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1 Introduction

For years, many economists and econometricians analyzing production technology

and producer behaviour empirically have been puzzled by the `short run increasing

returns to scale problem'. A simple example of this problem occurs in the esti-

mation of an `inverted short run Cobb-Douglas production function' by regressing

the logarithm of a measure of the labour input on the logarithm of a measure of

output. Very often, such analyses - when performed on aggregate time series data

(annual, quarterly, or monthly) by means of ordinary least squares (OLS) or other

methods - give an estimated coefficient of the output variable significantly below

unity, indicating increasing returns to scale: One percent increase in output seems

to require a less than one percent increase in labour input. [See e.g. Sims (1974).]

Empirical evidence of increasing returns to scale have quite often been found also

when relative price variables, for instance the logarithm of a measure of the wage

rate/user cost of capital ratio, have been included in the regression - assuming out-

put constrained cost minimization. Similar results may occur, although they have

been less intensively analyzed, for other inputs, like materials, energy, and capital.

Several answers to this problem, or `puzzle', have been proposed in the literature,

inter alia: (i) Labour, like capital, may be a quasi-fixed factor in the short run, labour

hoarding may be important. A static relationship may not be appropriate, dynamics

and lags in the input adjustment process should be specified, even if we are interested

in long run responses. (ii) The coefficient of output in a logarithmic `input-output

relation' should not necessarily be interpreted as an inverse scale elasticity; it may

be a `hybrid' parameter `containing' other effects as well. (iii) Factor augmenting,

or factor reducing, technical change, if omitted or improperly represented, may

affect the estimated `inverse scale elasticities'. (iv) The input and output variables

and/or the relevant price variables may be inadequately measured, and the chosen

econometric procedure does not take proper account of this.

In this paper, our main focus will be on the first and the fourth suggested answers

above. However, our results also emphasise the relevance of the second issue, cf. (ii).

We approach these issues as an errors-in-variables problem. The labour hoarding

argument says that firms do not adjust their labour demand to temporary changes in

output, but only to changes they consider permanent. Observed changes in output

will capture both what the firm considers as temporary and as permanent changes.

Consequently, the observed change in output is a noisy indicator for the movements

in output that determine the changes in the firm's labour demand. The fourth
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answer considers errors-in-variables as a problem in its literal sense, corresponding,

inter alla, to misreporting and punching errors. We can use the same methodology

to deal with both issues. As we shall argue later, we seem to be able to identify

which of the two issues that mostly affect our estimates.

Our approach has, to a considerable degree, been inspired by the analysis of

Griliches and Hausman (1986), both with respect to methodology and empirical

application. As is well known, serious identification problems may arise in errors-

in-variables models when only standard data types, like pure times series or pure

cross sections, are at hand. This problem can be handled if a panel data set is

available, provided certain conditions are satisfied. Then instrumental variables

(IV's) of the error-ridden regressor(s) may be obtained by transforming the variables

represented in the model in a suitable manner, and these IV's may be used to obtain

consistent estimates. There may, however, be problems with potential IV's which are

(i) weakly correlated with the regressors for which they are suggested as instruments

and (ii) potentially correlated with the (composite) error term(s) of the equation(s)

under estimation.

In a panel data context, a multitude of potentially valid IV's, and hence a mul-

titude of `N estimators', may exist [cf. e.g. Biørn (1992)]. One may then attempt

to construct some sort of 'compromise estimators', by using two stage least squares

(2SLS), three stage least squares (3SLS), the generalized method of moments (GMM)

(which can be considered as a generalization of 3SLS), or the full information max-

imum likelihood (FIML) method. GMM has the attraction, in comparison with

2SLS, of enjoying a sort of efficiency even if non-restrictive assumptions are made

about error autocorrelation and heteroskedasticity. GMM is also attractive as it pro-

vides an estimator which accommodate joint estimation of an equation system with

different instruments for different equations.l. This possibility is essential in our

case. Furthermore, GMM may be implemented as a stepwise procedure, using IV

(or 2SLS) estimation in the introductory stage(s). [See White (1986)] App lication

of GMM is, computationally, far simpler than FIML. 2

In the present paper, a set of panel data for Norwegian manufacturing firms from

'See Schmidt (1990) for a discussion of the shortcommings of 3SLS, as compared to GMM, in

such a context.
2 FIM L is, under certain regularity assumptions, asymptotically efficient, but it may be compu-

tationally complicated, even if LISREL types of computer programs may be used for linear models,

and the estimators and their properties may be sensitive to changes in assumptions, for instance

about normality, error autocorrelation, and error heteroskedasticity.
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the years 1975 --1982, is used. Different measures of labour input are considered. We

also present evidence on the response to changes in output of another basic input,

materials. Briefly, our results indicate that the `short run increasing returns to scale

puzzle' remains for labour, and are, to some extent, in agreement with previous

findings [inter alia, Sims (1974) and Griliches and Hausman (1986)]. There is,

however, evidence of substantial differences in estimated input response elasticities

between different measures of labour input_ The results for the material input

are significantly different, indicating approximately constant returns to scale in the

equation for this input. These findings suggest non-homotheticity in the underlying

production technology. This is true not only when we consider materials versus

labour, but also when we compare the response to output changes of different kinds

of labour. Most analyses in this field assume a homothetic technology.

The basic ingredients of the paper are the following: (i) Panel data modelling

with latent variables is considered. (ii) The input response equations, based on

Shephard's lemma, are specified in terms of logarithmic differences, derived from a

generalized multivariate mean value theorem. (iii) In choosing IV's for observed log

differenced output, we use level variables of log output for other years than those to

which the difference relate. (iv) Flexible assumptions are made with respect to the

second order moments of the latent variables, allowing, inter aha, for arbitrary het-

eroskedasticity of the measurement errors and of the technological differences across

firms and years. (v) As a simplifying assumption, we use a random coefficients ap-

proach to represent the variation in the input response elasticity across firms and

years. Flexible assumptions are made about these stochastic elements. (vi) We

investigate the performance of (the inefficient) 2SLS and (the efficient) GMM meth-

ods in this context and compare them with corresponding (biased) OLS estimates.

