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1. Introduction. Motivating examEles.

1.1. Exam le 1: Rates of mortalit • Stan-

dard methods for the investigation of human mortality

will produce statistics such as those given in extract

in table 1. The mortality rate at age x is inter-

preted as a measure of the mortality risk for women

born in the year 1968-x, and the corresponding number

"exposed to risk" in column 2 is used as a measure of

the accuracy of this rate. (This will be made clearer

later on.) Unless the population is substantially

larger than the one producing these data, the diagram

of the sequence of rates, plotted against age, will

have a rather rugged appearance. Figure 1, based on

the same data as table 1 0 shows the typical form If

such diagrams. There seems to be a universal convic-

tion, however, that "real mortality" would be portrayed

by a smooth curve, and that any irregularities of curves

of observed mortality rates are due to accidental cir.

cumstances. The observed rates are then regarded as

"raw" or primary estimates of the underlying "real"

rates, and graduation is employed to get a smoother

curve.



A number of techniques have been developed to

graduate age-specific mortality rates, as can be seen

from any text on the subject. (See, for instance,

[543, [58, pp. 145-197], [81, pp. 216-237, 243-244,

and 251-252 ] .) Most of these methods have been de-

veloped by intuitive arguments, at least initially, but

investigations of statistical properties of some of them

have also appeared [1], [2], [43 ] , [443, [463, [603, [68],

[70, [74], [81, p. 252]. One class of such methods

consists in fitting a parametric function to the observed

rates. We shall call this the class of analytic_ tpMue-

tion methods.

Quite a number of functions have been suggested

for analytic graduation of mortality rates [45, pp. 236-

238], [66, pp. 453-454], [77, pp. 79-85 ] , [81, pp. 56-60

and 243-244 ] . By far the most commonly used for the

adult ages is the Gompertz-Mäkeham formula

(1,1) gx(a, 0, e) = a 4. Ocx for 0 > u, c > 1, a > r $c x

where X represents age attained. We have fitted this

function to our data in figure 1 by minimum x2. Other

common methods are least squares and some moments methods.

We shall describe each of these in turn.



Table
.01•.•••••••

Age - specific mortality

Females, municipality of Oslo, Norway, 1968

Age 	 &posed to risk*) 	Deaths")
(2) 	 (3)

Mortality ratA
per thousand's/

(4)

11

10
10
10

••
••

I ii

i18
90

101

74
97
68
66
53

43

3
6

2798
2924.5
3156
3272.5
3465.5

3639
3770
4057
3886.5
3650.5

• Ili • 40 • • • •

• • • • • • • •

1204.5
io64
930
835
709.5

615.5
502
408
341
378

218.5

0.357
i.025
1.901
1.833
1.73 1

3.022
1.326
2.464
2.573
2.739

92.154
76.127
126.881
107.784
142.353

120.227
193.227
166.666
193.548
140.211

196.796

40
41
42
43
44

45
46
47
48
49

80
81
82
83
84

85
86
87
88
89

90

Source: Central Bureau of Statistics of Norway.

'Arithmetic mean of the number of persons at a given
age aa of January 1, 1963,and the corresponding num-
ber as of December 31, 1963.

**) Age at death is taken as 1968 minus year of birth.

/Ratio between entries in columns (3) and (2),
multiplied by 1000.



1.2 Example 2: Rates of fertilitE. A standard

Investigation of age-specific human fertility will pro-

duce a table quite similar to table 1 0 except of course

that column (3) there will contain numbers of births

(or usually numbers of liveborn children) by age of

mother. A corresponding diagram will look something

like the one in figure 2 0 and graduation will again

give a smoother curve.

A fertility curve of this sort closely resembles

certain density functions, and one category of functions

proposed for the analytic graduation of fertility curves

consistsof densities from the Pearson family [13], [27 ] ,

[45, PP. 140-169], [52 ] , [55 ] , [71], [75], [78], [79],

in particular Pearson type 1, III, IV, VI, and the nor-

mal density, multiplied by a constant.

Another category of graduating functions consists

of polynomials in x 	 [273, like

(1.2) bx(a 0 b,c,d) = (x 	 a I- 	x)2 (a 4- bx -1-cx2 	dx3 ),

where x stands for age of mother at childbearing, and

where [ct,O> is the fertile period for females. It is

customary to take a = 15 and $ = 45 or 0 = 50, but in

certain eases a and 0 occur as parameters which are

estimated [13], [53 ] • [75 ] .

The Hadwiger function,

( .3) h
x
(11,T,H,d) = 	 ( T ) 3/2 exp(-1.1?( T + :E=1 -2)),

TVIT x-d 	 x-d 	 T



with R > 0, T 0, H > 0, d < a, is a third type of

graduating formula [27], [28 ] , [313, [45, pp. 149.169],

[78], [79]. (We follow Yntemays notation.) Other

functions have alse been suggested [12], C473, [48], [49],

[53], [70a).

Naturally, the same type of functions will be used

for the graduation of other vital rates whose diagrams

have the same general form as fertility rates, such as

marriage rates [ 22, pp. 99-101], [48].



1.3 Introductory. The above age-specific rates

of mortality and fertility are examples of the kind of

vital rates which occur in fields like actuarial science,

biostatistics, and demography. In the present paper we

shall give a contribution to the statistical theory of

curve-fitting as applied to such rates in general. We

shall suggest a probabilistic model within which the

rates appear as estimators for certain parameters called

forces of transition, and shall show how the analytic

graduation can be interpreted as a procedure used to

further estimate a set of "more basic" parameters, viz.

those of the graduating function.

The model will be introduced in section 2. In

sections and 4, we describe how the rates appear

within the model, and sections to are devoted to the

study of analytic graduation methods. We shall be con-

cerned mainly with the asymptotic statistical properties

(as the population size N increases) of the estimators.

Most of our results are straightforward consequences of

general asymptotic theory, and we shall often use

standard theorems from that field, like those of chapters

4 and 5 in [10] and Theorem 4.2.5 in [3], without ex-

plicit reference. We shall quote references whenever

we use a deeper result.

Since we use standard theorems, it is not sur-

prising that we can prove theorems which correspond to
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previous standard results. Thus (speaking informally

here) we shall see that none of the general estima-

tion procedures we study will be better than one of

the maximum likelihood type, and that a (modified)

minimum x2 
procedure is equally good, while moment

methods will usually give less- favourable results.

We feel that there may be a need for some ex-

planation why procedures of the type which we shall de-

scribe are preferred to certain others. Rather than

breaking up our presentation of the techniques involved

by giving parts of this explanation as we go along, we

have preferred to include it all in section 10.

Apart from what is contained in sections 1.1 and

1.2 above, no numerical examples will be given in this

paper. Numerical investigations are planned and will

be reported at a later date.

2 L__A_Märk2v_pr22essm2de1•

2.1. The enera1 model,	 To describe the phenomena in

hand we shall use a Markov process model. Let yt be

the sample function value at time t of a time-

inhomogeneous Markov process with a denumerable state

space I and a continuous time parameter restricted to

some finite time interval [0,C). Let the transition

probabilities be

Pij(s,t) = Ptyt 	Jlys =



for04s<t< C l icI JcI, and assume that

Pds,t) E 1, lim Pii(s,t) E ô 	 Kronecker delta)

a$ ts s. We introduce the forces of transition,

ij
(s) = lim P (s t)/(t-s)ij '	

for i 	 j,
tis

and the forces of decrement,

4i ( s = lim [1 - P (s t))/(t-s),11 't ss

for O s < c, and assume that all pi and 	 are

finite and integrable over [0,0. We also assume that

(2.1) 4i = E 	 4 4 for each i E I.
J«14

We shall call a state i absorbing if 4 i = O.

