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1. Introduction 

Total household consumption has so far been measured inaccurately. Mostly, studies have used total 

purchase expenditure or transformations of it to estimate latent total consumption in a household. It is 

unfortunately because household consumption levels play an important role in studies of permanent 

income and life-cycle theories, consumption inequality, and tax evasion. Kay, Keen, and Morris 

(1984) suggested a way of utilizing consumption patterns to derive a more precise estimation method 

of household consumption. This article improves upon that method by allowing many expenditure and 

non-expenditure indicators. In addition, by employing a latent variable method we avoid having to rely 

on identical purchasing probabilities. 

 

Consumption is a topic much studied in economics so the paucity of attempts at improving the 

accuracy in estimation methods of latent total consumption is surprising. The interest in consumption, 

however, is most natural since the consumption of goods is a main source of utility. Moreover, 

consumption patterns reflect preferences and material standards of living. Dispersion of consumption 

opportunities is a core element in the distribution of welfare. Moreover, consumption desires lead to 

aggregate demand, a core determinant of capacity utilization in macro. Thus, the magnitude of 

household consumption is an interesting variable in many areas of economics. While consumption is 

unobservable (latent), expenditure is not. It is intuitively appealing to use total purchase expenditure as 

a measure of total consumption. 

 

The problem, however, with using purchase expenditure as an indicator of consumption is the wedge 

between purchase and consumption. Food is purchased, stored, and not in all consumed immediately. 

A car may be bought at one occasion but it still allows extraction of transportation services for a long 

period. Holiday trips are purchased infrequently but its enjoyment may exceed the time of the 

purchase. Stock build up, seasonality, and durable goods pose well-known problems for estimating 

latent total consumption. However, despite the measurement errors, total purchase expenditure in a 

household is an unbiased estimator for latent total consumption in a household as long as the errors are 

zero-mean random variables. Statistical agencies and other students of consumption often use this 

average of manifest purchase expenditure as an estimator of latent consumption. This article shows 

how to use a weighted sum of both expenditure and non-expenditure indicators of latent consumption 

in order to minimize the variance that stems from measurement errors. The idea is simple. Dentist 

expenditures, medical care, and other big item outlays are done infrequently, and have 

correspondingly large error variances. Thus, an observer should put less emphasis on such 
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expenditures when she estimates latent consumption in a household. In stead, expenditures that come 

with smaller error variances should be given more weight. We demonstrate how to weigh the different 

expenditures before summing them. In addition, we introduce and show how to incorporate 

informative non-expenditure indicators that may shed light on the magnitude of latent total 

consumption in a household. 

 

Consumption is an old topic, so studies of it abound. A review of the literature shall not be attempted. 

Nevertheless, let us make a few remarks. An important literature on consumption, and with it the start 

of the resolve of consumption puzzles, originated with Modigliani and Brumberg (1954) and Friedman 

(1957). They put forward novel lifecycle and permanent-income theories of consumption. One major 

achievement was that the insights allowed investigators to distinguish between types of consumption 

and exploit the distinction in understanding how households consume. One lesson, which this article 

utilizes, was that households incorporate their view of their economic position when they consume. 

The profession utilized the results to refine and sophisticate the existing theory of consumption, and it 

is now an impressive body of knowledge. Today, there are many branches of microeconomics engaged 

in understanding consumption.  

 

Even if many theoretical studies have probed deep, there remain some primary empirical problems. 

Before we go on to discuss one problem, let us state that the economic profession does have a 

substantial amount of knowledge about consumption. For example, there has been a massive effort 

into topics such as the response of consumption to income, see e.g. Campbell and Mankiw (1991) and 

Baxter and Jermann (1999) for recent contributions. There has been a mapping of the relation between 

consumption and savings and business cycles; see Caballero (1990), Attanasio and Browning (1995), 

and Baxter (1996). We have acquired insights of demand patterns and Engel relations, see e.g. 

Blundell et al. (1993). Measurement errors and simultaneity issues in parameter estimation are well 

understood. However, the profession still sees contributions to measurement error problems, see e.g. a 

recent study by Lewbel (1996). Yet there are some features of consumption estimation that are 

insufficiently covered. One of these is how to estimate the magnitude of total consumption in an 

individual household. Let us identify some contributions to solving the problem. 

 

An elegant attempt at singling out and estimating latent total consumption in a household came with 

Kay, Keen, and Morris (1984). They presented a procedure for estimating a household's underlying 

level of total consumption from observed expenditures. Although an attractive way of measuring 

consumption, the method does rely on the assumption of common purchasing probabilities among 
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consumers over goods and does not allow for the utilization of non-expenditure indicators of 

consumption. Interestingly, Saunders (1980) had earlier explored measures of total consumption. 

However, he was interested including estimates of collective consumption into a combination of 

private and collective consumption, not in the precise estimation of private consumption itself. Few 

attempts at modeling latent total consumption have been made since Kay et al. In the empirical 

literature, inequality inspections have required estimates of latent total consumption in a household. 

Examples are Cutler and Katz (1992), Pendakur (1998), Theil and Moss (1999), and Sabelhaus and 

Groen (2000). A common theme in these studies is the reliance on total purchase expenditure. This 

article seeks to start filling the gap between current practice and potential in estimating household 

consumption levels. 

 

The model we formulate contains total household consumption as a latent variable that generates 

manifestations in the form of expenditures. Moreover, since there is a relation between observable 

income measures and latent total consumption, we include income as a manifest indicator of latent 

consumption. There is a large literature on latent variable models, and consequently much is known 

about latent structures. A review cannot be offered here. Let it suffice to point to the early 

contributions by Goldberger (1972a,b) and Jöreskog (1978) and to the recent semiparametric estimator 

Lewbel (1998) develops on the basis of a latent variable model. An overview of the current status and 

an introduction to the use of latent variables can be found in Wansbeek and Meijer (2000). This article 

takes the apparatus to consumption data, develops a weighted minimum variance estimator for latent 

total household consumption, and demonstrates empirically the potential gains in acquiring accurate 

estimates of individual consumption levels. 

 

The novelty of our approach compared to Kay et al. lies in the inclusion of non-expenditure indicators 

and the general latent variable approach that avoids using common purchasing probabilities. This 

makes the model open to many expansions and sophistications and applicable to current consumer 

expenditure data generated by the different sampling techniques employed by statistical agencies 

around the world. 

