
DocumentsRobin Choudhury

User’s Guide for a Macroeconomic
Model for Malawi
Version 1, May 2006

Statistics Norway
Department of Management Support

2006/8 May 2006 Documents

 1

Abstract

Designing and constructing a system for simulating macroeconomic models can be done in
numerous ways. Regardless of how the system has been designed, and what software tool has
been chosen to facilitate the simulations, documentation of the system is of great importance.
This documentation has two target groups; the technical experts who will work on the system on
a frequent basis, and users whose sole intention is to run the model for the sake of analysing the
Malawian economy. For the first mentioned group the User’s Guide gives detailed information on
how to update and extend the database, as well as how to add and modify equations in the model.
For the second group the focus is on the process of using the model for forecasting and policy
analysis. Some material is intended for both groups, such as the organisation of the system, and
how to interact with spreadsheets. It should be stressed however, that this is not a user guide for
the TROLL software. As already mentioned, a model system can be developed in many ways and
the users of the system should feel free to carry out the various task in their own manner. As the
model system is being used and developed further the need for new routines and programmes to
handle it will emerge. So equally important as to have this User’s Guide, is to make sure it is up
to date. Consequently, this guide will be updated as major changes to the system take place.

I would like to thank Torfinn Harding for useful comments to an earlier version of the User’s
Guide.

 2

Table of contents

ABSTRACT .. 1

1 OVERVIEW.. 7
1.1 INTRODUCTION... 7
1.2 CONVENTION USED IN THIS MANUAL.. 8

2 DIRECTORY AND FILE STRUCTURE... 9
2.1 THE WORKING DIRECTORY.. 9
2.2 THE DATA DIRECTORY...11
2.3 THE MODEL DIRECTORY ..11
2.4 THE PROGRAM DIRECTORY..11
2.5 THE PUBS DIRECTORY ...12

3 BASIC HANDLING OF THE MODEL SYSTEM ...13
3.1 STARTING UP...13
3.2 DISPLAYING MODEL AND DATA...13

3.2.1 Accessing the model and the database ..13
3.2.2 Printing equations to the screen ..15
3.2.3 Printing data to the screen ..17
3.2.4 Open other databases ..19
3.2.5 Printing variable explanation to the screen...20
3.2.6 Creating tables in html format...21

4 THE FORECASTING PROCESS ...22
4.1 INTRODUCTION..22
4.2 EXTRAPOLATING THE EXOGENOUS VARIABLES ...23

4.2.1 Automatic extrapolation ..23
4.2.2 Implementing assumptions about the future ..26

4.3 SIMULATION..29
5 POLICY ANALYSIS...30

5.1 IMPLEMENTING A SHIFT...30
5.2 SIMULATION OF THE POLICY SHIFT..31

6 INSTALLING AND EDITING THE MODEL ...33
6.1 INSTALLING THE MODEL..33
6.2 EDITING THE MODEL ...34

6.2.1 Changing an equation..34
6.2.2 Adding an equation..34
6.2.3 Deleting an equation ...34
6.2.4 Miscellaneous ..35

6.3 CREATING A NEW INPUT FILE FROM THE MODEL..36
7 DATABASE..37

7.1 INTRODUCTION..37
7.2 THE BASIC DATABASE ...38

7.2.1 Installation procedure ...38
7.2.2 Residuals..39
7.2.3 Adding new data ..39

7.3 COLLECTING MODEL DATA..39

 3

7.4 CONTROLLING THE OUTCOME OF THE MODEL ...40

7.4.1 Override the outcome of a simulation..40
7.4.2 Calculating missing values ..45
7.4.3 Data structure of the model ...49

8 INTERACTION WITH SPREADSHEETS ..50
8.1 INTRODUCTION..50
8.2 THE FORMAT OF THE SPREADSHEET ..50
8.3 MICROSOFT EXCEL AND WKS FORMAT..51

8.3.1 From Microsoft Excel to WKS format ...51
8.3.2 From WKS format to Microsoft Excel ...51

8.4 COPY DATA FROM A SPREADSHEET TO A TROLL DATABASE..52
8.5 COPY DATA FROM A TROLL DATABASE TO A SPREADSHEET..55

INDEX ..57
APPENDIX 1. FUNCTIONS ..58

APPENDIX 1.1. INTRODUCTION ...58
APPENDIX 1.2. FUNCTIONS FOR ADJUSTING TIME SERIES ..58
APPENDIX 1.3. THE ADDVAL FUNCTION..60
APPENDIX 1.4. THE ADJUST FUNCTION ...61
APPENDIX 1.5. THE EXTRAP FUNCTION...62
APPENDIX 1.6. THE EXTRAPA FUNCTION...64
APPENDIX 1.7. THE PCFDADJ FUNCTION ...66

APPENDIX 2. INITIALISATION PROGRAM ...68
APPENDIX 2.1. BACKGROUND...68
APPENDIX 2.2. THE INITIAL SETTINGS...69
APPENDIX 2.3. CHANGING THE INITIAL SETTINGS...72

APPENDIX 3. THE TROLLRESOURCES DIRECTORY...74
APPENDIX 4. MAINTAINING THE VARIABLES LIST ...74
RECENT PUBLICATIONS IN THE SERIES DOCUMENTS ... 76

 4

List of Figures

Figure 1 The file structure of the Malawi model... 10
Figure 2 The TROLL Startup window .. 13
Figure 3 Accessing the default database and model.. 14
Figure 4 Displaying the search list and the model used .. 15
Figure 5 Printing an equation .. 15
Figure 6 Looking up equations based on a symbol ... 16
Figure 7 Printing many equations.. 16
Figure 8 The print command ... 17
Figure 9 Printing timeseries... 18
Figure 10 The prtdset command.. 19
Figure 11 Open a database .. 20
Figure 12 Printing the symbol list ... 21
Figure 13 Creating tables... 22
Figure 14 The role of the forecasting system in projections ... 23
Figure 15 Automatic extrapolation of exogenous variables .. 24
Figure 16 Historic, smoothed and extrapolated values.. 25
Figure 17 Flowchart for automatic extrapolation .. 26
Figure 18 Text file with assumptions for exogenous variables ... 27
Figure 19 Implementing details about exogenous variables ... 28
Figure 20 Dataflow for implementing exogenous assumptions .. 28
Figure 21 Using the sim.prg program to simulate a model ... 29
Figure 22 Dataflow of the simulation process... 30
Figure 23 Information to alternative scenario ... 31
Figure 24 Using the shift.prg program to perform an alternative simulation 32
Figure 25 Dataflow of a policy shift.. 33
Figure 26 Declaring an endogenous variable .. 35
Figure 27 Installing a new equation .. 36
Figure 28 Creating an input file from a model .. 36
Figure 29 Input file created from a model... 37
Figure 30 Collection data for the model.. 40
Figure 31 Implementing assumption about a variable... 42
Figure 32 Changing symboltype from exogenous to endogenous... 43
Figure 33 Enforce an outcome of the model ... 43
Figure 34 Dataflow for endo2exog (example) .. 44
Figure 35 Simulating a designed outcome .. 45
Figure 36 Check of limiting variables in a database ... 46
Figure 37 Information on changing symbol types in a model ... 47
Figure 38 Simulating a missing value ... 47
Figure 39 Data structure in the model ... 49
Figure 40 Format of spreadsheet ... 50
Figure 41 Converting an Excel file to WKS format.. 51
Figure 42 The wks2troll program.. 52
Figure 43 Specifying data to copy from spreadsheet from a text file.. 53
Figure 44 Copy data from spreadsheet .. 53
Figure 45 Data structure for reading from spreadsheet (example) .. 54
Figure 46 Copying from spreadsheet to TROLL database from keyboard 55

 5

Figure 47 Copy data from TROLL to spreadsheet .. 56
Figure 48 Data structure for copying to a spreadsheet (example) ... 56
Figure 49 Using addval as a stand-alone function... 59
Figure 50 The addval function .. 61
Figure 51 The adjust function.. 62
Figure 52 The extrap function (per cent growth from previous year) ... 64
Figure 53 The extrapa function ... 65
Figure 54 The pcfdadj function ... 67
Figure 55 Components of the model system ... 68
Figure 56 Initial setting for the Malawi model.. 70
Figure 57 Manually implementing new settings ... 73
Figure 58 Using the variables list .. 74

List of Tables
Table 1 Convention used in this manual ... 8
Table 2 The directory structure of the Malawi model ... 10
Table 3 Files at the Working Directory (not exhaustive) .. 10
Table 4 Files at the data directory ... 11
Table 5 Files at the model directory .. 11
Table 6 Program developed for handling the model system ... 11
Table 7 Files in the pubs directory .. 12
Table 8 Commands for printing equations .. 17
Table 9 Methods for adjusting timeseries ... 26
Table 10 Commands in the MAKEMODEL.INP file.. 34
Table 11 Missing a historical value... 46
Table 12 Simulated JG .. 47
Table 13 Functions used for manipulating variables... 58
Table 14 Session variables stored in memory ... 71

List of Boxes
Box 1 Identifying the equation number of an econometric variable ... 17
Box 2 Installing time series into the database ... 38
Box 3 Effect of using the addval function... 60
Box 4 Effect of using the adjust function .. 62
Box 5 Effect of using the extrap function two times... 63
Box 6 Effect of using the extrapa function.. 65
Box 7 Effect of using the pcfdadj function ... 66

 7

1 Overview

1.1 Introduction
The TROLL software is a tool for both model builders and model users. For the first group, the
flexibility of the software is a great benefit. Using TROLL we can, more or less, take into account
whatever we want regarding numerical timeseries modelling. But this flexibility has a cost. The
way to understand and operate the model system is not an easy one, but as soon as an adequate
level is reached the user has a powerful tool. For the second group, the model users, it is possible
to do forecasts and policy analysis without having to understand much of the technicalities. This
document is summing up the main methods and procedures used to handle the Malawi model and
its surroundings. This document relates to the first version of the Malawi model as far as April
2006. The system is going to be revised so changes to some of the routines are inevitable. After
major changes this document will be revised accordingly.

This note elaborate on how to use the macroeconomic modelling tool developed to analyse the
Malawian economy. The modelling tool consists of all that is needed to use the model: databases
for timeseries and coefficients, the equations of the model, and macros and programs to handle
various tasks. The purpose of this user’s guide is twofold; first of all, it should help users with
little or no experience in TROLL to bring the tool into action, but it should also serve as a quick
reference, particularly for technical tasks performed infrequently.

Before using the model one should have an overview picture of what the model tool consist of
and how it is organised. Chapter 2 gives an outline of the directory and file structure, and a
detailed description of their content and purpose. In Chapter 3 we explain the basics. The user
will learn how to display equations and data on the screen, and some useful TROLL commands
are demonstrated. The principal use of the model tool is to do simulations. In Chapter 4 we enter
into details on the forecasting (simulation) process. We start with explaining how to extrapolate
and make assumptions about exogenous variables, and then how to simulate the model based on
these assumptions. Next, in Chapter 5, we explain how to perform policy analysis to study effects
of alternative policies. In Chapter 6 we learn how to edit and install the model. We will describe
how to delete, add and modify equations. Databases containing historical timeseries are a central
part of the model system. In Chapter 7 we gives a detailed description of the databases. This
chapter applies to both end-users who wants to know how to implement their own data, and to
technical users whose task is to update or revise the databases. Sometimes we want to oversteer
the results from the model. In this chapter we will demonstrate how this can be done. The use of
spreadsheets has become increasingly popular. TROLL has got functionality for communicating
with spreadsheets. In addition, some programs have been developed especially for this modelling
tool to facilitate this. The use of spreadsheets is demonstrated in Chapter 8.

The user’s guide aims at putting the most technical parts into the appendices. We will describe
how the functions for adjusting exogenous variables are used in Appendix 1. The initial setting
will be described in detail in Appendix 2. In Appendix 3 and Appendix 4 we briefly describe the
external TROLL library and the variables list respectively.

 8

1.2 Conventions used in this manual
In most chapters in this manual we describe the use of commands or functions by examples from
the model system. We have tried to be consistent in using formatted text to highlight the meaning
and the context of various keywords, functions etc. In
Table 1 Convention used in this manual

Indicator Example Comment
Italics lkaccess; TROLL commands
Courier New do prtime(ypct’f(x); � Example from TROLL’s output

� Referring to TROLL commands,
keywords, etc.

� In response to the use of programs,
macros, etc

SMALL CAPS MAIN.FRM File/path names
UPPER CASE CPO Variable names (in text)

There may be mixture of notation i.e. when referring to the database file SIMINPUT.FRM as a file
we will type it in SMALL CAPS, while if the simulation program asks for the name of this file we
will refer to it as a keyword and write siminput in Courier New. Similarly, when using the
TROLL command lkaccess; we will put it in Italics as a command we have actually executed, but
if we mention the command lkaccess in some other context we put it in Courier New.

We use flowcharts to illustrate the use of various programs. When we write name of databases
and other file names to exemplify, we underline the optional names. When only the first part of
the filename is optional (not the extension) as will be the case for databases, we underline only
the optional part as in DATABASE.FRM.

 9

2 Directory and file structure
The dialogue between the user, the model system and the TROLL software is carried out via
commands on the keyboard, through files and the screen. Typically a program is executed from
the keyboard giving some response to the screen prompting for input. Input regarding file names,
dates for simulation periods, etc. is usually given from the keyboard, while input of greater
quantities of data are usually provided through files. Output from estimations and simulations will
similarly be printed to the screen and/or to files. This interactive mode will create a great deal of
files. These files can be macros, databases, models and so on. In this chapter we will look at the
organisation of these files in the model system. Figure 1 shows the file structure of the Malawi
model system. The reason we arrange it in this way is to organize our work. If we have all the
files in one directory it soon will become quite chaotic and the user will be confused.

