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You have to begin to lose your memory, if only in bits and
pieces, to realize that memory is what makes our lives. Life
without memory is no life at all... Our memory is our coher-
ence, our reason, our feeling, even our action. Without it, we
are nothing... (I can only wait for the final amnesia, the one
that can erase an entire life, as it did my mother’s...)

–Luis Buñuel

1 Introduction

We all make plans. Plans involve actions of our future selves. Putting off
vacuuming the house may please today’s you, but may not go down too well
with tomorrow’s. Indeed, come tomorrow, you might well look for an excuse to
pass the chore on to some future you. But as we know, procrastination, even of
seemingly menial tasks, can snowball and result in significant welfare losses. 1

This paper reverses the proposition, however. What if your failure to commit
to yesterday’s plan may actually produced higher utility over the longer term?
If plans for future consumption offset anticipations of present value, revising
a plan may increase utility all told. In particular, you may find it better to
consume less today than you had planned for or anticipated yesterday. In
this scenario the well-known self-control problem of procrastination becomes
a self-delusion problem. And the question is not how to improve your self-
commitment record, but to find an environment which helps you revise your
plans.

My starting point is the much used Samuelsons discounted utility model
(Samuelson 1937). As this is a discounted sum of instantaneous utility func-
tions, it involves a premise of total amnesia, as if we plan a sequence of sen-
sations with no value to us except in the heat of the moment. In medical
parlance, the economic agent invoked by Samuelson’s DU model is suffering
from Korsakoff’s syndrome. 2 The paper generalizes Samuelson’s DU model to
allow for utility from memories and anticipations. Two types of agents are con-
sidered. The first has preferences as implied by the standard Samuelson utility
model (0-korsakoffs); the other has a rudimentary memory (1-korsakoffs). A 1-
korsakoff remembers a consumption plan the time period it is made, and may
have (positive) anticipations regarding the next period’s consumption. But
she has no recollection of past consumption or yesterday’s plan. A 1-korsakoff
can be viewed as the first step towards an agent with full recollection. The
question addressed here, is whether this rudimentary form of memory affects
intertemporal choice. We find that it does. 1-korsakoffs are very different from

1 See O’Donoghue and Rabin (1999) for a discussion and extensive literature review.
2 Korsakoffs syndrome: Neurological disorder marked by severe amnesia despite clear perception and full
consciousness, resulting from chronic alcoholism, head injury, brain illness, or thiamin deficiency. Persons
with the syndrome typically cannot remember events in the recent or even immediate past; some retain
memories only a few seconds. Longer periods –up to 20 years– may also be forgotten. (Encyclopdia Brit-
tanica)
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the 0-korsakoffs. They are, as a rule, time inconsistent, and repeated revisions
may cut a path to higher long-run utility.

This paper connects with the wider literature on intertemporal choice and time
inconsistencies initiated by Strotz (1956) and Pollak (1968). There are essen-
tially two ways to explain time inconsistency in economic decision processes.
Either preferences change over time, or agents are myopic (or hyperopic). Time
inconsistencies arise in the former case when agents do not take sufficient ac-
count of these preference changes (Peleg and Yaari 1973, Becker and Mulligan
1995, Liabson 2001). The latter case is largely about hyperbolic discounting,
generating present-biased preferences (Lowenstein and Prelec 1992, Laibson
1997, Dasgupta and Maskin 2005).

Both ways of resolving dynamic inconsistencies raise one important question.
How can an agent believe in plans from which her future self will deviate?
This question can be addressed in a number of ways. One could look for ways
to ensure commitment (Hammond 1976, Liabson 1997). According to Asheim
(1997), most commitment schemes change the original decision problem. He
introduces revision proof strategies as a refinement of subgame-perfectness. If
an agent becomes aware of her self-control problems, she can limit her decision
problem by only considering plans that she will actually follow. This contri-
bution ties in with earlier game theoretic approaches (Goldman 1979 1980,
Ferreira 1995), for which the search for possible and credible equilibria plays
a vital role. We could also explain wrong beliefs about actions of future selves
by assuming that agents vary in sophistication. They may, for instance, realize
they are present-biased but misjudge its magnitude, or in the case of endoge-
nous preferences the magnitude of future preference changes may escape them
(Peleg and Yaari 1973, Becker and Mulligan 1995, Laibson 2001, O’Donoghue
and Rabin 1999 2001 2008). This paper ties in with the latter strand of the
literature. The agents considered here, i.e. the 0-korsakoffs and 1-korsakoffs,
may not take the preferences of their future selves into account. Indeed, they
may not even consider the eventuality of their future selves deviating from
earlier plans.

If we tend to revise plans, the question is not just how we can believe in them
initially. It is also about what happens in the aftermath of the revision. Gul
and Pesendorfer (2007) consider the desire for commitment, and Noor (2007)
shows that the implications of future temptations are mixed. Agents who are
aware of their self-control problems may not take advantage of commitment
opportunities. The possibility of indulging temptations in the future is in it-
self a source of temptation. Halevy (2008) studies diminishing impatience and
argues that positive time preference is deeply connected to certainty. Con-
sumption today is certain, planned consumption at a future time is uncertain.
This paper’s analysis is in some sense transversal to these contributions. Its
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main theme is intertemporal choice under full certainty. Learning plays no role
in the models presented here. The approach contrasts moreover with recent
contributions on intertemporal choice which take an evolutionary approach
(Rayo and Becker 2007a, 2007b, Netzer 2009).

