Schooling in adolescence raises IQ scores

Christian N. Brinch^{a,b} and Taryn Ann Galloway^{a,1}

^aResearch Department, Statistics Norway, 0033 Oslo, Norway; and ^bDepartment of Economics, University of Oslo, 0317 Oslo, Norway

Edited by Christopher S. Jencks, Harvard University, Cambridge, MA, and approved November 21, 2011 (received for review April 29, 2011)

Although some scholars maintain that education has little effect on intelligence quotient (IQ) scores, others claim that IQ scores are indeed malleable, primarily through intervention in early childhood. The causal effect of education on IQ at later ages is often difficult to uncover because analyses based on observational data are plagued by problems of reverse causation and self-selection into further education. We exploit a reform that increased compulsory schooling from 7 to 9 y in Norway in the 1960s to estimate the effect of education on IQ. We find that this schooling reform, which primarily affected education in the middle teenage years, had a substantial effect on IQ scores measured at the age of 19 y.

ever since the advent of intelligence testing, the malleability of intelligence quotient (IQ) scores by education and training has been intensely debated; given that IQ is associated with a host of social and economic outcomes (1–3), insights on this issue are of clear and definite relevance for society. A growing consensus points to the major role that early childhood environment and interventions play in the development of economically and socially relevant cognitive skills (4–6), but the effectiveness and efficiency of later interventions, such as formal schooling, in raising IQ are less certain.

Although the high correlation between IQ and length of schooling is well-documented (1, 7), clear conclusions about both the direction and extent of the possible causal relationship between schooling and IQ scores remain elusive and highly controversial. Herrnstein and Murray's The Bell Curve (3) famously emphasized the role of IQ in self-selection or sorting into educational levels and provided both an extensive literature review and empirical analyses to support claims about the limited malleability of IQ by schooling and/or training. However, reviews by other scholars (7, 8) reach the opposite conclusion, contending that schooling does itself have a substantial independent effect on IQ. These disparities in interpreting the existing evidence arise primarily because empirical analyses of nonexperimental data generally cannot discount reverse causation (i.e., that higher IQ causes a person to obtain more education rather than vice versa or that some other underlying omitted variable or factor is responsible for both high IQ and higher educational attainment).

More recent contributions based on different empirical strategies for addressing the difficulties in observational data, each with its own specific strengths and weaknesses, have been reported (9-13). However, there is one main type of evidence that is both highly relevant and potentially convincing but entirely missing from this literature: analysis of the effect on IQ of major large-scale policy interventions to raise compulsory schooling levels. This current study exploits exogenous variation in individual educational attainments generated by just such a major intervention: a comprehensive compulsory schooling reform that was introduced in Norway in the period from 1955 to 1972 and affected pupils roughly aged 14–16 y. The nature of this reform, as well as the manner of its introduction, offers a unique opportunity to provide hitherto rather elusive evidence on the extent to which formal education affects IQ. Our results document that education occurring even as late as in the middle teenage years can indeed have a statistically significant and sizeable effect on IQ scores.

Norwegian Compulsory Schooling Reform

The Norwegian compulsory schooling reform increased the number of years of compulsory schooling from 7 to 9 y, created

a new unified type of middle school (ungdomsskole) for grades 7-9, and standardized the minimum academic curriculum at the middle-school level. Because the school starting age was left unchanged (at 7 y), the reform affected compulsory schooling for adolescents aged roughly 14-16 y. The reform induced many individuals to increase their schooling levels and required that all municipalities provide their youths with an additional 2 y of standardized education in the eighth and ninth grades. Because the introduction of the reform took place in different municipalities in different years, we are able to use a number of different strategies to account for correlation between individuals living in the same communities as well as for time trends in IQ scores during the relevant period (i.e., the Flynn effect) (14). The quasiexperimental nature of this reform has been previously used to study the effect of education on a number of other outcomes in Norway (15–18), and similar reforms in other countries have also been extensively used to study the effect of education on earnings (19-22).

Before the reform, two different types of postcompulsory education at the lower secondary level were available in separate schools in Norway. One type of prereform middle school, realskole, was academically oriented and prepared pupils for further (primarily academic) education at the upper secondary level. Because this school type was not provided at the municipal level, traveling distances for pupils in rural areas were often impractically long before the reform and the students would have incurred extra costs of travel and lodging. The other type of school, framhaldsskole, offered pupils practical/vocational training, mostly in the form of 1-y, nonacademic courses. Municipalities could choose whether or not to offer this type of school to their inhabitants, and the educational offerings in this type of school were not standardized across municipalities. The main impact of the reform was thus to offer, and make compulsory, a standardized academic or unified education track in grade levels 8 and 9 for all pupils, regardless of their place of residence. Following the reform, some tracking by ability or skill levels did take place within the new schooling type, but this practice disappeared over time. Further details of the reform are available in publications by Telhaug (23) and Myhre (24), as well as in SI Text.

The reform was introduced at the municipality level, the lowest of three administrative levels in Norway, with the other two levels being the national level, which has responsibility for higher (tertiary) education, and the county level, which has responsibility for secondary education. Schools at the middle-school (or lower secondary) level were predominantly public. Following the reform, the new type of middle school was administered by the municipalities. Each separate municipality was able to introduce the full compulsory schooling reform after local officials submitted a reform plan to a national committee, which, on approval of the plan, provided national funds to finance the creation of the new middle schools and the extension of compulsory schooling. The timing of the reform in different municipalities was therefore not explicitly randomized, but earlier

Author contributions: C.N.B. and T.A.G. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest

This article is a PNAS Direct Submission.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106077109/-/DCSupplemental.

¹To whom correspondence should be addressed. E-mail: tag@ssb.no.

studies of the reform have not been able to uncover strong correlations between observable characteristics of the municipalities and the timing of the reform (15–18, 25). Extensive checks performed as part of our analysis (*Results*) fail to uncover evidence that implementation of the reform was not exogenous to our outcomes of interest (education/IQ).

Data

The measure of IQ used in the analysis was obtained from tests of cognitive ability administered by the Norwegian military to all draft-eligible men at approximately the age of 19 y as part of the universal military draft in Norway. The data from these tests have been widely used and interpreted as IQ scores for research purposes (26–31); in particular, the same Norwegian data figure prominently in the original research documenting the Flynn effect and are judged to be of particularly high quality and coverage (14). Further details on the IQ data and IQ trends in Norway at the time of the reform are available in *SI Text*.

The other data used in this project come from a variety of Norwegian administrative registers organized and maintained by Statistics Norway. Information on place of residence at the age of 14 y was taken from annual datasets from the population registers starting in 1964. Information on educational attainment was obtained from the Norwegian National Educational Database (NUDB), which includes data on the entire population of Norway. Although some of the NUDB data dates back to the early 1970s, full information for the entire population is only reliable following the census in 1980. We therefore use information on highest educational level at the age of 30 y [i.e., 1980 for the earliest cohort we study (born in 1950)]. Data on cohorts born after 1958 showed inconsistencies in the registration of education lengths of 11 y, and we therefore chose to exclude those very late cohorts from our analyses. Altogether, given the restrictions in available data, our analysis is confined to men born during the period 1950-1958. (Further details on the data can be found in SI Text.)