Note that for the time being (April 2006) the COEF, COMMANDS and IOCOEF directories are not in
use. Note also that there is another directory called C:\TROLLRESOURCES\LIB used as part of the
model system. This directory contains TROLL programs that we have developed. The reason
they are not in the PROGRAM sub-directory under MALAWIMOD is that they are more general and
can be used by other model systems as well. They are for example used for checking if a database
exist or not, for printing warnings or error messages, and others not specific to the Malawi model
system.

2.1 The Working Directory
The main directory is called MALAWIMOD and it contains both sub-directories and files. In
TROLL this main directory is referred to as “Working Directory”. Throughout this document we
will assume that the main directory is C:\MALAWIMOD\ unless otherwise explicitly specified. The
Working Directory in TROLL has a special function in the host file system. This means that there
is a default access and search to this directory. This feature of the Working Directory makes it
convenient to store some macro and program files at the Working Directory for immediate
access.

There are several sub-directories, each intended for storing a specific type of files, or files meant
for a specific task. The naming of the directories is flexible, and in Appendix 2 we will explain

 10

Figure 1 The file structure of the Malawi model

how these can be changed. The following list (c.f. Table 2) gives a short description of the
purpose for the sub-directories:
Table 2 The directory structure of the Malawi model

Directory Purpose
coef To store coefficients
command To store input (batch) files
data To store databases
iocoef To store input-output coefficients
model To store models
program To store programs
pubs To store tables and files for creating them

It is important to be aware of that the contents of the various directories will change over time as
use of the model will generate some files; both as a result of doing something, but also when the
user create files to execute some commands which he wants to save for later use. Anyhow, in
Table 3 are a list of some of the files that will be at the Working Directory “C:\MALAWIMOD” and
a short description of its purpose:
Table 3 Files at the Working Directory (not exhaustive)

File name Description
ADDDATA.INP Install data to the historical time series database (MAIN.FRM).
COLLECT. PRG Program to collect data for variables in a model.
COLLECT. SRC Source code for COLLECT. PRG.
DATAFLOW.INP Example file for the whole process of installing historical data to do a

simulation.
ENDDATES.LOG End dates of variables before they are extrapolated. Created from executing

the program AUTOEXTRAP. PRG.
EXOGVALUES.TXT Text file containing assumptions for future values on exogenous variables.
LASTSIM.INP Auto generated file from the program SIM. PRG, which opens the databases

and specify the model used (with readable access) from the last simulation.
MAKEDATA.INP Gives access and search to the directories: COMMAND, PROGRAM and

TROLLRESOURCES.

 11

MAKEEQN.INP Gives access and search to the model directory.
MAKEMODEL.INP Install the model from this text file (deletes the existing).
MAKETABLES.INP Generates some tables (under construction).
MODSYS.LOG Log file from execution of functions to adjust variables.
OPENDB. PRG Program to open databases.
OPENDB.SRC Source code for OPENDB. PRG
PROFILE.INP Input file that runs automatically at start-up.
PROFILE.PRG Program containing initial settings, called from PROFILE. INP.
PROFILE.SRC Source code for PROFILE.PRG.
START.INP Gives readable access to the default databases for timeseries, coefficients,

model, macros and programs. Specifies to use the default model.
TROLL.LOG Log file from a TROLL session (echo of the session window).
VARLIST.PRG Program to print explanations for symbols in the model.
VARLIST.SRC Source code for VARLIST.PRG.
VARLIST.TXT Text file containing symbols in the model and their explanations.

2.2 The data directory
The C:\MALAWIMOD\DATA directory is meant for timeseries databases. It will contain both the
historical database and simulations of forecasts and policy shifts that we store. The name of the
historical database is preset in the PROFILE.SRC file, and is by default set to MAIN.FRM.
Table 4 Files at the data directory

File name Description
MAIN.FRM Historical time series database.
MALMODDB.FRM Historical time series database for variables used in the model.

Other database files at this directory will have names given by the user during installation of
exogenous assumptions and simulations.

2.3 The model directory
At the C:\MALAWIMOD\MODEL directory we store models. Writeable access and search to this
directory is obtained by running the file MAKEEQN.INP.
Table 5 Files at the model directory

File name Description
MALAWIMOD.MOD The default model file.
TMPMOD.MOD Model resulting from the calibration routine.

2.4 The program directory
The program directory contains programs developed for handling various tasks related to
operating the model system. Table 6 lists only the compiled files. The directory also contains the
source code, files with the same name but the extension “src”.
Table 6 Program developed for handling the model system

File name Description
ADDTOLOG.PRG Writes a string to the log file.
AUTOEXTRAP. PRG Extrapolates models variables automatically.

 12

CHDATA.PRG Manipulates on variables according to information from an external text file.
CHECKDATE.PRG Reads timeseries from a database. Check for start date and end date and write

results to screen.
ENDO2EXOG.PRG Change symboltype between endogenous and exogenous and store in a

temporary model. Simulates the temporary model, stores the variables that
have been changed into endogenous in a database.

EQEVAL.PRG Evaluates the equations in a model by one of three possible choices:
evaluation of the right hand side, the left hand side or the residuals.

ESTMOD.PRG For estimating econometric equation in a model. (Not in use.)
RESCONS.PRG For calibrating additional constant terms in an equation. (Not in use.)
SHIFTPRG For doing a policy shift.
SIM. PRG Simulation program.
TROLL2WKS.PRG Write TROLL data to a spreadsheet.
WKS2TROLL.PRG Write spreadsheet data to a TROLL database.
WKSSIM.PRG Simulate a model using data from a spreadsheet.

2.5 The pubs directory
This directory is used for writing tables based on simulations. By using the MAKETABLES.INP file
in the Working Directory, the file INDEX.HTML is created. This file can be opened in a web-
browser and contains links to the tables produced.
Table 7 Files in the pubs directory

File name Description
BOPHTML.INP Creates the balance of payments table.
FISCALHTML.INP Creates the fiscal table.
INDEX.HTML Starting point for browsing the tables.
INDEX.INP Creates the index.html file.
MACRO1HTML.INP Creates table with growth rates for macroeconomic figures.
MACRO2HTML.INP Creates table with levels for macroeconomic figures.
PRICESCOSTSHTML.INP Creates table with prices and costs.
SPACER.GIF Used for adjusting the spaces in the tables.
TAB0HTML.INP Creates table with GDP by expenditure (constant 1994

prices).
TAB1HTML.INP Creates table with GDP by expenditure (annual percentage

change).
TAB2HTML.INP Create table with GDP by sector of origin (at constant 1994

factor cost).
TABLES Sub-directory to store the tables.
A SMALL MACROECONOMIC
MODEL FOR MALAWI.PDF

Documentation of the first version of the model.

USER’S GUIDE.DOC This user guide for the model.

 13

3 Basic handling of the model system

3.1 Starting up
In this chapter we describe how to start TROLL and to specify the Working Directory. We also
mention some important initial settings, which will be explained in details in Appendix 2
“Initialisation program”.

There are times when we want to study the model more closely. We may want to see a particular
equation or the values of time series. In this chapter we explain how to display this information to
the screen, and, in connection to this, we will learn some important TROLL-commands.

To start TROLL we double click the TROLL icon on the desktop or click Start -> All Programs -
> TROLL for Windows -> TROLL for Windows. The TROLL Startup window, shown in Figure
2, will appear. Now we must choose our Working Directory by typing C:\MALAWIMOD\ (or by
using the Browse-button) as in Figure 2.
Figure 2 The TROLL Startup window

When TROLL is started and C:\MALAWIMOD is chosen as Working Directory, some important
things are going on behind the scenes. Every time TROLL is started it will look for a file called
PROFILE.INP. This is a feature of TROLL. If this file exists it will be executed. For the Malawi
model system we have defined such a file, which in turn, executes a TROLL program called
PROFILE.PRG. The reason for this is to initiate some settings. Most of all we want to save the
various path names of the host system in TROLL’s memory.

3.2 Displaying model and data

3.2.1 Accessing the model and the database
The first thing to do, after we have started TROLL and defined the Working Directory, is to
access the model and the databases, i.e. to tell TROLL which databases and which model we
want to make available. In the default settings of the model system we have predefined a default
database and a default model to use. They are accessed by typing “input start;”. This is illustrated
in Figure 3. There we also use the command “lkaccess” which produces a list over the accessed
databases. From that list we see (amongst others) the default database MAIN.FRM, which contains
all the historical timeseries, and the id for the model directory C:\MALAWIMOD\MODEL. Running
the START.INP file also builds the search list, which is necessary to tell TROLL in which order we
want to look for data. This is because we may have multiple databases with the same variable
names.

 14

Figure 3 Accessing the default database and model

To see the search list we type the command “lksearch;”. This, in addition to the command
“lkstatus;” that gives status of the model used among other things, is illustrated in Figure 4. As
we can see from Figure 3, the internal name (alias) of the main MAIN.FRM database is “INDATA”,
which is also on the search list in Figure 4, together with the name of the model being used
(malawimod).

 15

Figure 4 Displaying the search list and the model used

3.2.2 Printing equations to the screen
Now that we have opened the database for the data and the model, and added them to the search
list, we can print them to screen. There are many ways of doing this and we will show only a
couple of them. If we want to have a look at the consumption function of the model we can print
the equation with the command “prtmod eq 29;” which tells TROLL to print equation number 29.
This is demonstrated in Figure 5.
Figure 5 Printing an equation

In this example we assumed that we knew the equation number for the consumption function.
This is not always the case, in fact, a model change over time as equations are added or deleted,
so usually we don’t know the equation numbers. But we can, based on our knowledge of the

 16

symbols of the variables, look up equations. We know that the symbol for non-smallholders
consumption is CPO. By typing the command “lksym cpo;” we lists all the equations using that
Figure 6 Looking up equations based on a symbol

symbol. This is illustrated in Figure 6. As we can see, CPO appears in equations number 7, 29,
31, 32 and 42. To print them we use the prtmod-command demonstrated earlier. In this case we
type:
prtmod eq 7 29 31 32 42;

The result from this command is showed in Figure 7.
Figure 7 Printing many equations

 17

Box 1 Identifying the equation number of an econometric variable

TIP
As we saw in the example on how to locate the equations containing CPO, it produced many
equations. If we know the variable we are looking for is an econometric one, we can instead look
up the residual since it will appear in only one equation. In our example we could have typed
”lksym rcpo;”, where RCPO is the name of the residual for CPO. We would have the following:
TROLL Command: lksym rcpo;
Variable Used in Equations
RCPO 29
TROLL Command:

Table 8 Commands for printing equations

Command Explanation
prtmod eq 1; Prints equation 1
prtmod eq 3 to 6; Prints equations 3, 4, 5 and 6
prtmod eq 3 to 6 12 20 to 22; Prints equations 3, 4, 5, 6, 12, 20, 21, 22
prtmod all; Prints the whole model, including symbolists,

comments, functions used in the model, etc.

3.2.3 Printing data to the screen
Provided the “input start;” command have been executed, we have access to the default time
series database MAIN.FRM. In Figure 8 we have demonstrated one (of many) way to print data to
screen. The command “do prt.(cpo);” tells TROLL to print the first occurrence
Figure 8 The print command

 18

of the variable CPO (according to the search list). This command prints the timeseries data in
columns, and also contain some metadata1. Perhaps more suitable for timeseries is the command
“do prtime (cp, cpo, cps);, which will print the timeseries CP, CPO and CPS as in Figure 9.
Figure 9 Printing timeseries

A somewhat more advanced printing option is the prtdset command. This macro gives us a lot
more alternatives. We can print the values and the growth rates of timeseries and we can print the
difference (in level and/or in per cent) between variables from different databases (i.e. before and
after a policy shift).

By typing
&prtdset value pcfd, dset indata, range 1988a to 2004a, vari yp cp;

we have the results as in Figure 10. Here we have specified to print the value (value) and the
growth rates (pcfd) from the dataset (dset) indata, for the period (range) 1988 to 2004, of
two variables (vari).

1 Information about how the timeseries data has been created. In this example we see that using the
functions reshape and combine together with the numbers has created the time series.

 19

Figure 10 The prtdset command

By using the oprtdset instead of prtdset (just add a leading “o”) we write the results to a
file called TROLL.PRT that will be created on the Working Directory. It should be noted that by
repeating this command the results would be appended to the TROLL.PRT file. A function to print
the growth rate of a timeseries has been created by us. This is called ypct and gives the growth
rate from the previous year. It is used as

The suffix ‘f is needed to tell TROLL that ypct is a function and not a variable (with lag x).

3.2.4 Open other databases
In this chapter we have only considered the default database MAIN.FRM. Suppose we want to open
another database, i.e. from a simulation we have carried out. Of course, we can always use the
ordinary access and search commands within TROLL, but we have developed a small
program to facilitate this task. The program is called OPENDB.PRG and its sole function is to open
one or more databases (which must be located in the C:\MALAWIMOD\DATA directory). Figure 11
demonstrates the use of the program. It is invoked by the command &opendb, and it prompts for
the name of the database to open. In this example the database we want to open is called
SIMINPUT.FRM and as we can see the extension is optional. Next the program asks for the alias for
the database. This is TROLL’s internal name of the physical address, and could be whatever we
like; here we have chosen to call it “mysim”. Finally the program asks if we want to open
another database, which we didn’t, and typed n (for no).

do prtime (ypct’f(x));

 20

Figure 11 Open a database

Note that the opendb program adds entries to the access and search lists, and will not close
already opened databases. The database opened is added to the bottom of the search list. This
implies that, if the variables we want to access exist in a database that was already open (before
we used opendb), it will be read from that. We can always use the alias and an underscore to
explicit tell TROLL which database to read from, i.e. the command
do prtime (mysim_CPO);

will read CPO from the database having the alias “mysim”.