 

An empirical pattern emerges from the data. Employing our weighted estimation method on 

Norwegian Consumer Expenditure Survey (CES) data from 1993, we find that some expenditure 

categories are accurate and some are inaccurate indicators of latent total consumption. In our final 

estimate of latent total consumption in a household we multiply expenditures in the categories 

Clothing and Footwear, Furniture and Household Equipment, and Other Goods and Services by 1.25, 
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1.43, and 1.35, respectively. They are accurate indicators of latent consumption and the expenditures 

are thus given large weights. The categories Medical Care, Transportation, and Recreation and 

Education are inaccurate indicators of latent total household consumption and are given small weights. 

Their multiplicative factors are 0.29, 0.28, and 0.47, respectively. Again, the inaccuracy originates in 

large relative variances of measurement errors. Moreover, we use additional income measures to 

estimate consumption, and we control for demographic composition of the household by adding 

correctives for number of children and number of adults. As a result, we find that the weighted 

estimator reduces variance compared to the un-weighted estimator with 44 per cent. 

 

Let us say in advance where we are headed. The next section presents the model of consumption. 

Section 3 derives the optimum weights. In section 4 we give an empirical example, in which we 

present estimates on each weight and compare total purchase expenditures with estimates of latent 

total consumption for four fictitious households. Section 5 discusses improvement potential and 

guidelines for future research. Section 6 concludes. In the appendix, we include a description of the 

Norwegian Consumer Expenditure (CES) data we use; describe issues concerning identification, 

estimation, and the optimization technique; explain the derivation of optimum weights in detail; and 

present the estimates of error variances. 

2. The Model of Latent Consumption 

Let us describe the consumption model. A household's consumption of goods is related to the 

household's latent total consumption and demographic attributes of the household. The idea is that a 

household first considers the problem of computing an optimum division of time between work and 

leisure time, then how much to spend and save of the income. Given the resulting total consumption, 

preferences, and household characteristics the household solves for the latent consumption, ηi, of 

goods of type i. The consumption of good i is a function of latent total consumption and household 

composition. The relationship may be written as: 

(1) ( ), , . . , , ,= = ∈ ∈∑ih i h h ih h

i

f z s t i I h Hη ξ η ξ  

in which f is an unknown function, latent total consumption of household h is denoted ξh and zh is the 

composition of household h. I is the set of all good categories and H is the set of all households. The 

relation given in equation (1) is an Engel relation, much studied in microeconomics. Further, 

consumption of good i in household h, ηih, is latent and separated from the manifest purchase 
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expenditure on good i by household h, yih, by a measurement error uih since expenditures are reported 

in accounting books only kept for a short while or through interviews. We write: 

(2) , , .= + ∈ ∈
ih ih ih
y u i I h Hη  

Combining the relationships in equation (1) and (2) we obtain: 

(3) ( ), , , .= + ∈ ∈
ih i h h ih
y f z u i I h Hξ  

Equation (3) relates the observable purchase expenditure on good i by household h, yih, to 

unobservable total consumption, ξh, and household characteristics, zh in the unknown form f. Let us for 

the time being suppress the shape of the relation in order to pause for a moment on the simple 

consumer relations. The model implies that the household makes purchasing decisions after having 

contemplated the total consumption of the period in question, after having decided how much to 

consume of certain goods, and after having considered the relevant household characteristics such as 

number of adults and number of children. If this is so, realized purchase decisions are observable 

manifestations ex post of the ex ante consumption decisions, and thus of latent total consumption. 

Notice that this article shall revolve around how to use the observable purchase decisions as 

consumption indicators and how to deal with the measurement error uih introduced in equation (2). It is 

the presence of such errors that poses problems of estimating latent consumption. But our idea is that 

the corresponding error variance varies over categories and that systematic variation can be exploited. 

Ultimately, our exploitation shall lead to estimation improvement. 

 

We may use equation (3) and go from the observable left side to make inferences about the 

unobservable part of the right side. Conventionally, statistical agencies around the world make that 

inference by summing on both sides, obtaining for a household h that 

( ),= = +∑ ∑ ∑ih h i h h ihi i i
y y f z uξ , in which the first equation sign represents the definition of total 

purchase expenditure and the summing is over goods i. Thus, when error terms have conditional 

expectation zero, total expenditure is an unbiased estimator for latent total consumption, defined by 

( ), = =∑ ∑i h h ih hi i
f zξ η ξ . When Engel relations are linear

1
, we obtain a simple relation between 

total purchase expenditure and latent consumption, household composition, and errors: 

( )= + + = + +∑ ∑ ∑ ∑ ∑h i h i h ih h i h i ihi i i i i
y z u z uβ ξ γ ξ β γ , in which the parameters βi sum to unity 

and the parameter vectors γi each sum to zero. Again, the conditional expectation of total purchase 

                                                      

1 An affine structure is obtained by including a constant term in the vector of household characteristics, z. 
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expenditure, yh, is equal to total consumption, ξh. In other words, the un-weighted sum of a 

household's purchase expenditure is an unbiased estimator of the latent total consumption in that 

household. Although unbiased, we shall see below that the problem with using total expenditures as an 

estimator for latent total consumption lies in the uniform treatment of different error terms. Different 

error variances invite the use of different weights since uniform treatment entails estimator 

inefficiency. Let us first formulate our linear stochastic model consisting of equations (4)-(6). 

(4) , , ,= + + ∈ ∈
ih i h i h ih
y z u i I h Hβ ξ γ  

(5) ( ), 0, , ,= ∈ ∈
ih h h

E u z i I h Hξ  

and 

(6) ( ) 2
, , , when , ; 0 otherwise.= = = =ih jk h k h k iE u u z z i j h kξ ξ σ  

In the model (4)-(6), purchase expenditures, yi's, and household characteristics contained in the z's are 

observable. The vector of household characteristics zh may include composition and demographic 

variables as well as a unit entry that will include a corresponding constant term in one column of the γ 

matrix. We may solve for latent total household expenditure, and obtain ( )= − +
h ih i h i ih i

y z uξ γ β β . 