(vii) Finally, we investigate whether year specific estimates, i.e. based on log differ-

enced inputs and output between two specific years, differ substantially from those

obtained when data for all years available are combined.

The rest of the paper is disposed as follows. First, in section 2, we present

the model framework, derived from output constrained cost minimization, with the

firms' inputs in production as well as their outputs considered as latent variables.

This framework leads to expressing the relative increases in (latent) input demand

between two arbitrary years in terms of the corresponding relative increase in out-

put volume, and an error/disturbance term, representing differences in input prices,

differences in technology, etc., between the two years. We denote this equation as
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an input response equation. Next, we present, in section 3, a flexible stochastic

specification of this equation. In this way, we attempt to account for the multitude

of effects (transitory components in inputs and output, measurement errors, distur-

bances in optimization, differences in technology, firm specific differences in input

prices, etc.) which are captured by the composite error and disturbance term in the

equation we estimate. We argue that specifying composite errors and disturbances

as homoskedastic white noise would be far too restrictive in the present context.

Estimation procedures, with focus on IV and GMM, are discussed in section 4. Em-

pirical results, with attention to the robustness issue, are presented and discussed

in section 5. Concluding remarks follow in section 6.

2 Model framework

Assume that we have a balanced panel data set consisting of observations from

M firms in T consecutive years. The production technology underlying the factor

demand specifies N inputs. We first formulate the model of factor demand in terms

of latent variables (using asterisks as superscripts to symbolize latent structural

variables), and next (in section 3) respecify the model in terms of observed variables

and introduce the stochastic specification. Let Q denote that latent volume of

output, X t = (x 1 , ..., X N) the latent vector of inputs, and w t = (w', ... , w N)
the latent vector of input prices of firm in year t (i = 1, ... , M, t = 1, ... , T ). The

notation w:  signalizes that we allow for variations in the input prices not only over

years, but also across firms. We describe the technology by

(1) Q : = Ø it F( xi; ), i = 1, ... ,M, t = 1, ••• ,T,

where F(•) is a production function with neo-classical properties, common to all

firms, and (P it is a factor reflecting differences in the level of technology between

firms and years.

We assume that the firms act as cost minimizers and price takers for given output,

interpreting (bi t as known constants to the firm (but interpreted as unobserved values

of stochastic variables by the econometrician). The cost function dual to (1) can

then, in the usual way, be written in the form [cf., e.g., Jorgenson (1986, section

5.1)]
N

Ciit
* 	 *j *j=	 wst Xit = G(w t, Qit1Øst)

J=1
(2)



åG(w t, Qit/Øit ) ;
a *j 	fit
V wit

j = 1, ..., N, i = 1, ..., M, t= 1, ..., T,

*t/	
;

— gj 04, QiØit ) f it(a) Xt =

Using Shepherd's lemma, firm i's optimal inputs of factor j in year t can be expressed

as [cf. e.g. Jorgenson (1986, p. 1885)]

where the ft's represent input specific `errors in optimization' and other unobserv-

able factors affecting the optimization, and gi (•) is implicitly defined by (3).

Consider first the case where F(•) represents a homothetic technology, implying

that its dual cost function can be separated as [cf. Jorgenson (1986, p. 1888)]

(4)

so that (3) becomes

G(wit, Qat/ (bit) = H(w t ) K(Q=t iØit)

(5) x.'? = 11; 04 )  K (Q* /Ø 	= 1.•7M7 t =1,• .. Tst it	 it it > 	 > • • • >N i=1 ,• >  	 > >

where K (.) is a monotonically increasing function and h; (wt) = åH ( 	 / åw ' .

Applying the generalized multivariate mean value theorem to (5) in logarithmic form

[see Berck and Sydsæter (1991, p. 11) and Klette (1993, p. 7 — 8)], it follows for any

years t and s that

(s) x ^ 
— xi ' _ Eit s (q t — q21. )

N

+ >J:7: i lI1(w:.k /w::: )  + m(f:-tlfis) ! eita h(Øit/Øts),
k=1

j =1,...,N, i = 1,... ,M, t,s = 1,... ,T,
•

where x=i = ln(X i ), q t = ln(Q=t ), etc., eats is the elasticity of K(•) with respect

to Q/4 — which can be interpreted as the inverse scale elasticity evaluated

somewhere between Q/4 t and (2:5 14:13 i„  and -y=t is the elasticity of hi (-) with

respect to w,i , evaluated somewhere between wit and w s . We denote eats as an input

response coefficient or an input response elasticity in the following. We emphasise the

motivation behind our use of a mean value theorem, rather than an approximation

based on a first order logarithmic Taylor expansion, in the derivation above. Relative

differences in inputs or outputs along the time dimension of a panel data set as in

(6) may, like the differences along the cross-sectional dimension, be substantial, in
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*j	 *j
Xit — , is =
	 * — * 	 _^

— ^its (git 	 gia ) + ^ita ,

j =1,...,N, i = 1,...,M, t,s = 1,...,T,

particular for differences over several years.3 Such differences might undermine the

argument for using approximations by truncating Taylor expansions after the first

order term. On the other hand, equations expressed in differences by using the mean

value theorem in logarithmic form are valid regardless of the size of the differences

of outputs and input prices, whether they are taken across time periods or across

firms in the data set. [See Klette (1993).]

If, in particular, the homothetic technology is characterized by a constant scale

elasticity, equal for all firms and years, E denoting its inverse, we have K (Q t / Ø i t ) _

(Q:/4 t )E • In this case, Bits in (6), and in (7) and (8) below, can be replaced by the

constant e. The 'y's in (6) will in general show variation across i, t, and s.

From (6) it follows that the optimal inputs of firm i expressed as logarithmic

differences between year t and year s can be written in terms of the corresponding

logarithmic difference of output as

(7)

where

(8) hits _
N

 ^E l its ln(w t /wis ) + ~'(fi /fia) 	Eits n(Øit/Øis ).
k=1

The composite variables edits capture (changes in) technological differences, errors

in optimization, input price differences, and differences in the values of the price

elasticities Ni å across firms and years. We discuss the stochastic specification of (7)

— (8) in section 3.