The NUDB includes detailed educational codes that allow us to distinguish between old (prereform) and new (postreform) types of schooling at the primary- and middle-school levels. To identify the timing of the reform in any given municipality, appropriate figures documenting the percentage of cohorts with old and new education codes at the middle-school level were constructed for each of the more than 500 municipalities in Norway at the time. In general, we could easily pinpoint the first cohort affected by the reform because the old schooling codes simply ceased to exist for that cohort [i.e., the share of persons with old schooling codes dropped to (nearly) 0]. We also observed a clear increase in the share of new schooling codes among cohorts at roughly the same time as the reform. However, in some municipalities, the increase in new schooling codes started the year before the old schooling codes disappeared. This suggests that many youths in the cohort immediately preceding the reform were at least partially affected by the reform, although the full reform (with mandatory eighth and ninth grades) did not apply to them (further discussion is provided in *SI Text*). Although we were able to pinpoint the timing of the reform in the majority of municipalities at the time in Norway, we were unable to do so for all (further details and documentation are provided in *SI Text*).

We impute years of completed education at the age of 19 y (i.e., when the IQ test is usually taken), based on highest level of completed education at the age of 30 y. Under normal circumstances, the highest level of education at the age of 19 y is completion of high school, equivalent to 12 y of education in Norway at the time of the reform. Therefore, we assign the maximum of 12 y of education at the age of 19 y to anyone who is registered with 12 or more years of completed education by the age of 30 y. For lower education levels, we take the level registered at the age of 30 y as indicative of the level of education at the age of 19 y. We also briefly discuss results when we use the full length of education at the age of 30 y (i.e., including education that was likely to have been obtained after the IQ test was

taken), and show that the different measures of educational attainment do not substantially alter our results.

Supporting Information provides a graphical depiction of average IQ scores and years of completed education across persons in the birth cohorts born during the period 1950–1958 and used in our analysis (i.e., the men for whom we are able to identify the timing of the reform in their home municipality). Supporting Information also presents relevant descriptive statistics from our data, broken down by cohort, and documents that the analysis sample did not differ in any noticeable way from the full population of relevant cohorts.

Methods and Specification Details

Throughout this article, we report two sets of results from two slightly different but closely related econometric techniques, which are given a textbook exposition in the work of Wooldridge (32), discussed in great detail as part of the survey reported by Imben and Wooldridge (33) and explained for an interdisciplinary audience (demographers) by Moffitt (34). The general idea of the first approach, a difference-in-difference (DID) analysis, is to estimate the effect of the reform on the average IQ score for Norwegian men by comparing the change in IQ scores from the prereform period to postreform period for municipalities that introduced the reform in a given year with the change in IQ scores in that same period in municipalities that did not introduce the reform in that particular year. Alternative assumptions about the nature of the time trend in educational attainment and/or IQ scores are possible and are discussed extensively later. The second approach employs instrumental variables (IV) methods in which experiencing the new schooling system is used as an instrument for educational attainment (with appropriate controls for time trends and municipality of residence). The resulting system of two simultaneous equations is then estimated by twostage least squares (2SLS). If we assume that the exclusive mechanism by which the reform affected IQ scores is by increasing the amount of schooling, the IV/2SLS approach allows us to break down the effect of the reform into (i) the effect of the reform on educational attainment and (ii) the effect of 1 v of additional schooling on IO scores.

We can obtain the average reform effect within the DID framework by estimating the following linear regression with ordinary least squares:

$$IQ_{i} = \rho r_{i} + \sum_{j=1}^{J} \phi_{j} m_{ij} + \sum_{t=1}^{T} \tau_{t} d_{it} + v_{i}$$
 [1]

where r_i is an indicator variable for whether or not a person i was affected by the reform; m_{ij} is an indicator variable for place of residence in municipality j; d_{it} is an indicator variable for birth cohort, $t=1950,\ldots,1958; \rho,\phi$, and τ are parameters to be estimated; and v_i is an error term. Inclusion of the indicator variables m_{ij} and d_{it} allows us to capture any average differences in Q levels in different municipalities and different birth cohorts, respectively. Coefficient ρ then gives us the effect, averaged across all municipalities and times, of the reform on the average IQ score for male conscripts in Norway.

We might also be interested in estimates of the effect of an additional 1 y of schooling on IQ. A simple but unsatisfactory manner in which to study this question would be to estimate a linear regression of IQ score on education as well as other possible relevant covariates:

$$IQ_{i} = \beta x_{i} + \sum_{j=1}^{J} \lambda_{j} m_{ij} + \sum_{t=1}^{T} \pi_{t} d_{it} + \varepsilon_{i}$$
 [2]

where IQ_i is the IQ score; β , λ , and π are coefficients to be estimated; x_i is years of schooling; and ε_i is an error term. We would clearly hesitate to interpret the β coefficient obtained from such a regression as an estimate of the true or "causal" effect of education on IQ scores because it is conceivable that some type of latent ability influences both IQ scores and education at the same time. This is a classic case of omitted variable bias in linear regression; if it is assumed that education and latent ability are positively correlated, the β correlation obtained from the linear regression overestimates the true (causal) relationship between education and IQ scores.

According to well-known results from econometrics (32–34), the omitted variable problem in a situation like this can be solved by the method of IV if we are able to find an instrument, z_i , that is correlated with years of schooling, x_i , but uncorrelated with the error term, ε_i , in Eq. 2. The compulsory school reform implemented in Norway in the 1960s and 1970s is a candidate for such an instrument because whether or not a person was affected by the reform is correlated with schooling attainments, and one can argue for and analyze whether it is unlikely to be correlated with other

factors subsumed under ε_i . If the reform affected IQ scores only by increasing the amount of schooling obtained by Norwegian men, our second approach based on IV allows us to obtain an estimate of the effect of an additional 1 y of schooling on individual IQ scores. We can formulate this by expressing schooling as a function of the reform (as well as other relevant covariates):

$$x_i = \gamma r_i + \sum_{j=1}^{J} \delta_j m_{ij} + \sum_{t=1}^{T} \kappa_t d_{it} + \eta_i$$
 [3]

where r_i is an indicator variable for whether or not a person is affected by the reform; γ , δ , and κ are coefficients to be estimated; and η_i is an error term. The full estimation problem now becomes a system of two simultaneous linear equations (Eqs. 2 and 3), and it can be estimated by 2SLS [further technical details on this method are provided by Wooldridge (32)].

Because the reform also involved standardization of the school curriculum in the new type of middle school created by the reform, it is possible that at least part of the total effect of the reform was attributable to a change in the quality or nature, rather than the quantity, of the education provided on introduction of the reform; [e.g., Marsh et al. (35) discuss how an educational reform affected self-perceptions of ability in Germany]. Thus, with the IV/ 2SLS approach, the additional assumption that increasing length of education was the exclusive mechanism by which the reform affected IQ may not be tenable. Note that this additional assumption does not apply to the DID approach. In other words, regardless of whether the effect of the reform is attributable to changes in quantity or quality, the DID estimate of the effect of the reform remains valid and does reflect an effect of education attributable to the reform as a whole. Despite such caveats to the application of the IV/ 2SLS approach, we find it useful to present those results because we can compare them with results from a basic linear regression of IQ on education with the same controls for municipality and birth cohort. Because a basic linear regression of IQ on education is likely to yield an upwardly biased estimate of the effect of education on IQ, comparison of the IV/2SLS results with a basic linear regression allows us to obtain a sense of the magnitude of the effect of schooling on IQ obtained with our quasiexperimental approach.

To see the relationship between the IV and DID methods, we can substitute Eq. 3 into Eq. 2, which yields:

$$IQ_{i} = (\beta \gamma)r_{i} + \sum_{j=1}^{J} (\beta \delta_{j} + \lambda_{j})m_{ji} + \sum_{t=1}^{T} (\beta \kappa_{t} + \pi_{t})d_{ti} + \beta \eta_{i} + \varepsilon_{i}$$
[4]

Comparing this with the DID specification in Eq. 1 and defining $\rho \equiv \beta \gamma$, we see that the IV/2SLS strategy decomposes the effect of the reform (estimated with the DID approach) into two parts: (i) the effect of the reform on educational attainment, γ , and (ii) the effect of educational attainment on IQ, β .