Thus, if the true latent consumption structure is linear, we can observe a proxy for it by observing 

expenditures. Thus modeled, expenditures mirror consumption except for the interference from the 

error term. If we had known the Engel coefficients, β, and the demographic coefficients, γ, we could 

compute an estimate of latent total consumption. But even if latent total expenditure ξh is 

unobservable, it is possible to estimate the corresponding coefficient, β, by using the covariance 

structure in manifest variables; see the Appendix for details on identification and estimation in latent 

variable models. Assume for now that we know the coefficients. Then, one obvious indicator of latent 

consumption consists of simply using the observable variables. Let us write this indicator: 

(7) ˆ(7) , , .
−

= ∈ ∈
i ih i h

h

i

y z
i I h H

γ
ξ

β
 

Equation (7) indicates that there exist at least as many indicators of latent total consumption as there 

are categories of goods. Each indicator is conditionally unbiased. Combinations of such indicators 

extend the list of possible indicators. One such combination is the uniformly weighted sum of 

indicators from equation (7). It can be written simply as a mean, ( ) ( )1 −∑ ih i h ii
n y zγ β , in which n 
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is the number of good categories in the set I and it is a demographics-adjusted version of the total 

purchase expenditure ∑ ihi
y . Its conditional variance is 

( ) ( )( ) ( ) ( )( ) ( )
2 2

var 1 , var 1 , 1− = =∑ ∑ ∑ih i h i h h ih i h h i ii i i
n y z z n u z nγ β ξ β ξ σ β , given our error 

distribution assumptions. This variance is not the conditional minimum variance. By assigning larger 

weights to some indicators we may reduce the variance yet retain unbiasedness. Moreover, by 

including non-expenditure indicators we may further reduce variance. 

3. The estimator of latent consumption 

Consider first a combined, weighted estimator using only expenditures as indicators of latent total 

consumption. This estimator may be written as: 

(8) ˆ ˆ , , , . . 1,
−

= = = + ∈ ∈ =∑ ∑ ∑ ∑
i ih i h ih

h i h i h i i

i i i ii i

y z u
i I h H s t

γ
ξ ω ξ ω ξ ω ω

β β
 

in which weights are denoted by ω. We see that given equations (4)-(6) the weighted estimator in 

equation (8) will be unbiased regardless of what weights we use, as long as they sum to unity. The 

conditional variance of this estimator, assuming equations (4)-(6), is given by: 

(9) ( ) 2 2 2ˆvar , var , , , .
 

= = ∈ ∈ 
 
∑ ∑ih

h h h i h h i i i

i ii

u
z z i I h Hξ ξ ω ξ ω σ β

β
 

Our program is to choose weights that minimize the conditional variance given in equation (9). The 

program can be written compactly as: 

(10) 2 2 2
min . . 1, .= ∈∑ ∑i i i i

i i

s t i I
ω

ω σ β ω  

The program in equation (10) yields the solution given in equation (11). The derivation is tedious, but 

straightforward, and the result is: 

(11) 
2 2

2 2
, .= ∈

∑
i i

i

i i

i

i I
β σ

ω
β σ

 

The variance-minimizing weights given in equation (11) are intuitively appealing. Given an Engel 

coefficient, βi, of a good category i the weight will be larger the smaller the conditional variance of the 

associated error term, 2

i
σ . The intuition is that the more frequently, or the larger the magnitude of, the 

discrepancy between the purchase expenditure and the consumption of a good i, the larger the 



10 

conditional error variance of good i, thus the smaller the information content of the purchase 

expenditure on that good category as an indicator of latent total consumption. Smaller weights ensure 

that the good category i will be given less emphasis when estimating latent total consumption. 

Moreover, given a conditional variance, 2

i
σ , the larger the Engel coefficient βi the larger the weight. 

The intuition is that a good may have a large associated conditional variance in its measurement error, 

in absolute money terms, simply because it accounts for much of total consumption and thus total 

purchase expenditure. It then follows that if the Engel coefficient is large we expect a large conditional 

variance because the household undertake many purchases and/or large purchases of this item. For two 

goods, with identical magnitudes on associated conditional variances, the good with the larger Engel 

coefficient will be given a larger weight because the conditional variance is relatively smaller. 

 

The resulting weights in equation (11) resemble the weights derived by Kay, Keen, and Morris (1984, 

p. 175) in their equation (14) and include much the same interpretation. One benefit of the model 

suggested in this article is that it does not rely on identical purchase probabilities for all households. In 

stead, in the latent model suggested above we focus attention on the relationship between purchase 

expenditure and consumption, regardless of purchasing frequency. Potentially, then, our model is 

relevant not only to consumer expenditure systems that rely on accounting books kept in short periods, 

but also to systems that rely on other ways of observing purchases. However, the main benefit of the 

model suggested here is that it allows for non-expenditure indicators of latent total household 

consumption such as income and wealth. Equation (4) may easily and plausibly be generalized to a 

relationship between variables important in the household decision of how much to consume and 

latent total consumption. This opens for a vast array of non-expenditure indicators that may be found 

in such variables as income and wealth. We extend the basic model by writing the relationship 

between non-expenditure indicators and latent consumption as: 

(12) , , ,= + + ∈ ∈
rh r h r h rh
x z u r R h Hβ ξ γ  

in which the non-expenditure indicator is denoted by x, the subscript r refers to indicator type, and r 

belongs to a set R of non-expenditure indicators. Notice how the indicators in equation (12) may imply 

complicated covariance structures. Aasness (1990) and Aasness, Biørn, and Skjerpen (1993) have 

argued that we may classify consumption into categories between which it is plausible to argue that 

the stochastic structure contains zero covariance terms between error terms of different categories. It is 

less plausible to argue that indicators of the type in equation (12) have a non-zero covariance structure 

between indicators. This follows from the idea that the error terms urh may include common elements 

among non-expenditure indicators. We extend the stochastic model consisting of equations (4)-(6) to 
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include equations (12)-(15), specifying the zero covariance between error terms of expenditure 

indicators and error terms of non-expenditure indicators and allowing for non-zero covariance between 

the non-expenditure indicators: 

(13) ( ), 0, , ,= ∈ ∈
rh h h

E u z r R h Hξ  

and 

(14) ( ) 2
, , , , , ; , ; , , ; , ,= = = ∈ = ≠ = ∈rh qk h k h k r rqE u u z z r q h k r q R r q h k r q Rξ ξ σ σ  

in addition to the assumption that conditional expectations of the product of error terms is equal to 

zero when household h is different from household k. In other words, we assume that error terms 

associated with non-expenditure indicators for household h do not covary with error terms of 

household k, a plausible assumption when households perform purchases and consumption decisions 

individually. Moreover, we assume that the conditional expectations of the products of error terms is 

equal to zero when one indicator belongs to the set I and the other to the set R, as written in equation 