3.2.5 Printing variable explanation to the screen
A model consists of many variables, and, particularly when new to the system, one doesn’t know
the meaning of every symbol. A program to print the symbols explanations to the screen has been
developed. The program is demonstrated in Figure 12, and is executed by the command &varlist.
It prints a list of options. We can type the variable, which explanation we want to print the to the
screen, i.e. CPO as in this example, or we can type “all” to print the complete list.

 21

Figure 12 Printing the symbol list

In this example we could just as well have typed
&varlist cpo

to produce the same result.

3.2.6 Creating tables in html format
Table programming is laborious work. The model system should be “finished”, or at least stable
regarding changes and development. For this model system, that continuously undergoes changes,
we have not put much emphasis into preparing routines for this important task. In any case, we
have made a routine to write data from a simulation to tables.

The file MAKETABLES.INP must be used to create these tables. To use this we must specify which
database to open for reading (see highlighted text in Figure 13). This file executes the files at the
C:\MALAWIMOD\PUBS directory that will create the tables. An index file (INDEX.HTML) will be
created at this directory, while the tables themselves will be stored at the
C:\MALAWIMOD\PUBS\TABLES directory. By opening the INDEX.HTML in a browser we can click
the links to the other tables to see them.

 22

Figure 13 Creating tables

4 The forecasting process

4.1 Introduction
The macro economic model system together with the staff of the organisations using it, are all
parts of an effective system for creating forecasts and policy analysis. If the model system is used
as a tool for expressing the institutions opinion on how the economy will evolve, the process can
be described as in Figure 14 (Step 1). Together with the latest data available, we must make use
of economic indicators, trends and tendencies to form our present view of the economy, and
where it is likely to go. This will involve many data sources for input to the model. The model
should also be calibrated, both against historical data, but also to reflect the understanding of the
structure of the economy not captured in the model. To be able to make forecast we must make
assumptions for the exogenous variables for the forecasting period. Exogenous variables in the
model must be extrapolated before running the model. Projections for foreign variables, such as
international prices and interest rates could be a consensus taken from other policy makers’
forecasts. Key domestic fiscal assumptions can be taken from the Treasury’s own estimates. In
Step 2 the projections are evaluated. This preliminary examination by the forecasters always leads
to adjustments to the exogenous variables, and are as a rule repeated “many times” before the
projections are presented to a drafting committee (Step 3) for comments and suggestions. Step 4
is about employing alternative models or scenarios, either to overrule the results (i.e. due to
known weaknesses of the model or uncertainty regarding important exogenous variables) or to
present an alternative outcome for the economy that might be regarded just as probable.

 23

Figure 14 The role of the forecasting system in projections

Latest data
and
indicators

Calibration
choices

Exogenous
variables

Macro
economic
model

Incremental
adjustments

Step 1

Projections

Step 2

Forecasters
and other
economists

Step 3

Drafting
committee

- Experience
- Economic analysis
- Alternative scenarios
- Alternative models
- Other opinions

Step 4

In this section we will explain the routines for extrapolating the models exogenous variables, and
to implement our assumed values. In the model system this task is twofold; first we use an
automatic and rough procedure, before we implement our detailed assumptions about future
values for exogenous variables.

4.2 Extrapolating the exogenous variables
To simulate the model subsequent to the historical data, i.e. to create a baseline scenario, we must
extrapolate the exogenous variables. If we disregard the lags in the variables, we can simulate the
model as many years forward as we have extrapolated the exogenous variables.

4.2.1 Automatic extrapolation
To avoid making initial assumptions for all the exogenous variables (about 80) we have
developed an automatic extrapolation routine. A demonstration of the program is given in Figure
15. After we have executed the batch file MAKEDATA.INP file, we execute the program with
typing &autoextrap. It takes three parameters; an input data file, an output data file, and a model
name. As we see from Figure 15 we want to perform an automatic extrapolation of the exogenous
variables in the model malawimod from the database MAIN.FRM. We want to store the variables
in the database MAINEXTRAP.FRM. All variables in MAIN.FRM will be copied to MAINEXTRAP.FRM
before the extrapolation is done, leaving the input database MAIN.FRM unchanged. If we chose a
database that already exists the program will print a warning and we will be given the options to
overwrite or give a new name. It is not allowed to write the extrapolated variables back to the
input database.

Note that the extrapolation program reports variables where there are NA’s (Not-Available, i.e.,
data type is unspecified). If there are NA’s in the input time series they will be replaced using
growth rates to interpolate. The program writes a log file called ENDDATES.LOG to the Working
Directory. This file shows the end dates of the variables (classified by exogenous and
endogenous) before the extrapolation.

 24

Figure 15 Automatic extrapolation of exogenous variables

The automatic extrapolation routine uses Holt's method, or double exponential smoothing. This is
useful in short term forecasting for data with constant or no-constant trend and without a seasonal
pattern. What the program does, in brief, is first to read the historical values for all exogenous
variables in a model, then calculates a level and a trend component at each period based on
historic values, and uses this pattern to extrapolate the timeseries. It uses two weights, or
smoothing parameters, to update the components at each period. The double exponential
smoothing equations are:

()

() 11

11

)1(

)1(

−−

−−

−+−=

+−+=

tttt

tttt

TLLT

TLYL

ββ

αα

ttnt

ttt

nTLY

TLY

+=

+=

+

−−

(forecast)

11(smoothed)

Lt level at time t, α is the weight for the level
Tt trend at time t, β is the weight for the trend
Yt data value at time t
Yt (smoothed) fitted value, or one-step-ahead forecast, at time t
Yt+n (forecast) n-step-ahead forecast, at time t
n number of periods to forecast

 25

If the first observation is numbered one, then level and trend estimates at time zero must be
initialised in order to proceed. The initialisation method used to determine how the smoothed
values are obtained in done in a simple manner, we simply say that L1 = Y1 and that T1 = 0, i.e.
that the initial level is equal to the actual value, and that there is no trend initially2. The smoothing
parameters α and β are both fixed at 0.2. To alter their values we must change in the PROFILE.SRC
file.

In Figure 16 we have graphed the outcome of the smoothing method when applied on real GDP.
The solid line shows the historic values from 1980 to 2004 and the extrapolated values appended
until 2014. The dashed line shows the result from smoothing the history as well.
Figure 16 Historic, smoothed and extrapolated values

It is important to be aware of that for some exogenous variables we do not want this extrapolation
method. For dummy variables (used in some econometric equations) we want a fixed value ahead
in time, usually zero. The same might be the case for residuals. Residuals in econometric
equations are assumed to have an expected value of zero if they are additive and one if they are
multiplicative. Also for other residuals we might want to extrapolate them with a fixed,
controllable value. This must be taken care of in the process of implementing our exogenous
assumptions.

In Figure 17 we show a flowchart of this routine. As we can see, the program AUTOEXTRAP.PRG,
which perform the automatic extrapolation for all exogenous variables in a model, reads the list of
exogenous variables from the model. It then reads the timeseries for all these variables, calculates
a level and a trend, which is used in the extrapolation, and then write the results to a new
database. Note that the new database MAINEXTRAP.FRM is copied from input database
MAINNEW.FRM before the exogenous variables are extrapolated. In this way we also bring with us
the endogenous variables (which is needed as starting values for the simulation).

2 An improvement of the initialisation procedure would be to fit a linear regression model to the input time
series variable (Y) versus time, and let the constant term from this regression be used as the initial estimate
of the level component, and the slope coefficient as initial estimate of the trend component.

 26

Figure 17 Flowchart for automatic extrapolation

malawimod.mod

mainnew.frm
autoextrap.prg

enddates.log

mainextrap.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

Summary

• input makedata // Give search and access to the program directory
• &autoextrap // Execute program to extrapolate data
• mainnew // Input database (optional name)
• mainextrap // Output database (optional name)
• malawimod // Name of model to extrapolate variables from

4.2.2 Implementing assumptions about the future
Having extrapolated all exogenous variables in the model in a mechanical way, we can now
implement their details. There are a lot of ways we can express our detailed assumptions for
variables forward in time. We might want, for instance, to set a variable at a fixed level, or to give
it a specified growth rate for the future. Or, maybe we want to change the level by some
percentage, or to change the growth rate. To facilitate suchlike implementations of our
assumptions, some methods have been developed. It is important to realize exactly how these
methods are used and what they do. In Table 9 we give a brief overview of the methods, leaving a
more thoroughly examination for Appendix 1.
Table 9 Methods for adjusting timeseries

Function Comment
ADDVAL Add values to time series
ADJUST Adjust time series by per cent and a constant added
EXTRAP Adjust time series to a given growth rate
EXTRAPA Adjust time series to a given growth rate and a constant added
PCFDADJ Adjust time series by changing the growth rate by a constant
Symbol for comments

The way we put our detailed assumptions into operation is through an ordinary text file, which, in
turn will be read by a TROLL program. In Figure 18 we show an example of such a text file
called EXOGVALUES.TXT. The file must be in a particular format. The first “word” is a keyword

 27

Figure 18 Text file with assumptions for exogenous variables

determining what function will be used to adjust the data. The next statement is the variable name
whose value we want to change. Subsequently follows the date, indicating the first observation in
the time series to change. Then, depending on what function is used follows either a sequence
with numbers to put into the time series, implicit determining the end date of data manipulation,
or a specific end date and information about how to change the data. We will come back to these
details in Appendix 1. Note that it is possible to insert a comment in the text file. A comment
should begin with a number (hash) symbol (#).

When we have given all the information about how to manipulate the time series we are ready to
add them into the database. The program we have made to perform this is called CHDATA.PRG. In
Figure 19 we show how this is done. After we have given access and search to the directory
containing the programs by running the input file MAKEDATA.INP, we execute the program with
the statement &chdata. First we are prompted for the text file containing our assumptions. In this
example this is EXOGVALUES.TXT. This filename (including the extension) is optional and that is
why we must type the extension as well3. After that the program asks for the name of the database
to read data from, which should be a database where the variables have already been extrapolated.
In Figure 19 the database MAINEXTRAP.FRM is the database we created with the extrapolation
procedure (c.f. Figure 15). Next we must give the name of the database to write to. This database
will be created. In the example in Figure 19 we chose to create and store our data in
SIMINPUT.FRM. If we chose a database that already exists the program will print a warning and we
will be given the options to overwrite or give a new name. In the present version of CHDATA.PRG
it is not possible to write back into the database we are reading from. The program finally prints
the name of the input and output databases, and the text file used for adjusting the data.

3 For databases we only use the type “Formdata” (extension “.frm”) which is hard coded in the system
and consequently we don’t need to provide it. The same applies for the model (“.mod”) and spreadsheets
(“wks”).

 28

Figure 19 Implementing details about exogenous variables

In Figure 20 we take a look at the dataflow for this process. We see that the program used for this
purpose (CHDATA.PRG) reads information about which variables, for what period and in what
way, to change them, from the text file EXOGVALUES.TXT. Next it reads the data for variables to
be changed, change them accordingly, and write the results to a new database (here called
SIMINPUT.FRM). Note that all data in the input database (MAINEXTRAP.FRM) are transferred to the
output database (SIMINPUT.FRM), not only those we are adjusting. The program also writes a log
file from the extrapolation, which merely reports if each method (each line in the
EXOGVALUES.TXT file) turned out OK or not. This log file is called MODSYS.LOG and is written to
the Working Directory. Note that every time we use the programs chdata or shift to adjust
data a line is appended to this log file.
Figure 20 Dataflow for implementing exogenous assumptions

mainextrap.frm

chdata.prg Modsys.log
exogvalues.txt

siminput.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

 29

Summary
• input makedata // Search and access to programs
• &chdata // Program to manipulate data
• exogvalues.txt // Text file containing exogenous assumptions (optional name)
• mainextrap // Database to read from (optional name)
• siminput // Database to write to (optional name)

4.3 Simulation
When we have installed our assumptions for the exogenous variables we can simulate the model
to solve the endogenous variables. The program we have written to perform this task is called
SIM.PRG. In Figure 21 we show how the program is used to simulate the malawimod model
using the database with our assumptions defined in the previous section. First we give access and
search to the directory containing the programs
Figure 21 Using the sim.prg program to simulate a model

by running the input file MAKEDATA.INP. Then we execute the simulation program with the
instruction &sim and are prompted for a database to read data from (input data base). This is the
database where we have stored our assumptions for exogenous variables (siminput). Next we
are prompted for a database to store our simulation results, this is an optional name and here we
chose to call it simoutput. Then we must specify which model we want to simulate. With this
information TROLL checks the model for possible simulation dates. In the example in Figure 21
the simulation start date can be between 1998 and 2004, and the end date for simulation must be

 30

no later than 2024. We then type in start and end dates (a common mistake that will result in an
error is to forget the ‘a’ after the year when providing the dates), and TROLL solves the models
endogenous variables. Both endogenous and exogenous variables are saved in the
SIMOUTPUT.FRM database. Finally the simulation program prints information about the model,
databases and dates used for this simulation.

The simulation program (SIM.PRG) creates an input file after each simulation called LASTSIM.INP.
This file gives readable access to the model and the output database from the latest simulation. By
running this file, typing input lastsim; we have easy access to the simulation output database and
the model used for the latest simulation.
Figure 22 Dataflow of the simulation process

malawimod.mod siminput.frm

sim.prg simoutput.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

Summary
• input makedata // Search and access to programs
• &sim // Program for simulation
• siminput // Simulation input database (optional name)
• simoutput // Simulation output database (optional name)
• malawimod // Name of model
• 1998a // Simulation start date
• 2020a // Simulation end date

5 Policy analysis
When we have made a simulation, which may be our baseline forecast for the Malawian
economy, we might be interested in studying the effects of various policy changes. In practice
this means that we change some of our assumptions and simulate the model for this new set of
exogenous input variables. These two scenarios are often referred to as the baseline (or reference)
scenario and the alternative scenario respectively.