As mentioned above, the last prereform cohort appears to have been partly affected by the reform in many municipalities. Including partially treated individuals in the analysis leads to attenuation bias (bias toward 0) in the estimation of the reform effect, and the last prereform cohort in each municipality is therefore excluded from the main analyses of this study. Results estimated with the last prereform cohort included are, however, also presented and briefly discussed later.

Robust SEs based on the sandwich (or Huber–White) estimate of variance (36, 37) with clustering by municipality/cohort groupings are reported. SEs that allow for potential serial correlation (within a municipality) were also estimated by clustering on municipality, as suggested by Bertrand et al. (38).

We can also interpret the magnitude of the reform effect by comparing it with the Flynn effect in the relevant period (i.e., for cohorts born during the period 1950-1958). There is broad consensus that the Flynn effect represents a very large increase in average IQ scores over time; in discussing the Flynn effect, a task force appointed by the Board of Scientific Affairs of the American Psychological Association concluded: "The sheer extent of these increases is remarkable" (ref. 1, p. 89). Further detailed discussion of the trend of rising IQ scores in Norway during the second half of the 20th century as documented in previous studies is provided in SI Text. Because we have access to individual data, we are able to estimate average yearly growth over the birth cohorts we study (1950-1958) by means of a linear regression of IQ on a linear time trend with additional controls for place of residence (i.e., with a specification closer to that used for the main analysis). This indicates that IQ scores were increasing by roughly 0.202 IQ points per cohort (year) during the period we study and that the total Flynn effect for the nine cohorts included in this study thus amounted to a little over 1.6 IQ points. The Flynn effect for the period we study is slightly lower than for earlier decades (29).

Results

The basic descriptive results documented in Fig. 1 provide a glimpse of the relationship between the reform and changes in education and IQ scores by indicating how both average educational attainment and average IQ scores are related to the timing of the reform. An unusually large increase in both average education and average IQ is apparent at the same time as the reform was introduced. As mentioned above, the cohort immediately preceding the first full reform cohort was partially affected by the reform, and this can account for the unusually large increase in schooling from 2 y to 1 y before the reform.

Table 1 presents the estimated effect of the reform from the full specification of the empirical approaches, which controls for both municipal-specific (average) effects and general (average) time trends in IQ and/or educational attainment by specifying indicator variables for each municipality and birth cohort. The quasiexperimental results suggest that the reform increased the average IQ score for Norwegian men by a statistically significant 0.6 IQ points. With the IV/2SLS approach, this translates into the reform increasing education by 0.16 y and an additional 1 y of schooling raising IQ by a statistically significant 3.7 points. For comparison, a basic linear regression of IQ on education suggests that an additional 1 y of education is, on average, associated with roughly a 5.0-point higher IQ score. Hence, the effect of education on IQ estimated in this study is, as expected, somewhat lower than the relationship between IQ and education obtained from a basic regression analysis, but it is still quite substantial. The magnitude of the effect found here is broadly similar to the estimated effect of 1 y of education in the few previous studies that have made various attempts to account for self-selection in educational attainment when studying the relationship between education and IQ (e.g., 8-10).

As noted above, we estimate the Flynn effect to be roughly 0.202 IQ points per year or 1.6 IQ points over the cohorts we study. Thus, the reform effect of 0.6 IQ points is equivalent to 3 y of the average Flynn effect in Norway at the time of the reform. However, the reform itself obviously represents a contribution to the total Flynn effect in the period. Because we estimate the total reform effect to be 0.6 IQ points and the total Flynn effect to be roughly 1.6 IQ points, we can attribute over one-third of the Flynn effect to the direct effect of the educational reform for the population of cohorts we study.

To document the robustness of our results, we performed a number of complementary analyses, including alternative modeling of the time trend, construction of "placebo" reforms, estimation with information on the full length of education (including that completed after draft assessment), investigation of the possibility of selective migration in response to or anticipation of the reform, and alternative estimates of SEs that account for potential serial correlation by municipality, as suggested by Bertrand et al. (38). The first robustness check, reported in the column labeled [2] in Table 2, documents that we also uncover statistically significant and sizeable effects of the reform even when the potentially problematic last prereform cohort is included in the analysis.

The manner in which the compulsory school reform occurred in Norway, in different municipalities in different years over a period of several years, allows us to control for time trends in educational attainment and IQ scores, and thus helps to rule out the possibility that such trends are driving our results. We are essentially able to compare educational and IQ gains in municipalities that introduced the reform in any given year with the time trend occurring in the other municipalities that did not introduce the reform that year. Thus, the most important identifying assumption in the results from the main specification (presented in Table 1) (i.e., the assumption needed to interpret the results as "true" or causal effects of the reform) posits that the introduction of the reform is not correlated with underlying trends in IQ at the municipality level. In other words, in the main results, we have assumed that the year-to-year trend in average IQ scores for municipalities that did not introduce the reform in

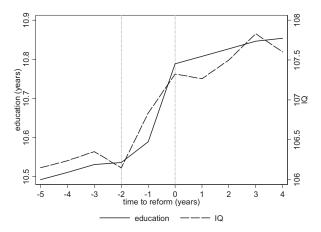


Fig. 1. Average IQ and education by time to reform.

any given year is an appropriate counterfactual for the year-toyear trend in average IQ scores for municipalities that introduced the reform in that given year. Several of the robustness analyses we report here aim to document that underlying differences in time trends are not the primary driving force behind our main results.

Because data limitations force us to restrict our analysis to men from the birth cohorts born during the period 1950-1958, all the men born into those cohorts in municipalities that introduced the reform for cohorts born either before 1951 or after 1958 only serve as controls for the general time trend in our main specification. If the time trend in those early- and lateimplementing municipalities was very different from the time trend in the other municipalities, this could lead to spurious results on the effect of schooling on IQ scores. A simple way to ensure that our results are not driven by differences in time trends for municipalities that introduced the reform before 1951 or after 1958 is to reestimate the model, excluding persons who lived in those early- and late-reform communities. As the column labeled [3] in Table 2 indicates, this exercise reduces the sample by about 25% but does not substantially change the parameter estimates.

Another manner in which we can ensure that our results are not largely driven by differences in trends for different municipalities is to estimate trends separately for each municipality within our

Table 1. Effect of schooling on IQ

Effect of	Linear regression	Quasiexperiment
Reform on average IQ		0.603
(SE)		(0.174)
Reform on schooling	0.163	0.163
(SE)	(0.017)	(0.017)
1 y of schooling on IQ	5.057	3.692
(SE)	(0.030)	(0.914)
No. observations	107,223	107,223

Indicator variables for municipality of residence and birth cohort are included in both specifications. The population for analysis consists of men born during the period 1950-1958 for whom IQ scores are available and who lived in a municipality where the timing of reform introduction could be identified. The last prereform cohort is excluded. The linear regression results are estimated by ordinary least squares. For the quasiexperimental results, the effect of the reform on IQ score is a DID estimate and the effects of the reform on schooling and of 1 y of schooling on IQ score are estimated by the 2SLS method. Under appropriate assumptions, the effect of education on IQ score is equal to the ratio of the effect of the reform on IQ score and the effect of the reform on schooling. Robust SEs based on the sandwich (or Huber-White) estimate of variance with clustering by municipality/cohort groupings are reported.

analysis. We are unable to estimate such a flexible specification of the time trend with separate cohort indicator variables for each separate municipality because the indicator variable for reform year would be collinear with the indicator variable for one of the calendar years (i.e., the year of the reform) for any given municipality. We can instead study two alternative specifications of municipal-specific trends, a linear time trend for each municipality and one where the passing of time enters as a quadratic function. Results with a linear municipal-specific time trend, reported in the column labeled [4] in Table 2, and a quadratic time trend for each municipality (column labeled [5] in Table 2) are also in line with results from the main specification.