(15): 

(15) ( ), , , 0 when , ; , .= ∈ ∈ ∈
rh ik h k h k

E u u z z r R i I h k Hξ ξ  

Similar to the indicator in equation (7), we may solve for latent consumption in equation (12) and 

obtain an explicit formulation of the non-expenditure indicator: 

(16) ˆ , , .
−

= ∈ ∈
r rh r h

h

r

x z
r R h H

γ
ξ

β
 

The estimator in equation (16) is conditionally unbiased when errors are conditionally zero-mean since 

the estimator is a sum of latent consumption and an error term with conditional expectation equal to 

zero, +
h rh r

uξ β . The conditional variance of the non-expenditure estimator in equation (16) is given 

by 2 2

r r
σ β , but combinations of non-expenditure estimators have conditional variances including 

covariance terms. 

 

We may utilize both expenditure indicators of equation (7) type and non-expenditure indicators of 

equation (16) type when estimating latent total consumption in a household. The program is to 

combine them in a conditional variance minimizing way. Since each individual estimator is 

conditionally unbiased, the resulting combination is also conditionally unbiased. In equation (17) we 
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present an optimum estimator for latent total consumption in a household that employs both 

expenditure and non-expenditure indicators: 

(17) 

ˆ ˆ ˆ ,

. . 1, , , .

= + = + +

+ = ∈ ∈ ∈

∑ ∑ ∑ ∑

∑ ∑

i r ih rh

h i h r h h i r

i r i ri r

i r

i r

u u

s t i I r R h H

ξ ω ξ ω ξ ξ ω ω
β β

ω ω

 

The conditional variance will be minimized when we choose appropriate weights. Let us inspect, 

without loss of generality, the program for the special, but illuminating, case when we have only two 

non-expenditure indicators. We do this in order to keep the algebra tractable and transparent. The 

model may easily be expanded to include any number of indicators. To derive first order conditions, 

we form the Lagrangian and write it in equation (18), after having derived the conditional variance 

from equation (17). 

(18) 
2 2

2 2

2 2

, ,

2 1 , ; , .
 

= + + + − − ∈ ∈ 
 

∑ ∑ ∑ ∑i rsr

i r r q i r

i r q i r qi r r q

L i I r q R
σ σσ

ω ω ω ω λ ω ω
β β β β

 

The Lagrangian becomes more involved as more covariance terms emerge together with more non-

expenditure indicators or with different modeling assumptions concerning the non-zero covariance 

between error terms of expenditure indicators. Inspecting equation (18) we realize that using a 

combination of several indicators, even inaccurate ones, improves upon using only one indicator, e.g. 

the most accurate indicator. To see why, note that taking variances of weighted sums entails squaring 

the weights so that the variance of a weighted sum of indicators with large variances may have a 

smaller variance than the single, small-variance indicator alone.
2
 Put differently, using a large-variance 

indicator improves upon not using it since it some contains information, however little. This points to 

the problem of choosing the number of indicators, to which we return below. The first order conditions 

of the program in equation (18) are: 

(19) 
2

2 0, ,
∂

= − = ∈
∂

i

i

i i

L
i I

σ
ω λ

ω β
 

(20) 
2

2
2 2 0, ; , ,

∂
= + − = ≠ ∈

∂

rqr

r q

r r r q

L
r q r q R

σσ
ω ω λ

ω β β β
 

                                                      

2 To see this, consider the case of two indicators: an accurate y1 and an inaccurate y2. Although the variance of the single 

indicator y1 is 
2 2

1 1
σ β  and that of the weighted combination is 

2 2 2 2 2 2

1 1 1 1 1 1
+ω σ β ω σ β , the latter can be made smaller than 

the former by appropriate choices of weights. 
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(21) 1, , ,+ = ∈ ∈∑ ∑i r

i r

i I r Rω ω  

in which the subscripts r and q refer to the two (in this case) non-expenditure indicators. In the 

appendix we outline the derivation of the optimum weights given in equations (22)-(24). 

(22) (

1
2 2 2 22 2

2 2 2 2 2

2
, ; ; , ,

( )

−

 − +
= + ∈ ≠ ∈  − 

∑
q r rq r q r qi i

i

ii i r q rq

i I r q r q R
σ β σ β β σ ββ β

ω
σ σ σ σ σ

 

(23) 

( ) ( )

1

2 2 2 2 2 22

2 22
2 2 2 2

2
, ; ; , ,

−

 − − +
 = + ∈ ≠ ∈
 − − 

∑
q r rq r q q r rq r qi

r

i i
r q rq r q rq

i I r q r q R
σ β σ β β σ β σ σ ββ

ω
σσ σ σ σ σ σ

 

(24) 

( ) ( )

1

2 2 2 2 2 22

2 22
2 2 2 2

2
, ; ; , ,

−

 − − +
 = + ∈ ≠ ∈
 − − 

∑
r q rq r q q r rq r qi

q

i i
r q rq r q rq

i I r q r q R
σ β σ β β σ β σ σ ββ

ω
σσ σ σ σ σ σ

 

in which the weights for the illustrative case with two non-expenditure indicators are derived. The 

interpretation of the expenditure weights of equation (22) is given above. The interpretation of the 

non-expenditure indicators of equations (23) and (24) shall be sketched briefly. A non-expenditure 

indicator is given a large weight when its slope coefficient, β, is large and when the conditional 

variance of the other non-expenditure indicator is large. The intuition is that a large slope coefficient 

reveals that the indicator in question is closely related to latent total consumption and that a large 

conditional variance of the other indicator that the other indicator is inaccurate. The other terms are 

common to both indicators. 