The problem which leads us to study analytic

graduation consists in finding a method for estimating

one or more of the 4ij (.) from data of the type which

one encounters within the fields of application mentioned

at the beginning of subsection 1.3.

2.2 Examples. We shall give some examples to show how

models in the applications appear as particular cases of

the general model in section 2.1 above.

(I) Our simplest example will be a model with

only two states, called "alive" (state 1) and "dead"

(state 2). State 2 is absorbing, and there is only one

non-zero force of transition and of decrement, viz.

4(*) 	 4 1 (*) = 1°112
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called the force of mortality. The rates of section 1.1

will be seen to appear within this model. The time para-

meter is represented by a person's age.

(ii) The age-specific fertility rates of section

1.2 can be interpreted within a model with a double in---

finity of states. A woman will be said to be in state

(k,1) at age x if (she is alive then and) her parity is

k, i.e., she has had k births, k = 0, 1, 2,

She will be said to be in state (k,2) at age x if she

has died within age x and her parity at death was k.

All states of the form (k,2) are absorbing. We select

two suitable functions, 4(.) and

11 (k,1),(k,2) (*) =

and

4 (k,1),(k+1,1) (*) = P (*) '

and set

for k = 0, 1, 	 , while all other 4ii = 0. The

function 4 will be called the force of mortality, and

cp will be called ..pt_fCLrce...2ff.:2E.tiI.Lit. Again the

time parameter is represented by the woman's age. This

model, which we have studied in some detail previously

[36], is not particularly "realistic", but it is prob-

ably the simplest one in which the rates of section 1.2

can be meaningfully discussed. More realistic fertility

models of this type have appeared elsewhere [37], [38].
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() To describe ELIEElaELSanaallan_aniAlaas
• tion, we suggest a model with five states, called

"never married" (state 1), "married" (state 2), "widowed"

(state 3), "divorced" (state 4), and "dead" (state 5).

State 5 is absorbing. The following forces correspond

to impossible direct transitions, and are therefore

identically equal to zero: 411 for i > 1, 434, 443 ,

45j for j < 5. The model applies to one sex only,

while the other sex appears only implicitly, as a kind

of shadow factor. We have also looked at marriage

models elsewhere [41].

Other models of this type have been studied by,

for instance, DuPasquier [21], Sverdrup [69], Simonsen

[65 ] , Chiang [15, chapters 4, 5, and 7], and Hoem [35].

Compare also [25] and [63].

In each of these models, a state i E I corres-

ponds to some vital status, i.e., a marital status, a

social status, a birth parity, and so on. A transition

similarly corresponds to a vital event, such as a death,

a birth, a marriage, a divorce, and so on. An individual

sample path will be visualized intuitively as a person

(or sometimes a group of persons, like a household or a

family) moving through some of the statuses of the

system specified. The sample paths will be taken as

stochastically independent.
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2.3 Seniority. In demographic models one often wishes

to distinguish between an age parameter (which may be

actual age obtained, duration of marriage, interval

since last previous birth, etc.), calendar time, and

observational time. It is the age parameter which

corresponds to the time parameter in the Markov pro-

cess of section 2.1. In a general model it may be

useful to have a separate name for this (unspecified)

age parameter, covering all interpretations which it

may have in the applications. Following Henry [33]

who calls it anciennetd, we shall use the name seniority 

for it.

2.4 Some basic assum tions about the forces of transi-

tion. In what follows, we shall disregard the forces of

transition which are identically equal to zero because

they correspond to impossible direct transitions by the

definition of the model. Even if the state space I can

be (countably) infinite, there are many cases where only

a finite number of the non-zero forces of transition

are distinct. (Compare example 2.2 (ii).) We shall

Iiiumt_aanattneLltIAILLtleja_aLEL A non-.negative real 

' 	

notfunctions, X1"—)* XA such that each 4i i 3 	..-.....-

"1"4"trj rC11alssorne Xa' and such that for

each X
a
 there exists 	 ii	 By (2.1), we may

------ 	 Il

then write
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A
(2.2) 	 pi = 	 E 	 c

a
(i) x

a 
for each i E I,

a=1
where

[jci-i4lij=X a )

Each c a (i)<co because all 1i<00. (2.2) shows that for

any given i E 1, exactly Ea c(i) of the pij can

be positive, i.e., a finite number of the pij only,

while the rest are identically equal to zero.

Let us also assume everywhere that

(2.4) 	 supfili(s): 	 s < c, i E I) < op.

This assumption is not necessary for what follows, and

it can be relaxed [39], [40, section 5], but one will

expect it to hold in practice and it will simplify our

exposition. It follows from (2.4) [40, section 3.1]

that there only exists a finite number of distinct 

vectors c(i) = (c, -0. 	 c
A
(1)). Let us call

these (cbl 	 cbA ) for b = 1, 2,
 o.. , B, and

let
A

(2.5) 	 yb = E cba Xa 	 for b = 1, 2, 	 , B.a=1

Then each nonzero pl equals some yb and for each yb

there is a 	 which equals it. There is, thus, only a

finite number of distinct forces of decrement as well.

(This need not be the case if (2.4) does not hold.)

For each i E 1, let b(i) be defined by 	 =

Then, by (2.3),

(2.3) 	 ca (I) 	
E	 1



( 2.6 ) . 	 = 	 E01)(1),a 	 (ia-1:11ifla)

1/4

Let

C 

11
0 • II

2 CIA

• • • e • e • e

BI, 	_ 

We shall finally assume everywhere that the rank of

C is B. The extension to rank c < B is easy [4o,

section 3.13, but it leads to slightly more com-

plicated formulas.

3L Aprox1mat1onofbsjunct1ons.

As a first step in our description of the kind of esti-

mation methods which have produced the rates of section

1.1 and 1.2, we shall approximate the X	 -- 	 -a 
by step func

fions. The seniority interval [0,0 is partitioned

into D subintervals, Ec0 ,C 1 ), [C / ,C2 ), ..* 1

with co = 0 and cp = C. Let Id(.) be the indica-

tor function of the interval [C d.. 1 ,Cd ),

x#(.) = Ed=1 X d 	(.).a	 d

Here each «ad is a constant chosen in such a way that

it can represent the values of -Xa

and let

(3.1 )

in ECd-1' Cd ) *
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If Xa is assumed to be a nice and smooth function,

with certain known monotonicity properties, say, then

x# will inherit these properties, modified, of course,a

by the fact that the latter is a step function.

In what follows, we shall assume that the X:

give an adequate representation  of the Xa, and our ,

calculations will be made as if we actually had

X a = x# for a = 1, 2, 	 A.a

3.2 More about the cd . In this presentation,

we use the same partitioning (C a,: d = 0, 1, 	 D)

for all Xa. In certain situations one would rather

use different partitionings for different Xa • The

results of this paper will continue to hold for such

cases with only quite obvious modifications [37].

The approach sketched in section 3.1 is closely

related to histogram methods for the estimation of a

probability density or a generalized failure rate [6],

[72], [73]. Whereas the lengths of the histogram in-

tervals are often made to converge to zero as the number

of observations increase, however, this is not the case

for the seniority subintervals above. The Cd will

typically be selected according to conventional rules

established with different considerations in mind than

statistical convergence properties. When C is of the

size order of several decades, as is often the case,
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the seniority interval [0,0 will usually be partitioned

into one-year or five-year intervals, possibly with a

longer "tail" interval at the upper end. There is a

tendency to use shorter subintervals in a large popula-

tion than in a small one, at least if the data are re-

liable, but an interval length shorter than one year is

commonly used only in certain standardized contexts, such

as in investigations of infant mortality, where Ç equals

one year of age [8, p. 211], [30, tables 38 to 42], [66,

p. 84]. There seems to be no affinity to the idea of

letting such interval lengths decrease to zero.