We can make the following observations from the model framework described so

far: (i) A priori, 4S may contain both firm specific, year specific, and combined

components. However, if the technological differences admit a decomposition of the

form ln(Øit) = ai + bt -l- cit, ai, b t and cit being independently distributed, and

if ln(f t) and ln(w t) can be given similar decompositions, then all firm specific

components, like a i , will vanish from ta since it is constructed from logarithmic

differences. (ii) to may be correlated with (q:t — q:,),  owing to `simultaneity' in

the input and output decisions which is not captured by our simplistic model with

3 Note also that we, in our empirical implementation, perform an additional differencing along

the cross-sectional dimension, since we will measure all observations from their time specific mean.

(See section 3 and appendix A.)
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cost minimization. 4 (iii) Serial correlation or/and heteroscedasticity of 4 t, should

be allowed for.

Consider next the more complex case where F(.) represents a non-homothetic

technology. Separability of the dual cost function G(•), as in (4), then no longer holds.

Applying the generalized multivariate mean value theorem to (3) in logarithmic form,

it follows for any t and s that

(9) 4 3 (q*_it qis )

N
+ Elitkaln(w:tk iw:sk ) + In(f tl fis) 	in(4)it/Dis),

k=1

j =1,...,N, i = 1,..., M, t,s = 1,... , T,

where is and 7!Å  are the elasticities of gj (•) with respect to Q and w, re-

spectively, evaluated somewhere between (wt, Qi1 /(kit) and (w, Q/4 3 ). These

equations replace (6). The corresponding versions of (7) and (8) are

(io) *j	 *j
xit

*	 *= ^ts(qit — gis ) + 441 7

N
	,,,.^

^ts = >:: ^Îi s ^(wt lw s ) + ln( f tl f s ) — tits ^(Øit/Øis) ,
k =1

j = 1,... ,N, = 1,...,M, t,s = 1,...,T.

In this case, the input response elasticity, tits, cannot be interpreted as an inverse

scale elasticity.

Comparing (7) — (8) with (10) — (11), we see that in the homothetic case, the

`input response elasticity' Bits is a function of the output volume only (except in the

case where the scale elasticity is constant, as noted above), but it is invariant to

changes in the input price vector w. On the other hand, the elasticities Nit'', are

functions of the price vector w t, but are invariant to changes in the output volume.

In the non-homothetic case, all these elasticities are functions of the output volume

and the input prices.

3 Stochastic specification

The latent variables framework of the factor demand model outlined above contains,

even for moderate N, M, and T, a large number of input, firm, and year specific

4 For instance, 1n(f) may be correlated with q,, for any j - recall that output constrained cost

minimization, as is assumed here, is necessary for full profit maximization.
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= e(git 	 "its

j = 1,...,N, i = 1,...,M, t,s = 1,...,T,

+ kita (q t —qis) + (rf —rL)

(15)

where

(16) °it a

suit - xis

4ts (vit — vis ),

parameters. In this section, we elaborate on the stochastic specification adopted in

the empirical implementation of the model, taking eqs. (7) and (8), derived under

homotheticity, as our starting point.

The triple subscript on the (long-term) `input response coefficient' sits, reflecting

its dependence on both Q:t /(b it  and Q:s 1(1) i„is  a complicating feature of the model

outlined so far. However, some preliminary experimental calculations suggested that

adding levels of the logarithm of output to regressions of logarithmic differences in

the inputs on logarithmic differences in output, as in (7), did not affect the estimated

`input response coefficient' significantly. Neither did this level variable turn out to

be significant in interaction with the log differenced output. For this reason, we

treat, as a simplification, eits as a random coefficient, with a firm and year invariant

mean equal to e, defining its stochastic component as

kits = £its _ ^ ^	 2 = 1, . . . , M , t, s = 1,...,T.

More generally, to allow for non-homotheticity,  vita, e, and Sita can be furnished

with an input superscript, j, cf. (9) - (11) above and (A.4) -- (A.6) in appendix A.

We assume that the logarithms of the output and the input quantities observed

qit 	 vil i = 1, ••• ,M, t = 1,...,T,

 .

= x ::•
 +	 ,	 j =1,..., N, i=1,...,M, t=1,...,T,

where vit and s are errors-in-variables in the wide sense, as explained in section

1, while q71 and xit are permanent components. Using (12), (13), and (14), we can

reformulate the input response equations, (7), in terms of logarithmically differenced

observations on output and input volumes between years t and s as

(12)

are

(13)

(14)

qit

wit

j =1,...,N, i = 1,... , M , t,s = 1,...,T,

with r ta defined in (8).
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The error variables befits, rit , and v=t are all assumed to have zero expectations.

The stochastic specification of the model as regards its second order moments, how-

ever, is rather flexible. It has the following four elements: 5

(i) Realizations of (:t 	 rt, beits ) are stochastically independent across dif-

ferent values of i.

(ii) The error variables (vit ,7-4,5Eits ) are all independent of the `structural variables'
--,,

(qiPt, dits) •

(iii) The errors in output and inputs (vit , rit ) may have an arbitrary heteroskedas-

ticity. In the empirical application to be discussed below, we confine attention

to the cases where the errors are non-autocorrelated or follow MA(1) processes.

Similar assumptions are made with respect to the random part of the `input

response coefficient'

(iv) We allow for correlation between t and 4s ,. not only for s = t or r = t, but

also for t s r. In the empirical app lication, however, we confine attention

to the case where this "cross-autocorrelation" is at most of the first order.

Instead of using (15), as it now stands, as our estimating equation for the (per-

manent) `input response coefficient' e, we use this equation after having redefined

the (logarithmic) inputs and output quantities by deducting their respective year spe-

cific (i.e. sectoral) means. A similar procedure is followed in MaCurdy (1982). This

transformation, although reducing the effective variation of the input  and output

variables in the sample, removes any additive year specific effects from the observed

structural variables as well as from the composite "residual variables" B;t , —recall

the definition of the latter, given by (16) and (11). Hence, these variables are more

likely to be stationary after this transformation has been made than before.'