 

The gains in accuracy may be substantial. Given the model, both total expenditure and our weighted 

estimator based on the latent variable model combining expenditures and non-expenditure indicators 

are unbiased for latent total household consumption. However, total expenditure has a conditional 

variance of 2

∑ ii
σ  and the weighted estimator a conditional variance of 

( ) ( ) ( )2 2 2 2 2 2
2+ +∑ ∑i i i r r r r q rq r qi r

ω σ β ω σ β ω ω σ β β . Choosing zero weights for the non-

expenditure indicators and expenditure weights equal to the Engel coefficient will simply replicate the 

variance of the total expenditure estimator. Thus, the weighted estimator cannot have larger 

conditional variance than total expenditure. It may, however, have substantially lower conditional 

variance when weights are chosen optimally. Below, we shall see that this is indeed the case, and we 

compute an empirical estimate of the gain in accuracy. 
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4. An Empirical Example 

Empirically, we observe through estimation (see the appendix for details) that some goods contain 

error terms with relatively smaller variance than others. These goods are suited for uncovering the 

magnitude of latent total consumption in a household. Such categories are Clothing and Footwear and 

Furniture and Household Equipment. Other goods are imprecise indicators of latent total consumption. 

Examples are Medical Care and Transportation. The pair gross and net income, taken conjointly, 

unsurprisingly constitutes an important indicator of latent total consumption, in accordance with the 

life-cycle theories of Modigliani and Brumberg and Friedman. We find, and demonstrate below, that 

the weighted estimator reduces estimator variance considerably compared to total purchase 

expenditure. 

 

Let us now look in more detail at the evidence. First, let us inspect the expression of our weighted 

estimator given in equation (25): 

(25) 

ˆ

, , .

 
= + − + 

 

 
− + − − ∈ ∈ 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

i i ci r air

h ih ih h

i r i ri r i r

i ai r ar i i r r

h

i r ii r i r

y x c

a i I r R

ω ω γ ω γω
ξ

β β β β

ω γ ω γ ωα ω α

β β β β

 

The subscripts c and a are short notation for children and adults and refer to the corresponding 

variables ch and ah for the number of children in household h and the number of adults in household h. 

In each indicator relation above, we included constant terms αi and αr, there described generally as 

parts of the coefficient vector γ. The inclusion of the variables children and adults is only natural since 

purchase expenditure patterns vary with household type. A large purchase expenditure on food will 

have a different interpretation if observed in a single-person household than if observed in a family of 

four. Consequently, the two observations of large food expenditures will entail different estimates of 

latent total consumption. Notice in equation (25) that each expenditure category and income type is 

associated with a preceding factor. The factor denotes what multiple of the indicator we use in the 

weighted optimum estimator. Put differently, information-rich indicators will have a factor above 

unity, information-poor indicators below unity. We estimate the parameters in equation (25) from the 

1993 Norwegian CES data by using a maximum likelihood method and Levenberg-Marquardt 

optimization technique described in the appendix. In equation (26) we show the estimates of the 

resulting 1993-estimator of latent total consumption in a household. 
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(26)      
( ) ( ) ( ) ( )

1 3 4 5 6 7 8

1 2

ˆ 0.77 1.25 0.56 1.43 0.29 0.28 0.47 1.35

0.01 0.19 4615 1949 2116 12916 17971 20465 , .

= + + + + + + +

+ + − + − − + − − − − ∈

h h sh h h h h h h

h h h h

y y y y y y y y

x x c a h H

ξ
 

Equation (26) highlights the main points of this study. Notice first that the subscript numbers of 

variables y and x denote indicator type, explicitly explained in Table 1 below. We observe that some 

goods, by empirical scrutiny, are found to be better indicators of latent total consumption in a 

household than others. From equation (26) we see that Clothing and Footwear, Furniture and 

Household Equipment, and Other Goods and Services are given weights above unity. This follows as a 

consequence of the fact that they contain errors with small variance compared to the size of the outlay 

(and thus the associated Engel coefficient). Unsurprisingly, Medical Care and Transportation are 

found to be especially inaccurate indicators of latent total household consumption, and are thus given 

smaller weights. This is in accordance with expectations since the categories include big one-time 

outlays such as dentist services, large medical expenses, and purchases of durable transportation goods 

as automobiles, motorcycles, and bicycles. 
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Table 1: Estimating Consumption Parameters and Household Consumption, 1993  

Good Category 

or Income Type 

Estimated 

Engel/income 

coefficient 

Estimated 

Weight 

Fictitious Household Annualized Expenditures 

(14-day Account Book) and Incomes 

   Household 

A: single-

person 

Household 

B: couple 

Household 

C: family 

with 2 

children 

Household 

D: family 

with 2 

children 

Food, Beverages, 

and Tobacco 
0.0850 0.0654 21000 43000 65000 72000 

Clothing and 

Footwear 
0.1128 0.1411 8000 13000 28000 36000 

Rent, Fuel, and 

Power 
0.1702 0.0946 39000 49000 65000 71000 

Furniture and 

Household 

Equipment 

0.1283 0.1832 10000 20000 26000 40000 

Medical Care 0.0222 0.0065 4000 8500 35000 9000 

Transportation 0.1985 0.0551 35000 65000 89000 100000 

Recreation and 

Education 
0.1489 0.0698 18000 27000 42000 45000 

Other Goods and 

Services 
0.1342 0.1809 16000 23000 35000 55000 

Sum 1.0001 0.7966     

Net Income 0.7664 0.0097 120000 200000 390000 430000 

Gross Income 1.0081 0.1936 155000 300000 600000 680000 

Sum  0.9999     

  Total 

purchase 

expenditure 

151000 248500 385000 428000 

  Estimated 

latent 

consumption 

161959 246366 384125 452461 

 Notes: Parameters are estimated using the Norwegian Consumer Expenditure Survey 1993. In the 

estimation, we employed the SAS CALIS procedure, LINEEQS option. We used the Maximum 

Likelihood method assuming a multivariate normal distribution of error terms and the Levenberg-

Marquardt optimization technique. See the appendix for details. 

 

Table 1 depicts the main empirical findings of estimation performed on the 1993 cross-section data 

from the Norwegian Consumer Expenditure Survey. In the first column, we list the ten indicators we 

employed, eight expenditure indicators and two non-expenditure indicators. The second column 

tabulates the estimated Engel coefficient associated with the indicator. In the third column, we 



17 

compute the weights assigned to each indicator on the basis of estimated error variance and Engel 

coefficient. The last four columns show hypothetical (for anonymity reasons), but typical, purchase 

expenditures of four types of households: one single-person household, a couple, and two different 

families comprising two adults and two children. In the second to last row, we sum purchase 

expenditures to total purchase expenditure. In the last row, we demonstrate our estimation procedure 

by computing the resulting estimated latent consumption for each household on the basis of the actual 

empirical parameter estimates combined with the fictitious household expenditures and incomes. 