3.3 On the observational plan. There are a number

of observational plans (or ascertainment methods) in use

in the fields of application we have in mind, and one

could construct others from ideas used in life testing.

(see, e.g., [20], [32], [64], [80].)

In the present paper we shall only consider ob-

servational plans where a group of people are followed

continuously over some time interval [0,T). The data

collection will consist of noting what happens to each

person while under observation, i.e., which states of

he visits and just when vital events occur to him.

It is characteristic for the types of populations

which occur in practice that some people enter them and

others leave during the study period. They may also be

heterogeneous with respect to seniority, in the sense that
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those who come under observation (whether they are in

the population from the outset or enter later on) may

have different seniorities at time T. We want to

cover such possibilities. Let, therefore, N be the

number of individuals ever getting observed. Let us

say that person no. k enters the population at some

time t kc[O,T) with seniority xk and a status cor-

responding to state rk, and that he stays there at

least until time tk + zk c[O,T], when observation is

discontinued. We shall take the entrance time t k'

the initial seniority xk' the initial state rk' and

the exposure time z k to be preassigned, i.e., not

random. (Other possibilities are discussed in [40].)

Any period spent in an absorbing state, for instance

after the death of the individual, is included in the

period of exposure [tk' tk + zk), although of course

no actual observation is made after a path has entered

such a state.

We shall also take N to be non-random.

3 • 4• Estimation of the d . We get an es- 

timator for X# by plugging estimatorsX ad for thea 
Xad into the right hand side of (3.1). (This is how

the rugged curves in figures 1 and 2 have arisen.)

Standard estimators used for this purpose are occur-

ence/exposure rates, like in sections 1.1 and 1.2

[61], [623. We shall see how these arise.
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S4me of the 
'

admay be known to be zero, be-

cause they correspond to vital events which are im-

possible during Er
- -d-1' Ca), such as births after meno-

pause. We will take the other Xad to be strictly

positive. Let

q = ((a,d). Xad

We can regard Ixad: (a,d)On as a point in the space

A- x (x ad > 0).(a,d)cq 

The situation in hand will usually restrict the possible

points we actually can have to a proper subset A of it 0 .

We shall take A to be open.

Now let Mk(a,d) be the number of transitions

observed for path no. k during the seniority interval

[c (11.1 ,Cd , direct from any state i to any state j

where 'Au = Xa . Let Ijk(i,d) be the total time

spent in state i during [Cdl'Cd) by this path, and 
let

- 

(3.2) 	 Irk(b,d) = 	 E 	 Uk(1,d).fia: pi=y0

Then Vic(b,d) is the total time spent in any state i

where 	 = yb by path k during the interval mentioned.

Finally, let

(3.3)

Lk(a,d) = E cioa V(b,d) =b=1

= E 	 C .bkiha 	 k(i'd)'
i a
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and let us use the notation

X = E X
k'k

where Xk is any quantity depending on k. Since the

forces of transition are represented by step functions,

we can then use the same method as in [37, §4.8] to

write the likelihood in the form

n	d) 	 expj	 E	 E ybd IT(D ' d))
(a,d)cq ad	d=1 b=1

	n M(a , d)	 expf-	 E	 X ad L(a '
0a,d)-0 ad	 (a,d)ces

where
A
E c	 X	 .

a=1 ba ad

(Compare (2.5).) Thus we are dealing with a Darmois-

Koopman class of probability distributions, and one

may show [4o, section 3.1] that (M(a,d), IT(D,d): a =

1, 2, 	 A; b = 1, 2, 	 B; d = 1, 2, 	 I))

is minimal sufficient for the Xacr An unrestricted- 
maximization of the likelihood function would give the

estimators

(3.4) 	 ad = Wa,d)/L(a,d),

which are the occurrence/exposure rates we mentioned.

(We arbitrarily set Xad = 0 if L(a,d) = O.) The

point tXad:(,a,d)c(1) need not lie in A, nor even in

A if some Xad = O. However, under certain conditions,



Nad 	 lim EL(a,d)/N( 3 .5 )

initial seniorities, y l ,

possible exposure times, w l ,

a finite set of

O0 0 	and a finitewJ 	

000 

• y

i ,

20

spelt out in theorem i below, the probability that the

point lies in A increases to 	as N co

3.5. Asymptotic properties of the Xacr For

each (a,d)cro the variables L i (a,d), 	 LN(a,d)

will not generally be identically distributed unless

all (xk,zk,rk) are equal. Similarly for Mi(a,d), .0.

Mil(a,ð). Nevertheless one can prove the following con-

sistency theorem [40, section 4.2]:

	Theorem 1: Assume that Ptga,d)› 0] 	 as

N co, and that a fìnitepositive limit

exists. Then Xad converges to Xad in probability

as N 	 co.

To arrive at a theorem concerning the asymptotic

distribution of Xad as N co we make an additional

set of assumptions, which establish a grouping of the

(xk' zle rk ) at a finite set of strategic values. More

precisely we make

hmualLEL1) There exists a finite set of possible 

set of possible initial states, s l , • 0
	 sQ, such

that each (xk, zk,rk) must equal some (yw w .1 ,8q ).

Welet
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(Y w)s )3,h'hilq
= (k: (xk,zk,rk ) =

and let Shjiii(N) be the number of elements in

big•	 -We assume that 

a 	 = lim S (N)/Nhjq

exists for each (h,j,q)

If chem(a ) d) = ELk(a,d) for k c. K hici, we

get under assumption I that the Lad of (3.5) satisfy

(3.6) Lad = 	 E 	 alajg e hjci (a ' d).h,j,q

We may then prove ([40, section 4.2]; compare [46a])

Theorem Under assumption 1 , the variables  

N* (5'ad Xad )
 

for which Ptga,d) > 0) i as N

are asYmPt°ticallY_IR22222:02121_211A_MMEULALWMata

with- means ° laft_IumplaLLIJLEamtE

(3.7)	 a2 =ad 	 as.var ad-X,ad ) = 	 d ad°

We note that under the assumptions of theorem 2,

( 3.8 ^2a
a
 =NXad/ga,d)

2is a consistent estimator for ad. Thus we see a

justification of the use of the number exposed to risk
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(which is L(a,d) here) as an intuitive measure of

the accuracy of the corresponding rate of transition
A

Xad as mentioned in section 1.1 for a special case.

We also note that we do not need to know the

value of N in order to estimate the Xad and the

asymptotic variance aL/N of the X ad .

4. Non-observation of Eart of the state sEace.------ ~

4.1. A problem. In section 3 we assumed that

one could observe what state a sample path visited

at any time. This need not be the case in practice.

Let us give two examples.

(i) Demographic studies will often be con-

cerned with people living in a restricted area, like

a country or part of a country, and there will be some

in- and out-migration. Say that a study of marriages

is carried out, perhaps based on a model like the one

in section 2.2(iii). If a person intially lives in

the study area, then leaves and stays away for a while,

and subsequently returns while the study is still

being conducted, it rarely happens that his changes

of marital status (if any) while outside the study

area are traced. In many cases one will know his

marital status on departure from the study area, as

well as his status as he returns, but nothing more.