5.1 Implementing a shift
First we will go through the process of preparing the shift. After we have decided on what shift
we would like to simulate, we must implement it as new assumptions for one or more variables.
We start by creating a new text file where we specify the details about which variables to change,

 31

and in what way to change them. An example on such a text file is showed in Figure 23. Here the
file is called SHIFTPI.TXT and consists of just one line. The information in this line tells that we
Figure 23 Information to alternative scenario

want to adjust the import price (PI) by 10 per cent each year for the period 2005 to 2020. Note the
final 0 in this line. This is because is possible to add a level for each period as well. The
instructions in this line will increase the level of PI by 10 percent relative to the existing values. If
the shift we want to do is relative to our baseline scenario, and that PI has the value 10 in the
baseline, then the input of PI to the policy shift will be 11.

5.2 Simulation of the policy shift
The program we have written for carrying out a policy shift is called SHIFT.PRG. A shift is always
relative to another exogenous input dataset to the model. The SHIFT.PRG program, as seen in
Figure 24, therefore first prompt for the name on the input data file for the database we want to
compare against, for instance our baseline scenario. This means that the program reads the input
database that was used for the simulation of the baseline scenario, here called SIMINPUT.FRM.
This is the input dataset we will shift (change). Next the program prompts for a name to give this
new input dataset (here INPI.FRM), which will be the same as the input for SIMINPUT.FRM except
for the variable PI. Then we are asked to give a name for the database to store the simulation
results in. We call this database OUTPI.FRM. Next we must provide the name of the model to
simulate and the name of the text file (SHIFTPI.TXT) where we have specified which variable we
want to change. Given this information, the possible simulation dates are evaluated and printed to
the screen, and we must specify the start date and the en date for the simulation. The program
now performs its tasks. First it copies all the variables in the SIMINPUT.FRM database to INPI.FRM,
then it changes the variable specified according to the information in the text file SHIFTPI.TXT
(here PI). Then it uses the INPI.FRM database as input to the model and carries out the simulation.
It stores the simulation results (and the exogenous variables) in the OUTPI.FRM database. Now, all
differences between the output from this shift (OUTPI.FRM) and the baseline (SIMOUTPUT.FRM)
could be attributed to adjusting the exogenous variable PI, and consequently is the effect of a shift
in import price according to our model.

It should be stressed that the only difference in exogenous assumptions in the input datasets
SIMINPUT.FRM (for creating the baseline scenario) and INPI.FRM (for creating the alternative
scenario) is PI. The differences in the simulation results (SIMOUTPUT.FRM and OUTPI.FRM) are
many, but are all due to adjusting our assumptions for PI.

 32

Figure 24 Using the shift.prg program to perform an alternative simulation

The dataflow from the process of doing a policy shift is showed in Figure 25. We see that the
shift program reads information from the text file SHIFTPI.TXT, reads data from SIMINPUT.FRM,
and writes this information to INPI.FRM. Then it closes the SIMINPUT.FRM database and changes
the variable PI in INPI.FRM. Next it uses this database to simulate the model, and writes the results
to the OUTPI.FRM database.

 33

Figure 25 Dataflow of a policy shift

malawimod.mod
siminput.frm

shift.prg

shiftpi.txt

inpi.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

outpi.frm

Summary
• input makedata // Search and access to programs
• &shift // Program for shift
• siminput // Input data file for reference scenario
• inpi // New input data file for shift (optional name)
• outpi // Simulation output data file (optional name)
• malawimod // Model to be simulated
• shiftpi.txt // File containing info on variables to shift (optional name)
• 1998a // Start date for simulation
• 2015a // End date for simulation

6 Installing and editing the model

6.1 Installing the model
In this section we will describe how to install and update the model. In TROLL there are many
ways to create and manipulate a model. It can be done interactively through TROLL’s input-
window or through files that can be stored and edited. We have chosen to do this by editing an
input file. This file is called MAKEMODEL.INP, and contains the entire model in text format. By
running this file the model is installed in TROLL’s own format for models.

To install the model (if the MAKEMODEL.INP file is open in the editor) we can just click the icon
showing the two footprints, meaning execute the entire file. It is also possible to achieve the same
by typing input makemodel; in TROLL’s input window to execute the file. It is important to note
that by executing this file, the previous version of the model is overwritten if it exists. We should
consider creating a backup of the old model using a file manager before installing a new one.

The MAKEMODEL.INP has comments describing what is going on. In Table 10 is a brief
explanation of the various commands in the file.

 34

Table 10 Commands in the MAKEMODEL.INP file

Command Explanation
sysopt screen off; Turn off writing to screen
do hfdelete(
modelarchive||model||".mod");

Delete existing model if any

access mod type disk id &dat2inp
 MODELARCHIVE " " mode w;

Opens databases and adds them to the list of accessed
databases. In our case it opens the C:\MALAWIMOD\MODEL
directory for writing

search first model mod w; Adds the model directory to the SEARCH list.
usemod &dat2inp MODEL " " ; Retrieves the specified MODEL file and establishes it as the

current working model. In this case this command is equal to
usemod malawimod;

addsym endogenous Declares new symbols by symbol type. At the time of writing it
is only ENDOGENOUS symbols that have to be declared. The
EXOGENOUS are default and does not have to be specified.
The COEFFICIENT is omitted because they are hard coded
into the equations.

addeq bottom Enters one or more equations written in the modelling language
into the equation list of the model. The equation is put after the
position specified. In this case “bottom” means that the new
equations always are added at the bottom.

delsym nowarn all; Deletes the specified symbols from the symbol table of the
model, provided they do not appear in any equations. The
option “nowarn” means we suppress any warnings.

lkord; Prints a summary giving the number of simultaneous blocks
and the number of equations in the largest blocks.

filemod &dat2inp MODEL " " ; Stores the model we are editing as a permanent disk file and
terminates the MODEDIT task. In this case this command is
equal to filemod malawimod;

sysopt screen on; Enables writing to the screen.

6.2 Editing the model
In general, to change the model we open the MAKEMODEL.INP file in the TROLL editor and do
whatever changes we like, and save the file. By running the file (input makemodel;) we
implement the changes to the model.

6.2.1 Changing an equation
Suppose we want to change an equation in the model. For example if we have re-estimated the
consumption function and wants to replace the old equation with the new one. To accomplish this
we localise the equation we want to replace in the MAKEMODEL.INP file, delete it and type in the
new equation. Next we save and run the file by typing input makemodel; in the input-window as
described above.

6.2.2 Adding an equation
If we want to add a new equation we type it into the MAKEMODEL.INP text file. The file aims at
grouping equations belonging to the same model block, so we should try to put it where it
naturally belongs. When we add a new equation we must remember to declare the endogenous
variable in the list following the addsym endogenous statement. Next we save and run the file.

6.2.3 Deleting an equation
Deleting an equation is the opposite of adding one. We delete the equation from the
MAKEMODEL.INP file and remove the symbol for the endogenous variable solved in that equation

 35

from the endogenous list (following the addsym endogenous statement). Next we save and run the
file.

6.2.4 Miscellaneous
The same procedures as described for changing, adding and deleting equations applies to
changing more than one equation.

It is important to be aware of that some of the equations are also used in generating data. For
instance the timeseries for total government revenue (GRTOT) is installed into the database by
stating that this is equal to the sum of government revenue (GREV) and transfers to the
government from abroad (TRFG) as grtot = grev + trfg in the ADDDATA.INP file. If we
want to e.g. disaggregate this expression in the model by replacing the equation with another, we
must remember to change accordingly in the ADDDATA.INP file as well.

If we change an econometric equation we must recalculate the residual. Suppose we wanted to
change the econometric equation for private consumption in MAKEMODEL.INP from
LOG(CPO/CPO(-1)) = 0.0536+0.9848*LOG(YHDR/YHDR(-1))-0.2869*LOG(CPO(-
1)/YHDR(-1))-0.6002*DUM94+RCPO

to for instance
LOG(CPO/CPO(-1)) = 0.08+0.96*LOG(YHDR/YHDR(-1))-0.25*LOG(CPO(-1)/YHDR(-
1))+RCPO

where we removed the dummy-variable and altered the coefficient somewhat. Then we must
remember to change accordingly from
RCPO = LOG(CPO/CPO(-1)) – (0.0536+0.9848*LOG(YHDR/YHDR(-1))-
0.2869*LOG(CPO(-1)/YHDR(-1))-0.6002*DUM94)

to
RCPO = LOG(CPO/CPO(-1)) – (0.08+0.96*LOG(YHDR/YHDR(-1))-0.25*LOG(CPO(-
1)/YHDR(-1)))

in ADDDATA.INP when calculating the values for the residual.

Generally, when adding new variables to the model we must also add their data. For new
exogenous variables we must add their historic data in the ADDDATA.INP so that they will be
stored in the MAIN.FRM database. But also endogenous variables, even though the model
calculates them, need historic values in the database. This is because TROLL uses this value as a
guess when simulating their value for the first year (thereafter it uses the previous years simulated
value).
Figure 26 Declaring an endogenous variable

 36

In Figure 26 and Figure 27 we gives a simple example on how to implement a new equation by
using the input file MAKEMODEL.INP. We want to have an equation for the value of smallholder’s
consumption. First (c.f. Figure 26) we declare the new endogenous variable VCPS. Next, in
Figure 27, we type in the new equation.
Figure 27 Installing a new equation

6.3 Creating a new input file from the model
Even though we go in for changing the model using the MAKEMODEL.INP input file we are not
limited to this file. If we want so we can use the model in TROLL’s internal model format
(“.mod”) to create a new input file.

The TROLL command sourcemod creates an input file or string array containing the
modedit commands needed to recreate all or part of a model. In Figure 28 we show one
example on how to use this command.

Figure 28 Creating an input file from a model

By using this example we will create a new input file called MAKEMODEL2.INP on the Working
Directory, which will create a new model file when executed. By first using the input start;
command we will have access to the default model malawimod. This model will be basis for the

 37

input to the sourcemod command, and, when adding the option filemod as in this example
the input file created will terminate with the command filemod malawimod; Part of the input file
is presented in Figure 29. Note that to run this input file to create a model we must have writeable
access and search rules to the model directory. To obtain this just type input makeeqn; before
running the MAKEMODEL2.INP input file. The sourcemod command has many more options and
is worthwhile a closer study.
Figure 29 Input file created from a model

Summary
• Start TROLL
• Open the MAKEMODEL.INP file in the TROLL editor
• Edit the model
• Save the MAKEMODEL.INP file
• Click “Execute all” (or type input makemodel; in the input window)
• Check the session window for warnings and error messages

7 Database

7.1 Introduction
In this section we will describe how to install and update the database. The database is installed in
several steps. TROLL is able to handle different database types, but in this model system we only
use the type formdata that is a text format database. All database files of this type have the
extension frm. In this version of the model we only use databases for time series data, and they
are all located in the C:\MALAWIMOD\DATA\ – folder.

 38

7.2 The basic database

7.2.1 Installation procedure
The basic database, or MAIN.FRM, as we call it, contains all the timeseries that we might be
interested in. Some of them are used directly in the model, while others are used for creating
model specific timeseries.

For some variables, the actual figures have been typed into this text file, and are installed into the
database by using TROLL- functions. Other variables are installed by using already existing data.
This implies that the sequence in which we write the timeseries to the database is of importance.
For instance, for monetary consumption in constant prices and in current prices we have typed in
actual figures, but the price deflator is calculated implicit based on the first two. This means that
when calculating the price deflator, data for the constant price and the current price series must
already exist in the database, i.e. have been installed previous in this file.
Box 2 Installing time series into the database

//Monetary consumption, constant 1994 prices
cpo = reshape(combine(2027, 2824, 2827, 2591, 2548, 2625, 2746, 2690, 2301,
2662, 3875, 3890, 4669, 4765, 4741, 4409, 6617, 8707, 10388, 8139, 9372, 8829,
7914, 10416, 10713, 11151), 1979a),

//Monetary consumption, current prices
vcpo = reshape(combine(355, 329, 387, 405, 463, 546, 651, 724, 696, 1167,
1788, 1997, 2759, 3339, 4071, 4409, 12129, 21964, 28602, 29086, 48521, 59117,
67551, 102073, 115058, 137732), 1979a),

//Implicit price deflator
//Monetary consumption
pcpo = vcpo/cpo,

To install the basic database (MAIN.FRM) we must type the following two commands:
input makedata;
input adddata;

The first command executes commands in the file MAKEDATA.INP, which closes any databases
that might be open to ensure we are not writing into them. This file also includes some other
commands to open other archives, but is really not needed for this model version, although part of
the future model system.

The second command executes the commands in ADDDATA.INP, which first gives a writeable
access to the database C:\MALAWIMOD\DATA\MAIN.FRM with the commands
access indata type formdata id &dat2inp DEFAULTDATABASE " " mode w;
search data indata w;

where the term &dat2inp DEFAULTDATABASE " " gets the physical address from TROLL’s
internal memory database. The value for DEFAULTDATABASE is defined in the PROFILE.PRG
program that is executed automatically during start-up (se Appendix 2 for more information on
the initial settings). Next are the commands to install the timeseries into the database. When all
the timeseries has been installed the program closes the database.

 39

7.2.2 Residuals
Many equations in the model contain residuals. They need a residual term to make the left hand
side equal to the right hand side. There are several reasons they differ, i.e. the equation is not
balanced. Some equations are econometric where the coefficients in the equation are estimated to
explain the endogenous variable. For other equations we have even simpler relations between the
variables, for instance two variables are related through a ratio. Another reason equations are not
perfectly balanced is that some variables in the equation are measured during a calendar year
while other variables in the equation are measured over a fiscal year.