Letting C denote the (population) covariance operator, we introduce the short-

5Tkiis is elaborated in appendix A.
6If, for instance, Kota admits a decomposition of the form omits = bta + cita (any firm specific

additive effects being already eliminated by the `within firm' difference transformation, cf. section

2), N. vanishes, and we have Kits — (11M) > ki Kkts = Cita — (11M) Ek=1 Ckts•

(beits)•
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(17)

(18)

where

(19)

(20)

C [(git — gia ) gi„]

C[8=ta , qip]

qq _ 	q*
^i tp — 6i tp + ui tp

e)g 	 rsjg* 	 v
^itap — ^itsp _ ^(^i

v
tp_ ^isp) ^

qq qq
— ^itp ^ ^iap 7

e) q
— ^itap 7

hand notation

C(vit , vis )
v

^its 7

C(qit q:8) = 
fr9

its 7

C(
_JJ 	 * 	 xj q*
^its7 qip) = Gritap 7

j = 1,...,N, i = 1,...,M, t,s,p= 1,...,T.

In appendix A, we show that if the number of firms, M, is sufficiently large, the

variables on the right-hand side of (15), after the deduction of the time means,

satisfy approximately

j = 1, ••• ,N, i= 1,.. .,M, t,s, p = 1,.. .,T.

As will be shown in section 4, (17) - (20) are useful in suggesting candidates

as IV's for (qi — q;,) in the input response equations, (15). The zero restrictions

we impose on Qet P [cf. assumptions (iii) and (iv) above] ensure identification of

the mean input response coefficient, E. If these orthogonality restrictions are not

satisfied, there may be problems with some of the IV's to be used in the empirical

applications (cf. sections 4.b - 4.f below).

4 Estimation procedures

In this section, we describe the procedures we use in our attempts to estimate

the mean (long-term) `input response coefficient' E in the log-differenced equation

(15), satisfying (17) - (18). A basic idea is to use variables in levels as IV's for

corresponding variables in differences. Similar ideas have been followed by Anderson

Ød Hsiao (1981, 1982), Hsiao (1986, sections 4.2 and 4.3), and Sevestre and Trognon

(1992) for first order autoregressive models for panel data, and by Griliches and
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Hausrntun (1986), for panel data models with errors in variables. See also Arellano

and Bond (1991) and Biørn (1992, section 8.2.3). Our strategy is, more specifically,

to use qip as IV's for ((lit — q;,), for those combinations of (p, t, s) which satisfy the

two conditions

(21) C [(gi t — gis gip]

(22) C[0iits , gip]

	q4 	 q4	= ^itp 	 ^iap

= Qesp _ 0,

o,

where o tp and Qet p are defined in (19) and (20). This can be done by using data

for the M firms, either (i) for a given input j and/or a given pair of years (t, s), or

(ii) for a given input j and all combinations of (t, s), or (iii) for all combinations

of (t,s, j) simultaneously. This gives a substantial number of possible estimators,

and we will only consider the most important ones. We assume that the number

of firms in the sample, M, is so large that (i) the approximations underlying (21)

and (22) can be considered as satisfactory and (ii) all realizations of (aiit„ qip , x;Z ) for

different firms i can be considered as approximately uncorrelated (cf. appendix A). 7

Notice that joint estimation for different combinations of (t, s) or (t, s, j ), requires

a GMM procedure, as it involves estimation of a system of equations with different

instruments for different equations. The specification of the GMM procedure will

be spelt out carefully below.

4.a The basic assumption on the error structure

Let us first assume that there is no autocorrelation of any order in the error in

output, i.e. atp = 0 for all p $ t, and no "cross autocorrelation" between the variables

summarized in ',its [cf. (8)] on the one hand, and the true, latent output variable

q t on the other. We then have [cf. (18) and (20)] for all i and j the orthogonality

conditions

(23)	 -esp = 0 for all t s p.

In addition, we assume for all i that

(24) q ^ qq
^itp

q 	^isp for all t # s # p,

which is satisfied if the (latent) output volume, after deduction of the time mean,

is, for all i, a non-stationary variable, but it may be satisfied in cases of stationarity

7 MaCurdy (1982, pp. 84, 88) makes a similar assumption for a fairly general panel data model

with heteroskedasticity and autocorrelation of the disturbance terms, although with errors-in-

variables disregarded.
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as well. It then follows from (21) and (22) that qip is a valid IV for (qit — qia) for all

p	 (t, s).

To simplify the notation in the following, we (i) omit the `bar' symbol - on the

mean input response coefficient e, and (ii) omit the superscript j on the input vari-

ables x it and the "residual term" Oita whenever this omission cannot bring confusion.

In the following, we also conventionally, without loss of generality, set t > s. An

arbitrary differenced input demand equation, as given in (15), can then be written

simply as

(25) xits = Egits + Oita ,	 i = 1, ..., M, t,s = 1, ...,T, t > s,

where

(26) git 	 qit — qia ,

(27)	 x•	 = x• — x•	 i=1 ...M t s =1 .. . T t>s.ita	 st	 xis 
,	 ,	 ,	 ,	 ,	 >	 >	 >

We assume in the following that the difference transformations we perform in de-

riving (25) — one within firms and one within years — ensure that all Oita have zero

mean. Hence, any non-zero constant term in (25) can be disregarded.

4.b Simple IV estimators

A simple IV estimator of E in (25), based on observations for one pair of years, (t, s),

and one IV, for year p, would then, provided that (23) and (24) are satisfied, be

given by [cf. Biørn (1992, p. 168)]

M	 M

E gipxits	 > qjp(x jt  _x is )
(28) P

ry =	 _  1 
M	

, t, s, p = 1, ... , T, t > s, p	 (t, s).
 M 

E qipqits	 >:qip(qii  — qis )
1= 1	 i= 1

Since the number of different ways of selecting 2 years from T is

T(T-1) 
2

and the number of admissible IV's for each pair of years is T — 2, the number of

possible simple IV estimators of the form êt;p is

(30)	 R = S(T — 2) = 
T(T — 1)(T — 2)

2

(29)
(T2)
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In the empirical app lication in section 5 below, we have T = 8, i.e. S = 28 and

R = 168. Each of these R estimators is consistent (for any T when M --> oo),

provided that (23) and (24) are satisfied, but obviously they are, in general, far

from efficient.