The importance of anticipation is not new to economic literature. W. S. Jevons
(1888) and H. S. Jevons (1905) explained farsighted behavior as a consequence
of utility of anticipation of future consumption. A more recent contribution,
but in a similar vein, is Elster and Loewenstein (1992) who consider utility
from memory and anticipation. An axiomatic treatment of the role of antici-
patory feelings in the case of uncertainty is given in the seminal article of A.
Caplin and J. Leahy (2001). They show that time inconsistencies arise natu-
rally in the presence of anticipation. When it comes to intertemporal choice
under certainty, Loewenstein (1987) considers a formal model which assumes
that a person’s instantaneous utility is equal to the utility from consumption
plus some function of discounted utility of consumption in future periods. 3

Loewenstein points out that DU anomalies may occur in such a model. In par-
ticular, it offers a novel explanation as to why people discount different goods
at different rates. More precisely, anticipation creates a varying downward
bias on discount rates depending on the nature of the good in question. 4 This
paper’s contribution to the study of anticipation and intertemporal choice is
twofold. First, it extends the Samuelson DU model so as to facilitate the com-
parison of agents with differing mnemonic capacities. Second, it considers a
simple, but critical distinction where anticipation of consumption is connected
to plans of consumption, not future consumption per se.

The paper is organized as follows. In section 2 we define k-korsakoff prefer-
ences in a T-period consumption scenario of one continuous good. Section 3
considers consumption of one indivisible good that is to be consumed over
a given number of time periods. The discussion draws heavily on the agent
types, näıfs and sophisticates, introduced by O’Donoghue and Rabin (1999).
Whereas naivete tends to yield poor long-run outcomes, the results presented

3 Loewenstein (1987) presents a formal model where a person’s instantaneous utility function takes the form
u(cτ ; cτ+1, cτ+2, . . . ) where the partial derivatives with respect to cτ ′ is positive for all τ ′ > τ . Loewenstein
proposes the following functional form: u(cτ ; cτ+1, cτ+2, . . . ) = v(cτ ) + α(γv(cτ+1) + γ2v(cτ ) + . . . ) for
some γ < 1.
4 Few empirical studies have considered the extent to which anticipations of future consumption affect
intertemporal choice. Loewenstein(1987) reports from a study of undergraduates. They were asked to state
the ’most they would pay now’ for a kiss from their favorite movie star. They could receive the kiss im-
mediately or later (four possible delays). The students went for the ’three day delayed’ kiss. Evidence of
self-delusion arising in intertemporal choice, though potentially abundant, is hard to come by empirically.
The seminal contributions of Tversky and Kahnemann (1981), Kahnemann and Snell (1992), and Thaler
(1999) offer much insight into the complexity of human choice. Their empirical findings highlight the limited
nature of agents’ ability for self-prediction; decisions also tend to depend on framing. As revisions may be
easier to rationalize in situations where new information and new frames of reference are readily at hand,
self-delusion may thrive exactly in situations, where it may be hard to unravel. It may also prove hard to
identify self-delusion by introspection. This does not rule out that self-delusion is easily observed in others:
’The moment you expose a common man’s self-delusion, you take away his happiness’ (Ibsen 1884).
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here extend the potential downside of sophistication. Sophisticates have less
opportunity to revise repeatedly, and as a result may to get lower long-run
utility in comparison with näıfs. In section 4 we discuss a model, the life span
uncertainty model, which provides an example of benign self-delusion among
sophisticates. The model is an abstraction of the following scenario. Upon re-
tirement we decide to spend a year in Rio. We have to decide which year to
go. We know we will not live forever, but do not know how many years we
have left. As a year passes we observe our health, and want to go before it
is too late. In a stylized version of this consumption problem, we show that
sophisticates can achieve the same long-run utility as näıfs. In other words,
a little uncertainty regarding the number of time periods facilitates utility
increasing revisions even for sophisticates. Section 5 concludes.

2 The DU model with memory and anticipation

In this section we extend Samuelsons discounted utility model include utility
of memories of past consumption and anticipations of planned consumption.

Definition 2.1 Any consumption vector (c1, . . . , cT ) give rise to a vector of
memories (0, m1, . . . ,mT ), where mi is a function of past consumption, that
is mi = mi(c<i), where c<i = (c1, . . . , ci−1) for all i > 1.

Anticipation utility is linked to expected consumption, thus in the context of
intertemporal choice, plans of future consumption. We can formalize anticipa-
tions like this:

Definition 2.2 Any consumption plan represented by a planned consumption
vector (c1,plan, . . . , cn,plan) 5 give rise to a vector of anticipations (a1, . . . , aT )
where ai is a function of future planned consumption, that is ai = ai(c>i,plan)
where c>i,plan = (ci+1,plan, . . . , cT,plan) for all i > 0.

The anticipations of Definition 2.2 can be viewed as first order anticipations,
that is anticipations about consumption. It can be argued that humans do
also have anticipations about memories (ai(mj)), memories of anticipations
(mj(ai)) and anticipations of anticipations (ai (aj)) et cetera. These can be
viewed as second or higher order memories and anticipations. Here, we consider
only first order memories and anticipations.

A straightforward generalization of a Samuelson’s DU model with anticipation
and recollections is:

5 The reason for the subscript ’plan’ is to make the distinction between consumption and planned con-
sumption explicit.
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U =
T∑

i=1

δi−1Ui(ci,mi(c<i), a(c>i,plan)). (2.1)

The utility function ( 2.1) places no limitations on utility from anticipation
or recollection. In the following we define preference types that differ in the
extent to which they receive utility from memory and anticipation.