For instance the equation for smallholders consumption is implemented as
LOG(CPO/CPO(-1)) = 0.0536+0.9848*LOG(YHDR/YHDR(-1))-0.2869*LOG(CPO(-
1)/YHDR(-1))-0.6002*DUM94+RCPO

and contains the residual RCPO. To calculate the values for this residual we simply turn about the
equation and the expression in ADDDATA.INP is
rcpo = LOG(CPO/CPO(-1)) - (0.0536
+0.9848*log(YHDR/YHDR(-1))
-0.2869*log(cpo(-1)/YHDR(-1))
-0.6002*dum94),

Obviously, if we, for some reasons, change the equation for CPO in the model, we must change
accordingly for RCPO in the file ADDDATA.INP, and reinstall the database.

7.2.3 Adding new data
New timeseries for variables should be added in the file ADDDATA.INP. We use several methods
to install the timeseries. Suppose we want to install a new variable in the model called XX, and
that we have timeseries observation for the years 2000 to 2005.

We might use the TROLL functions reshape and combine to create the timeseries as:
XX = reshape(combine(972, 1006, 993, 1051, 1176, 1074), 2000a),

After this entry in the ADDDATA.INP file we can use this data field to create other data fields. For
instance, if XX is a variable measured in constant prices, and we have already installed the
current price value for the same variable as VXX, then we can install the implicit price index
PXX as
PXX = VXX/XX,

Note that in ADDDATA.INP we apply one dofile command to install many variables. To do this we
have a dofile command at the top of the file, we then separate each data entry with a comma,
and add a final semicolon at the end of the file (to terminate the initial dofile command).

7.3 Collecting model data
The main database contains many timeseries not needed to simulate the model. In this section we
describe how to extract only the data needed from the MAIN.FRM database, to have a “pure”
model database. The process is showed in Figure 30. We run the MAKEDATA.INP file, and then
call the program COLLECT.PRG. The program asks for a model to collect data from. Then it loops
through all variables defined in the various symbols list of the model and copies data from the
MAIN.FRM timeseries database to a database called MALMODDB.FRM.

An important assumption is that the main timeseries database already exists. Here this is the
MAIN.FRM database, but this name is not hard-coded into the COLLECT.PRG program. The link

 40

between the collect program and the MAIN.FRM is in the initial settings, and is in the variable
defaults (short for default timeseries database). We can see this by printing the value of this
variable:
TROLL Command: do prt.(defaultts);

DEFAULTTS:
 String scalar: "main.frm"

TROLL Command:

The name of the model database MALMODDB.FRM, however, is hard-coded inside the collect
program and cannot be altered in the initial settings.
Figure 30 Collection data for the model

7.4 Controlling the outcome of the model
The process of controlling the outcome of the model can be useful in many ways. The method can
be used to achieve a desired value for one or more variables, or to consistently calculate missing
values in the database. The procedure is also suitable in calibrating the dataset to the model. This
step in creating a database for simulation is optional.

7.4.1 Override the outcome of a simulation
We will here demonstrate how to override the outcome of a model simulation to get a wanted
result for a variable in the model. This can be due to a known weakness in the model, or just
because we want a specific outcome for one or more variables. Suppose we, for some reason,
want to achieve a given result for smallholder’s consumption. The equation for smallholder’s
consumption is econometric and specified as
LOG(CPO/CPO(-1))=0.0536+0.9848*LOG(YHDR/YHDR(-1))-0.2869*LOG(CPO(-
1)/YHDR(-1))-0.6002*DUM94+RCPO

 41

where RCPO is a residual term. Assume we want the result for smallholder’s consumption (CPO)
to be MKW 12000 millions for the period 2005-2009 when simulating the model. The “problem”
here is of course that CPO is endogenous and is determined by (the simultaneous block of) the
model. One approach to achieve this would be to use the residual term RCPO. We could, by trial
and error, alter the residual and simulate the model until we got the desired results. A much more
elegant method is to use the model to simulate the residual conditional on the desired outcome on
the endogenous variable CPO. The procedure for achieving this includes the following:

1. Extrapolate smallholders consumption CPO with the desired value (12000)
2. Change the model so that CPO becomes exogenous and RCPO becomes endogenous
3. Simulate the model
4. Save the simulated value for RCPO
5. Change the model back so that CPO becomes endogenous and RCPO becomes exogenous
6. Simulate the model with the simulated values for RCPO as input

The outcome for CPO from the model simulation will now be 12000. We will now demonstrate
this by utilising the program made for this.

We assume that we already have a database where all variables have been extrapolated, and that
this database is called EXTRAP1.FRM. First we must prepare for extrapolating the CPO variable at
the value of 12000. We create a text file and call it CPOFIX.TXT. This file consist of one line:
addval cpo 2005a "12000 12000 12000 12000 12000"

This line, when read by the program, tells that we want to add values to CPO from 2005 until
2009. The end date 2009 is implicit defined by the number of values we want to add. The first
value will be added in 2005, the second value in 2006, and so on. Note that CPO is endogenous in
our “normal” model and consequently has not been automatically extrapolated.

Now we use the program CHDATA.PRG to implement the “target value” for CPO into a database.
This is showed in Figure 31. We start by executing the MAKEDATA.INP file to access the needed
directories. We further execute the program CHDATA.PRG that asks for the name of the input
database, i.e. the database EXTRAP1.FRM. It next asks for the name of an output database to
create, which we here

 42

Figure 31 Implementing assumption about a variable

call EXTRAP2.FRM. Finally the program asks for the text file (CPOFIX.TXT) where we have
specified the values for CPO. The values for CPO is now set to 12000 for the period 2005 to
2009:
TROLL Command: do prt.(cpo);

CPO:
 Numeric scalar timeseries --
 Time dimension: Annual, 1979A to 2009A (31 observations)

 Time dimension -->
1979A: 2027 2824 2827 2591
1983A: 2548 2625 2746 2690
1987A: 2301 2662 3875 3890
1991A: 4669 4765 4741 4409
1995A: 6617 8707 10388 8139
1999A: 9372 8829 7914 10416
2003A: 10713 11151 12000 12000
2007A: 12000 12000 12000

The next step is to change the model so that CPO becomes exogenous and RCPO becomes
endogenous, and to simulate the value for RCPO using this model. We can do this by using the
program ENDO2EXOG.PRG. The program takes information on which variables to
endogenise/exogenise from a text file so we must first prepare this file. We create a new text file
and name it CPOEXOG.TXT. The file consists solely of the name of the variable to become
exogenous and of that to become endogenous as in Figure 32.

 43

Figure 32 Changing symboltype from exogenous to endogenous

Now we are ready to simulate the values for the residual RCPO that will be consistent with the
specified values for CPO. This is showed in Figure 33. The program ENDO2EXOG.PRG first asks
for the name of the input database. This is the database EXTRAP2.FRM where we have
extrapolated CPO with value 12000 for the period 2005 to 2009. Next the program asks if we
want to overwrite (the variable in) the database or create a new. In this example we choose to
overwrite, i.e. write back to the same database. Next we must specify which model to use, and the
name of the text file CPOEXOG.TXT specifying for which variables to change symbol types
between endogenous and exogenous (c.f. Figure 32). Provided with this information the program
now analyses the model for possible simulation dates, prints this to screen and asks for the start
date and end date for the simulation. We simulate the model for the period 2003 to 2009.
Although the whole model is simulated, the only variable saved is that for RCPO as we can see in
the message from the program. This value for RCPO, when used as exogenous input to the
(normal) model, is the values that ensure the specified outcome for CPO. The program
Figure 33 Enforce an outcome of the model

ENDO2EXOG.PRG creates a temporary model called TMPMOD.MOD in the model folder where
RCPO is endogenous.

 44

The procedure described here is outlined in Figure 34. We see that the endo2exog program
reads data from the database EXTRAP2.FRM, reads information on which variables to endogenise
and exogenise from the text file CPOEXOG.TXT and then simulates the model. The results for the
new endogenous variable RCPO is written back to EXTRAP2.FRM.
Figure 34 Dataflow for endo2exog (example)

malawimod.mod

extrap2.frm

endo2exog.prg
tmpmod.mod

cpoexog.txt

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

Now we can simulate the model and we will see that the endogenous CPO will have the value of
12000 for the years 2005 to 2009. In Figure 35 we show how this is done. The input database
EXTRAP2.FRM now contains, amongst all other variables, the simulated values for RCPO. To put
it simple; we have simulated the model to find the exogenous input values that will result in a
desired outcome.

 45

Figure 35 Simulating a designed outcome

To check the result for CPO we print it:
TROLL Command: do prtime (cpo);

 CPO

2003A 10713
2004A 11151.00001
2005A 11999.99912
2006A 11999.988211
2007A 11999.993245
2008A 11999.995377
2009A 11999.996093

TROLL Command:

Which is (apart from the exactness) what we wanted to achieve.

7.4.2 Calculating missing values
We will now demonstrate another way of using the technique involving interchanging exogenous
and endogenous variables. Even though this is a model based on annual data, it might be that
some values are not available when we update the model with the latest years data. We will here
explain briefly a situation where we can use the above-mentioned technique to calculate (model)
consistent values for missing values.

 46

Consider the following situation. All the variables in the historical database have values for 2004,
except the variable for government investment in constant prices (JG), which ends in 2003. The
situation is illustrated in Table 11. This variable is exogenous in the model and the simulation is
Table 11 Missing a historical value

 VJG PJG JG
2004 15436 11.7 NA

limited because of missing data. One solution then is to use a definition equation where JG
appears to calculate it. One such equation is
VJG = PJG*JG

In this equation government investment in current value is determined as the price index
multiplied by the government consumption in constant prices. It is obvious that when JG ends in
2003 it will limit the calculation of VJG to the same end date. This can also be seen from Figure
36 where we have used the TROLL-program lklimit to check for limiting variables. The
program tells us that we can start a simulation from 1998 (limited by CA, NFS, ERROM and
RNFS) and that it can start to 2003 (limited by JG). This somewhat cryptically message means in
practice that we can start the simulation between 1998 and 2003, and that it must end by 2003
(limited only by JG).
Figure 36 Check of limiting variables in a database

By using the same method as in the previous section we will now simulate the missing value for
JG in 2004 that is consistent with the models equations. First we must prepare the text file that
tells which variables we want to make endogenous and exogenous. We create a text file called
VJGEXOG.TXT (c.f. Figure 37) that specifies that we want to make VJG exogenous and JG

 47

Figure 37 Information on changing symbol types in a model

endogenous. In Figure 38 we show the use of the program ENDO2EXOG.PRG to simulate the value
for JG in 2004. For the purpose of demonstration we have used the MAIN.FRM database and
chosen to write the simulated value for JG back to the same database. This is the only value
written back to the database, all others remaining untouched.
Figure 38 Simulating a missing value

In Table 12 we see that we now have a value for JG that is consistent.
Table 12 Simulated JG

 VJG PJG JG
2004A 15436 11.728 1316.166

The model can now be simulated until 2004 using this MAIN.FRM database.

 48

It should be noted that the text file with information on which variables we want to change to
endogenous and exogenous could have multiple pairs of variables. One should consider carefully
however, which couples of variables to change. The pair of variables does not have to be in the
same equation, but they must be related, and we must ensure there are assignable variables in all
equations. For instance, if we want to change the variable WP to be exogenous and JG to be
endogenous we will have the following message from TROLL:

WARNING 3211
There are no assignable variables in some equations:
 70
Problem was detected in macro file 'ENDO2EXOG' near line #178.

ERROR 3212
The model cannot be block-ordered due to problems with the incidence
matrix.
Problem was detected in macro file 'ENDO2EXOG' near line #178.

According to this TROLL - warning the error occurs because equation 70, which is
WP = WPRATE*WG

now only contains exogenous variables (and consequently no variable to simulate). The TROLL –
error occurs because there are now only 115 equations to solve 116 variables.

By printing the equations containing WP and JG respectively we see that there are no relation
between them:
TROLL Command: lksym wp jg;

Variable Used in Equations

JG 13 17 42 61 67
WP 26 48 50 70

TROLL Command:

The text file containing the paired endogenous and exogenous variables must be stored at the
Working Directory.

 49

7.4.3 Data structure of the model
In Figure 39 we show a flowchart of the data structure for the model system. To the right is an
explanation of what the task to the left does. Note that neither the calibration nor the shift
processes have been included here. Attention should be paid to the explanatory boxes at the
bottom, as they are important for understanding the flowchart. All or parts of file names that are
underlined are optional. As an example, we see that the dashed box named ADDDATA.INP (on the
top) symbolises a batch (input) file and will write (solid arrow) to the database (solid box) called
MAIN.FRM (not underlined so it’s not an optional name).
Figure 39 Data structure in the model

AddData.inp main.frm

collect.prg

malawimod.mod

malmoddb.frm

autoextrap.prg

enddates.log
mainextrap.frm

chdata.prg Modsys.log exogvalues.txt

siminput .frm

sim.prg simoutput .frm

Basic data

Model data

Extrapolation

(baseline forecast)

(assumptions)

Simulation

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

(automatic)

 50

8 Interaction with spreadsheets

8.1 Introduction
In the first place the data for the model was provided in spreadsheets. Therefore we developed
programs to interact with spreadsheets from TROLL, i.e. install data from a spreadsheet into a
TROLL database and exporting data from a TROLL database to spreadsheets. As the basis for
our model database we don’t use the spreadsheet database anymore, however, the use of
spreadsheets are increasingly popular, so we will go through how we can read from and write to
spreadsheets.

TROLL can read various types of spreadsheets but not Microsoft Excel format. The programs we
have developed will read from and write to WKS format. Microsoft Excel though, handles WKS
format, and can be used both to create spreadsheets that we want to install into a TROLL
database, or to open spreadsheets in WKS format created from our TROLL databases. In this
chapter we will first describe the format of the spreadsheets to be used with TROLL. Then we go
through how to convert between Excel and WKS formats, before we demonstrate how to import
and export data between TROLL’s databases and spreadsheets.