(ii) Similar problems occur in studies of the

mortality of insured lives. A person may cancel his

insurance policy and be uninsured for a while, then

take out a new policy, which may be cancelled again

after a while, and so on. The insurer will keep

track of deaths among the persons covered by his poli-

cies, but will not usually know what happens to the

uninsured.

The question is how one should take account of

phenomena like these in the estimation procedures.

4.2. Formalization of  the two examples.

(i) To describe example (i) above in terms of

a probabilistic model, let I I = [1,2,3,4,5) be the

state space of example 2.2(iii), let 12 = (1,2), and

let I = I1 x 2' 
An individual with marital status

j will be said to be in state (j,1) if he lives in

the study area, and in state (j 0 2) if he lives out-

side it. A migration out of the study area will cor-

respond to a transition from a state (j 1 ,1) to a

state (1 2,2). A migration into the study area will

correspond to a transition from a state (j 2,2) to a

state (l 1 ,1). In most cases, j 1 = j 2. In any case,

we shall take j 1 to be observable. Whatever moves

the sample path otherwise makes while in the subspace

(0,2): jel l ) will not be observed.

(ii) To formalize the second example above,
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let us use four states, called "alive and insured"

(state 1), "alive and uninsured" (state 2), "dead

while insured" (state 3), and "dead while uninsured"

(state 4). Which transitions are possible and which

are not follows directly from the state names. Except

for transitions from state 2 to state 4, all transi-

tions (and the dates on which they occur) are recorded.

(This is essentially the model studied by DuPasquier

[21], Fix and Neyman [25], and Sverdrup [69], except

that they took all transitions as recorded. Recording

problems different from the present one have been studied

by HaSrland [42], Kruopis [46a], and others.)

Let us take all forces of transition to be con-

stants. This will suffice for our purposes, which are

those of illustration. Generalization to other cases

is simple. We shall take the forces of mortality of

the insured and the uninsured to be equal, and let

= P13 = 	 Let v
424' 	 = -12' P = 1121' a = 	 "4- v, 	=	 4- p .

Sample path no. k is followed over the period [0 zO, and

we say that kEK if this sample path is in state 2 or 4

at time z
k' 

i.e., if person no.k is uninsured then .

All N paths start in state 1, and they make a total

number of Mi j jumps from state i to state j, for

(i j) Eft1,2),(1,3), (2,1)). Let W denote the total

time spent in state 2 by the paths kfK, and let V

be the total time spent in state i by all paths taken
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together. For keK, let zk Uk be the time of the

last jump recorded from state I to state 2 for path k,

i.e., the time to last observed cancellation. Then the

corresponding likelihood can be written as

-0U
‘e-aV-OW v

m12 
P
1‘1 1 

m
13 $ -K ri (4 	 k

/Pe 	 I 1-1.
kcK

where K is the number of elements in K. The maximum

likelihood estimator of v turns out to be

A

v = Ivi12 /1T'

which is what (3.4) would have given. (M12 is the

number of cancellations observed.) Closed, explicit

expressions for the maximum likelihood estimators of

p and p do not exist in this case. We can still

get an estimator of 	 however, by letting

= M13/V.

(M13 is the number of insured deaths.) The IINverties

of v and p will appear by specialization of the

results in section 4.3 below.

4.3. The general case. Consider now the general

model with the assumptions made in sections 2 and 1,1
,.

Let the state space I be partitioned into two disjoint

subsets, H and J, and assume that all transitions

between states in H can be recorded, while no transi-

tions between states in J are recorded. Any transition
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from a state in H to one in J is recorded, as is

also all jumps from J to H. For both kinds of jumps,

one also records the state to which the jump is made.

We redefine the quantities Wa,d) and ga,d),

initially introduced in section 3.4, as follows:

Let G be the set of the a for which there

exists a 4 1.j, with i E H, such that 4ij = Xa .

For each a E G and each d Et1,2, 	 D) let Wa,d)

now be the total number of transitions observed during

the seniority interval c
E -d-1' Cd)' for all paths taken

together, direct from any state i e H to any state

j E 1-i such that ij = a
 . Furthermore, let

(4.1) 	 L(a,d) = 	 E 	 cbk,i),aJai

with cb ( 1 ) ,a given by (2.6) and U(i,d) defined as

In section 14. For a E. G, let ad be given by

(3.4) with the new definitions of Wa,d) and ga,d).

Then theorems I and 2 hold verbatim for the a e a,

even though the i%ad need not be maximum likelihood

estimators, as demonstrated in example (ii) above.

If there does not exist any 	 with i E J, such
A

that pij = Xa for any a E. G, the kad will be

maximum likelihood estimators, in the sense that they

maximize the likelihood under free variation of the

Xad in AO'
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If the state j cannot be recorded when there

is a jump from a state i H to a state j c J, the

results above continue to hold, provided we again re-

define the quantities involved in a natural way. In

the definition of Wa,d), we must only include jumps

from i to j where both i and j i belong to H,

and where 41j 	X a . G is similarly reduced. This

time we also redefine cba by letting

(4.2) cb(i ) ,a = 	 E	i for i E H, a E G.
(ja-i:pii -X a )

Using (4.2), we define L(a,d) for a E G by (4.1).
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5. Conventions and notation relatinE to analytic

graduation
Fwev~ ~ ~4,10~4.0 0.0",

5.1.14_112a1ELLa_EraluaLlon. Although an original

Xa is assumed to be a nice and smooth function, the
A

estimators xad now in use, such as those in (3.4),

will typically produce a ;1 which is considered too

irregular, except in large populations. (Compare the

account on page 561 in [18].) Analytic graduation

then consists in selecting some nice, parametric

function g (-,0 ) and some representative senoritya 	 -a
from each interval [C d...1 ,Cd ), and in getting an

A

estimator 0
a
 for

 a
 by fitting the values- 	 -

(ga(d'ea): d = 1,2, 	 , D) to [Xad : d =
A

by a suitable method. The function ga (.,e a ), usually

regarded as a function of a continuous seniority

variable x, represents the final estimator for the

function X a (-) •
A

Most methods for constructing an estimator O a

are based on analogies with estimation methods used

in other contexts [1], [58], [81]. We shall study

least squares and minimum x2 methods in section 6 [7],

( 12 ],.[163, [27], [28 ] , [47], [48], [49], [60]. .(See

also [59].) In section 7, we shall discuss. moment
0,0

methods [II], [ 13], [28], [45/ PP. 140..-169],[52], [55],

[71], [75], [78], [79], and in
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section 8 we shall introduce a technique of the maxi-

mum likelihood type. Some authors have also used

methods involving the minimization of sums of absolute

deviations [17], [28].

5.2. Further assumptions and conventions. We

shall be working with a single, fixed value of a, and

shall therefore suppress this subscript except where

it may cause confusion.

In what follows, we shall disregard the fact

that some of the d may be known to equal zero.

The case where some X
d actually do equal zero needs

only trivial notational modifications.

Let

ga(8) = g ( td , e ),

Ve)	 (g1(e)' e.., gD(e))''

(The prime denotes a transpose.)

Assumption 2: We assume that e varies in an open
ws.100...01.0.11.41,	

subset 0 of the G-dimensional Euclidean s ace R-G'
where G < D. Let g be a one-to-one bicontinuous

continuously differentiable mapping of 
	

into

D
A 	 fx,q > 0).

d=1



Define a • • •
g 1	 .!

•
a
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6	 a
a e 1	

,	 D ( 2.
.• •

' 
wormers's...

"G

and assume that J(0) has rank G for each 0E8.