In the main analysis, we imputed years of completed education at the age of 19 y, when the military cognitive ability test is generally taken, and use that measure of education in the main analysis. The main motivation for this is that it is only education up until the time of test-taking that can have a direct effect on IQ measured by that particular test. However, the reform might also have had an effect on educational attainment beyond the age of 19 y. Because information on educational attainment is not used directly in the DID approach, the estimate of the effect of the reform on IQ in the DID approach remains valid. However, for both general understanding of the workings of the reform and assessment of the IV/2SLS approach, it is useful to measure the effect of the reform on full educational attainment at the age of 30 y. As documented in column [6] in Table 2, the reform had little effect on educational attainment beyond the secondary level; use of information on full educational attainment only increases the effect of the reform on education from 0.163 to 0.172. Furthermore, the IV/2SLS estimate of the effect of education on IQ is unaffected to all intents and purposes.

As pointed out by Bertrand et al. (38), failure to account for potential serial correlation in outcome variables when estimating SEs in a DID model can lead to erroneous rejection of a null hypothesis of no effect. Thus, to check that our main conclusions are robust to possible serial correlation, we also calculated SEs with clustering at the municipality level, as suggested by Bertrand et al. (38). The last column of Table 2 (labeled [7]) presents the alternative SEs estimated with clustering at the municipality level for the main specification. The alternative SEs with clustering on municipality are slightly larger than the SEs reported in Table 1 but are still far from large enough to alter the main conclusion that education has a strong, statistically significant effect on IQ score.

Another manner in which to check the robustness of results is to construct a placebo reform (i.e., act as if the reform took place either before or after the actual reform was implemented) and see if we pick up a statistically significant effect of the placebo. If we uncover a statistically significant effect of the placebo, our main results from the actual reform are likely to be spurious, caused by other underlying differences among municipalities. We can construct a placebo before the timing of the actual reform by subtracting a given number of years from the actual reform timing and excluding all the real postreform cohorts. Given that the last prereform cohort in many municipalities appears to have been affected by the reform, the constructed placebo has to be at least 2 y before the true reform. We also constructed a similar placebo 2 y after the true reform dates, excluding all (real) prereform cohorts from the analysis.

The columns labeled "Placebo" in Table 3 document that we do not uncover statistically significant effects from such placebo analyses. Because we need to exclude certain cohorts from such analyses, we are also dramatically reducing the sample size when we study the constructed placebo reforms. In and of itself, decrease in sample size reduces the precision of any estimates (compare with Table 1) and can obscure any effects of the placebo. Thus, for each of the reported placebo analyses, we also present results based on the actual reform, with the sample trimmed in the same manner as is necessary for the placebo analyses. For a placebo constructed 2 y before the actual reform, this means that we need to limit our analysis to municipalities

Table 2. Robustness checks

Effects of	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Reform on average IQ	0.603	0.363	0.619	0.847	0.962	0.603	0.603
(SE)	(0.174)	(0.154)	(0.187)	(0.201)	(0.262)	(0.174)	(0.231)
Reform on schooling	0.163	0.152	0.190	0.211	0.206	0.172	0.163
(SE)	(0.017)	(0.014)	(0.019)	(0.023)	(0.033)	(0.031)	(0.016)
One year of schooling on IQ	3.692	2.389	3.267	4.018	4.680	3.504	3.692
(SE)	(0.914)	(0.891)	(0.853)	(0.815)	(1.135)	(0.856)	(1.216)
No. observations	107,223	117,564	79,905	107,223	107,223	107,223	107,223
Municipal indicator variables	✓	✓	✓	✓	✓	✓	✓
Cohort indicator variables	✓	✓	✓			✓	✓
Reform 1951–1958 only			✓				
Municipal linear trend				✓			
Municipal quadratic trend					✓		
Excluding last prereform cohort	✓		✓	✓	✓	✓	✓
Full length of education at the age of 30 y						✓	
SE with clustering on municipality							✓

Robust SEs based on the sandwich (or Huber–White) estimate of variance with clustering by municipality/cohort groupings are reported. Column [1] repeats the baseline estimates from Table 1. Column [2] presents results when the cohort immediately preceding full reform implementation is included. Column [3] presents results for a sample consisting only of those municipalities that introduced the reform during the period 1951–1958. Column [4] presents results from a specification with municipal-specific linear trends. Column [5] presents results from a specification with municipal-specific quadratic trends. Column [6] presents results with full length of education at the age of 30 y. Column [7] presents alternative robust SEs with clustering on municipality.

that implemented the reform during the period 1953–1958 and to exclude any true postreform cohorts, as well as the last prereform cohort (which we know was partially affected by the reform). For a placebo constructed 2 y after the actual reform, this
means that we need to limit our analysis to municipalities that
implemented the reform during the period 1951–1956 and exclude any true prereform cohorts. The real reform results from
those two different comparison samples, presented in the columns labeled "Reform comparison" in Table 3, are very similar
to all our preceding results from the full sample for analysis and
document that the lack of statistically significant results from the
placebos is not simply the result of other sample restrictions in
the placebo analyses. Thus, we can conclude that our placebo
analysis also gives no indication of the main analysis picking up
spurious reform effects.

Because it is conceivable, at least in theory, that individuals knew (or could have found out) when the reform was planned in different municipalities, some families may have moved so that their children would have access to the postreform schooling system (or would remain within the old schooling system). To exclude this possibility, we performed an analysis of the change in the size of the relevant school population at the age of 14 y in each municipality. More specifically, we performed a DID analysis with the same specification of control variables as in Eq. 1 but where the dependent variable was the number or natural logarithm of the number of pupils aged 14 y in the municipality. The sample was otherwise the same as that used in the analysis. If introduction of the reform attracted students from nonreform municipalities, we would expect to find a statistically significant positive effect of the reform on the number of pupils aged 14 y. We were unable to uncover such an effect of the reform (see Supporting Information), and therefore conclude that there is little evidence to support the idea of selective migration in response to (or anticipation of) the reform.

Discussion

By exploiting the increase in schooling induced by a comprehensive compulsory schooling reform, this study is able to uncover a statistically significant and sizeable effect of middle-school education on IQ scores in early adulthood for Norwegian men. The robustness checks and complementary analyses performed as part of this research give little reason to suspect that the main results on the effect of education in midadolescence on IQ scores in young adulthood are spurious. The relevance of these results extends to a number of major discussions in the

social sciences, but some caution ought to be exercised when extrapolating our results to other educational interventions or, in general, to other contexts and countries (39, 40). Particular features of the Norwegian educational system and/or Norwegian society at the time may have been major factors that enabled this reform to have such a marked effect.