Let a person consider an T-period consumption scenario. We will assume that
the preferences of all agents can be represented by a DU utility function, but
may differ according to their (korsakoff) type. A k-korsakoff has a consumption
horizon of k periods into the future and a recollection of the last k periods
of consumption including the present time period. This is formalized in the
following definition:

Definition 2.3 An agent is k-korsakoff, k a positive integer, if the following
the following two conditions hold:
i. mi(c1, . . . , ci−1) = mi(cmax(1,i−k−1), . . . , ci−1)
ii. ai(ci+1,plan, . . . , cT,plan) = ai(ci+1,plan, . . . , cmin(T,i+k+1),plan)

A 0-korsakoff is the economic agent implied by the standard DU function(DU0).
A 1-korsakoff is the first step with respect to memories and anticipations. She
not only enjoys present consumption as the 0-korsakoff, but also looks forward
to the next period’s planned consumption. In other words, if she plans to eat
one hamburger every day, she cherish the thought of tomorrow’s burger, while
she eats this days hamburger. The next step up, the 2-korsakoff, remembers
last periods consumption, enjoys this periods consumption and look forward
to the planned consumption in two next time periods. This paper largely con-
cerns 0-korsakoffs and 1-korsakoffs. 6

Definition 2.4 (Discounted utility functions for k-korsakoffs) The intertem-
poral utility function of a k-korsakoff is given by

DUk =
T∑

i=1

δi−1u(mi(cmax(1,i−k−1), . . . , ci−1), ci, ai(ci+1,plan, . . . , cmin(T,i+k+1),plan)

(2.2)

where δ < 1 and u,mi and ai are continuously differentiable function with posi-
tive first order partial derivatives and negative second order partial derivatives
with respect to all arguments.

6 Example A.1 in the appendix is of a 3-korsakoff.
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Definition 2.4 states that the time invariant utility function u satisfies stan-
dard assumption of nonsatiation and diminishing marginal utility of consump-
tion. It also states that the same preference structure applies to consumption,
memories and anticipations. Note that one time invariant utility function u,
that enters a discounted sum, signifies that a 1-korsakoff takes account of (dis-
counted) future anticipations, that is, has preferences for future anticipations.

We use the following definition of time consistent preferences:

Definition 2.5 Let cplan = (c1,plan, . . . , cT,plan) and c?
plan = (c?

1,plan, . . . , c
?
T,plan)

be two consumption vectors that agree up to time j, that is ci,plan = c?
i,plan

for i ≤ j. A DU function is said to represent time consistent preferences,
if Ui(ci,mi(c<,i), ai(c> i, plan)) > Ui(c

?
i ,mi(c

?
<,i), ai(c

?
>i,plan)) for some i ≤ j

imply Ui(ci,mi(c<i), ai(c>i,plan)) > Ui(c
?
i ,mi(c

?
<i), ai(c

?
>i,plan)) for all i ≤ j.

This definition is just a formalized way to say the following. Say you compare
two consumption plans, A and B, for a week starting Monday. They agree until
Thursday. You find A better than B on Monday. If you have time consistent
preferences, you will find A better than B on Tuesday, and Wednesday as well.
Preferences that are not time consistent are said to be time inconsistent.

The following theorem states that 1-korsakoffs are time inconsistent.

Theorem 2.1 A 1-korsakoff agent with preferences given by

DU1 =
∑T

i=1 δi−1u(ci, ai(ci+1,plan) with T ≥ 3, is time inconsistent if there
exist at least one consumption level c, such that maxDU1(c1, . . . , cT ) given
c1 + · · ·+ cT = c, is an interior solution, (c?

1, . . . , c
?
T ) (c?

i 6= 0 for all i). 7

A proof of the theorem is given in the Appendix. The dynamic inconsistency
for a 1-korsakoff arises because she picks a plan that involves more consump-
tion in the next period than she actually ends up consuming. 8 Compared to
a 0-korsakoff, who is always time consistent, a 1-korsakoff skews consumption
towards the future. The time inconsistencies that arise for a 1-korsakoff are
structurally similar to those implied by hyperbolic discounting. The following
example illustrates this point.

Example 2.4 An intertemporal utility function for a 1-korsakoff

7 Not all DU1 functions have interior solutions. If | du
da

da
dci+1

| > | du
dci
| for all nonnegative pairs (ci, ci+1)

then (ci, ci+1) = (0, c) gives the highest utility for all consumption levels.
8 Time inconsistent rankings are not merely linked to wrong assessments to next period consumption.
Example A.2 in the appendix shows ranking reversals arise also in cases where there are no immediate
consumption.
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Let u(ci, a(ci+1)) = c
1
2
i + a(ci+1) = c

1
2
i + kc

1
2
i+1, where k is a (positive) constant.

This gives the following n-period DU1-utility function:

DU1(cplan) =
∑n

i=1 δi−1u(ci, ai(ci+1,plan) = c
1
2
1,plan + (1 + k)

∑T
i=2 δi−1c

1
2
i,plan

The last sum is δ(1 + k) times the DU1 at time two (provided) c1 = c1,plan in
period 1. This relation allows us to make two observations. In this easy case,
where utility from anticipation is proportional to utility from consumption,
the utility function is structurally equal to an intertemporal utility function
with hyperbolic discounting. Present-biased preferences tend to be modeled
by an intertemporal utility function of the following type: U t(ut, . . . , uT ) =
δtut + β

∑T
τ=t+1 δτuτ .

9 In our model (1 + k) plays the role of β. Present-
biased preferences and potentially myopic behavior arise when β < 1. In con-
trast, since we assume k > 0, are 1-korsakoffs potentially future-biased, and
hyperopic. 10

A valuation of anticipation of next period consumption implies that more
weight is given to future consumption, compared to absence of valued antici-
pation. The effect of the discount factor goes the other way: less weight is put
on future consumption compared to present consumption. If k+1 = δ−1, then
anticipation completely balances the effect of discounting for consumption in
time period 2, but k has no effect on the weight put on consumption in time
period 3 compared to consumption in time period 4.