We denote the true value of 0 by 0o 1 and let

J
0 = J(6°)'X 	

ON
, and 12 = lim E

0
 L(d)/N

•- 	 - 
o

= g(8,I )- 	 - 	 d- 
N--.co

(Compare (3.5.).) We also let

2	 0 0a O = d/Ld and EC) = diag(a2d	 102	 '

(compare (3.7)), with the convention that we write

M diag(m i , • • • ms) if M is a diagonal S X S-

matrix with the ms as diagonal elements.

Let us denote it by a right topseript N if we

want to stress that a quantity depends on N.

In sections 5 and 4 we brought out some estimators
x (N) = t e,(N) ft(N)X	 ) 1 of the common

occurrence/exposure type for the parameter X =-

(Xl,	 XD), and we stated some theorems concerning

their asymptotic properties. In much of what follows,

it is precisely these properties which are of interest,

and not the form of the estimators themselves. In

sections 6 and 7, therefore, we shall take X ( ) to be
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any estimator for X, not necessarily the one given

by (3.4), and we shall continuously make

Assun.. .
Lo

91 (° , E0) , 

where T(0 3 E0 ) is the multinormal distribution with
mean 0 a'nd a •ositive definite covariance matrix

E0

6. Analytic eraduation through minimization of

a quadratic form.

641	 rnethod. Let M be a

positive definite, symmetric D x D matrix whose ele-

ments m
ij 

may (but need not) be random variables. Let

Q,( )= N(X
e. g ( —) )r

.

 M(—g (o )) .

Assume that there exists a 0, say e, which minimizes

Q(8). We shall then take e to be our estimator for O.

A whole class of graduation methods is generated

by the various choices of the matrix M. Thus if we
0.1

take M = 1, the identity matrix, we get

)

D.
NE (XA
d=1

1 6012
6d`Z II J

A

and e becomes a least squares estimator. An analogy

E 0' which need not be the same as-
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with the modified minimum x
2 method results from setting

(6.1) 	 M = diag(1/4, 0 0 0
	 /c5A2D ) ,

4 are given by (3.8). We then get

D
Q(0) = 	 [M(d)-L(d)g (On 2

/m(d).d -d=1

If, in particular, g(e) is a linear function of
4.0

say

(6.2)
	

= Jo 0	 go

where J0 is a known D x G matrix of rank G and-
go is a known D x I vector, we get

A
o = ( 	 0J M J ) 	

I 
M(X- ).-

A particular case of (6.2) is given in (1.2).

6.2. 	 Asymptotic theory. Let (M(N) ) be a

sequence of positive definite, symmetric, possibly

random, D x D-matrices. For simplicity we assume that

the M(N) are not functions of O. (This can be modi-

fied. Compare, e.g., [14, Theorem 5].) Let 8 (N) be
a value of 0, if any, which minimizes Q(0) with
. m(N) 	 -(N)and k 	 . We can then prove the following

theorem by the methods of general asymptotic statistical

theory. (See [50]. All the hard parts of the proof

can be handled by the argument in [9].)

where the
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Theorem 3: Make assumptions 2 and 3, and assume 

also that

plim M(N) = M
-0'

where Mo is positive definite. With a probability 

increasing to i as N 00, there then exists a value
Ao(N) 	

8 which minimizes Q( 0 ), and

Nio(N) 	 00 ) 
	 40

where

(6.3) E = 	 mo J0 ) -1 J6 Mo Eo Mo o(J6 Mo J0 ) -1

is positive definite.

00
Corollary: 2(N)) 
	 %(0,J10 E Jo ).

Remark 1: If M =E-1 	as is the case when we use

(3.4) and (6.1), we get E equal to

(6.4) E00 = (Ji E-1 J ) - 10 -0 -0	 •

Remark 2: Since G < D, Ji E J is singular.
-0 - -0

-Remark 3: If we regard 	 (N) as a mapping from R-D
A

to RG ( .e., a function of k), we obviously have-

; (N) (E( 0 » = 0 for • E 8,

for any positive definite M(N)

01•011011.1.11•Per
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6.3 The choice of ( (N 3. Since different

sequences (NM) give rise to estimators

which may have different asymptotic covariance matrices,

one will want to know how to select a (M(N) so as to

get a E which is as favourable as possible. Given two

such matrices, E 1 and E2 , where E - E2 	is positive- 	 -1

semidefinite, we shall regard E as the more favourable,-1

since each of the variances on its diagonal will be no

greater than the corresponding variance on the diagonal

of E2 At the same time, V E J will be preferred-* 

to Jt E J2 0 (compare the corollary to theorem 3),-0 - -

since also Ji(E - E 1 ),01 will be positive semidefinite.-2 	 - -

The following theorem tells us that an (M
(N)

} with
-1Mo = E 	 will be optimal in this sense.-0

Theorem 4: Let E and E00 given by (6.3)  

and 6.4 res ectivel 	 Then E - E 	 is positive - 	 -00
semidefinite under the assumptions of theorem 3.

Proof: (i) Let A be any D x G matrix of rank G < D.

Then A(A 1 A) -1 A 1 is idempotent, so all its characteristic

\-1roots equal 0 or 1. Thus I-A(AIA) A' has only 0 and 1

as characteristic roots, and this matrix, therefore, is

positive semidefinite.



(ii) Let us then prove that E 	Jo(J6 1 Jo - 1,16

Is positive definite. Let B, be a nonsingular matrix
4,11

such that Bt E B = I. Let v be an arbitrary D X 1-- -0 -
vector,

vt(E

and let w = -1 v, Then

-1-1 	 -1tE J ),TtIv=wt(I-B 1 J... 	 IBBIJ 	 B)w

	

-u 0-- , 	 -0 -

= wt[I-A (AT ..,1!! ) -1
 

A t) w

with A = Bt J0 • Our assertion then follows from step (i)- -

above.

(iii) Finally, let v be as above, and let w =

Mo Jo (J6 MoJor l v. Then 	 y and so

IC CE - E hit = wt-00 CEo Jt) w
-00 -0 -

by step (ii) above. Thus E - E 	 is posiive semi.-00
definite. CI
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6.4 The choice of -(N)k	 1. In sections 6.1 to   

6.3 above, we have focused on a single estimator

r (N),
tX	 3. Assume now that two such sequences are pro-

posed, say fi ( N) ) and [(N)J, both satisfying the

assumptions of theorem 3, with asymptotic covariance

1matrices N'T E
1
 and 	2'	E 	 respectively. Say that

A -	 N -

2	 1 positive semidefinite. Intuitively one- 	 -
^would expect ( (N)0 1	 to have a more favourable asymp-

r - (N)1 	 r-(N)1totic covariance matrix than te 	 3, when tei I,-2
^(N)(for i = 1,2) is produced from [x } 	 the method

of section 6.1 with a choice of fivIÇ N) which is

optimal according to theorem 4. This turns out to

be correct:

Theorem 5: If E l and E
2
 are positive definite-

and En 	 E, iS positive semidefinite, then Enn-Eni
~vi

is positive semidefinite, where

for i = 1, 2.

Here Jn is any D x G matrix of rank G < D.-

Proof: 	If A and B are positive definite D x D-

matrices with positive semidefinite A - B, then
0,11

B-1 - A-I will also be positive semidefinite [26,

page 55, theorem 2.5]. From this the theorem

easily follows. [1
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7. Moment methods.
dm,grilhO 	 4.0,..."0 PO OW eV 4.104.W. 41.0 	 4.41, 	 #. 'AO dft,

7.1. The . ..xaduation method. A moment method
-estimator 0 (N) of 0 is defined as a solution of~

the system of equations

D r-(7.1) 	
d=1
E 	 [X 	 - g ( (N)0 	 )) = 0 for r = 0,1 0 •.•,G-1,d d 	 d -

if it exists. Let

1, 	 **we

(\ E,

4"2 	 "I)
:G:1 * md-1 	 • • %,6-1

2

••.'
. 	 •

Then (7.1) can be rewritten as

(7 . 3)	 m (i(N)	 g ( (N))) = 0 .