As pointed out in the introductory section, the effect of education on IQ has been a recurring theme of great controversy and contention, with scholars often interpreting the existing evidence in vastly different ways. The unique "quasiexperimental" nature of the Norwegian compulsory schooling reform, combined with opportunities afforded by comprehensive detailed register data, provides a particularly valuable framework with

Table 3. Placebo analysis

	Prereform placebo (2 y before reform)		Postreform placebo (2 y after reform)		
Effects of	Reform comparison	Placebo	Reform comparison	Placebo	
Reform on IQ	0.900	-0.413	0.698	-0.032	
(SE)	(0.262)	(0.229)	(0.238)	(0.201)	
Reform on schooling	0.200	-0.035	0.191	-0.002	
(SE)	(0.034)	(0.031)	(0.025)	(0.020)	
Municipal indicators	✓	✓	✓	✓	
Cohort indicators	✓	✓	✓	✓	
Excluding prereform cohort	✓		✓		
Reform 1953-1958	✓	✓			
Reform 1951-1956			✓	✓	
No. observations	34,043	27,418	54,324	56,105	

The table documents the coefficient estimates of reform on IQ and schooling with indicator variables for municipality of residence and birth cohort included in all specifications. The columns labeled "Placebo" indicate estimates where the dating of the reform is 2 y prior or 2 y after actual reform introduction. The columns labeled "Reform comparison" include the same sample restrictions necessary for the placebo analyses for the actual reform timing (i.e., municipalities that introduced the reform during period 1951–1956 for postreform placebo comparison and during the period 1953–1958 for prereform placebo comparison and exclusion of all the real postreform cohorts). The last prereform cohort is excluded from the analysis. Robust SEs based on the sandwich (or Huber–White) estimate of variance with clustering by municipality/cohort groupings are reported.

Brinch and Galloway PNAS Early Edition | 5 of 6

which to study and reconsider this issue. These results do not directly challenge the recent emphasis placed on early childhood environment for the development of cognitive skills (4, 5) because that also depends on the higher cost-effectiveness of early interventions; however, given the paucity of evidence on any effects of later interventions on cognitive ability, these results suggest that we should not yet entirely disregard the potential of interventions even as late as in adolescence. Finally, this study represents a unique case in which we are able to attribute a substantial portion, roughly one-third, of the Flynn effect in a certain period directly to a specific cause, a large-scale educational intervention.

ACKNOWLEDGMENTS. We thank Manudeep Singh Bhuller, Magne Mogstad, Gro Nygaard, Steve Pudney, Kjell Salvanes, Alfred Oftedal Telhaug, Kjetil Telle, and two anonymous referees for comments. While carrying out this research, C.N.B. was associated with the Centre of Equality, Social Organization, and Performance (ESOP) at the Department of Economics, University of Oslo. ESOP is supported by the Research Council of Norway.

- 1. Neisser U, et al. (1996) Intelligence: Knowns and unknowns. Am Psychol 51:77-101.
- 2. Heckman JJ, Stixrud J, Urzua S (2006) The effects of cognitive and noncognitive abilities on labor market outcomes and behaviour. J Labor Econ 24:411-482.
- 3. Herrnstein RJ, Murray C (1994) The Bell Curve: Intelligence and Class Structure in American Life (Free Press, New York).
- 4. Knudsen El, Heckman JJ, Cameron JL, Shonkoff JP (2006) Economic, neurobiological, and behavioral perspectives on building America's future workforce. Proc Natl Acad Sci USA 103:10155-10162.
- 5. Heckman JJ (2006) Skill formation and the economics of investing in disadvantaged children. Science 312:1900-1902.
- 6. Burchinal MR, Campbell FA, Bryant DM, Wasik BH, Ramey CT (1997) Early intervention and mediating processes in cognitive performance of children of low-income African American families. Child Dev 68:935-954.
- 7. Ceci SJ (1991) How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Dev Psychol 27:703-722.
- 8. Winship C, Korenman S (1997) Intelligence, Genes, and Success. Scientists Respond to the Bell Curve, eds Devlin B, Fienberg SE, Resnick DP, Roeder K (Springer, New York), pp 215-234.
- Cascio EU, Lewis EG (2006) Schooling and the Armed Forces qualifying test. Evidence from school-entry laws. J Hum Resour 41:294-318.
- 10. Falch T, Massih SS (2011) The effect of education on cognitive ability. Econ Inq 49: 838-856.
- 11. Hansen K, Heckman JJ, Mullen KJ (2004) The effect of schooling and ability on achievement test scores. J Econom 121:39-98.
- 12. Brouwers SA, Mishra RC, Van de Vijver FJR (2006) Schooling and everyday cognitive development among Kharwar children in India: A natural experiment. Int J Behav Dev
- 13. Van de Vijver FJR, Brouwers SA (2009) Schooling and basic aspects of intelligence: A natural guasi-experiment in Malawi. J Appl Dev Psychol 30:67-74.
- 14. Flynn JR (1987) Massive IQ gains in 14 nations. Psychol Bull 101:171-191.
- 15. Aakvik A, Salvanes KG, Vaage K (2010) Measuring heterogeneity in the returns to education using an education reform, Eur Econ Rev 54:483-500.
- 16. Monstad K, Salvanes KG, Propper C (2008) Education and fertility: Evidence from a natural experiment, Scand J Econ 110:827-853.
- 17. Black SE, Devereux PJ, Salvanes KG (2008) Staying in the classroom and out of the maternity ward? The effect of compulsory schooling laws on teenage births. Econ J 118:1025-1054
- 18. Black SE, Devereux PJ, Salvanes KG (2005) Why the apple doesn't fall far: Understanding intergenerational transmission of human capital. Am Econ Rev 95:
- Harmon C, Walker I (1995) Estimates of the economic return to schooling for the United Kingdom. Am Econ Rev 85:1278-1286
- 20. Ichino A, Winter-Ebmer R (1999) Lower and upper bounds of returns to schooling: An exercise in IV estimation with different instruments. Eur Econ Rev 43:889-901.

- 21. Meghir C, Palme M (2005) Educational reform, ability, and family background. Am Econ Rev 95:414-424.
- 22. Brunello G, Fort M, Weber G (2009) Changes in compulsory schooling, education and the distribution of wages in Europe. Econ J 119:516-539.
- 23. Telhaug AO (1982) Norwegian School Development After 1945 (Didakta, Oslo) (in Norwegian).
- 24. Myhre R (1992) Development of the Norwegian School (Ad Notam Gyldendal, Oslo) (in Norwegian).
- 25. Lie S (1974) Regulated social change: A diffusion study of the Norwegian comprehensive school reform. Acta Sociol 16:332-350.
- 26. Kristensen P, Bjerkedal T (2007) Explaining the relation between birth order and intelligence. Science 316:1717.
- 27. Sundet JM, Tambs K, Magnus P, Berg K (1988) On the question of secular trends in the heritability of IQ test scores: A study of Norwegian twins. Intelligence 12:47-59
- 28. Black SE. Devereux PJ. Salvanes KG (2007) From the cradle to the job market? The effect of birth weight on adult outcomes of children. Q J Econ 122:409-439.
- 29. Sundet JM, Barlaug DG, Torjussen TM (2004) The end of the Flynn effect? A study of secular trends in mean intelligence test scores of Norwegian conscripts during half a century. Intelligence 32:349-362.
- 30. Sundet JM, Tambs K, Harris JR, Magnus P, Torjussen TM (2005) Resolving the genetic and environmental sources of the correlation between height and intelligence: A study of nearly 2600 Norwegian male twin pairs. Twin Res Hum Genet 8:307-311.
- 31. Black SE, Devereux PJ, Salvanes KG (2009) Like father like son: A note on the intergenerational transmission of IQ scores. Econ Lett 105:138-140.
- 32. Wooldridge JM (2002) Econometric Analysis of Cross Section and Panel Data (MIT Press, Cambridge, MA).
- 33. Imbens GW, Wooldridge JM (2009) Recent developments in the econometrics of program evaluation. J Econ Lit 47:5-86.
- 34. Moffitt R (2005) Remarks on the analysis of causal relationships in population research. Demography 42:91-108.
- 35. Marsh HW, Köller O, Baumert J (2001) Reunification of East and West German school systems: Longitudinal multilevel modeling study of the big-fish-little-pond effect on academic self-concept. Am Educ Res J 38:321-350.
- 36. Huber PJ (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Univ of California Press, Berkeley, CA), pp 221-233.
- 37. White H (1980) A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica 48:817-830.
- 38. Bertrand M. Duflo E. Mullainathan S (2004) How much should we trust differencesin-differences estimates? Q J Econ 119:249-275.
- 39. Rindermann H, Ceci SJ (2009) Educational policy and country outcomes in international cognitive competence studies. Perspect Psychol Sci 4:551-577.
- 40. Brouwers SA, Van de Vijver FJR, Van Hemert DA (2009) Variation in Raven's Progressive Matrices scores across time and place. Learn Individ Differ 19:330-338.