From a welfare perspective there may be the severe implications of time incon-
sistent behavior. O’Donoghue and Rabin (1999) show that welfare losses may
be associated both with procrastination as well as preproperation. An analysis
of long-run consequences requires some notion of long-run utility of consump-
tion which allows us to compare different paths of consumption either ex ante
or ex post. In the following analysis we rely on the same long-run utility def-
inition as O’Donoghue and Rabin (1999). Long-run utility from consumption
is here defined as the sum of utility in all time periods without discounting.
This may be viewed as an ex ante utility where all future and past selves are
considered equal and this utility is assigned to a time period 0. 11 This utility
concept captures the possibility of achieving higher long-run utility by having
wrong expectations of future behavior.

Example 2.5 Long-run utility for a 1-korsakoff

9 See O’Donoghue and Rabin (2001), for a discussion and an extensive literature review.
10 If we allow for negative anticipations, that is k < 0, then this 1-korsakoff model corresponds to a standard
hyperbolic DU model with β = 1 + k (k > −1).
11 See Goldman (1979) for a brief discussion of different approaches regarding long-run utility
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Assume that a 1-korsakoff plans to eat a cake in four days. Her preferences are
given by the intertemporal utility function of Example 2.4. We assume that
k = δ = 1

2
. In other words, the 1-korsakoff has preferences for anticipations,

but at the same time does discount the future. The utility maximizing plan
at Day 1 is given in the first row of Table 2.1. The next row gives the best
consumption plan at Day 2, given that the 1-korsakoff ate as much cake as
planned the first day. Likewise for row 3, given that she consumed on Day 1
and Day 2 did consume according to the best intertemporal plan at Day 1 and
Day 2 respectively.

Table 2.1 Consumption plans for 1-korsakoff eating a cake in four days. Con-
sumption is given in percent.

Consumption Day 1 Day 2 Day 3 Day 4

Best plan Day 1 58 32 8 2

Best plan Day 2 58 25 14 3

Best plan Day 3 58 25 11 6

We see that best plan at Day 1, does involve higher consumption on Day 2,
than actually is chosen on Day 2, and likewise for Day 2 and Day 3. Table 2.2
gives the corresponding utility levels for each time period. Some of the utility
of 10.4 on the first day, is anticipation utility (2.8). The following day con-
sumption is not 32 but 25. The anticipation utility associated to consumption
of 25 the following day is 2.5. In other words the Day 1 1-korsakoff enjoys
an excess utility of 2.8 − 2.5 = 0.3 due to the difference between actual and
planned consumption in time period 2.

Table 2.2 Utility associated with consumption and consumption plans for a
1-korsakoff intending to eat cake in four days.

Consumption Day 1 Day 2 Day 3 Day 4 Long-run utility

Best plan Day 1 10.4 7.1 3.6 1.5 22.5

Best plan Day 2 10.4 6.9 5.5 1.9 24.7

Best plan Day 3 10.4 6.9 4.6 2.5 24.4

We see also that long-run utility is up from 22.5 to 24.7. The revision at
Day 3, does not however give higher long-run utility. This illustrates a po-
tential downside of delayed consumption that affects the last day. The Day 4
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1-korsakoff has no cake-eating future. She cannot enjoy consumption antici-
pation, and she cannot, unlike her previous selves, postpone consumption. In
other words, she is at the mercy of the Day 3 1-korsakoff, who can save, and
in this case indeed does save, more cake to the last day than is optimal from a
long-run perspective. In this numerical example the effect of the second-to-last
day revision is small, but can be considerable for small δ’s and large k’s.

3 One indivisible good and degrees of sophistication

The dynamic inconsistencies of the 1-korsakoff, notwithstanding her pursuit of
higher long-run utility, raise important questions. How can an economic agent
believe in a consumption plan and not follow it? Under what circumstances
would she actually choose the best plan available to her future selves? Our
discussion in this paragraph draws on the framework developed in O’Donoghue
and Rabin (1999).

We start out by a motivating example:

Example 3.1 A 1-korsakoff going to Rio.

Sheila has won a trip to Rio and can choose either to go this year, next year
or the year after. We assume her preferences are given by a DU1-model with
anticipation that is U =

∑
i δ

i−1Ui(ci,plan, ai(ci+1,plan)). We also assume for
simplicity’s sake Ui = ci + ai(ci+1,plan). At the beginning of year 1, she faces
three possible consumption plans with the corresponding utilities:

U(c, 0, 0) = c

U(0, c, 0) = a(c) + δc

U(0, 0, c) = δa(c) + δ2c,

If c > a(c) + δc, then going the first year is preferred. If not, that is, if c <
a(c) + δc, postponing the Rio trip to the second year is the better alternative.
Since δ < 1, going in the second year is always better than waiting to the
third year. Moreover, if c < a(c) + δc, and she does not go the first year, she
may postpone yet again, and go the third and last year. She may do this even
if going the first year is strictly better (c > δa(c) + δ2c).

This example spurs the following question. What if she does the above com-
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putation and realizes that comparing year one with year two is probably ir-
relevant because she has decided against going in the second year. To address
this question we introduce two types of agent, näıfs and sophisticates.

The definitions of näıfs and sophisticates are given in terms of strategies. A
strategy is an assignment of an action for every contingency. In the case of
consumption of one indivisible good, this is either consume (Y) or not consume
(N).

Definition 3.1 A perception-perfect strategy for näıfs at time t is a strategy,
sn = (sn

1 , s
n
2 , . . . , s

n
T ) that satisfies sn

t′ = Y if U t(t′) = max(U t(τ)) for all τ ≥ t.

Definition 3.2 A perception-perfect strategy for sophisticates is a strategy,
ss = (ss

1, s
s
2, . . . , s

s
T ) that satisfies for all t < T : ss

t = Y if and only if Ut(t) ≥
Ut(τ

′) for τ ′ > t such that τ ′ = minτ>t{τ |ss
τ = Y }.