Let now

1 x (T — 2) vector containing
,

gip for p= 1, ...,T, p(t, ․ )

i = 1,...,M, t,s = 1,...,T, t > s.

Note that the year subscripts (t, s) on z indicate that output in years t and s have

been omitted from the vector. The row vector zits contains all the T — 2 admissible

IV's for Bits. If, for instance, T = 4, we have, for each i, S = 6 possible zits 's:

(31)
	

zits

zi21 = (qi3,qi4), 	 zi32 = ( Qri 1 ^ gi4), z143 = (gil^ qi2),

zî31 = (qi2, qi4), 	 z142 = (qi1, qi3 ) , 	 zî41 	 (qi2, qi3)•

Instead of using one IV only, as in (28), a more efficient procedure is to use the

complete 1 x (T — 2) vector zits as an IV vector for the scalar g its for any given (t, s),

and combine the elements of zits in an "optimal" way in the 2SLS sense, see e.g.

Bowden and Turkington (1984, section 2.4). This does not mean, of course, that the

resulting 2SLS estimator is optimal irrespective of the properties of the distribution

of the error/disturbance term O ita .

We then, in a first stage, (i) form the auxiliary, `reduced form' equations relating

gita to zit.,

(32) %ts = zits jlts	 kits, i = 1,..., M, t,s= 1,... , T, t > s,

where "It s is a (T — 2) x 1 coefficient vector and ?Nita is a (scalar) disturbance term,

(ii) estimate Ilts by means of OLS, and (iii) compute the corresponding OLS 'pre-

dictor' of qua . The two latter variables are, respectively,

M	 —1 M

fits =	 E zits zits	 E( zs its) 7
i=1	 i=1

M	 -1 M

gita = zits fits = zits	 zits zits	 ( ziatsits) ,
i_1	 i=1

i =1,..., M, t,s =1,.. .,T,t >

(33)

(34)

15



In the second stage, we use gita as IV for gita in (25) - which, in view of the orthog-

onality of the OLS residuals ;/;its and the OLS predictors Bits [i.e.	 1 i 	 =
for all (t, s)], is equivalent to regressing xits on Bit s . This maximizes the correlation

between gita and its instrument and gives the 2SLS estimator of e

M	 -1 M	 M	 -1 M
L a2SLS = Eq*; 	 [Er 	 = ^`^ 	 `^` ^/(35)	 gsxita 	 L g;t'ts]	L gitaxits 7

i=1 	 i=1 	 i=1 	 i =1

t, s = 1, ..., T, t > s.

Substituting for gir a from (34) in (35) and rearranging, we find that the 2SLS esti-

mator of e confined to a specific pair of years (t, s) can be written in terms of xita,

gits, and zits as

(36) ^ 2SLS
^ts E( M

	 M 	 -1

A gi;., zits 	 E zits Zita
i= 1 i= 1

-1
M

/

zits giss
i=1

x

M 	 M 	 —1 M

^ gitazits 	 ^ zitazita 	 E zitaxita
i=1 	 i=1 	i=1

t,s = 1,...,T, t > s.

The number of such estimators is S. These estimators are not, of course, indepen-

dent, since we have, for instance, the identities

qi31 = qi 21 + g132 	 gi41 = gi 21 + gi32 + qi 43

etc., and similar relationships hold for the x ita 's. For the zit3 's, however, no such

simple relationships exist, and hence it is not possible to express for instance F41SL5

as a simple and easily interpretable weighted arithmetric mean of Î21sLs , g32sLS

and C43sLS .

4.c Pooling the equations for different years with different IV's

Let us next take a further step and derive an estimator of e by using observations

from all the S pairs of years for each ,firm jointly. We define, for firm i,

(37 )	 Qi

(3s)	 x; =

f
f

S x 1 vector containing all S different

Qi :a = qi: - qis elements for t, s = 1, ... , T, t > s

S x 1 vector containing all S different

xita = xit - xis elements for t, s = 1, ... , T, t > s

1
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(39) B; =

(40) Zi = 7I
S x 1 vector containing all S different

Bits elements for t, s = 1, ... , T, t > s

S x S(T — 2) block diagonal matrix

containing the 1 x (T — 2) vector zits

as a typical block for t, s = 1, ... , T, t > s

.
2= 1, ..., M.

The elements of these and the following vectors and matrices are ordered by the

subscripts (t, s) in the following succession: (2,1), (3, 2), (4, 3), ... , (T, T — 1),

(3,1), (4, 2), (5, 3), ... , (T, T — 2), ... , (T - 1, 1), (T, 2), (T, 1). If T = 4, i.e. S 6

and R = 12, we have, for instance, that Q i is the 6 x 1 vector

gi21	 ( qi2 - qgo.1

Qi=

qi32

qi43

qi31

qi42 

qi3 - qi2

qi4 - qi3

qi3 - qi1

qi4 - qi2

^     

q141 l 	\ qi4 - qi 1

that Xi and Oi are similarly defined, and that Z i is the 6 x 12 matrix

Zi =

zi21 0 12

012 zi32

012 0 12

012 0 12

012 0 12

\ 012 0 12

f qi3 q14

012 012 012 0 12

012 012 012 0 12

zi43 012 012 0 12

012 zî31 012 012

012 012 zî42 0 12

012 012 012 zî41

0 0 0 0 0 0 0 0 0 0 ^

f

^

0	 0 qi 1 q14 0	 0 0	 0 0	 0 0 0

0	 0	 0	 0 qi1 qi2 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0 0 qi2 qi4 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0 qi 1 qi3 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0 qi2 qi3

012 being the 1 x 2 zero vector. We see that each of the S rows of Z i contain the level

of the output variables which are not represented, in differenced form, in the corre-

sponding element of Q . The stacking of the variables in the Zi matrix is essential.
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)

7

Z1

 (Z =

ZM
Q= ••

•

Q M

This stacking permits the auxiliary equations, relating qua to zits, to differ accross

different combinations of (t, s) [cf. (32)]. This flexibility in the auxiliary equations

is a distinctive feature of the GMM, as compared to the 2SLS and the 3SLS, and is

necessary in estimating a system of equations, where different instruments are valid

for different equations, as is the case here. The flexibilty in the auxiliary  equations

provided by GMM is also essential to obtain an efficient use of the instruments, at

least in large samples.