Supporting Information

Brinch and Galloway 10.1073/pnas.1106077109

SI Text

Further Details on Reform. In our analysis, we need to know whether each birth cohort in any given municipality experienced the old (prereform) or new (postreform) educational system. Written documentation on the timing of the reform, including a list by Ness (1) as well the series of official statistics (2–6), is limited and/or incomplete, and therefore not sufficient to pinpoint the exact timing of the reform in all the relevant municipalities. However, it is feasible to determine the timing of the reform if we have data of sufficient quality on place of residence at the relevant age (14 y) and educational attainment. Previous studies (7–10) have used a similar strategy but relied primarily on census data (from 1960) on place of residence; such information is of varying quality as an indication for place of residence at the relevant age for the different birth cohorts affected by the reform. In addition, municipality structure underwent a number of major changes in the early 1960s in Norway; thus, a place of residence recorded in the 1960 census may have ceased to exist as an independent municipality just a few years later. As a result, these previous studies would not have been able to establish place of residence as accurately at the relevant age for all cohorts or to pinpoint the timing of the reform with as much precision as in this current study. This does not, by any means, discredit the results from those studies, because the IV/2SLS approach accounts for such possible errors. However, data of poorer quality do lead to more statistical uncertainty (in the form of larger SEs), which, in turn, makes it more difficult to reject any hypotheses of no effect. Data of better quality allow us to estimate relevant relationships with greater precision.

For each male in the Norwegian population from birth cohorts for the period 1950-1958, we obtain information on the place of residence (municipality) at the time when he could have entered the eighth grade in the new educational system (in practice, January 1 of the year he turned 14 y of age). This information from the population register is matched with the educational register, which provides us with the individual's highest level of complete education at the age of 30 y. Data from earlier ages (i.e., before 1980 for our cohorts) are of questionable quality. We are able to observe that before the reform, a substantial fraction of a given birth cohort did not have education at the middle-school level and that their schooling is characterized by codes referring to the old school system [i.e., folkeskole (primary school), framhaldsskole, realskole]. Following the introduction of the reform, any relevant postreform birth cohort would be expected to have a substantial portion of individuals with educational codes referring to the new school system (i.e., completed ungdomsskole). By plotting the share of persons with old and new education codes at the primary- and middle-school levels over cohorts for each municipality, we are generally able to pinpoint the timing of the reform in each municipality. It is worthwhile to note that we are using exact (6-digit) educational codes for type of school diploma rather than simply years of completed education when we pinpoint the timing of the reform. In our work, the timing of the reform is usually very clear, because the old schooling codes simply cease to exist [i.e., the fraction with those types of educational codes drops to (nearly) 0] for residents in a given municipality.

Institutional factors hindered the identification of reform timing in many of the municipalities. During the time period we study, a large consolidation of municipality structure took place in Norway and resulted in a number of municipalities merging and others splitting up, mostly in 1964 and 1965. If two municipalities

A and B merged to form municipality C at a time when municipality A had already implemented the reform but municipality B had not, we are unable to assign a reform year to municipality C and we are forced to exclude all observations of individuals from municipalities A and B. In other words, many merged municipalities where the reform was implemented in different years in different parts are left out of our reform year dataset. Alternatively, if municipality D splits into municipalities E and F and municipality G splits into municipalities E and G, municipalities C, D, E, F, and G can be treated as a single unit as long as the reform timing in each separate presplit municipality is compatible. About 13% of the pupils in the relevant years are left out of the sample for such reasons. We were also forced to exclude the capital city, Oslo, from the analysis because of inconsistencies in the data from the relevant period. Official statistics (3-6) list a large number of the new type of middle school (ungdomsskole) in Oslo many years before official reform introduction, as reported in other sources (1). (Results from analyses performed with observations from Oslo differed little from the other results presented here.)

For a number of municipalities, it is still difficult to assign a specific year of reform introduction even with access to detailed individual education data and despite our best efforts. In very small municipalities (of which there were many in Norway at the time), random variation in schooling choices involving just a handful of pupils in any given year would be enough to obscure any systematic change in schooling patterns. Furthermore, given the isolated location of many municipalities in Norway, a number of local idiosyncrasies in the educational system did exist at that time. For example, before the reform, youths from many small rural municipalities would have attended postcompulsory school in a larger neighboring municipality. Thus, when an old realskole offering education to a number of neighboring municipalities is turned into a new ungdomsskole as a result of the reform in the municipality where the old realskole was located, education in the new school may be offered to inhabitants in neighboring municipalities, but mandatory 9-y education only applies to the municipality where the school is located. The full introduction of the reform (with mandatory 9-y schooling) in the other involved municipalities may have occurred later. Such issues made it difficult for us to pinpoint the timing of the reform for ~18% of the individuals relevant for this study. Altogether, we are able to assign reform years to the municipalities where ~60% of the birth cohorts during the period 1950–1958 lived at the age of 14 y (Table S3). Table S1 provides descriptive statistics on the full sample of men in the 1950-1958 cohorts as well as the men who resided in municipalities for which we could identify the timing of the reform (i.e., the sample of analysis). It documents that the sample used in the analysis (i.e., for whom reform timing could be identified) did not differ markedly from the general population at the time.

There is some indication of partial treatment of the last prereform cohort in the data (e.g., Figs. S1 and S2). Indeed, there are several reasons why we should expect to find some sign of partial treatment of the last prereform cohort in our analysis. The series of official statistics (2–6) discusses and documents how correspondence between birth cohort and school cohort is imperfect, because parents could apply to have their child start first grade later than the norm (which was the fall of the year the child turned 7 y old) and school progression was delayed for some students because of sickness and/or grade retention. Roughly 5% of a birth cohort started school a year late, and roughly another 5% experienced delays in school progression (i.e., grade retention). Furthermore, we cannot dismiss the possibility that some students, who had completed the old (prereform) seventh grade a year earlier, returned to school as new middle schools opened nearby. Indeed, there is no reason to suppose that older students were explicitly barred from receiving further education in the new middle schools once they were established in a given municipality. Also, because many of these communities did actually have to build and/or create new middle schools to implement the reform fully, it seems likely that there would have been interest in filling up the new middle schools.

Altogether, we need to address partial treatment in the last prereform cohort, and we have three options for doing so, all of which were covered in this analysis and reported either in the main text or here. The main results exclude the last prereform cohort from the analysis. Table 2 also reports results with the last prereform cohort considered untreated. Note that inclusion of the last prereform cohort as untreated results in attenuation of the estimates (i.e., makes it more difficult to uncover a reform effect, because the last prereform cohort was partially treated). Finally, further results in which the last prereform cohort is considered fully treated (i.e., the reform is predated by 1 y) are also reported and briefly discussed below.

Further Details on Data. The data on IQ are taken from the draft assessment of the Norwegian military. Only in extreme circumstances, such as severe handicap, are men exempt from the preliminary draft assessment, of which the cognitive ability test is a part. Sorting of men for military duty, including further decisions about exemption from military service for health reasons, occurs after the cognitive ability test is taken. The test consists of three timed subtests: arithmetic, word similarities, and figures. The results from the subtests are combined into a general ability (GA) score standardized to a stanine (9-point) scale; the correlation between GA and Wechsler Adult Intelligence Scale IQ is 0.73 (11). Further details on these tests can also found elsewhere (12–14). In line with the common practice used in the studies cited above, we convert the stanine scores on GA into the more common IQ scale, with a mean of 100 and an SD of 15. Major changes in the subtests occurred either before or after the period relevant for our study (13). We were only able to obtain the GA data for persons born 1950 onward as part of this study.