8.2 The format of the spreadsheet
To use spreadsheets in TROLL they require a certain format. In Figure 40 we show a spreadsheet
that was created from the model system, and this format is the one that must be used. Column A
must consist of the periodicity, i.e. the dates for the observation. They must be in TROLL’s
format, i.e. include an “A” after the number of the year. This should start from cell A2 (leaving
cell A1 empty) and continue until the last observation. Note that the timeseries does not have to
be of equal length, and Column A should reflect the span of the timeseries with the earliest and
Figure 40 Format of spreadsheet

the latest dates included. If the timeseries with the earliest observation starts in 1970, and the
timeseries with the latest observation ends in 2005, then cell A2 should be 1970A and A37 should
be 2005A. The variable names should be on the first line (row 1), starting from cell B1, and must

 51

be in uppercase. In Figure 40 the spreadsheet file MAIN.WKS contains 3 timeseries of equal length.
The spreadsheet program we use restricts total numbers of timeseries in a single spreadsheet. In
Microsoft Excel’s case it is limited to 256 timeseries. The length of the timeseries is virtually not
a problem.

8.3 Microsoft Excel and WKS format

8.3.1 From Microsoft Excel to WKS format
To be able to read data from a Microsoft Excel spreadsheet into a TROLL database we must first
convert it to WKS format. To accomplish this we should follow this procedure:

• Open the Excel spreadsheet to convert
• Go to File -> Save as
• Click the dropdown list “Save as type:” (see Figure 41)
• Choose WKS (1-2-3)
• Click Save (Note: Depending on your set-up and version of Excel/Windows there may be

some warnings. WKS do not support multiple sheets so we should agree to save only the
active sheet. Further, WKS do not support all the features in Excel so we will be given
some information regarding this.)

• Close the spreadsheet

In Figure 41 we are saving an Excel spreadsheet file called CONSUMPTION.XLS as
CONSUMPTION.WKS.
Figure 41 Converting an Excel file to WKS format

8.3.2 From WKS format to Microsoft Excel
We also want to go the other way, i.e. open a WKS file that we have created from TROLL in
Excel. Depending on the computer settings, we might have to specify which program to use to
open the WKS file. If the computer doesn’t recognise the WKS file type, we try to open it and
then (when requested) specify that we want to use Microsoft Excel (or another spreadsheet
program if we prefer). Note that when we open the spreadsheet we have created from TROLL,
the cells might consist of number (hash) signs (####). This is either because of the potentially
large numbers of decimals used when exporting from TROLL, or because the numbers
themselves are large. To view the proper content of the cells we must adjust the column width
and/or reduce the number of decimals. To save this file as an Excel file we must use the option

 52

“Save as” from the file menu in Excel, and then chose “Microsoft Excel Workbook (*.xls)” from
the “Save as type:” field.

8.4 Copy data from a spreadsheet to a TROLL database
The program for copying timeseries from a spreadsheet to a TROLL database is called
WKS2TROLL.PRG. Let us start with executing the program to see its options. Figure 42 show that
we have three options (in addition to exit) when it comes to specify the variables we want to copy
from a spreadsheet. By typing F we can support the variables names from a file, we can chose K

Figure 42 The wks2troll program

to give the variable names from the keyboard, or we can chose A to read all variables in a
spreadsheet. By choosing E the program terminates.

If reading data from a spreadsheet into a TROLL database were a regular task, especially if it
involves many variables, it would be wise to store the variable names that we want to read in a
text file so that it can be reused. In Figure 43 we shows how this file could look like. We can
write many variables on the same line or one variable on each line. If we specify variables in the
text file that doesn’t exist in the spreadsheet, the program will write a warning to screen. The
TROLL databases created will be written to the C:\MALAWIMOD\DATA folder.

Suppose we have a spreadsheet file CONSUMPTION.WKS that we want to transfer to a TROLL
database, and that we want to specify which data from the spreadsheet we want to copy by using
a file named DATA.TXT.

 53

Figure 43 Specifying data to copy from spreadsheet from a text file

Accordingly we have chosen “F” as option from the menu presented by the WKS2TROLL.PRG
program (see Figure 44). Next the program asks for the name of the input WKS file, and we give
the name of the spreadsheet we want to read from (consumption). Next we must specify the name
Figure 44 Copy data from spreadsheet

of the TROLL database we want to create, we call this consumption too (but it will be
CONSUMPTION.FRM in the C:\MALAWIMOD\DATA folder). Finally the program asks for the name
of the text file containing the variable names we want to copy. In this case it is DATA.TXT. The
TROLL database CONSUMPTION.FRM, containing the variables specified in DATA.TXT, will now
be created.

In Figure 45 we show the data structure for the use of the WKS2TROLL.PRG program as it has been
used in this example.

 54

Figure 45 Data structure for reading from spreadsheet (example)

data.txt

wks2troll.prg consumption.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

consumption.wks

Cross-ruled Spreadsheet

In Figure 46 we demonstrate how to specify which variables to read from the keyboard. Note that
the variable “ccc” was not found in the spreadsheet MAIN.WKS and this caused a warning.

If the TROLL database we want to write to already exists (SOMEDATA.FRM in this example), we
will be warned and given the following options:

• Overwrite file (data will be deleted before the new variables is written to this file)
• Rename (give a new name, leaving existing file untouched)
• Append (write the variables specified to the TROLL database, overwriting their existing

values, leaving other variables unchanged)
• Exit

 55

Figure 46 Copying from spreadsheet to TROLL database from keyboard

8.5 Copy data from a TROLL database to a spreadsheet
There can be many reasons for wanting to export data from a TROLL database to a spreadsheet.
We may want to make some nice presentations from a simulation or policy analysis, or use the
numbers for further calculations. Regardless of what reason, we want to show how to perform
this by using a program called TROLL2WKS.PRG. In Figure 47 we demonstrates how to use the
program. To access the program we must run the input file MAKEDATA.INP. When we execute
TROLL2WKS.PRG we are given the following 3 options (in addition to exit):

• Read the variable names we want to copy to spreadsheet from a file
• Read the variable names we want to copy to spreadsheet from the keyboard
• Read all the variables in the database to a spreadsheet

In our example we have chosen option K to give the variables to export from the keyboard. We
typed main as input database and consumption as output spreadsheet, which will result in reading
from the MAIN.FRM TROLL database to the spreadsheet called CONSUMPTION.WKS. In this
example we have specified a particular time period (1985 to 2004) for the timeseries we wish to
export to the spreadsheet,

If a spreadsheet with the same name as we specify already exists it will be overwritten without
any warnings given.

 56

Figure 47 Copy data from TROLL to spreadsheet

In Figure 48we show the data structure for the use of the TROLL2WKS.PRG program as it has been
used in this example. We have illustrated how to copy 3 consumption variables from the
MAIN.FRM TROLL database into a spreadsheet called CONSUMPTION.WKS. The spreadsheet will
be created at the Working Directory.
Figure 48 Data structure for copying to a spreadsheet (example)

troll2wks.prg
main.frm

Solid

Dashed Program / batch

Database Model

Textfile Read

Write

Box Ellipse Arrow

consumption.wks

Cross-ruled Spreadsheet

C, CP, CG

Keyboard

 57

Index

A

addval (function), 41, 59, 60, 61, 64
adjust (function), 11, 27, 28, 31, 51, 58, 60,

61, 62, 63, 64, 66
alias, 14, 19, 20, 59
Assumptions, 11, 25, 28, 29, 31

C

chdata (function), 12, 27, 28, 41, 58, 60, 61,
63, 64, 66

checkdate (program), 12
collect (program), 39

E

enddates.log (Log-file), 10, 23
endo2exog (program), 12, 42, 43, 47
Endogenous variables, 25, 29, 30, 35, 45
eqeval (program), 12
Exogenous variables, 7, 10, 22, 23, 24, 25,

26, 27, 28, 29, 31, 35, 48, 58, 72
extrapa (function), 64
Extrapolating, 23, 41

F

Forecast, 22, 24, 30

H

Historical database, 11, 46, 68

L

lastsim.inp (generated input file), 10, 30
lklimit (program), 46
lksearch (command), 14
lksym (command), 16, 17, 48

M

main.frm (database), 8, 10, 11, 13, 14, 17,
19, 23, 35, 38, 39, 40, 47, 49, 55, 56, 68,
70, 71, 72

makemodel.inp (input file), 35, 36
maketables.inp (input file), 21
malawimod.mod (model file), 11
malmoddb.frm (database), 11, 39, 40

Model, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,
20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 68, 69, 70,
71, 72, 74, 75

modsys.log (Log-file), 28

O

opendb (program), 11, 19, 20

P

pcfdadj (function), 58, 66, 67
Policy analysis, 6, 7, 22, 55
Printing data, 19
prtdset (program), 18, 19
prtime (command), 8, 18, 19, 20, 45
prtmod (command), 15, 16, 17

R

Residuals, 12, 25, 39

S

Search list, 13, 14, 15, 18, 20
shift (program), 31, 32, 58, 60, 61, 63, 64, 66
Simulation, 7, 8, 9, 10, 19, 21, 25, 29, 30,

31, 32, 33, 40, 41, 43, 46, 55
Spreadsheet, 12, 50, 51, 52, 53, 54, 55, 56

reading from, 12, 52, 53
writing to, 12, 55, 56

start.inp (input file), 11, 13, 71

T

tmpmod.mod, 11, 43
troll2wks (program), 12, 55, 56

V

Variables list, 72
varlist.prg (program), 11, 74
varlist.txt, 11, 72, 74

W

Working Directory, 9, 10, 12, 13, 19, 23, 28,
36, 48, 56, 69, 71, 72, 73, 74

 58

Appendix 1. Functions

Appendix 1.1. Introduction
To facilitate the task of implementing our assumptions for the exogenous variables some
functions have been developed. We have already demonstrated these in chapter 4.2
“Extrapolating the exogenous variables” and in 5.1 “Implementing a shift”. There we used the
programs CHDATA.PRG and SHIFT.PRG, which read the assumptions specified from a text file.
What the programs actually do is to call some TROLL functions we have developed and pass
over the information from this text file. These are actually stand-alone functions and might be
used as such, as we will demonstrate here. The functions are located in the
C:\TROLLRESOURCES\LIB directory. In Table 13 we list the functions used to manipulate variables
and give a short explanation on their use. To be familiar with the functions and the way they
operate we should try them out.
Table 13 Functions used for manipulating variables

Function Comment
ADDVAL Add values to time series
ADJUST Adjust time series by per cent and a constant added
EXTRAP Extrapolate time series with a given growth rate
EXTRAPA Extrapolate time series with a given growth rate and a

constant added
PCFDADJ Adjust time series by changing the growth rate by a

constant
Symbol for comments

Appendix 1.2. Functions for adjusting time series
All the functions take parameters as arguments. These parameters consist of the variable name of
the time series to change and the first period or start date for changing. Then, depending on which
function, they take other parameters such as end date, per cent growth rate, change in growth rate,
a constant to add, a given value to insert, etc.

The functions adjust and pcfdadj adjust already existing data so their time series must have
been extrapolated before we can manipulate on them, whereas the others will add the values
specified if they does not exist.

When the functions are used as in CHDATA.PRG and SHIFT.PRG they have their parameter values
from a text file (c.f. Figure 18 and in Figure 23). To use them as a stand-alone function we can
follow the example in Figure 49. There we have written the access and search commands for
opening the database where the exogenous variables have been automatically extrapolated
(MAINEXTRAP.FRM), and for creating a database to store the adjusted time series
(EXTRAPPED.FRM).

 59

Definitionwise a function returns a value. These functions does not return the adjusted timeseries
as one might expect, but a boolean scalar which has the value TRUE if the adjusted timeseries
was stored successfully or FALSE if the timeseries cannot be stored according to the writeable
search (writeable search has alias new in Figure 49). If we print the value saved by the dosave
command in Figure 49 we get:

TROLL Command: do prt.(addvaltest);

ADDVALTEST:
 Boolean scalar: TRUE

TROLL Command:

which indicates that the use of the function was successful.

The adjusted time series will be written to the database according to the search rules that applies.
In the example in Figure 49 we created the database EXTRAPPED.FRM because these functions will
result in an error if there is no writeable search rule (it will not work for TROLL’s save database).
Note that in Figure 49 we have used mode c to create the database if it does not exist (overwriting
any existing ones with the same name).
Figure 49 Using addval as a stand-alone function

The function is called with the suffix 'F to tell TROLL that this is a name of a function and not a
variable. We will now turn to the details on these functions.

 60

Appendix 1.3. The addval function
The purpose of the addval function is to insert values to a time series. Here we show how to use
the function when we will read the information from a text file. Then the syntax is
addval MG 2005a "1000 1000 1000 900 900 900"

This line is read from the program (CHDATA.PRG or SHIFT.PRG) that first read the word addval
that identifies which function to use. Then the other information is interpreted and passed on to
the addval function as

addval var start stop (input from file)
bTF = addval'f(var, start, stop); (as stand-alone function)

where
bTF = return value, boolean scalar TRUE or FALSE
var = MG (variable to adjust)
start = 2005a (start date)
stop = "1000 1000 1000 900 900 900" (values to insert, implicit defines the end date)
Box 3 Effect of using the addval function

Here we see how the function addval change the
values of a time series. For the variable MG the outcome
of the automatic extrapolation is presented in the column
named OLD_MG in the table. After executing the
addval-function, reading the following line
addval MG 2005a "1000 1000 1000 900 900 900"

from a file, the result is presented in the column named
NEW_MG in the table.