 

First, we observe in Table 1 that the estimated Engel coefficients sum to unity (1.0001) and that 

estimated weights also sum to unity (0.9999). The large weights of Clothing and Footwear, Furniture 

and Household Equipment, Other Goods and Services are striking. Among the ten indicators, they are 

given weights of 0.1411, 0.1832 and 0.1809, a total of 50 per cent for three indicators out of 10. This 

large fraction indicates that some types of purchase expenditure contain much more information on 

latent total consumption than others and support our argument that the suggested method is important. 

In consequence, every money unit observed spent on furniture is thus counted 1.43 times when we 

sum all indicators in the weighted estimator. The factor is as large as 1.43 because given the model the 

estimated error variance was small relative to the estimated Engel coefficient for the indicator, as 

indicated in the appendix. The ratio of error variance to Engel coefficient shows that the consumption 

pattern of households is such that outlays on furniture and household equipment mirror the underlying 

latent total consumption quite well. In other words, given our model, expenditures in this category 

uncover reliable information about the magnitude of latent total consumption in a household. Notice 

further that we have combined the categories Food and Beverages and Tobacco in order to preserve 

the plausibility of our error structure assumptions, an insight from Aasness (1990). The combined 

category Food, Beverages, and Tobacco has a relatively small weight of 0.0654, and an accompanying 

factor of only 0.77 in equation (26) above. Thus, expenditures within this category reveal less 

information about latent total consumption in the household. 

 

At the other end of the scale lie expenditures on medical care. Empirically, medical care expenditures 

have been found to be inaccurate indicators of latent total consumption. Thus, it has an associated 

weight of only 0.0065 and a corresponding estimator factor of 0.29. This was expected. The category 

medical care is typically one in which households most often have zero purchase expenditure but non-

zero consumption since households extract consumption streams continuously out of medical services 

purchased only once. Moreover, when expenditures within this category are non-zero, they are large, 

reflecting the infrequency of the purchase of medical services and the payment of a service flow over 
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many periods. Thus, we cannot infer much about the latent total consumption of a household by 

observing its expenditures on this category. Further, our empirical findings show that gross income is 

a better indicator of latent consumption than net income. Gross income has a weight of 0.1936. 

Probably, the large estimated error variance of net income is connected to the intricacies of the tax 

system and deductibles. We also keep in mind that the obvious correlation between the two income 

measures leads us to conclude that we should pay more attention to the collected weights of the 

income measures than the individual ones. After all, our estimates are the result of a complicated 

maximum likelihood estimation procedure and if two indicators are highly correlated it is the 

combined result that interests us the most. 

 

In order to illustrate our estimates of latent total consumption in a household we have included in 

Table 1 fictitious
3
 expenditures of four types of household, one single-person, one couple, and two 

families with two adults and two children. For household A and D, the simulated estimated latent 

consumption is larger than the total purchase expenditure. For household B and C, it is smaller. For 

household D, the difference between total purchase expenditure and estimated latent total consumption 

is particularly large. The difference follows from the fact that the consumption pattern of household D 

combined with the income measures hints of a large latent consumption. Potentially, such peculiar 

consumption style could be allowed from financial wealth, real assets such as a valuable home, gifts, 

or possibly non-reported income from informal markets. 

 

The latter is an essential point, possibly important to as diverse studies as inequality and tax evasion. 

Exploiting systematic cross-section consumption structures that contain information on error variances 

combined with non-expenditure indicators in estimating latent consumption for an individual 

household allows utilization of a more precise estimator of material standards of living. For example, 

household D has much larger expenditures on Furniture and Equipment and Transportation than 

household C has, disproportionately more than incomes would imply. This hints at other sources for 

consumption such as wealth or credit borrowed on an assumption of future earnings from accumulated 

human capital. In contrast, household D purchases not much more food, beverages, and tobacco than 

does household C, and household D has smaller purchase expenditures on medical care. Thus, we infer 

from the way other households usually behave that household D must know something about its 

economic position that we do not find fully imprinted in total purchase expenditure. Either it knows 

something about its future economic position that makes its consumption style different and more 

luxurious, or it can rely on other financial assets. While the difference between households C and D is 

                                                      

3 They are fictitious in order to preserve household anonymity. 
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43 000 in total purchase expenditures, the difference is as large as 68 336 in latent total consumption. 

There is a concomitant divergence between a small income differential and a large material standards 

of living differential between the two households, a finding with particular relevance to inequality 

studies. Thus, using the weighted optimum estimator approach to estimating latent total consumption 

entails extracting more knowledge from the rich data set consumer expenditures furnish us with than 

simply summing the expenditures. Table 1 demonstrates that using total purchase expenditure instead 

of latent consumption may lead to different impressions of consumption inequality, supporting the 

argument that income inequality studies should be supplemented with consumption inequality studies. 

 

We recall that household demographics also play a role in how we model and estimate consumption. 

Observed purchase expenditure on food will not only reflect total consumption, and thus the material 

standard of living, but also household size. Larger households consume more food, other things equal. 

To incorporate demographic sources of consumption, we included a term capturing such effects. This 

article included the two variables that concern household consumption most directly, composition and 

size or the number of adults and the number of children in the household. When we observe that a 

small household has large expenditures on food, we infer from our procedure that it might be quite 

wealthy, and thus has large latent total consumption, since every calorie purchased probably has cost 

more than average cost per calorie. This observation leads observers to believe that the household 

enjoys a high material standard of living. In contrast, when a large family has a small purchase 

expenditure on food, we believe that most of those expenditures have been on necessities, not on 

luxury qualities. We do so because of the observation that each calorie was bought cheaply. Thus, we 

infer that such a household is likely to be poorer than the average and have lower latent total 

consumption. Similarly, by correcting for demographic composition for each indicator we make use of 

valuable information on the consumption pattern for and eventually obtain an accurate estimator. 