We use all the R = S(T — 2) columns of Zs as IV's for the column vector Q i in

our estimation equation, which now reads

(41) Xi —	 ei , 	2 — 1, . . ., M.

Letting

which have dimensions MS x 1, MS x 1, MS x 1, and MS x S(T — 2), respectively,

we can write the equation, based on MS "observations", compactly as

(42) X =	 + 0 .

The overall l step GMM estimator of e based on observations for all the M firms

and the S pairs of years is

(43) = [Q'Z(Z'Z)Z'Q] [Q'Z(Z'z)-l z'X]

 Ctfis	
-1

Wi i Zi^ 	 ZiZi	 ^ Zi ^9'i i 	X
 i.l

	[ (f Q z1)
1M

Z Z { ZiX^

j

 \icl 	 i.l

t, s = 1, . . . , T, t > s.

The latter estimator can be interpreted as an IV estimator of e in (42), utilizing the

OLS `predictor' of Q obtained by regressing Q on the complete IV matrix Z, which

is ej = Z(Z'Z)' 1 Z'Q, as IV for Q. This N estimator, É IV = I can,

after rearrangement, be written as (43). 8

8 Confer the analogous derivation of (35) - (36) above and Bowden and Turkington (1984, section

2.4).
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The estimator (43) can alternatively be interpreted as a GLS estimator. Pre-

multiply (42) by the transposed IV matrix Z', which gives the following equation

based on R = S(T — 2) "observations" in the matrices Z'X and Z'Q, instead of on

the "observations" X and Q as in the original form of the equation [cf. Judge et al.

(1985, section 152.1b)],

(44) = z'Qe +Zee.

Applying GLS to (44) when proceeding as if (hypothetically) O had a scalar covariance

matrix, so that Z'9 would have a covariance matrix proportional to Z'Z, we would

get (43).

4.d X11 (2-step) GMM estimation with error heteroskedasticity

In constructing the above 1-step GMM estimators, we have paid no regard to the

second order moments of the term ()its, related to the second order moments of the

`basic' stochastic elements of the model (cf. appendix A). The R simple year specific

IV estimators Ets p , the S year specific 2SLS estimators Etasts, and the overall 1-step

GMM estimator F are all consistent if (23) and (24) are satisfied, but their small

sample properties wi ll , of course, depend on the particular specification of these

second order moments of ()its •

This fact suggests that we take a further step in exploiting the orthogonality

conditions (23) and turn to the fu ll 2-step GMM estimator. This is a more efficient

method than the 1-step GMM estimator for estimating equations with general het-

eroskedasticity and/or autocorrelation of the errors/disturbances. Let us, for this

purpose, change the subscript notation a little, using one single time subscript (T) to

represent the number of the difference, instead of two (t, s) as follows: r = 1 denotes

(t = 2, s = 1), T = 2 denotes (t = 3 , s = 2), ... , T = S denotes (t T, s = 1). 9 We

thus replace

Quits , xits , sits zits

by

qi(r), xi(T) , ei(r), zi(r) ,

.
2 =1,...,	 , t,s= ,...,T,t> s,

i = 1 , ..., M, T = 1 , ... ,S,

9 Confer the ordering of the year differences described after (37) — (40).
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Ai =

(45)

where

(46)

2,k = 1,. .. ,M,

i = 1,... , M,

E(efik
 ) = Sik Ai ,

Ain

AiSl

so that the definitions (37) — (40) read

Qi = (qi(i), qi(2), • • • , qi ( S ) )'

Xi = (x1(i) , x i(2) , • • • , x i(S))' ,

8i 	=	 (9i(1), 0i(2), • • • , 9i(S))'

Zi = diag(zi( 1 ), zi(2), • . • , zi(S))
	

i = 1 ,..., M,

when we recall that z i(T) is a 1 x (T — 2) vector. Denote the S x S covariance

matrix of Oi by Ai , i.e. since realizations of Oi for different firms are assumed to be

(approximately) uncorrelated,

and hence

(47) E(ee') = n =
O A2 • - •	 O       

0	 0 ... AM )

The specific form of A i is implicitly defined in appendix A. 10 In the sequel, we

treat the Ai 's as M positive definit, but otherwise unrestricted, S x S matrices,

allowing for general heteroskedasticity and autocorrelation of the elements of the

error/disturbance vectors Oi .

If A were known (possibly up to an arbitrary multiplicative constant), the GMM

10It is possibly restricted [cf. (A.23), (A.27), and (A.29)], and the relationship depends om the

"basic" error structure. We do not want to exploit these possible restrictions on this matrix here,

and, accordingly, neither do we want to identify and estimate the various Q's in (A.23).
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estimator of e would be

(4g) ^ GMM = [Q'Z(Z'AZ)'Z'Q]' [Q'Z(Z'AZ)'Z'X]

M 	 M

 (
z;Az1) ' ZiQ i 	 X

i.l

M 	 M

( z:A1 z1) ' ( z:x1)]

i=1 	 i=1 	 i=1

The latter estimator can, like (43), alternatively be interpreted as a GLS estima-

tor. Consider again the derived equation (44), whose composite disturbance, Z'o, is

asymptotically uncorrelated with its matrix of right hand side variables, Z'Q. Ap-

plying GLS to (44) when proceeding as if (hypothetically) o had a known covariance

matrix equal to A, so that Z'o would have a covariance matrix equal to Z' AZ, we

would get (48). This explains, with reference to Gauss-Markov's theorem, intuitively,
why î GMM, given by (48), is more efficient than î, given by (43).

Under certain regularity conditions, it can be shown that the asymptotic variance

of MS(F GMM _ e) is the limit in probability of

(49)
	 ( Q ' Z '

M

	-1

_1 	 -1

^^1 Qili (>:^1 ZiAili (>:^1 z:(2,
MS 	 MS 	MS

 )]

[See Bowden and Turkington (1984, pp. 26, 69)]

Since in our case, A ; is considered as completely unknown, application of (48) is

not feasible. We can, however, proceed as follows [cf. White (1984, pp. 132 - 142)]:

Let V,u be the S(T - 2) x S(T - 2) covariance matrix of M-1 /2 Z'8, i.e.