First we set the value to 1000 from 2005 to 2007
(including), and then we set the value to 900 for the
period 2008 to 2010. Thereafter MG takes its old values.

 OLD_MG NEW_MG

2004A 1074.6 1074.6
2005A 1079.6 1000
2006A 1058.7 1000
2007A 1037.9 1000
2008A 1017 900
2009A 996.1 900
2010A 975.3 900
2011A 954.4 954.4
2012A 933.6 933.6
2013A 912.7 912.7
2014A 891.9 891.9
2015A 871 871

If the length of the OLD_MG is shorter than what is implied by the start date (for adding values)
and the number of values to add, the NEW_MG will be extended so that all values is added. The
use of the addval function as in Box 3 is visualized in Figure 50.

 61

Figure 50 The addval function

Appendix 1.4. The adjust function
The adjust function change the level of a time series by a percentage and then add a constant.
For instance, we may want to increase MG by 2 per cent, and add 200 in the period 2006 to 2012.
Obviously, to be able to do this, the values for MG must have been extrapolated before. Apart
from the first and the last year we are altering, the growth rate is unchanged. Here we show how
to use the function when we will read the information from a text file. Then the syntax is
adjust MG 2006a 2012a 3 200

This line is read from the program (CHDATA.PRG or SHIFT.PRG), which first read the word
adjust that identifies which function to use. Then the other information is interpreted and
passed on to the adjust function as

adjust var start stop num1 num2 (input from file)
bTF = adjust'f(var, start, stop, num1, num2); (as stand-alone function)

where
bTF = return value, boolean scalar TRUE or FALSE
var = MG (variable to adjust)
start = 2006a (start date)
stop = 2012a (end date)
num1 = 3 (percentage to add to new series)
num2 = 200 (constant to add)

For instance, in Box 4, we can see the old value in 2006 is 1058.7. If we add 3 percent and 200
we have: 1058.7*1.03 + 200 = 1290.5. Similarly, in 2007 we get 1037.9*1.03+200 = 1269.

 62

Box 4 Effect of using the adjust function

Here we see how the function adjust change the
level of a time series by a specified percentage and
then add a constant value. For the variable MG the
outcome of the automatic extrapolation is presented
in the column named OLD_MG in the table. After
executing the adjust-function, reading the
following line
adjust MG 2006a 2012a 3 200

from a file, the result is presented in the column
named NEW_MG in the table.

We add 3 per cent and then 200 to the series from
2006 to 2012 (including). Thereafter MG takes its old
value.

 OLD_MG NEW_MG
2004A 1074.6 1074.6
2005A 1079.6 1079.6
2006A 1058.7 1290.5
2007A 1037.9 1269
2008A 1017 1247.5
2009A 996.1 1226
2010A 975.3 1204.6
2011A 954.4 1183.1
2012A 933.6 1161.6
2013A 912.7 912.7
2014A 891.9 891.9
2015A 871 871

The use of the adjust function as in Box 4 is visualized in Figure 51.
Figure 51 The adjust function

Appendix 1.5. The extrap function
The purpose of the extrap function is to extrapolate a time series with a given growth rate. The
values for the specified period will be created if they don’t exist. Here we show how to use the
function when we will read the information from a text file. In this example we have used the
function twice. Then the syntax is
extrap mg 2005a 2010a 2
extrap mg 2011a 2020a 1

 63

These lines are read from the program (CHDATA.PRG or SHIFT.PRG) that first read the word
extrap that identifies which function to use. Then the other information is interpreted and
passed on to the extrap function as

extrap var start stop num1 (input from file)
bTF = extrap'f(var, start, stop, num1); (as stand-alone function)

where
bTF = return value, boolean scalar TRUE or FALSE
var = MG (variable to adjust)
start = 2005a (start date)
stop = 2010a (end date)
num1 = 2 (per cent growth rate to give the time series)
Box 5 Effect of using the extrap function two times

Here we see how the function extrap gives the
growth rate of a time series. For the variable MG
the outcome of the automatic extrapolation is
presented in the column named OLD_MG in the
table. After executing the extrap -function,
reading the following two lines
extrap mg 2005a 2010a 2
extrap mg 2011a 2020a 1
from a file, the result is presented in the column
named NEW_MG in the table.

First we set the growth rate to 2 per cent from
2005 to 2010 (including), and then we set the
growth rate to 1 percent from 2011 to 2020.

Year OLD_MG NEW_MG
2004 -8.6 -8.6
2005 0.5 2
2006 -1.9 2
2007 -2 2
2008 -2 2
2009 -2.1 2
2010 -2.1 2
2011 -2.1 1
2012 -2.2 1
2013 -2.2 1
2014 -2.3 1
2015 -2.3 1

The use of the extrap function as in Box 5 is visualized in Figure 52.

 64

Figure 52 The extrap function (per cent growth from previous year)

Appendix 1.6. The extrapa function
The purpose of the extrapa function is to extrapolate a time series with a given growth rate and
a constant added in every period. Here we show how to use the function when we will read the
information from a text file. If the data for the period we want to adjust does not exist it will be
created. Then the syntax is
extrapa MG 2005a 2012a 4 50

This line is read from the program (CHDATA.PRG or SHIFT.PRG) that first read the word extrapa
identifying which function to use. Then the other information is interpreted and passed on to the
addval function as

extrapa var start stop num1 num2; (input from file)
bTF = extrapa'f(var, start, stop, num1, num2); (as stand-alone function)

where
bTF = return value, boolean scalar TRUE or FALSE
var = MG (variable to adjust)
start = 2005a (start date)
stop = 2012a (end date)
num1 = 4 (per cent growth rate to give the time series)
num2 = 50 (constant to add to the time series in each period)

The EXTRAPA.PRG program first calculates the new value for the year 2005. This is done by
increasing the value of MG in 2004 by 4 per cent then adds 50, i.e. the new 2005 value (c.f. Box
6) is calculated as 1074.6*1.04+50 = 1167.6. Next this value is increased by 4 per cent and then
added 50 by so that we get 1167.6*1.04+50 = 1264.3.

 65

Box 6 Effect of using the extrapa function

Here we see how the function extrapa change
the time series. For the variable MG the outcome
of the automatic extrapolation is presented in the
column named OLD_MG in the table. After
executing the extrapa-function, reading the
following line
extrapa MG 2005a 2012a 4 50

from a file, the result is presented in the column
named NEW_MG in the table.

We set the growth rate to 4 per cent and add 50
from 2005 to 2012 (including). After 2012 MG
takes its previous values if any.

 OLD_MG NEW_MG
2004A 1074.6 1074.6
2005A 1079.6 1167.6
2006A 1058.7 1264.3
2007A 1037.9 1364.9
2008A 1017.0 1469.5
2009A 996.1 1578.2
2010A 975.3 1691.4
2011A 954.4 1809.0
2012A 933.6 1931.4
2013A 912.7 912.7
2014A 891.9 891.9
2015A 871 871

The use of the extrapa function as in Box 6 is visualized in Figure 53 by plotting the growth
rates. Note that the effect of adding 50 millions Malawian Kwacha alone (disregarding the given
growth rate of 4 per cent) increases MG by about 4.6 per cent in 2005, making the total increase
for that year about 8.6 per cent. Note also the sharp drop in the growth rate following the last year
of the period for which we edited the original time series. This is because the time series takes its
previous values in 2013.
Figure 53 The extrapa function

If we set num2 = 0 extrapa is identical to extrap, and if we set num1 = 0 the result will
be to add 50 to the previous years level.

 66

Appendix 1.7. The pcfdadj function
The purpose of the pcfdadj function is to change the growth rate with a specified percentage
point. For instance, as in this example, we may want to increase the growth rate of MG by 3.5
percentage points in the period 2006 to 2012. Apart from the first and the last year we are
adjusting, the growth rate is unchanged, but the levels after the latest period we change will be
different because we applies the old growth rates to a new level. Here we show how to use the
function when we will read the information from a text file. To change a growth rate the data for
the period we want to adjust must already exist. Then the syntax is
pcfdadj MG 2006a 2012a 3.5

This line is read from the program (CHDATA.PRG or SHIFT.PRG) that first read the word pcfdadj
that identifies which function to use. Then the other information is interpreted and passed on to
the pcfdadj function as

pcfdadj var start stop num1 (input from file)
bTF = pcfdadj'f(var, start, stop, num1); (as stand-alone function)

where
bTF = return value, boolean scalar TRUE or FALSE
var = MG (variable to adjust)
start = 2006a (start date)
stop = 2012a (end date)
num1 = 3.5 (percentage points to add to new series)
Box 7 Effect of using the pcfdadj function

Here we see how the function
pcfdadj change the growth
rate of a time series by a
specified percentage. For the
variable MG the outcome of the
automatic extrapolation is
presented in the column named
OLD_MG in the table (both for
levels and growth rates). After
executing the pcfdadj-
function, reading the following
line
pcfdadj MG 2005a 2012a 3.5

from a file, the result is
presented in the column named
NEW_MG in the table. We see
that the difference between the

new and old growth rates are 3.5 percentage points. After 2012
MG takes its old growth rate, but they are applied to new levels.

 Level Growth rate Difference
 OLD_MG NEW_MG OLD_MG NEW_MG
2005A 1079.6 1079.6 0.5 0.5 0
2006A 1058.7 1096.5 -1.9 1.6 3.5
2007A 1037.9 1113.3 -2 1.5 3.5
2008A 1017 1129.9 -2 1.5 3.5
2009A 996.1 1146.2 -2.1 1.4 3.5
2010A 975.3 1162.4 -2.1 1.4 3.5
2011A 954.4 1178.2 -2.1 1.4 3.5
2012A 933.6 1193.7 -2.2 1.3 3.5
2013A 912.7 1167 -2.2 -2.2 4.33E-13
2014A 891.9 1140.4 -2.3 -2.3 -4.11E-13
2015A 871 1113.7 -2.3 -2.3 4.33E-13

The use of the pcfdadj function as in Box 7 is visualized in Figure 54. The growth rate of the
new series is 3.5 percentage points above the old one.

 67

Figure 54 The pcfdadj function

 68

Appendix 2. Initialisation program

Appendix 2.1. Background
When we use TROLL we want to have access to information stored on the computer. For
instance we want to read data from databases and write data to databases, and we want to use our
own programs and macros to facilitate various tasks. As we have seen before (c.f. Figure 1) the
Malawi model system and the TROLL software are not at the same physical location. In addition
to this we also use some functions stored in a separate directory. This is illustrated in Figure 55.
We have organised the system as to have a main model directory (Malawi model system called
Malawimod) and a folder containing functions not specific for the Malawi model
(C:\TROLLRESOURCES\LIB\). This means there has to be some kind of link between the model
system (our files) and the TROLL software.
Figure 55 Components of the model system

Malawi model

system

trollResources

The TROLL

software

Access and search

Access and search

Admission to the Malawimod directory and sub-directories from the TROLL software is
organized through TROLL’s access and search commands4. For example, every time we want to
read from our main historical database we must issue the following statements:
access hist type formdata id C:\Malawimod\data\main.frm mode r;
search data hist;

Every time we want to use one of our own developed programs or macros, we must implement
access prog type disk id C:\Malawimod\program mode r;
search program prog;

The access and search commands are used in many files, also inside compiled programs. If we,
for some reason, want to change the path components i.e. the disc drive or any of the folder
names, it will involve quite a few files to change and programs to recompile. This is also a major

4 Generally, information management in TROLL depends critically on two lists kept during a TROLL
session: The ACCESS list and the SEARCH list. These lists determine the locations where TROLL will
store and retrieve data, as well as where TROLL will store and retrieve programs, models, and any other
information that it needs.

 69

source of errors, i.e. if we forget to change all the names, or to compile the source code after
changing. Of course there is a better way to handle this issue. The idea we have adopted is to
store the names of the path components in only one place.

Appendix 2.2. The initial settings
We have chosen to store the path components in TROLL’s memory. Every time we start TROLL
and chose the Working Directory according to where our model is, these initial settings are read
into memory. We will now elaborate on how this is done. When we start TROLL and chose our
Working Directory (C:\MALAWIMOD) a file called PROFILE.INP is executed automatically. The
automatic execution of PROFILE.INP is a functionality of TROLL to let the user initiate some
settings. This can be used for many things. In our system its sole role is to execute a program
called PROFILE.PRG that reads our path components into memory. We will not present the source
code for this file, PROFILE.SRC, but extract some of its content to explain how it is constructed (to
see its content open PROFILE.SRC at the Working Directory). In the following list we have taken
out 6 lines from the file for this purpose (the line numbers are only for the sake of reference and is
not part of the file).

1. _ds_ = hfdirsep(),
2. SystemDrive = "C:",
3. ProjectDir = "Malawimod",
4. DataDir = "data",
5. archive = SystemDrive||_ds_||ProjectDir||_ds_ ,
6. tsarchive = SystemDrive||_ds_||ProjectDir||_ds_||DataDir||_ds_,

In line 1 we use TROLL to get information from the host computer. We use the function
hfdirsep to get the character used by the host file system to separate directories. The return
value from this function is stored in memory in the variable “_ds_” (ds for directory separator).
The actual value returned on Windows computer is "\\". The reason for returning two
backslashes is that a single backslash has a special meaning in TROLL5. In line 2 we set the
drive, i.e. the letter defining the drive for the model system and the colon, i.e. “C:”.