 

How much do we gain by using the suggested weighted estimator instead of the un-weighted sum of 

expenditures? Combining the estimates in Table 1 above and Table 2 in the appendix, we compute 

estimates of the estimator variance. Total purchase expenditure has an estimated conditional variance 

of 7293151786. Our weighted estimator has an estimated variance of 4055974293. In other words, the 

total purchase expenditure estimate has a variance 1.8 times larger than the variance of our weighted 

estimator. Thus, weighting the indicators reduces the variance of the estimates of latent total 

consumption by 44 percent for the Norwegian 1993 data. Put differently, there are big gains to be 

reaped from utilizing the whole consumption structure of a cross-section to obtain weights that can be 

employed in the estimates of individual levels of consumption. 
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5. Discussion 

Estimating latent total household consumption is a rich field for exploration, and there is much ground 

waiting to be covered. There exist several sources of improvement to this article, and let us examine 

some of them below. The advantages of the suggested method, however, are quite substantial and 

revolve around three facets: i) the assignment of different weights to expenditure indicators of 

different accuracy, ii) the employment of non-expenditure indicators of latent total household 

consumption, and iii) the allowance of estimating latent consumption from several types of consumer 

expenditure surveys.  

 

One obvious source of improvement is the number of indicators. In this study, we have used only the 

main eight expenditure categories such as food, housing, and health as indicators. In principle, 

investigators may use fine-grid, disaggregated groups instead of categories. More goods entail more 

indicators and presumably more information. One problem, however, with the disaggregated levels is 

the prevalence of non-purchases that arise as a consequence of short observation periods. This 

problem naturally increases with grid size and the level of group detail and is a function of the 

infrequency of purchase. Another problem is the covariance structure. It might be hugely complex. 

Moreover, one cannot increase the number of parameters to estimate for a given number of 

observations without assuming costs of inaccuracy. Thus, there may be an optimum balance between 

the benefit of detailed information and the complexity of models with a large number of indicators. It 

remains unknown what is the optimum balance. 

 

In order to allow identification and estimation we have relied on well-known methods and empirical 

techniques. Therefore, we used a linear modeling scheme. As many authors point out, linear Engel 

curves are probably good approximations of the underlying relation at the relevant intervals, but they 

may be improved upon, see Aasness (1990) for a treatment and Aasness et al. (1993) for modeling 

issues. Aasness and Røed Larsen (2002) demonstrate the interpretability power and usefulness in 

policy of linear models. The literature abounds with examples of more complex Engel curves. 

However, little is known about the properties of using such curves in the latent model structure 

suggested here in which reliance on the covariance structure is emphasized when employing 

maximum likelihood procedures. Further, we have included only the most relevant household 

characteristics in our model, the number of children and the number of adults in a household. 

Potentially, there are rich arrays of demographic variables that may enhance precision such as age, 

education, and region of residence. They will also complicate estimation considerably, and the gains 

must carefully be weighed with costs. In summary, the utilization of quadratic forms, polynomial 
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Engel curves, demographic variables, semi-or non-parametric techniques may promise great 

improvements in estimating latent total household consumption. 

 

Furthermore, there are a number of estimation issues that may be studied. We relied on an initial set of 

parameter estimates that we specified in the estimation in order to ensure convergence in a few 

iterations, but we do not know to what extent convergence depended upon initial values. We did, 

however, some sensitivity tests on initial values, convergence criteria, and estimation procedures. For 

example, robustness checks and manipulations suggest that convergence was quite robust to the choice 

of initial values, but the question may be explored further. There are many optimization algorithms, 

for example the Levenberg-Marquardt, Ridge-stabilized, Newton-Raphson, and Quasi-Newton 

methods. In the econometric community, there is no consensus of which methods are better suited for 

which problems. We used the former. In utilizing maximum likelihood procedures, the conventional 

normality assumptions of the error term distribution are used. Even when error terms are non-normal, 

the normality assumption and use of maximum likelihood procedures may yield approximately correct 

answers. These matters await further scrutiny. The assumed error term structure is of importance. We 

build on results in Aasness (1990) and Aasness et al. (1993) for Norwegian purchasing patterns. 

Ultimately, how measurement problems occur and how stocks are built are empirical questions, and 

possibly much different over time and space. Allowance for an explicit modeling of preference 

heterogeneity among households is a natural extension of this article; see Aasness (1990). We have 

modeled a representative household, implicitly letting error terms include unaccounted-for effects. The 

work may with some effort be extended to include random coefficient and finite mixture models. 

6. Concluding Remarks and Policy Implications 

This article demonstrates how it is possible to improve upon the current practice in estimating latent 

total household consumption. Weighting different consumption indicators optimally reduced variance 

by more than forty per cent in the 1993 sample compared to the much-employed estimator of latent 

total household consumption, the manifest total purchase expenditure.  

 

Household consumption is a core variable in both micro and macro studies of economic relations and 

processes. One example is the study of the consumption inequality, in which equity concerns lead 

analysts to undertake empirical investigations of the dispersion of material standards of living. 

Another is the study of life-cycle standards and permanent incomes. A third is investigations into tax 

evasion. Thus, there are potential rewards to several areas of economics in improving estimates of 

individual levels of latent consumption. This article shows that one estimator of latent total household 
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consumption, the sum of purchase expenditure, can be improved upon. This can be done since 

purchase expenditure and consumption are separated by stock build up and stock depletion, in addition 

to other measurement errors. Purchases simply need not reflect consumption in a precise manner. 

Because of this, some purchase expenditures are better indicators of latent total consumption than 

others. In other words: they reveal consumption more accurately. This article puts forward an 

estimator of latent total consumption that utilizes the systematic variation in accuracy by weighting 

different indicators of consumption differently. Moreover, the estimator we suggest allows inclusion 

of non-expenditure indicators such as income and wealth. We have derived the estimator that 

minimizes the conditional variance given the model of consumption and showed that it improves 

estimate precision by utilizing the content in purchase patterns and income data. 

 

Clear patterns emerge from data. Employing our method on Norwegian Consumer Expenditure Survey 

data of 1993 we find that expenditure indicators such as Clothing and Footwear, Furniture and 

Household Equipment, and Other Goods and Services in addition to the non-expenditure indicator 

Gross Income are valuable indicators of latent total consumption in a household. They are given large 

weights. Expenditure categories such as Medical Care, Transportation, and Recreation and Education 

have relatively large variances and are assigned correspondingly small weights. Variances are large for 

error terms connected to these good categories because there are big differences between latent 

consumption and manifest expenditure. For example, dental services and automobile purchases are 

done infrequently, but the related services are consumed over a long period. Thus, such expenses are 

inaccurate in uncovering latent consumption. A fictitious example of household expenditures 

demonstrated that our method captures important differences in latent consumption financed from 

non-income sources like wealth, gifts, and transfers. The method manages to deal with such 

differences because the consumption patterns undertaken by households reveal economic positions 

other than incomes and total purchase expenditures would. 