Sophisticates only compare the utility of consuming today with later consump-
tion times, where consumption is planned if reached. In other words, they do
not consider irrelevant alternatives. Näıfs, on the other hand, compare against
all later consumption dates whether consumption then is likely or not. Added
to this, in an T period setting the construction of the game requires that
sn

T = Y . Consumption must occur in the final period, if not before. 12

In Example 3.1, if Sheila is a näıf, she will choose to postpone travelling until
the third year if c < a(c) + δc. What she fails to realize, though, is that while
year two is better for Year-1 Sheila, it is not the best for Year-2 Sheila. Year-2
Sheila will pass on the sandy beaches of Rio to Year-3 Sheila. On the other
hand, if Sheila is a sophisticate, she will know that Year-2 Sheila won’t be
going to Rio. So she will only compare going the first year against going the
third year. If c > δa(c) + δ2c, she will go the first year. The results of this
example are special cases of the two following theorems.

Theorem 3.1 Let C be one indivisible good that is to be consumed in one of
the T time periods. Consider a 1-korsakoff agent with utility function DU1 =∑T

i δi−1u(ci, ai(ci+1,plan)). If she is a näıf, she will be time consistent if and
only if u(C, 0) ≥ u(0, a(C)) + δu(C, 0).

Theorem 3.2 Let C be one indivisible good that is to be consumed in one of

12 These definitions are the same as given in O’Donoghue and Rabin (1999). However, the implementation
in T-period games differ for our sophisticates. An O’Donoghue-Rabin sophisticate does not discount as
assumed under the Samuelson DU model. She is present-biased in the sense of only differentiating between
now or later, but not between two later periods. Later is just later. In this analysis we do use the standard
discounting inferred by the DU model, and in such a case (see Theorem 3.2), is a sophisticate time
consistent. In other words, a perception-perfect strategy for sophisticates has more bite in the case of
standard discounting.
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the T time periods. Consider a 1-korsakoff agent with utility function DU1 =∑T
i δi−1u(ci, ai(ci+1,plan)). If she is a sophisticate, she will be time consistent.

In sum these theorems tell us that although sophisticates may have time in-
consistent preferences, do make time consistent plans when they take into
account the preferences of their future selves. The case of a 1-korsakoff näıf
and one indivisible good allows for an interesting contingency. She can be
oblivious to potential future revisions and still be time consistent. This case
relies on a weak preference for anticipations compared to the discount rate. On
the other hand, if anticipations are not outweighed by the discount rate, näıfs
may harvest higher long-run utility from repeated delays of consumption. The
following theorem states this formally.

Theorem 3.3 Let C be one indivisible good that is to be consumed in one of
the T time periods. Consider a 1-korsakoff agent with utility function DU1 =∑T

i δi−1u(ci, ai(ci+1,plan). Let a = u(0, a(C)) and c = u(C, 0). If she is a näıf,
her long-run utility will be:

i. Ulong-run = c if a ≤ (1− δ)c.

ii. Ulong-run = c + (T − 1)a if a > (1− δ)c.

Sophisticates, on the other hand, due to their sophistication are prevented
from having repeated anticipations of next period consumption:

Theorem 3.4 Let C be one indivisible good, that is to be consumed in one of
the T time periods.Consider a 1-korsakoff agent with utility function DU1 =∑T

i δi−1u(ci, ai(ci+1,plan)). Let a = u(0, a(C)) and c = u(C, 0). If she is a
sophisticate, her long-run utility will be

i. Ulong-run = c if T is odd.

ii. Ulong-run = a + c if a > (1− δ)c and T is even.

According to condition a > (1− δ)c, the utility of anticipation outweighs the
discounted utility of next period consumption. If it doesn’t, consuming in the
first period gives the highest utility. The even and odd condition is driven by
the backward induction which follows from a perception-perfect strategy for
sophisticates. 13

13 This dependence of the parity of time periods is also present in O’Donoghue and Rabin (1999), in the
case of time consistent agents, TCs. However, in their Example 1 p. 109, they consider only the case of an
even number of time periods (T = 4).
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Theorems 3.3 and 3.4 are, in sum, a bit discouraging. The 1-korsakoff näıfs
can revise consumption plans and enjoy benign self-delusion. They never re-
alize their next period self will make the same calculations as they are doing
today. Sophisticates are prevented from utility increasing revisions. At a more
technical level, a sophisticate’s perception-perfect strategy relies on backward
induction, and this prevents unforeseen revisions. In the next section we will
briefly discuss an extension to the model that facilitates repeated revision and
benign self-delusion also for sophisticates.

4 The life span uncertainty model

In the previous section sophisticates obtained lower long-run utility than näıfs.
In this section we consider an extension that facilitates repeated revisions for
sophisticates as well as näıfs. The following scenario illustrates the extension.
Upon retirement we decide to spend a year in Rio. We know we will not live
forever, and need to decide when to go, now or later. As each year passes we
observe our health (ht) and know that the probability of enjoying good health
for the whole of the following year (pt) is increasing in ht. Agents do not know
pt, but form subjective beliefs q(ht) of the probability of a healthy year ahead.

We formalize this with the following definition.

Definition 4.1 (Life Span Uncertainty Game (LSU game)) An LSU game is
a one player game, where the player at every node has to choose between two
actions, Y or N (consume or not consume an indivisible good). At any given
node t, there is a positive probability (1 − pt) that this node is the last. The
probability of continuation pt = pt(ht) is an increasing function in ht. The
player observes ht, and assigns a subjective probability q(ht)for a next time
period. The player knows that the true probability pt is a function of ht and
that ht is decreasing over time.