We shall extend this definition, and shall call ; (11)

a eneralized moment method estimator for 0 if it is
0110

a solution of (7.3), where M here can be any G x

matrix, i.e., M need not be given by (7.2).

To give an example of an estimator generated by

(7.3) but not satisfying (7.1), we shall consider the

(7.2)	 m



Ex 	 x 	 rc'0 , 0
for x = 0, i,

some integer h, and that

ft 9 3h, so that we have one year ag.

0, I

(a 	 (') of the equations

X +k11-1

x=x
C
 +(k-1)h 

(a+0
	

) 	 Hk for

x
04-kh-1 A

--- 	 E 	 X
k 	x=x +(k-1)h y.

solution

(7.4)

where

King-.Hardy method of estimating the three parameters,

a, f5, and c, c the Gompertz-Makeham function in (1.1

Say that we can take [0,0 to be the age interval

intervals. Then the King-Hardy estimators are the

We get [58, p. 167]

(11- 3-112 )/(1:12 -11 1 ),

and similar formulas for a and 0. If we let

bealxh vector where all elements equal x, and

let
M M mo-1 -0

1O

,To ,J2lo m

then (7.3) reduces to (7.4) in the case where
(x -4-x)

gx(a ' P / c) =a-"3c
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In applications to analytic graduation, the

matrix M is usually non-random and not a function

of N or 8. For simplicity we shall only study this

case, but generalization to possibly random M0 possibly

depending on N and 0, can be made by standard methods

[24], [763.

If, in particular, g(e) is given by (6.2 ), we

get

(7.6) ar la" 1 RN	 N)4 	 A

t.toi

provided M J Is0 	nonsingular.- -

•

Theorem 6: Make ass .tions 2 and 	 and assume
aili...prrem.Wwwwwirmow	

also that M J(e) is nonsipAular for any 	c 9. There 

I1211.2.12210251anaRa 0 of §(9) and a one-to-

(.0.2_,ERREIns o‘ - / from RD to Ro continuous in 0,
tml-

such that

(( 0) = 	 for 0 c

and (7.3 holds for all i ( N) E O. Furthermore,   

N1( 6 (N)
z

eAmmoolbabwams> o, E)„

where

(7.7)

E - E- -00
(6.4).

 (m 	 ) 	 M E 	 J 	 14)'

	

-0 	 - -0 - -0 	 -
if positive semi-definite. (IOC) is given in
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Proof: By theorem i in [24, p. 1054] we need

only prove the final assertion above. Let Nr be an

arbitrary G X 1-vector, and let w
	k 	

mt
)

- 1 v. Then

(M w) 7 (E -	 E	 J ') (M w)~00 -0

by step (ii) of the proof of theorem 4. ED

Remark 1: By the final assertion of the theorem, the            

generalized moment method can never give a more favour-

able asymptotic covariance matrix for the estimator of

0 than the corresponding "optimal"

section 6.

Remark 2: Since

^(N)PfX	 E 01 -* as N -

estimator found in

x7(N) is N 2-consistent for X O

Remark 3: The analogues of theorem 5 and the corollary

to theorem 3 hold in the present situation.

When the generalized moment method is applied

to a particular case, it is frequently modified to suit

the characteristics of the situation in hand. We shall

give examples of this in sections 7.3 and 7.4.

7.3 • Modifications, example 1: Gompertz-lvlakeham  gradua..

tion. In mortality studies using the Gompertz-Dbkeham
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formula (1.1), one will frequently find that e is

estimated by (7.5), but that estimators for a and p

are subsequently found by some other method, for in-

stance by minimizing

xo+3h-1

	(X
(N) 	 -x 2- a - 8 cE x=x 0

[8I, p. 225]. Let us consider a slightly more general

case, and let us estimate a and [3 by minimizing

Q( a,13)

Here [M(N)j is a sequence of matrices of the kind

studies in section 6, e is a 3h X 1-vector where all

elements equal 1, and

-(N)f-x 	 -x+3h-1
111 	 - kc 	 C

Assuming that M(N) is positive definite, and letting

K(N) = (e,~

we get the estimators

A
A

(K(N)' m(N) x(N) ) -1 K(N)T m(N) ..)%t (N)

(3

Now let m be defined as below (7.5), let ao ,Oo' andx
Co be the true values of the parameters, let



to • • • 3
Xr1+311-

co
K0 = (e,S0

41%1P

42

+11-1
(coWthOoco

OM mo )." !So mo

( . )

We then get

Theorem 7: Let plim M(N) = tio,where M-0 ---

.12,22NaltfiefirkatLXYLMOILAEEMEtain_L_Itta
isz

(ao ,60 , c0 ) 
( ago'NY co)q 	 )

Stevens [67], Patterson [56], Lipton and MbGil-

christ [51],and some of their references have studied

the estimation of the GompertZ-Makeham parameters in a

regression model. Stevens [67] found that King-Hardy 's

method may be very inefficient there. The estimators

developed for the regression model can also be used for

purposes of analytic graduation, and it would be interest-

ing to see an investigation of their merits in that context.

•

A A
-

N 2 [(m,o j c )'
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7.5 Modifications, example 2: Hadwiger

graduation. Consider now the problem of graduating a

set fX
x
: x = a, a + 1, 	 - 1) of female fertility

rates calculated for single-year age groups by fitting

the Hadwiger function (1.3) to the rates. If we regard

h
x 

as a function of a continuous x, and define

P= 	 kx h
x
(R,T,I1,d) dx,k d

then

(7.9) R6(R,T,11,d) = R, R il (R,T,11,d) = 	 g+d),

and the formulas for R for k 2 can be found from

the fact that the corresponding cumulants for d = 0 are

k -= 	 . • ..(2k-3)2 	 H2k-2/T3k4k-1 	for k

(Compare [45, pp. 150, 151, 160],) No such nice formulas

are known for the discrete case, i.e., for

Rk ''(R T H d) =
0-1
E

x=a
x
k
h
x
 (R

0 T 0
 H,d),

where only integer values of x are used in the summation.

Rather than attempting cumbersome calculations with the

Rk, and acting on the analogy between the Rk and the

Rk, Yntema [28], [79] has suggested an estimation pro-

cedure which amounts to the following:
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Regard h
X

Let U = T + d.

Then

as a function of a continuous x.   

( 7.10)
	

h(R ,H, d) = 
RH

Trv

and the mode of the function is

(7. 1 1 )
Ii 	i
	2,

M = d + 3T((1 +101i /9) -

One easily sees that M < U. Solve (7.11) with respect

to H, introduce the result into (7.10), let

a
	

h ,/R) 2 	b = (M-d)/T,

and get
2\4.-b = 	 + a') - 1j/a.

For the range of values in which a will usually

lie, the right hand side here is approximately equal to

1 - a-1 . Solving b 	 1 - a-1

with respect to T after substituting U T for d

we get

(7.1 2) 4T 	 R2 /(-3 -.( u-m)h2u)

Now introduce the estimators as follows: Let

A

x=a 	 X=Œ

Q-1 A 0-1	 A

E XX 	.û= E x xx/R .