As in most previous studies using the Norwegian cognitive ability data (e.g., 13, 15), we convert the stanine scores from the GA test of the Norwegian military to IQ equivalent scores by setting the stanine score of 5 equal to -100 and then using increments of 7.5 for each stanine score deviation from 5. This is the conversion based on standardization from the 1954 draft cohort (i.e., persons born about 1935). Because of the rise in IQ in Norway, the mean IQ for the cohorts we study is therefore considerably higher than 100 and the SD is lower (because of ceiling effects). Unfortunately, cognitive ability results broken down into the three subtests (arithmetic, word similarities, and figures) are not available for the full sample of cohorts we study.

The data in the NUDB starts with self-reported data on highest level of completed education from the 1970 census. Since 1974, relevant information on participation in education and completion of degrees has been reported directly by the educational institutions and not by the individuals themselves. As a result of "missing" data for the years 1971–1973, data on the highest level of education are only reliable after corrections and updating could be made following the census in 1980. We therefore use information on the highest level of education at the age of 30 y; this would be in 1980 for the earliest cohort we study (born in 1950).

Complementary Analyses. Fig. S2 relates the share of persons with less than 9 y of education to reform timing for municipalities that introduced the reform in the years 1952–1957 and helps us to

document a number of relevant insights for understanding the introduction of the compulsory schooling reform. (The reform years 1952–1957 are chosen so as to have observations for cohorts both before and following the first full reform cohorts in Fig. S2.) The first insight provided by Fig. S2 is that the reform, as expected, dramatically lowered the share of persons with less than 9 y of education. Furthermore, we can see from Fig. S2 that ~15–20% of the pupils were affected by the reform for each reform year studied. In other words, the reform did not simply have an impact on a very small and highly select group of pupils but altered education attainment for a substantial minority, almost one in five, of the youth population at the time. Finally, Fig. S2 documents the start of the decline of persons with less than 9 y of education in the year before full reform introduction (i.e., going from -2 to -1 on the horizontal axis, as discussed above).

The DID estimates presented in the main text implicitly assume that the effect of the reform does not vary over time after (or before) the reform. We can test this assumption by estimating a model that allows for variation in the reform effect over time to reform, as presented in Table S4. To allow sufficient flexibility, we include several periods well before or after any periods for which we might expect to find an effect. There is some evidence to suggest partial treatment of the last prereform cohort. Therefore, we include indicator variables for each of 4 y before the reform plus an aggregate category for ≥ 5 y before the reform. We do not suspect any differential effects over the years after the reform; however, to provide sufficient flexibility, we include indicator variables for each of 3 y postreform (i.e., 0, 1, 2 y after the reform) plus an aggregate category for ≥ 3 y following the reform. The reference category for time before/after indicators is the first postreform cohort (i.e., 0 y after the reform). The results in Table S4 are in line with all the previously reported results. The coefficients on the prereform categories for time to reform are roughly the same as the reform effects we estimate for the DID in the main text. The postreform categories do not differ among themselves, and none of the reported postreform coefficients are individually significantly different from the reference category. Thus, there is little evidence to suggest that the effect of the reform varied over the time leading up to or following the reform, with the one exception of the last prereform cohort, as previously reported.

Table S5 presents results in which we include the last prereform cohort as treated by simply predating the reform by 1 y in each municipality. Note that because compulsory eighth- and ninthgrade schooling did not apply to the last prereform cohort, this exercise has the potential of introducing a bias in who is treated in the last prereform cohort. For example, it is reasonable to assume that some of the most motivated youths in the last prereform cohort chose to pursue further education voluntarily in the new middle schools. If this is the case, we would expect a lower effect of the reform on education and higher (biased) estimate of the effect of education on IQ. The DID results in Table S5 show hardly any difference for the effect of the reform on IQ compared with Table 1 in the main text, whereas the IV/2SLS strategy suggests a lesser effect of the reform on education and a larger effect of education on IQ compared with Table 1 in the main text.

Flynn Effect in Norway. Norway was one of the countries discussed in Flynn's seminal paper (12) documenting a widespread rise in IQ over many years in a wide range of countries; the Norwegian data from the military draft are also judged to be quite comprehensive and of particularly high quality. However, Flynn (12) only had access to certain sporadic years for Norway in his paper; his documentation suggests that Norway experienced quite a dramatic rise of 10 IQ points between the 1954 and 1968 draft cohorts (which corresponds to birth cohorts during the period 1935–1949), followed by what appears to be leveling off in the subsequent 10–12 y. A more recent study by Sundet et al. (13)

provides further details and more comprehensive documentation starting from the 1954 draft cohort (born about 1935) through the 2002 draft cohort (born roughly about 1983). That study presents sporadic results for individual draft cohorts from 1954 until the end of the 1960s and then a long consecutive time series starting from the late 1960s through 2002.

Taking the two end points in the period for the analysis (13) suggests a total gain in IQ, relative to the 1954 mean of 100, of 10.8 IQ points, or an average of 0.23 points per year from 1954 to 2002. However, the results of the study by Sundet et al. (13) clearly indicate a much larger increase in average IQ before the period relevant for our cohorts [i.e., before (draft year) 1969]. The rise in the period relevant for our cohorts (1969–1977) is steady until a noticeable decline occurs toward the end of the 1970s. The start of that decline is also apparent in our data, for the birth cohorts in 1967 and 1968 (Fig. S1). The analysis in Sundet et al. (13) also indicates that that decline was reversed around the start of the 1980s, when scores started to rise steadily again before another decline, and leveling off occurred starting in the mid-1990s. The long time series (13) therefore suggest that increases in IQ have moved somewhat up and down around a rough but clear upward trend over the full period they study; the largest increases did clearly occur before (draft year) 1969. The study by Sundet et al. (13) also suggests that ceiling effects may have depressed the increase in scores as average IQ levels rise.

If we take the average IQ from the two end points in our data, we observe an increase of 1.56 IQ points from the 1950 birth cohort to the 1958 birth cohort, or an average annual rate of increase of ~0.2 points (Table S1). An estimated Flynn effect for the cohorts we study of ~0.202 points per year, based on a regression with a linear time trend and municipal indicator variables, is reported in the main text. Although Sundet et al. (13) do not report average IQs in a table or explicitly calculate average annual rates specifically for the period relevant for our study, the average annual increases we observe in our data are roughly similar to what appears in figure 1 in Sundet et al. (13) for the draft cohorts corresponding to our birth cohorts.

One further point to note in comparing our descriptive statistics with those of Sundet et al. (13) is that those researchers add 2.1 points to the scores for draft cohorts 1969–2001 to account for changes in the test. All such changes took place before or after the period we study (13). We therefore do not explicitly have to account for them in our study, but that will have an effect on comparisons of reported averages or levels across different studies.