Definition 4.2 (näıf in LSU game) A perception-perfect decision rule for
näıfs in the LSU game is a rule that assign sn

t′ = Y if and only if EU t(t′) =
max(EU t(τ)) for τ > t, where EU t(t′) = q(ht)U

t(t′) and q(ht) is the subjective
probability for reaching t′ given ht.

In discussing the LSU game we assume that both 1-korsakoff näıfs and sophis-
ticates are risk neutral, and maximize expected utility given their observation
of the health parameter ht and subjective probabilities q(ht) for the next time
periods. 14

14 We do not assume that agents assign lower q’s for more distant time periods.
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A perception-perfect strategy for sophisticates in this case, requires a refine-
ment of Definition 3.2. A refinement may be achieved in the following way:

Let a = u(0, a(C)) and c = u(C, 0). If a + q(ht, t)c > c, then it is better to go
the next year. The sophisticate realizes that this reasoning is conditional on
going the next year. Moreover, if a+q(ht+1)c > c the next-year sophisticate will
not go. In this model there is a critical health level hc such that a+q(hc)c = c.
When hc is reached, there is no point in postponing consumption. In other
words, if the sophisticate believes that ht+1 ≤ hc, she may enjoy anticipation at
year t. As ht is decreasing, an ht close to hc may be read as a high probability
of ht+1 ≤ hc. We formalize this into the following termination criterion:

Definition 4.3 (ε-criterion)

If the player observes that ht − hc < ε , then q(ht+1 < hc) = 1, else q(ht+1 <
hc) = 0.

This termination criterion can be used to formulate perception-perfect strate-
gies for 1-korsakoff sophisticates in the LSU game.

Definition 4.4 (ε-sophisticate in a LSU game)

A perception-perfect decision rule for an ε-sophisticate in an LSU game is a
rule that assigns

1. (ss
t , s

s
t+1) = (N, Y ) if q(ht)(a + c) > c and ht − hc < ε (q(ht+1 < hc) = 1 by

the ε-criterion).

2. (ss
t , s

s
t+1) = (Y, Y ) if q(ht)(a + c) ≤ c or ht − hc ≥ ε (q(ht+1 < hc) = 0 by

the ε-criterion).

for every t.

Theorem 4.1 1-korsakoff näıfs and 1-korsakoff ε-sophisticates have the same
expected long-run utility in the LSU game provided ht − hc < ε for all t. The
expected long-run utility is in this case: E(U) = a

∑∞
i=1(π

t−1
i=0pk)qt.

The theorem tells us that the LSU game allows for utility increasing revisions
for sophisticates as well as for näıfs. In this case they would both also achieve
the same long-run utility. The conditions for this to happen are restrictive.
The health parameter needs to remain low but high enough all the same to
exceed hc for all time periods. Sophisticates as well as näıfs end up consuming
nothing. Their long-run utility is pure anticipation.

15



5 Conclusion

Under the assumption that people value present anticipations of future con-
sumption, this paper considers long-run utility benefits from repeated revi-
sions. As yesterday’s anticipation resides safely in the past, you can consume
less today than you planned yesterday. This paper explores an extension to
Samuelson’s discounted utility model that allows agents to remember their
plans and value future anticipation. These agents, called 1-korsakoffs, are very
different from the economic agent inferred by the standard Samuelson’s dis-
counted utility model (0-korsakoffs). 1-korsakoffs may achieve higher long-run
utility from repeated revisions of consumption plans.

When we assume that agents vary with respect to sophistication, we get struc-
turally similar results as O’Donoghue and Rabin (1999). A näıf fails to realize
that her future self may deviate from her original plan. Repeated revisions pro-
vide an opportunity for higher long-run utility. A sophisticate, on the other
hand, doesn’t have as many opportunities to engage in repeated revisions, as
she considers only consumption plans that are likely to be followed. At a tech-
nical level, backward induction in consumption scenarios with a fixed number
of time periods prevents a sophisticate from anticipating higher consumption
levels of future selves than actually occur.

In sum, the results presented here illustrate the difficulties of uniting sophis-
tication and self-delusion even in the pursuit of a higher long-run utility. This
somewhat discouraging insight may be sweetened by a conjecture. Benign self-
delusion may be viable for sophisticates in consumption scenarios with a higher
degree of complexity and uncertainty than the stylized consumption scenar-
ios considered here. The final model extension where uncertainty regarding
the number of time periods facilitates repeated revisions also for sophisticated
agents can be read as modest evidence in favor of this conjecture.

Appendix

Proof of Theorem 2.1

It is enough to establish time inconsistency in the three-period case. By as-
sumption there exist a total consumption level c? , such that the highest
utility level as perceived at time period 1, gives a plan of non zero consump-
tion (c?

1,plan, c
?
2,plan, c

?
3,plan) in all time periods (c?

i,plan 6= 0 for i ∈ {1, 2, 3}).
We will write c?

i for c?
i,plan, for notational convenience. We have the following

expression for the maximal utility of C at time 1:

U
(1)
? = u(c?

1, a(c?
2)) + δu(c?

2, a(c?
3)) + δ2u(c?

3, 0)
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Consider the following small change of the optimal consumption bundle, ε less
in time 2 and ε more in time 3:

U (1)
ε = u(c?

1, a(c?
2 − ε)) + δu(c?

2 − ε, a(c?
3 + ε)) + δ2u(c?

3 + 2, 0)

By construction is U
(1)
? > U (1)

ε , since u(c?
1, a(c?

2)) > u(c?
1, a(c?

2 − ε)) by nonsa-
tiation of a() and u(), it follows that

δu(c?
2 − ε, a(c?

3 + ε)) + δ2u(c?
3 + 2, 0)− δu(c?

2, a(c?
3))− δ2u(c?