In line 3 and 4 we have hard coded the name of our Working Directory and the sub-folder for
storing databases. This is the only place where these names are written. In fact, in this file is the
only place any path component names are written. In line 3 we read the name of our main
directory, or Working Directory, into TROLL’s memory, so that the physical name
“Malawimod” is stored in memory with the name “ProjectDir”. In line 4 we show how we
store the name of one of the sub-folders, the “data” folder as “DataDir”. In the lines 5 and 6 we
show how we use this information to assemble path-names. In line 5, the Working Directory is
assembled and stored as “archive”. The “||” is TROLL’s syntax for concatenating strings.
Lets study line 5 in detail:

We have the string “SystemDrive||_ds_||ProjectDir||_ds_”

Where
SystemDrive = “C:” (could be any letter)
ds = “\\”
ProjectDir = “MalawiMod”

5 In TROLL the backslash “\”is used as a continuation or escape character. If we print "c:\malawimod"
TROLL will return "c:malawimod" without a backslash. Two backslashes, like in "c:\\malawimod" will be
interpreted as "c:\malawimod". We can see more on this in Chapter 2.3.2 in the on-line manual.

 70

When we put this together we get the string “c:\\Malawimod\\” which is interpreted as
C:\MALAWIMOD\.

In line 6 we have added the “DataDir” variable as well. This means that the string
SystemDrive||_ds_||ProjectDir||_ds_||DataDir||_ds_

stored in memory as “tsarchive”, is assembled as the string "C:\\Malawimod\\data\\",
and interpreted as C:\MALAWIMOD\DATA\.

Also some other parameters are stored in memory. The default database “MAIN.FRM” is stored as
“defaults”, and the default model “malawimod” is stored as “model”. A list of these
memory variables, together with their explanations, is presented in Table 14. To see these settings
we can type the following commands in the Input window (after you have started TROLL):

listsave;
do prt.(systemdrive);

The first command is to print a list of what is in TROLL’s memory, or in the TROLL’s save data
table. The command prints a list to the Session window as in Feil! Ugyldig selvreferanse for
bokmerke.. If we want to see the
Figure 56 Initial setting for the Malawi model

value stored in these string scalars we can print their content by executing the second command.
This means that there exists variable in TROLL’s memory called “systemdrive” which is
equal to the string “C:”.

Now we must elaborate on how TROLL may retrieve these values from the memory database to
actually use them. For example the default model is set to be “malawimod” and the default
database is set be “MAIN.FRM”. When we run the command input start; it actually run commands

 71

to open the default database MAIN.FRM and to establish malawimod as the current working
model (by the command usemod malawimod;). Let us look at the relevant lines from the input file
START.INP.
1. access indata type formdata id &dat2inp DEFAULTDATABASE " " mode r;
2. usemod &dat2inp MODEL " " ;

The line numbers are for references only and are not part of the file. In line 1 we access our
default database as specified in the initial setting (PROFILE.SRC). In the access command what
follows the “id” option should be the physical address for the database. If we print the content of
the memory variable defaultdatabase we get
TROLL Command: do prt.(defaultdatabase);

DEFAULTDATABASE:
 String scalar: "C:\\Malawimod\\data\\main.frm"

TROLL Command:

which is the complete path for our default database. TROLL uses the program dat2inp to
expand the value of the string data object defaultdatabase into the access line syntax, so
TROLL interpret this line as:
access indata type formdata id C:\Malawimod\data\main.frm mode r;

which opens MAIN.FRM for reading.

In line 2 we tell TROLL which model we want to use. The expression is interpreted as:
usemod malawimod;

If the database MAIN.FRM or the model malawimod is not present when executing the START.INP
file, an error message will appear.

Table 14 gives the details on the variables stored in memory during a session using our model
system.
Table 14 Session variables stored in memory

Variable name Data type Value Comment
ALPHA_LEVEL Numeric 0.2 Parameter for estimating level in automatic

extrapolation

ARCHIVE String C:\\Malawimod\\ Working Directory
BETA_TREND Numeric 0.2 Parameter for estimating trend in automatic

extrapolation

COEFARCHIVE String C:\\Malawimod\\coef\\ Path for folder containing database with
estimated regression coefficients

COEFDATABASE String C:\\Malawimod\\coef\\regrcoef.f
rm

Path for database with estimated regression
coefficients

COEFDSET String regrcoef.frm Name of database with estimated regression
coefficients

COEFFICIENTDIR String coef Name of folder containing database with
estimated regression coefficients

COMMANDARCHIVE String C:\\Malawimod\\command\\ Path for folder containing input files
COMMANDSDIR String command Name of folder containing input files

 72

CONSTDATABASE String C:\\Malawimod\\coef\\coef.frm Path for database with coefficients
CONSTDSET String coef.frm Name of database with coefficients
DATADIR String data Name of folder containing time series

databases

DEFAULTDATABASE String C:\\Malawimod\\data\\main.frm Path for database with historical timeseries

DEFAULTTS String main.frm Name of database for historical timeseries

IOCOEFARCHIVE String C:\\Malawimod\\iocoef\\ Path for folder containing database with
input-output coefficients

IOCOEFDATABASE String C:\\Malawimod\\iocoef\\io.frm Path for database with input-output
coefficients

IOCOEFDSET String io-1999.DAT Name of database for input-output database

IOCOEFFICIENTDIR String iocoef Name of folder containing input-output
database

LIBRARYARCHIVE String C:\\trollResources\\lib\\ Path for external Troll programs
LIBRARYDIR String lib Name of sub-folder for external Troll

programs

LIBRARYMAINDIR String trollResources Name of main-folder for external Troll
programs

LOGFILE String C:\\Malawimod\\ Modsys.log Path for log-file
PROJECTDIR String Malawimod Name of Working Directory
MODEL String malawimod Name of default model
MODELARCHIVE String C:\\Malawimod\\model\\ Path for folder containing models
MODELDIR String model Name of model directory
PERIODS_TO_EXTRAP Numeric 20 Number of periods to extrapolate exogenous

variables (for automatic extrapolation)

PROGRAMARCHIVE String C:\\Malawimod\\program\\ Path for folder containing programs
PROGRAMSDIR String program Name of folder containing programs
PUBDIR String pubs Name of directory for tables
PUBSARCHIVE String C:\\Malawimod\\pubs\\ Path for folder containing tables
SYSTEMDRIVE String C: Name of system drive
TSARCHIVE String C:\\Malawimod\\data\\ Path for folder containing time series

databases

USER String NA Username
VARLISTFILE String C:\\Malawimod\\varlist.txt Path for variable list
DS String \\ Directory separator

Appendix 2.3. Changing the initial settings
In this chapter we will go through the process of changing the initial settings. There may be many
reasons for doing so. We may want to specify another default model or database, or we might
even want to alter the directory structure. Here we will illustrate changing the settings with an
example. Suppose we would like to do some testing with our model, and want to leave our
original model work unchanged. Suppose we make a copy of the whole model directory
MALAWIMOD and call it MALAWIMODTEST. To be able to use the new model directory, we must

 73

make it our Working Directory, and change the settings accordingly. Here is a recipe on how to
change the Working Directory from C:\MALAWIMOD to C:\MALAWIMODTEST:

1. Copy C:\MALAWIMOD to C:\MALAWIMODTEST (and all sub-folders using a file manager)
2. Start TROLL
3. Choose C:\MALAWIMODTEST\ as Working Directory
4. Open the file PROFILE.SRC in the TROLL-editor
5. Find the line >> ProjectDir = "Malawimod";
6. Change to >> ProjectDir = "Malawimodtest";
7. Click the “Compile with save” icon
8. Stop TROLL
9. Start TROLL
10. Choose C:\MALAWIMODTEST\ as Working Directory

Now we are ready to use our new “test directory”. To check that the change has been correctly
installed type the following in TROLL:

do prt.(ProjectDir);

The result should be:

PROJECTDIR:
 String scalar: "Malawimodtest"

TROLL Command:

The reasons for stopping and starting TROLL is to automatically execute the files reading the
new settings into TROLL’s memory. Alternatively this can be done manually. In Figure 57 we
Figure 57 Manually implementing new settings

compile the PROFILE.SRC file manually, then run the input file PROFILE.INP to manually
implement the changes.

 74

If we want to change other settings the process is similar. If we, for instance, have created a new
model that we want to use as a default model, we open the PROFILE.SRC file at the Working
Directory, find the appropriate line where the default model is specified and change it. We must
remember to recompile the source code.

Appendix 3. The trollResources directory
When we use the model system we use many functions and procedures to facilitate the various
tasks. Some of these are made especially for handling this model, and are stored at the
“C:\MALAWIMOD\PROGRAM” directory. In addition we have developed some other functions that
are not specific to this model, and consequently we have stored them elsewhere. This “library” is
stored in a directory named C:\TROLLRESOURCES. It has got two sub-directories, called “DOC”
and “LIB”. The purpose of the “DOC” folder is to collect various TROLL related publications that
might be useful. The “LIB” folder contains TROLL functions.

Appendix 4. Maintaining the variables list
We have created a simple program to print the explanation of the symbols in the model. The
program is called VARLIST.PRG and is demonstrated in Figure 58. When we execute the program
without any parameters, it gives a list of options. They are either to give the name of the variable
whose explanation we want to display, or “all” to print the whole list. In this example (c.f. Figure
58) we have typed “mg” and the program prints the explanation for this variable.
Figure 58 Using the variables list

The VARLIST.PRG program reads its information from a text file called VARLIST.TXT on the
working Directory. The varlist.txt file has the following format:

C Total consumption
CA Current account
CG Government consumption

 75

The left column with the symbol and the right column with the explanation are separated by a
tabulator character. When we introduce new variables in the model we must update this text file.

 76

Recent publications in the series Documents

 2004/9 L. Røgeberg, T. Skoglund and S. Todsen:
Report on the Project Quality Adjusted Input
Price Indicies for Collective Services in the
Norwegian National Accounts. Report from a
Project Co-financed by Eurostat.

2004/10 A-K. Mevik: Uncertainty in the Norwegian
Business Tendency Survey.

2004/11 A.G. Hustoft, J. Linnerud and H.V. Sæbø:
Quality and metadata in Statistics Norway.

2004/12 E. Engelien, R. Klæboe and Margrete Steinnes:
Neighbourhood sonoscapes. Context sensitive
noise impact mapping .

2004/13 P. V. Hansen: Regional electricity spot price
responses in Norway.

2004/14 A.G. Hustoft and J. Linnerud: Development of
a variables documentation system in Statistics
Norway. International Statistical Conference
"Investment in the future", Prague, Czech
Republic, 6-7 September 2004.

2004/15 J.L. Hass: Compilation of data on expenditure
in Environmental protection by businesses.
Report to the European Commission DG for
Environment.

2004/16 A. Raknerud, J. Rønningen og T. Skjerpen:
Documentation of the capital database. A
database with data for tagible fixed assets and
economic data at the firm level.

2004/17 B.K. Wold D. Roll-Hansen A. Mathiassen and
S. Opdahl: A Sustainable Household Survey
Based Poverty Monitoring System. A Poverty
Monitoring System Based upon Household
Survey Estimation of Total Consumption. A
Preliminary Paper Asking for Cooperation

2004/18 T. Karlsen, D. Quang Pham and T. Skjerpen:
Seasonal adjustment and smoothing of
manufacturing investments series from the
quartely Norwegian national accounts

2005/1 V. Skirbekk: The Impact of a Lower School
Leaving Age and a Later Retirement on the
Financing of the Norwegian Public Pension
System.

2005/2 H. Utne: The Population and Housing
Censushandbook 2001.

2005/3 J. L.Hass and R. Straumann: Environmental
Protection Expenditure: Methodological work
for the Oil and Gas Extraction Industry. Report
to Eurostat.

 2005/4 L. Hobbelstad Simpson: National Accounts
Supply and Use Tables (SUT) in Constant
Prices SNA-NT "SUT/CONSTANT"

2005/5 L. Hobbelstad Simpson: National Accounts
Supply and Use Tables (SUT) in Current
Prices. SNA-NT "SUT/STARTER"

2005/6 S. Todsen: SNA-NT User's Guide for Supply
and Use Tables in Current and Constant Prices.

2005/7 E. Ugreninov, T.M. Normann and
A. Andersen: Intermediate Quality Report EU-
SILC 2003 Statistics Norway.

2005/8 H.V. Sæbø: Metadata strategy in Statistics
Norway. Eurostat Metadata Working Group
Luxembourg, 6-7 June 2005.

2005/9 J.L. Hass, K.Ø. Sørensen , K. Erlandsen and T.
Smith: Norwegian Economic and Environment
Accounts (NOREEA). Project Report 2002.

2005/10 A. Benedictow and T. Harding: Modeling
Norwegian balances of financial capital.

2005/11 A.L. Mathiassen,J.B Musoke, P.Opio and
P. Schøning: Energy and Poverty A feasibility
study on statistics on access and use of energy
in Uganda.

2005/12 E. Vinju, R. Strauman, Ø. Skullerud, J. Hass
and B. K Frøyen: Statistics on pre-treatment of
waste. Pilot study - Norway 2004. Report to
Eurostat

2005/13 H. Skullerud, Ø. Skullerud and S. Homstvedt:
Pilot study: Treatment of Hazardous Waste.
Final report to Eurostat.

2005/14 H. Skiri, B. Strand, M. Talka and H. Brunborg:
Selected Documents on the modernisation of
the Civil Registration System in Albania Vol.
II.

2006/1 O. Andersen og M. Macura: Evaluation of
theproject "Modernisation of the Civil
Registration System in Albania"

2006/2 T. Åvistland: The problem with a risk premium
in a non-stochastic CGE model.

2006/3 Å Cappelen, R. Choudhury and T. Harding: A
small macroeconomic model for Malawi.

2006/4 J. Ramm og A. Sundvoll: Translating and
Testing the European Health Status Module in
Norway, 2005.

2006/5 A.G. Hustoft og J. Linnerud: Statistical
Metadata in Statistics Norway. 10s.

2006/6 H.V. Sæbø: Systematic Quality Work in

Official Statistics - Theory and Practice

2006/7 H. Skullerud: Methane emissions from

Norwegian landfills Revised calculations
for waste landfilled 1945-2004. 15s.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