(Compare (7.9).) If y] denotes the integer value of y

let
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A 	 A 	 A 	 A 	 A

V = [;4 ] , h = x . M = min(x: 	 Xy for all yl.x 

Finally, let

fi.2/( 24 	- Mr/12 3,

(compare (7.12)), and let

=	 fvfl =	 Eol .

(Compare (7.10).) Then 16 = om,fi,a) is an estimator for
= (R,T,II,d). To study its asymptotic properties, we

let e 0
	(R0,T0,H0,d0) be the true value of 0, and

introduce

,Ro = R0 (0 o ), U0 =	 ( 2 0 )/R0 , Vo= Luo

Nh
0
 = h

V
 ke

O
j,

-
0

= 4
n1J-nfx cfcc,a+1, —a, P-1): hx (0 ° ) 	 hy (0° )

for all y da,a+1, 0.0, 3

\
T = R

2
/T rT0J0-Mb)ho

2
l, d = U 	 T

0 3 	 0 	 0 	 0/

Ho = h0T0/7/R0

Let e be a (13-a) X 1-vector where all elements equal 1,
0.11

let

ti
	-1
= 0 as-T

0'
 ct-1-1 -T OG. 0-1-T0)'



and let 
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(2, e To

We then have

e T h /g /P,2
o 0 	 0' —SIc) . 

Theorem 8: Under assumption 3,
at 0

3.	 A A A f 	 t
N 2 ((R,T,H,d) 	 (R H T ,0' 0' 0 d 0 o ,§ E0§).

Remark I: Note that
	

is singular.
,

MMOPPilloll

Remark 2: Note also that (R0 ,T0 ,1i0 „d0 ) is not the

true value of the parameters here. No one seems to

have looked into the difference (d) ,T0 ,H(3,e)

(R0 ,T00 B0,d ) in any detail,

8. A maximum likelihood method.

In sections 6 and 7, the estimators for 	 appear

as functions of the "raw" estimator X for X. If one

may really assume that x a = ga (0a) for a = 1 0 2,

different approaches may be at least as efficient, how-

e7er. One obvious possibility is to enter the ga (Oa )

into the likelihood function and maximize with respect

to the 8a. In the situation of section 3.4, this will
A

amount to maximizing Ea na (0a ), where

1 - E ga,d ) gad
( 2a )

E M(a,d) 	 gad(ee 	 dd



For simplicity, we shall assume that A
$

_ 	
Z21
A 	 • • •

..1 	 $

8A are functionally independent, so that we can maximize-

the likelihood function (if at all) by maximizing each

na separately'.

In the situation of section 4.3, the log likeli-

hood function is of a different form, but we shall still

construct an estimator 8* for 8
a
 by maximizing na .

The following theorem holds.

Theorem 9: Fix a c(1 1 2, --•, Al and let the

M(a,d) and ga,d) be given as in section 3.4 or 4.3.

Assume that Ptga,d) > 0] i as N .0 for all d

where (a,d)Eq. Make assumptions 1 and 2.

With a probability increasing to i as N

there will then exist a value I)" cea which maximizesa

lia ( ea 	 Ma

NI(e(Na

ri

00
 ) 	

>
za (2 ' Eoo ) ,

where Ertn is given by (6,4), provided there exist con---

stants ka and ka such  that --, 

(8.1) k k g (e ) k k
a 
> 0 torahl a cea 	 ad -a 	 a a

Proof:1 ° . . Preliminaries. Suppreas the subscrip aand

fix the true value 0? Let

...--€(N)= E
0
 gd), 	 = lim 	 (N) fa"'d 	 d 14-fte,
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and note that [40, (10)]

E
Bo
M(d) = x°

d d•

Let

Q(k) = E M(d) 4n d
 - E L(d) Xd ,

- 	 d 	 d

so that

;( 0 ) =

and let

Q(X) = E n Q(X) 	 E ''dd 2n 	- d ),e„ 	
d

and

li(e) = Q,(g 0 )) = E

Finally, let

= Q(x0 ) 	 (X) = E
- 	 d

fxd Ifri X

(x(pci 	 Xd ) 1*

For large enough N, each d will be positive. For

such N, we will have A(X) > 0 for all X 4 X°, and
1 00 will strictly increase as each IXd-X°(11 increases.
For every e > 0 there then exists a 8 1 (e) such that

if A(g(8)) < e then Ig(0)-g(00 )I < 6 1 (e), and by the

bicontinuity of g there further exists a 8(e) such

that 10 - 01g< 	 e). Conversely there exists a o (e)=

such that A(g(9)) < 50(e) if 10 - 0° 1 < e. Let



4,9

e = [0E8: 	 10-0° 1 	 el,-

and choose e so small that S C O. Choose et > 0,c

and let e" be so small that e n 	50(e), g2e n ) 	 ef, and

and let

O < 2e inf 	 0c0),

eu = fp.ce: 4(g(0)) 	 2e n ).

Existence of 0*. Let

	= sup Ed fitn ga(9)1 	 gd(0).

By (8.1), y < 	 Let AW be the event that

(8.2) IN-1 m(d) 	
< en Ao I N-11" - Ad! <

Then (A(N) )-4
00 eu 	 1. Assume that (8.2) holds. Then

( 8 .3) 	 1;(0) 	 T1(0)1 	 e" 	 for all Oce.

If Oce -
e
n., we therefore get

n ( e ) < 11(0) 4. e n < ;00 ) ... e ff < ;00 ),

so in maximizing n(0) we need not take such Q into

account. Since ®TI 	closed and n(-) is continuous,

there exists a maximizing value 0 e Oe u .

3
0
. Consistencey of 0*. By the definition of

CIT
 

/y •



50

e If
	 we have 	(g(0*)) a 2e" . Thus I0*-80

I

8(2e") a ei, and the consistency of 0* follows.

40 . The theorem now follows from some general

results due to LeCam [50]. E3
Remark: Note that E 	 is the most favourable asymp-- 	 -00

totic covariance matrix we can get by the procedures in

section 6 when ?!.. is given by (3.4). In this sense,

therefore, the method of the present section is at least

as good as any of the other general methods we have

studied.

9. The choice of a graduating function.

In previous sections, it was presupposed

that the applicability of a particular graduating

function g(0) had been established, and the problem

was to estimate O. In many practical cases, the situa-
010,

tion will be different. Instead of a single function g l

there is often a finite family 	 = (g(s 1 6) s =

1 1 2 0 ••., S) of candidates for a graduating function,

and one is required to choose one of these on the basis

of the data. In the case of human fertility rates, for

instance, it is seldom given which function to use, and

one may have to select one from among the Pearson family,

the Hadwiger function, and the Brass polynomial (1.4),

say.
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We shall assume that all functions g(s,O) have

the same parameter space G. This need not be the case

originally, but it can be achieved by the introduction

of dummy parameters if necessary.

9.2. To describe what it means to choose a

function from the class a "on the basis of the data,"
xwe shall assume that there is a member g (s ,.) of 3

which is the "true" graduating function. The choice of

a member of 0 then amounts to estimating so as an

extra parameter. A number of estimation procedures are

in use (compare, e.g., [45, §6.5]),but their statistical

properties do not seem to have been much investigated,

except that one may know something about their con-

sistency as N --. co. We list some of these procedures:

(i) For choosing among the members of the Pearson
OINNE*1...

family, there exist standard methods [22], [57], [34],

[13] based on the first four empirical moments. Keyfitz

[45, p. 160] suggests that this type of criterion can

also be used when the Hadwiger function (1.3) is included

In 3 along with the Pearson type functions.