3, 0) > 0

This inequality is δU (2)
ε − δU

(2)
? > 0, where δU (2)

ε and δU
(2)
? are the utility

of the consumption plans as perceived at time 2. In other words (c?
2,plan −

ε, c?
3,plan + ε) gives higher utility at time 2 than (c?

2,plan, c
?
3,plan), and we have

a reversal of rankings of the two consumption plans (c?
1,plan, c?

2,plan, c
?
3,plan) and

(c?
1,plan, c?

2,plan − ε, c?
3,plan + ε).

2

Proof of Theorem 3.1

A perception-perfect strategy for näıfs at time t is a strategy, sn = (sn
1 , s

n
2 , . . . , s

n
T )

that satisfies sn
t′ = Y if U t(t′) = max(U t(τ)) for τ > t or t′ > minτ>t{τ |U t(τ) =

max(U t(τ ′)|τ ′ ≥ t)}. That is, she will delay consumption if and only if there
exist a τ , τ > t, that gives higher utility. Since she is a 1-korsakoff, and the
instantaneous utility function is equal for all periods, at any given time t, the
present utility of time periods t + 2, . . . T is strictly less than U t(t) (Note that
U t+1+i(t) < max{U t(t), U t+1(t)} due to δ < 1. In other words, consumption
at time t, sn

t = Y , if and only if U t(t) = u(C, 0) ≥ u(0, a(C)) + δu(C, 0).

Proof of Theorem 3.2

A perception-perfect strategy for sophisticates, is one where ss = (ss
1, s

s
2, . . . , s

s
T )

that satisfies for all t < T : ss
t = Y if and only if Ut(t) ≥ Ut(τ

′) for τ ′ > t such
that τ ′ = minτ>t(τ |ss

τ = Y ). That is she will only choose action Y if the present
utility of Y gives a higher utility than the present utility of the next (planned)
Y . Since she is a 1-korsakoff, and the instantaneous utility function is equal for
all periods, at any given time t, the present utility of time periods t + 2, . . . T
is strictly less than U t(t) (Note that U t+1+i(t) < max{U t(t), U t+1(t)} due to
δ < 1). In other words, consumption at time t, sn

t = Y , if and only if one the
two conditions hold:

1.U t(t) = u(C, 0) ≥ u(0, a(C)) + δu(C, 0) and sn
t+1 = Y

2. sn
t+1 = N .
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As the action at time t is uniquely determined by the time invariant condition
u(C, 0) ≥ u(0, a(C)) + δu(C, 0) and the action at time t + 1, the one unique
perception-perfect strategy will be determined by backward induction. In other
words, she will be time consistent.

2

Proof of Theorem 3.3

In the first time period she compares c versus a + δc. If a + δc ≤ c, sn
1 = Y ,

(since all later consumption times will be discounted (c > δi(a + δc) for all
i > 0). sn = (sn

1 , s
n
2 , . . . , s

n
T )=(Y, Y . . . , Y ). This gives a long-run utility of c.

If a + δc > c, then sn
1 = N , since consuming the next period is better. Then

sn = (sn
1 , s

n
2 , . . . , s

n
T ) = (N, Y, Y . . . , Y ) defines a perception-perfect strategy.

The same reasoning also applies to a näıf who has reached time period t.
That is sn

t = (sn
t , sn

2 , . . . , s
n
T ) = (N, Y, Y, . . . , Y ) defines a perception-perfect

strategy at time t. The long-run utility is c + (T − 1)a, since at every time
period consumption in the next time period gives the highest utility except
when the final period T is reached.

2

Proof of Theorem 3.4

Using backward induction we get ss
T−1 = Y if and only if c ≥ a+δc. That is a ≤

(1− δ)c. In this case (by induction again)ss = (ss
1, s

s
2, . . . , s

s
T ) = (Y, Y, . . . , Y )

is a perception-perfect strategy. This gives long-run utility c. If a < (1 − δ)c
then ss

T−1 = N . In this casess
T−2 must be equal to Y , since c > δa+ δ2c (Note:

a < (1 − δ)c implies δa + δ2 < δ(1 − δ)c + δ2c = δc < c (only next period
anticipation for 1-korsakoffs, and ss

T−1 = N implies no planned consumption
in time period (T − 1)). By induction we get that ss = (ss

1, s
s
2, . . . , s

s
T ) =

(Y, N, Y, . . . , N, Y ) if T is odd, and ss = (ss
1, s

s
2, . . . , s

s
T ) = (N, Y,N, . . . , N, Y )

if N is even. By construction these strategies are perception-perfect strategies
for the odd and even cases respectively. The long-run utility associated with
these strategies are c if T odd, and a + c if T even.

2

Proof of Theorem 4.1

If ht − hc < ε for all t, the perception-perfect decision rule for ε-sophisticates
and näıfs agrees at every achieved decision node (time interval). Furthermore
their beliefs regarding future behavior are the same in that both believe in next
period consumption. The long-run utility is given by q1a + p1q2a + p2p1q3a +
· · · = a

∑∞
i=1(π

t−1
i=0pk)qt.
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2

Example A.1

Going to Rio, the case of a 3-korsakoff.

Sheila has won a trip to Rio. She has three options. Go this year, next year
or the year after. We assume for expository purposes that her preferences
are given by an additive DU3-model with memory and anticipation, Ui =
ci + mi(c<i) + ai(c>i, plan), with a slight notational abuse measuring all three

in utility directly.