(so)
M M

V = l E Z'9e'	 = 1 EM	 (	 Z) 
M 	M 1. 1=1 k=1

M
1 E E(Zsoieili )-

1= 1

The last equality follows because the assumptions that E(0i01) = 0 for all k # i

[cf. (45)] and that B; and Z; are independently distributed imply E(Z;Øi 01Zx ) = 0

for all k # i. The S x 1 vector of residuals for firm i , calculated from (41) and the
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1-step GMM estimator of E, is

(51)

	.. 	 .
	ei = Xi —Q i ^,	 =1,...,M.

This calculation is the only use we make of the 1-step estimator in this case. Sub-

stituting (51) for B; in (50), we get the following estimator of VM [cf. White (1984,

sections IV.3 and VI.2)]

E Zi' 8i e= Zi

i=1

Finally, using the latter as the estimator of M -1 Z'AZ in (48), we get the feasible

GMM estimator of E,

( 53) 	-E- GMM = (QIzÇT1IQ)1 (Q'Z'Z'X)

M 	 M

— QiZ ( z; o ' z1) ' ( z;Q1)] X
i=1

)]

M	 M

Q Z ( z ' z ) 'i  ( z:x ) i

i=1 	 i=1 	 i= 1

This estimator is different from ê GMM in finite samples, but they coincide asymp-

totically. In this way, we do not need to have  an estimate of the error/disturbance

covariance matrix A. The estimate of the asymptotic variance of MS(EGMM _ e l

is obtained be replacing M'Z'AZ in (49) by VM , as given by (52).

4.e Remarks on the literature on GMM and IV estimators

Let us briefly add a few comments on how the estimators we have presented above,

are related to the literature on efficient instrumental variable estimation. Both

Hansen (1982), White (1982,1984,1986), and Bowden and Turkington (1984) have

considered instrumental variable estimators which account for heteroskedastic errors,

and improves efficiency along the lines suggested in section 4.d above. Bowden  and

Turkington (1984, chapter 3.2) and White (1986) termed this estimator the OLS-

analog. They also discuss a related estimator, denoted as the GLS-analog, which we

do not consider here.

The GMM estimator of Hansen (1982) goes beyond the issue of the distribution

of the error term. The GMM estimator makes it possible to pool the estimates from

a system of equations, where different instruments are valid for different equations.

(52) VM 1
M
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In our context, different equations correespond to equations for different years. As

pointed out in sections 4.c and 4.d above, this possibility is essential in our case,

and is not incorporated in any of the estimators presented by White, and Bowden

and Turkington.

4.f Modification in the presence of error autocorrelation

The estimation procedures discussed so far rely on the rather strong assumptions

(23) — (24). Let us now relax the former and allow for autocorrelation of the first

order in the error in output, but not of higher order, i.e. vit is, for all i, a MA (1)

process. Using discrete time, the dating of the variables within the years may, in

practice, often be somewhat arbitrary, which suggests that errors of this form may

be a realistic structure. Then clip  	 0 for p = t — 1, t, t + 1 and a sap = 0 for

all p	 t — 1, t, t + 1. Correspondingly, we allow for first, but not higher, order

"cross autocorrelation" between the variables summarized in 4 ts and the latent

output variable q t . The latter assumption is strong and may be unrealistic in some

situations. We then have [cf. (20) and (18)] for all i and j that the orthogonality

conditions (23) are replaced by

(54)
	

aitp = 0 for all tys,p (s-1,s,s+1,t-1,t,t+1).

In addition, we assume for all i that (24) is replaced by the weaker condition

(55)	qq
	

qq

	

^itp 	 ^iap for all t	 s,p (s— 1,s,s+ 1,t— 1,t,t+ 1).

It then follows from (21) and (22) that qip is a valid IV for (qit — qia) for all p

(s — 1,s,s-}- 1,t — 1,t,t-{- 1)•

With these modifications, we can proceed as above when we only redefine the

`permissible' combinations of (p, t, s) accordingly. In the equation defining the simple

Iv estimators of e , Ft,' p , (28), we should for instance replace

t, s, p = 1,...,T, t > s, p 	(t, s)

by

t,s,p= 1,...,T, t> s, p	 (s-1,s,s -}- 1,t - 1,t,t -}- 1) •

Still there are S = T(T — 1) /2 different ways of picking two years from the T, but

the number of admissible IV's corresponding to each pair is reduced. In some cases,

no such IV's may exist. If T = 3, the vectors zi21, zî32, and zi31 are all empty, which
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zî21 = (qj4, qj5),

zî54 = (qii,qi2),

zî 51 = (q13 ) ,

zî32 = (q15),	 zî43 = (q11),

z131 = (qj5), Z153 = (

means that R = 0, i.e. no permissible IV's and no 2SLS estimator exist. For T = 4,

we find that zi32, zî31, zî42, and zî41 are all empty, and

z= 21 = (qj4), zî43 = (qj i) ,

which means that R = 2, and hence the only two existing (consistent) year specific

IV estimators, which coincide with the period specific 2SLS estimators, would be

	2SLS^ IV 	2SLS  ^ IV_
e21 	 — c 21,47	 c43	 — ^43,1'

For T = 5 , zî42, zî41, and zî52 are empty, and

which means that the number of simple IV estimators is R = 9 and the number of

existing period specific 2SLS estimators is 7 in this case. This changes the contents

and reduces the dimensions of the vectors zit, and the matrices Z i and Z, but the

vectors qira, xita, Qi, X i , Q, and X are left unchanged. Otherwise, the IV, the 2SLS,

and the GMM estimation procedures can be performed as described in sections 4.a

— 4.e.

The above procedures can be extended, rather straightforwardly, to models with

errors in output specified as MA processes of second or higher order and, corre-

spondingly, with higher order "cross autocorrelation" between njits and q t allowed

for. The higher the order of the processes, however, the more IV's are eliminated

by using the orthogonality condition (22). If, for instance, T = 5, while the error is,

for each i, a MA(2) process, then not only zî42, zî41, and z152 are empty [as in the

MA(1) case], but also z132, z143, zî31, zî53, and zî51. The only non-empty zits vectors

would in this case be

Z121 = (q15), z154 = (qji).