(ii) In connection with the methods of section

6, an obvious procedure is to set

Qs (0)= N(: - es,e)) 1 1v10.A 

„
let s(s) be a value of 0 which minimizes Q (0)s
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( for $ = 1,2, ---, S), and define 	 as the value

of s that subsequently minimizes 	 6;(8)) [27], [71],s

[78], [79].

A similar criterion can be used in connec-

tion with the method of section 8. Let

( 8 , 0 ) = E(M(d) 2n g d (s,e) 	 L(d) gd (8,0)),
- 	 d

let 8 *(s) maximize this quantity, and let s be the

*(s),
value of s that subsequently maximizes ' . (s,,f3 `

(iv) Yntema [28], [79] has suggested calculating

	A = E IX - g k s,E) 	 /D 	"	 f 	 "(s)11
d 	 d -

and

A (s)Al = max(IX d - g(s 	 )I: d = 1,2 0 	D),d -

and taking g as the s.-value that minimizes A s or
)Q-(AL. Here 0` - ' is any suitable estimator for 0

based on g(s,0).

9.3. We shall take a look at the consistency

properties of s as defined in 9.2(ii) and (iii) above.

By a proper specification of 3 and 0 we should

be able to get g(sg,8) n g(s",®) 	to be empty whenever

st 	 ?f 	 part of the values 	 (s",9)

would be redundant.) To prove consistency, however, we

need the stronger assumption that



^ 
A

o 0(N2(e's) 	
0, 	 ,

s,0 	
/€13 	 “B) as N	.1	 	 -(9.3) 	 P .11

s',8) 	 g(s",8)1 > 0 	 for st+ su 5
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where 1A-B1 = inftla-bl: acA,bc131 denotes trie Euclidean

distance between two subsets A and B of R.

If (9.1) holds, if
A

is consistent for X ,    

and if plim M Mo as N - .0, with !N/J0 positive

definite, then 	 is consistent in section 9.2 ii) above.

Similarly, by step I ° 	the proof of theorem 9,
A

s is consistent in section 9.2(111 above when (9,1)

holds.

-9.4. 	 Let t(s)O ') be some estimator which we

would use for e if it were known that s = s, and

assume that

0
(9.2)P 	 )(131 	 (B) as N 	 a),

s,0 	 )
o

where (1. is a limiting probability measure and B is
A

any (1-continuous measurable set. Let s be a consistent

estimator for so Then it is easy to show that

for the same B. Of course, A(s) is our estimator for

and (9.3) tells us that its limiting distribution is the

411.4

will be our estimator for X s° and its asymptotic prop-- Y

erties follow directly from (9.3).

A

one we would get if o were known. Similarly, g(,é (s) )s



524-

10. Concluding remarks......... —~~~—

10.1. In the models described in sections 2.1

and 2.2 above, the seniority parameter is continuous.

If it is known (or if one assumes) that one of the

forces of transition can be represented by a nice and

smooth parametric function, say

X(x) = g(x;0),

and if one is faced with the problem of estimating X,

using analytic graduation is not necessarily the most

obvious line of attack. In fact, it seems more natural
A

to try to construct an estimator e for e directly,
Pk,

without going the way via the X, as described in

section 3. Grenander [29, Pp. 76-91] has shown how this

might be done for the force of mortality in example

2.2 (i) when the Gompertz-Makeham formula (1.1)(with

continuous x) applies. A similar investigation could

be carried out for other forces of transition, like the

forces of fertility of example 2.2(ii).

If one does not know enough about the function

X(. 	 to specify a parametric g(.,e) which can represent

it, one may turn to nonparametric methods, such as those

developed within reliability theory [5], [6]. The force

of mortality in 2.....21(1..) appears there under the name of

failure rate or hazard rate, and quite a lot of energy
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has gone into finding suitable methods of estimating

this function.

Although both of these types of approach were

initiated by Grenander's paper [29] on mortality measure-

ment, such techniques do not seem to be much in use in

demography and related fields. One would be curious to

know why this is so. Part of the explanation is, no

doubt, that these developments are largely unknown among

people working in those fields of application, but there

are more valid reasons.	 We shall suggest some of them.

10.2. The following types of argument seem to

be among the ones leading people to base their inferences

from the data on the M(a,d) and L(a,d) only, and

sometimes on the Lad only. (Note that least squares

and moments method estimation procedures of 0 only
044it

require knowledge of the X ad .)

(i ) In section 3 _ 	described how the points

(Cd : d = 1,2,	 D) partitioning the seniority in-

terval were selected according to conventional rules.

Similarly, it is standard procedure to calculate

"occurrence/exposure" rates of the kind developed in

sections 3.4 and 4.3. The use of standard techniques,

standard tabulations, and so on, facilitates comparison

with other investigations of the same subject matter.

This encourages the continued use of techniques which are

already widely known and widely applied even when other

methods may be known to a few people.
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(11.) The reliability of the data which demo-

graphers have to work with, can be very weak due to

phenomena such as age misreporting, underenumeration,

and so on. Also, one frequently does not know more

than approximate dates (e.g., the calendar year only)

of occurrences of the events studies. This calls for

the application of rather robust statistical techniques,

such as those which we have described. Even though

demographic data may be deficient, they may still be

reliable enough to permit the use of the aggregated
A

values N(a,d) and ga,d), or at least the kaoc

In many cases, the investigator does not even

have access to the original data, but only to standard

tabulations made from them. Such tabulations will often

permit the use of methods described here, and rule out

others.

(iii) A similar argument applies to the

reliability of the models used. For example, most current

models, including those considered in this paper, leave

seasonal variation over the calendar year out of account.

There is plenty of evidence of the importance of such

variation in the occurrence of vital events, but in

many cases this is just a nuisance factor which one wants

to eliminate. Current methods relying on seniority

interval lengths of at least a year seem to effectively

do so.
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(iv) Even in cases where the data are reliable

and sufficiently detailed (and the present author

believes that not nearly enough attention has been given

to such cases), the information extracted by a statistical

procedure should be geared to the needs of the user. It

seems that a standard table of rates, Uke table 1, and

certain other tables derived from it, contains just about

as much information as can be handled in a substantive

study. In fact, the prevalence of summary indices de-

rived from such tables, and the extent to which argumenta-

tion is carried out in terms of such indices, suggests

that the standard tables contain even too much information.

The use of analytic graduation can be seen as another

piece of evidence in the same direction, since it enables

one to substitute the formula of a function and a (small)

set of parameter values for a whole table (This argument

does not rule out the parametric procedure suggested at

the beginning of section 10.1j

(v) Each of the estimators s listed in section
0.11i10010,

9 2 2 is a function of the data via X only. This reflects

the fact that an investigator faced with the problem of

selecting a graduating function from a class 3 of

candidates is likely to calculate x, plot the correspond-

ing diagram, and use this to decide which member to choose

from 3. In fact, this is the way in which certain

graduating functions historically have been pinpointed

as more suitable than others.
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Once s has been determined, however, the in-

vestigator should not neceszarily continue to use X

In the estimation of 0, but should feel free to choose

among all available procedures as far as the quality of

his data permits.

10.3. It is probably appropriate to underline

once more (compare section 1.1) that there exist many

types of graduation methods in addition to analytic

graduation techniques. Most of them were first developed

for use in mortality studies, and in that context they

are apparently applied at least as often as analytic

methods are. Many of them must have been intended for

use in other connections as well, for example in fertility

studies. With the exception of graphic methods, however,

their application to other types of vital rates than

mortality rates seem much less popular. (Compare [53,

P. 53].)
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