- 1. Ness E, ed (1971) Yearbook of the School (Johan Grundt Tanum Forlag, Oslo) (in Norwegian).
- Educational statistics 1962-1963 (1963) Primary and Continuation Schools, Norway's Official Statistics A76 (Statistics Norway, Oslo), Vol 1 (in Norwegian).
- Educational statistics 1963-1964 (1964) Primary and Continuation Schools, Norway's Official Statistics A97 (Statistics Norway, Oslo), Vol 1 (in Norwegian).
- Educational statistics 1964-1965 (1965) Primary and Continuation Schools, Norway's Official Statistics A97 (Statistics Norway, Oslo), Vol 1 (in Norwegian).
- Educational statistics 1965-1966 (1966) Primary and Continuation Schools, Norway's Official Statistics A97 (Statistics Norway, Oslo), Vol 1 (in Norwegian).
- Educational statistics 1966-1967 (1967) Primary and Continuation Schools, Norway's Official Statistics A97(1967) (Statistics Norway, Oslo), Vol 1 (in Norwegian).
- Aakvik A, Salvanes KG, Vaage K (2010) Measuring heterogeneity in the returns to education using an education reform. Eur Econ Rev 54:483–500.
- Monstad K, Salvanes KG, Propper C (2008) Education and fertility: Evidence from a natural experiment. Scand J Econ 110:827–853.

- Black SE, Devereux PJ, Salvanes KG (2008) Staying in the classroom and out of the maternity ward? The effect of compulsory schooling laws on teenage births. Econ J 118:1025–1054.
- Black SE, Devereux PJ, Salvanes KG (2005) Why the apple doesn't fall far: Understanding intergenerational transmission of human capital. Am Econ Rev 95:437

 –449.
- Sundet JM, Tambs K, Magnus P, Berg K (1988) On the question of secular trends in the heritability of IQ test scores: A study of Norwegian twins. *Intelligence* 12:47–59.
- 12. Flynn JR (1987) Massive IQ gains in 14 nations. Psychol Bull 101:171-191.
- Sundet JM, Barlaug DG, Torjussen TM (2004) The end of the Flynn effect? A study of secular trends in mean intelligence test scores of Norwegian conscripts during half a century. *Intelligence* 32:349

 –362.
- Sundet JM, Tambs K, Harris JR, Magnus P, Torjussen TM (2005) Resolving the genetic and environmental sources of the correlation between height and intelligence: A study of nearly 2600 Norwegian male twin pairs. Twin Res Hum Genet 8:307–311.
- Kristensen P, Bjerkedal T (2007) Explaining the relation between birth order and intelligence. Science 316:1717.

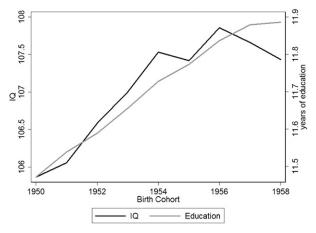


Fig. S1. Average schooling and IQ scores over birth cohorts 1950–1958.

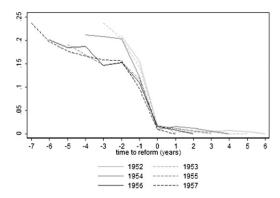


Fig. S2. Share of persons with less than 9 y of education by time to reform and reform year.

Table S1. Descriptive statistics for men born during the period 1950–1958 and sample for analysis

Birth cohort	1950	1951	1952	1953	1954	1955	1956	1957	1958	All
All men										
IQ	105.99	106.24	106.93	107.12	107.66	107.70	107.96	107.83	107.55	107.25
(SD)	(13.38)	(13.36)	(13.06)	(12.91)	(12.76)	(12.63)	(12.63)	(12.59)	(12.62)	(12.89)
Education, y	10.49	10.55	10.59	10.66	10.73	10.79	10.84	10.90	10.89	10.72
(SD)	(1.58)	(1.51)	(1.45)	(1.41)	(1.38)	(1.36)	(1.34)	(1.29)	(1.28)	(1.41)
No. observations	20,753	20,425	21,264	21,519	21,099	22,415	23,265	23,301	24,198	198,239
Analysis, %*	58.88	59.50	59.64	59.37	59.07	59.12	59.45	60.15	59.74	59.45
Sample for analysis*										
IQ	105.87	106.06	106.58	107.00	107.53	107.42	107.86	107.66	107.43	107.07
(SD)	(13.38)	(13.26)	(12.98)	(12.85)	(12.69)	(12.67)	(12.71)	(12.64)	(12.69)	(12.88)
Education, y	10.47	10.54	10.59	10.66	10.73	10.77	10.84	10.88	10.89	10.71
(SD)	(1.58)	(1.50)	(1.44)	(1.40)	(1.38)	(1.36)	(1.34)	(1.29)	(1.27)	(1.40)
No. observations	12,222	12,156	12,684	12,788	12,486	13,255	13,836	14,019	14,457	117,903
Reform, % [†]	16.37	30.52	43.18	50.71	57.55	69.48	80.7	87.48	92.82	60.15

^{*}Men born during the period 1950–1958, for which timing of reform can be identified.

Table S2. Effect of reform on school population aged 14 y

Population of 14-y-olds in municipality

	Total (n)	Log total (log <i>n</i>)
Reform	-5.104	-0.019
(SE)	(5.370)	(0.016)
Municipal indicators	✓	✓
Cohort indicators	✓	✓
Excluding prereform cohort	✓	✓
No. observations	107,223	107,223

Robust SEs based on the sandwich (or Huber–White) estimate of variance with clustering by municipality/cohort groupings are reported in parentheses.

Table S3. Identification of reform year

	Municipalities		Individuals	
	Frequency	Percentage	Frequency	Percentage
Unable to identify reform year because of institutional difficulties*	105	20.04	43,897	22.15
Unable to identify reform year for other reasons [†]	146	27.86	36,439	18.38
Used in analysis	273	52.10	117,903	59.47
Total	524	100.00	198,239	100.00

^{*}Changes in municipal structure and/or inconsistencies in official statistics (details are provided in the main text).

[†]Men who turned 14 y of age in a municipality with the new (postreform) schooling system.

[†]Primarily attributable to municipalities being too small to uncover clear pattern of educational attainment.

Table S4. Effect of time to reform on IQ and education

	Years of education		IQ		
	Coefficient	SE	Coefficient	SE	
Years before reform				<u> </u>	
5 or more	-0.153	0.022	-0.286	0.186	
4	-0.185	0.022	-0.899	0.213	
3	-0.158	0.024	-0.716	0.223	
2	-0.161	0.025	-0.758	0.252	
1	-0.180	0.030	-1.154	0.326	
Years after reform					
1	-0.013	0.019	-0.240	0.194	
2	-0.030	0.019	-0.120	0.196	
3 or more	-0.026	0.022	0.197	0.244	
Cohort indicators	✓		✓		
Municipal indicators	✓		✓		
No. observations	117,56	4	117,564		

The population for analysis consists of men born during the period 1950–1958 for whom IQ scores are available and who lived in a municipality where the timing of reform introduction could be identified. The reference for the time-to-reform variables is the first reform year (0 y after reform). Robust SEs based on the sandwich (or Huber–White) estimate of variance with clustering by municipality/cohort groupings are reported.

Table S5. Alternative estimates with last prereform cohort defined as treated

	Coefficient	SE
Reform on average IQ score	0.541	0.151
Reform on schooling	0.097	0.014
One year of schooling on IQ score	5.599	1.307
Municipal indicators	✓	
Cohort indicators	✓	
No. observations	117,56	4

The timing of the reform is predated by 1 y to accommodate the partial treatment of the last prereform cohort. The population for analysis consists of men born during the period 1950–1958 for whom IQ scores are available and who lived in a municipality where the timing of reform introduction could be identified. For the quasiexperimental results, the effect of the reform on IQ score is a DID estimate and the effect of the reform on schooling and the effect of 1 y of schooling on IQ score are estimated by the 2SLS method. Under appropriate assumptions, the effect of education on IQ scores is equal to the ratio of the effect of the reform on IQ score and the effect of the reform on schooling. Robust SEs based on the sandwich (or Huber–White) estimate of variance with clustering by municipality/cohort groupings are reported.