Sheila has three possible consumption plans (1, 0, 0), (0, 1, 0), and (0, 0, 1). 15

Their corresponding utility evaluated at the start of year one is:

U(1, 0, 0) = 1 + δm1 + δ2m2

U(0, 1, 0) = a1 + δ + δ2m1

U(0, 0, 1) = a2 + δa1 + δ2,

where m1 = m2(c<2) = m2((1, 0, 0)), the superscript tells us that its memories
of consumption in the previous period and m2 = m3(c<3) = m3((1, 0, 0)), the
superscript tells us that is memories of consumption two periods back. We
adopt the same notation for anticipation; that is a1 is anticipation of next
period anticipation, and a2 is anticipation of consumption two periods later.

If she does not travel the first year, she will compare, a1 + δ to 1 + δm1 the
second year. Assume that a1 + δ > 1 + δm1, then she will rate traveling the
second year as better than the first year, provided that m1 > m2, i.e. she values
first order memories higher than second order. She will be time inconsistent
if a1 + δ + δ2m1 > a2 + δa1 + δ2. In other words, she is time inconsistent if
a1 > max(1 − δ + δm1, (a2 − δ + (1 − δ2)m1)/(1 − δ)) and m1 > m2. In this
case time inconsistency relies on high valuation of next period consumption
compared to anticipation during later periods and next period memories. The
question of time inconsistency under full recollection is shown to be nontrivial
by this example, and depends on the relative strength of utility of anticipation
and memories as well as the discount factor.

Example A.2

15 The consumption utility of the Rio trip is normalized to 1
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Existence of ranking reversals in the case of no immediate consumption

Let DU1 =
∑T

i δi−1u(ci, ai(ci+1, plan) be a DU1-function, and assume there

exist at least one consumption level, c, such that maxDU1 given c, has an
interior solution. We will prove the existence of two consumptions plans C,
and D, with no immediate consumption, where C and D agree up to time
period 2; C is ranked strictly better than D in time period 1; and D is ranked
strictly better than C in time period 2.

Assume that (c?
2, c

?
3) is an interior solution of the maxDU1

∑2
i δi−1u(ci, ai(ci+1, plan)

given c2 + c3 = c.

We consider a 5 period consumption scenario. Let consumption plan A be
(0, 0, c?

2, c
?
3, 0) and consumption plan B be (0, 0, 0, c?

2, c
?
3). Table A.1 gives the

two consumption plans:

Table A.1

Consumption plan (Time period) 1 2 3 4 5

A 0 0 c?
2 c?

3 0

B 0 0 0 c?
2 c?

3

At time period 1, A is strictly preferred to B, since δ < 1. (Note that at time
period 1 UB = δUA.)

Next we will construct two consumption plans, C and D, which give the same
utility level evaluated at time 1. First let consumption plan C be given by
(0, c?

2 + e, c?
3− e, 0) (e < c?

3). Then let consumption plan D be given by (0, f4 +
f5, c

?
2 + e − f4, c

?
3 + e − f5) where f5 ≤ c?

3 and f4 ≤ c?
2. The following table

summarizes these consumption plans.

Consumption plan (Time period) 1 2 3 4 5

C 0 0 c?
2 + e c?

3 − e 0

D 0 0 f4 + f5 c?
2 + e− f4 c?

3 − e− f5

For every e there exist f4 and f5 such that D is ranked higher than C, at time
1. One way to achieve this is to choose f4 and f5 in such a way that D is equal
to the consumption plan A (0, c?

2, c
?
3, 0), that is f5 = c?

3 + e and f4 + f5 = c?
2

(f4 = c?
2 − c?

3 + e).
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Now if (f4, f5) = (0, 0) C is better than D. And if (f4, f5) = (c?
2− c?

3 +e, c?
3 +e)

D is better than C. By continuity there of U there exist a lowest 1 > s > 0
such that (f4, f5) = (s(c?

2 − c?
3 + e), s(c?

3 + e)) gives D and C ranked equal.

In the following we choose f4 and f5 such that C and D are ranked equal at
time period 1.

We have the following expression for the utility of C at time 1, U
(1)
C :

U
(1)
C = δu(0, a(c?

2 + e)) + δ2u(c?
2 + e, a(c?

3 − e)) + δ3u(c?
3 − e, 0)

U
(1)
D = δu(0, a(f4 + f5)) + δ2u(f4 + f5, a(c?

2 + e− f4)) + δ3u(c?
2 + e− f4, a(c?

3 −
e− f5)) + δ4u(c?

3 − e− f5, 0)

By construction U
(1)
C = U

(1)
D . By taking the difference between these two ex-

pressions and writing the terms δ on the one side, and higher orders δ on the
other we arrive at the following equality:

u(0, a(c?
3+e))−u(0, a(f4+f5))δu(f4+f5, a(c?

2+e−f4))+δ2u(c?
2+e−f4, a(c?

3−
e− f5)) + δ3u(c?

3 − e− f5, 0)− δu(c?
3 + e, a(c?

4 − e))− δ2u(c?
4 − e, 0)

Note that u(0, a(c?
2+e))−u(0, a(f4+f5)) > 0 since a is a monotonly increasing

function and c?
2 +e > f4 +f5 (recall by construction maxf4 +f5 = c?

2 < c?
2 +e).

The right hand side of the above equality divided by δ is the difference U
(2)
D −

U
(2)
C , that is, the difference between the utility of the consumption plan as

perceived at time 2.

By continuity of U , D is strictly preferred to C in a neighborhood N of (f4, f5)
in R2. Recall that (f4, f5) = (s(c?

2 − c?
3 + e), s(c?

3 + e)),where s was the lowest

such that U
(1)
C = U

(1)
D . In particular, by construction any smaller s′ < s, imply

U
(1)
C > U

(1)
D . Since the neighborhood N contains a smaller s′ = s − ε, this s′

gives an (f ′4, f
′
5) such that U

(1)
C > U

(1)
D and U

(2)
C < U

(2)
D . In other words, C is

strictly preferred at time 1 and D is strictly preferred at time 2.

2
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