of R % g' in

section 2.

(3.8) may then be written in the form

<
ord
£
—~
ord
i
<)
B~
N
~
oHd
£~
<
S
~
~
ord
SR

-1 -1 -
P, (54 v)@, W) B, z o

a*, Bx, and Y*, and is equal to
Y Y] v '
K3 = @ KRy

This quadratic form is independent of H,
= 24 X and

QAB in (2.6) when AAB = 0, because %AB

4. The test statistics expressed by the original observations

Lemma 4: With the choice of w made in section 3, the least squares

. X % » “ g A3 N

es.tlmhates for (u’ % ’ ’e :"\Yl )' are u = y."’{ai}z{yia-”yc-o}, {B } = {y.jl - y--‘I,
and {Yijx} = {yij. "y, T V.5, + y.‘.}. (i =1,2,000,r=13 § = 1,2,...,8-1).

~

A
s . b2l
Proof: If we insert y, {o;

R ~% “®
{a ") ¢ . £ '
I Y LBj} and {\%j} ITOr Y, {ai}s {Bj}
i ~ Y3307 C

and{yij in (3.7) Q reduces to

1

Z
1,7

A

: < .
When testing the null hypothesis 4, _ - 0 against 8 > 0, we reject when

AB AB

(4.1) (rs) ¥ YT 1 (v - ye. )2 (e-1)(s-1)
N n, 1].

Al P ljk
- 1,3,k
is larger than the upper-a-quantile of the corresponding F-distribution. This
test is the same as the one suggested by Spjgtvoll (1968).
It should be noted that the test statistic reduces to the usual one

when the mcdel is balanced.
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5. Empty cells

In section 1-4 we have assumed that there is at least one
observation pr. cell. 1In this section we shall remove this assumption. We
shall show that the results in sections 2a and 3 are not affected by empty
cells (except that the number of degrees of freedom has to be adjusted),
while the test given in 2b has to be modifyed.

As in section 2 we define §ij = (1/nij) T yijk for all cells with

nij > 0. Then we have that

(5.1) %=’{(rs—p)u+gl’q+g2 §‘+r(\])3§+

com |

where p is the number of empty cells. (5.1) is of the same form as (2.4),

but g. g: (1 =1, 2) do not commute as did B. B. in section 2. We still
i Vi Nl Al

have that

(i) rank (gl) r

(i1) rank (gz) )

(1i1) rank (%1 %2) = r+s-1

(iv) rank (Ql +D = rank (gllgz) ,

5)

where D. =C. C. (1 = 1,2),
A%} Ny v

Instead of applying the transformation E as in section 2, we now

apply the matrix of contrast vectors, C, suggested by Bush and Anderson (1963).
_ Y
Define Z=C % . Then

_ '
(53 FZ=¢R & op*CR

1 2

As in section 2 Z may be partitioned such that

. . 2 2 2 2
(i) Z_ has a variance dependent of OA? Ops Oap and o°.

1
(ii) %A consists of the (r-1) elements whose covariance matrix is
independent of 0% .

(iii) %B consists of the (s-1) elements whose covariance matrix is
independent of oi .

(iv) %AB consists of the ((r-1)(s-1) -p) elements whose covariance

' 2

matrix is independent of oi and op -
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The only difference from section 2 is that g Ri g' (i = 1,2) is not

diagonal like in section 2.

The covariance matrix of %AB’ z %AB is of the form
2 2 2
RZag =R opgt B0 = @iyt B) o,

where R and % are matrices of known constants.

In the same way as in section 2 it is seen that

Fllyp) = Zag @ b5 + B 1 2,5(n = (£s-p))/ Q ((-1)(s-1) - p)

TAB ‘U TAB v %AB
has a F-distribution. When testing the hypothesis AAB < AO against
AAB > AO we reject when F(AO) is larger than the upper a—quantile, fl—a’
of the corresponding f-distribution.

For AO = 0 this test is the same as the corresponding test in a fixed
effects model, which is seen by applying C instead of P in the
discussion in section 3.

The covariance matrix of %A can be written

2 2 2
z %A = E% o, * F c%] = [% AA + g] g s

where k and E are matrices of known constants.

Then %A (k Ai + E)—l %A/ 02 has a xz—distribution and is independent of Q.

When testing the hypothesis AA < A, against A, > AO we reject when

A

1-a? of the corresponding

0
K(AO) is larger than the upper o-quantile, f

F-distribution, where

v

= 7! -1 - - -
K@) =2, Go3+E) "z, (- (rs -p))/Q (r-1) .
It should be noted that this test is not the same as the test given
in section 2b.
If nij = m for all non-empty cells it is possible to test
hypotheses concerning 02/ 02 and 02/ 02 without assuming OiB = 0 because

A B

the factors of OiB and o~ are proportional matrices in (5.3).

The tests suggested in this section are the same as the tests

suggested by Spjetvoll (1968).
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