 

We mentioned the practical policy implication in the empirical mapping of consumption inequality. 

Let us briefly explain how. There are at least two benefits to using the framework. First, the benefit of 

more accurate estimation of latent total household consumption may allow sharper comparisons 

between time periods. This is much needed since the comparison of summary measures of 

distributions often require precise statistics. And in turn, sharper comparisons can improve policy 

evaluation and assessment of how e.g. tax reforms affect the distribution of material standards. The 

latent model suggested here allows for estimation of consumption in each household and therefore 

allows many dispersion measures to be applied to the vector of household consumption levels. Second, 
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the latent model also invites estimation of another parameter relevant to consumption inequality. The 

covariance structure makes it possible to obtain estimates of the variance of latent total household 

consumption itself, σξξ. This variance estimate may be particularly useful since it lies at the center of 

how the distribution of consumption is generated in a population. Again, time series of estimates may 

help policymakers evaluate effects of tax regimes and implement new and improved policies.  
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Appendix 

Data Description and Econometric Techniques 

Data 

The Norwegian Consumer Expenditure Surveys contain observations of household samples from 1975 

to 1995; see e.g. Statistics Norway (1990) for a detailed description of account books, interviews, and 

classification. The surveys are conducted continuously every year by Statistics Norway, with 1/26 of 

households reporting each 14-day period of the year. The samples contain expenditure and other 

information on more than one thousand households
4
 each year, and the samples include information on 

many socio-economic variables of each household. The sampling scheme is a two-stage stratified, 

random sample with a small sub-sample of a two-year panel. The response rate is typically above 60 

percent. The 1993 sample contained 1308 observations out of a population of about 1.5 million 

Norwegian households. Our income data were obtained from tax records from Norwegian tax registers 

for the period 1986-1995. The income data contain the variables gross income (pension-earning 

income before tax) and net income (pension-earning income after tax). Halvorsen and Wangen (1999) 

document the income sources. 

 

For this study, all nine main categories were employed as expenditure indicators, but the categories 

Food and Beverages and Tobacco were bundled together into one large category. Aasness (1990) and 

Aasness et al. (1993) present reasons why such an aggregation is useful in order to avoid unreasonable 

zero-covariance assumptions needed for identification. In the profession, there exists no unified theory 

for how to aggregate goods. Classification is, to a certain extent, arbitrary. This is regrettable, but 

cannot stop us from undertaking empirical scrutiny of consumer expenditures. Aggregation issues 

remain important, but we did not explore many alternative systems of aggregation. In stead, we used 

the conventional categories in aggregation. 

Identification, Estimation, and Optimization 

The latent variable model we have suggested can be estimated in several ways and by using many 

statistical packages. There is a large literature on properties of latent variable models, their 

identification, and optimum estimation. We use the SAS (1990, p.249) CALIS structure summarized 

                                                      

4 There are about 1.8 million households in Norway. 
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very compactly in equation (27). The structure builds on models; identifiable and estimable; 

introduced and explored early by Keesling (1972), Wiley (1973), and Jöreskog (1978). 

(27) , , .= + + = + = +
y x

B T y xη η ξ ς λ η ε λ ξ δ  

In the notation of equation (27), B, T, λ are coefficient matrices; η and ξ are vectors of endogenous 

and exogenous latent variables, respectively; x and y are vectors of manifest variables; and ζ, ε, and δ 

are errors. 

 

There are several software packages available that handle latent variable models, and model 

programming varies somewhat in how to incorporate summing-up conditions such that Engel 

coefficients, β, sum to unity, and demographic coefficients, γ, and constant terms, α, sum to zero for 

the consumption part of the chosen indicators. For example, Jöreskog developed the LISREL system 

to perform such estimations. The SAS CALIS system we used offered several optimization choices 

and straightforward programming. Our SAS code and details of estimation results are available at 

request. 

 

Initially, we ran single-equation two-stage-least-square estimations with several instruments prior to 

the latent variable estimation in order to be able to specify good initial values for the coefficients. The 

initial values ensured rapid convergence with a minimum number of iterations. The reported estimates 

were obtained by using the maximum likelihood method and the Marquardt-Levenberg optimization 

algorithm. 

Derivation of optimum weights 

Recall that the first order conditions in the minimization problem are: 

(28) 
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Equations (28)-(30) represent 11 linear (in the weights) equations, in which there are ten unknown 

weights, ω, and one unknown Lagrange multiplier, λ. Solving equation (29) for the non-expenditure 

weights by using Cramer's Rule, we obtain after multiplication by the product of squared coefficients, 

2 2

r q
β β : 

(31) ( ) ( )2 2 2 2 2( ) , ; , ; , .
2

= − − ≠ ∈ ∈k l k rq r q r q rq k l k l R r q R
λ

ω σ β σ β β σ σ σ  

Solving, equation (28) for the weights ω, inserting the results into equation (30) together with equation 

(31), and solving for half the Lagrange multiplier yields: 

(32) 

( )

1

2 2 2 22

22
2 2

2
, ; , .

2

−

 − +
 = + ∈ ∈
 − 

∑
q r rq r q r ri

i i
r q rq

i I r q R
σ β σ β β σ ββλ

σ σ σ σ
 

Substituting for λ/2 for into the preliminary expressions of the non-expenditure weights in equation 

(31) and in the solution for expenditure weights of equation (28), yield the final expressions of the 

weights given above by equations (22)-(24). 

Estimation of error variances and covariance 

For completeness, we include in Table 2 the estimates of error variances and covariance. 

 

Table 2. Estimates of variance and covariance of error terms, Maximum Likelihood, 1993 

Variance Maximum Likelihood Estimate 

σ1
2 446403957  

σ2
2 364247416  

σ3
2 1238047970  

σ4
2 362996797  

σ5
2 304232275  

σ6
2 2890931499  

σ7
2 1283641658  

σ8
2 402650214  

σq
2 12664522735  

σr
2 20204535290  

σrq 15291201633  

 

 