This means that both the number of simple IV estimators and the number of existing

period specific 2SLS estimators is R = 2 in this case. As before, there is one 1-step

and one 2-step GMM estimator.

In the estimation procedures described so far, leads and lags are treated sym-

metrically when selecting the instruments. If only predetermined IV's a re allowed,
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the number of possible period specific IV and 2SLS estimators are reduced. Then

we should, for instance, for the case with no autocorrelation replace

t, s, p = 1, . . . , T, t > s, p 	(t, ․ )

by

t,s,p= 1 , ...,T, t >s> p,

and for the MA(1) case replace

t,s,p = 1,...,T, t > s, p (s— 1,s,s -}- 1,t —144+1)

by

t, s, p = 1, ... , T, t > s, s — 1 > p.

In general, we should, for the MA(q) case replace

t,s,p= 1,...,T, t > s, Is
 —

I > q, It—pi> q

by

t,s,p = 1,...,T, t> s , s— p > q.

If the errors in output, for all i, follow an AR process, regardless of its order,

then they will — since any AR process has an infinite memory — have a non-zero

autocorrelation of any order. Consequently, the orthogonality condition (23) will

not be satisfied for any (finite) t, s, or p, which means that no valid IV will exist.

Hence, none of the estimation procedures described above will be feasible, i.e. they

will all produce inconsistent estimators.

5 Data and empirical results

5.a Data description

We have extracted our samples from the annual manufacturing census carried out by

Statistics Norway. The sample is balanced and covers the years 1975 — 1982. This

early sample period was selected because the data for these years contain information

about labour inputs broken down in more detail than for later years. In particular,

our data set for these T = 8 years contains separate information about the number

of blue versus white collar workers employed in each plant (firm), and the working

hours for blue collar workers.
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From this large data set two industries were chosen: Textiles (ISIC 32) and

Chemicals (ISIC 35). These are the 2-digit industries with the smallest and largest

plants in Norwegian manufacturing, respectively. In this sense they span the Nor-

wegian population of manufacturing plants. Plants with less than five employees

are not included in the sample. We have done some moderate cleaning: Plants were

removed from the sample if they had a log of value added per worker deviating by

more than 300 percent from the industry-time median of this variable. We used

the same trimming criteria based on the log of value added per unit of capital. The

trimming reduced our sample by 4 percent in Textiles and by 1 percent in Chemicals,

giving a number of firms included equal to M = 270 and M = 247, respectively.

Our data set reports the numbers of white collar and blue collar workers as

separate variables, as mentioned above. The number of working hours for blue

collar workers is another labour input variable. Material input, including energy,

is the final factor considered in this study. Our output measure is gross output,

including net subsidies. All variables are measured as logarithmic deviations from

the time (industry) average values, as explained and discussed in section 3.

5.b Results from year specific OLS and 2SLS estimation

Our first set of estimates is presented in tables 1 — 8. As indicated in the second

column, the different rows correspond to separate differences and years (t and s).

Rows 1 — 7 present the seven estimates based on one year differences, rows 8 to

13 present the six estimates based on two year differences, and so on. Both OLS

and two IV (2SLS) estimators [cf. (36)] are reported. The instruments used for the

two IV (2SLS) estimators are consistent with respectively (i) Non-autocorrelated

errors in the regressor [i.e. log-differenced output, cf. (23) and (54)] and no "cross-

autocorrelation" between hit, and q;t , and (ii) MA(1) errors in the regressor, and

first (but not higher) order "cross-autocorrelation" between eta and q t . The stan-

dard error estimates reported in these eight tables are not robust with respect to

heteroskedasticity. They are likely to exaggerate the precision of the estimates.

Some general patterns are visible throughout the various sets of estimates, as

we consider the different factors of production and the two industries: (i) At least

among the differences up to five years (rows 1 — 25), the OLS estimates are higher

the larger is the number of years over which the differences are taken. This pattern

suggests that the errors-in-variables problem might be smaller the larger is this

number of years spanning the difference. One interpretation of this result is that
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the output variables are non-stationary at the firm level (even after subtracting

the year means (!)), while the measurement errors are stationary. The increases in

the estimates disappear in general when we consider differences beyond five years

(rows 26 - 28). (ii) The IV estimates are higher than the OLS estimates in most

cases. The latter finding is consistent with the presence of errors-in-variables in our

equation, the effect of which vanish as we instrument its regressor. Some of the  IV

estimates, however, are very imprecise, as the instruments are poor for the years at

the endpoints of our sample. [See, for instance, the results for (t, s) = (1976, 1975)

and (t, s) = (1982, 1981) when considering the one year differences.] Lack of precision

is in particular a problem for those IV estimates which are consistent with MA(1)

errors in output. (iii) There are no systematic differences between the two sets

of IV estimates. (iv) Finally, there are major differences between the magnitude

of the estimated input response coefficients e corresponding to different factors of

production. Below, we take a closer look at these differences.

Materials

For material inputs, we find estimates that are, on the whole, close to one, see

tables 1 (Textiles) and 5 (Chemicals). There is a tendency for the OLS estimates

to increase as we move to longer differences (i.e. differences taken over a larger

number of years) in the Textile industry, but not for Chemicals. For Textiles, the

IV estimates are generally higher than the OLS estimates, while we do not find a

similar pattern for the Chemical industry. We can conclude from this that there are

some errors (transitory components) in our output variable determining the material

input response in the Textile industry, but not in the Chemical industry. The results

indicate that material input moves in proportion to output in the Chemical industry,

while it responds more than in strict proportion to changes in output in the Textile

industry, when we focus on the long differences for the OLS estimates or for the IV

estimates (cf. rows 26 -- 28 in tables 1 and 5). However, the response is not far from

strict proportionality.

When interpreting these results, one should recall, however, that we have de-

ducted the time means from both variables in the input equation. This eliminates

any additive time effects, inter alia the major part of the price (substitution) effects

and effects of the technological change, as discussed in section 2. Clearly, we do

not suggest that material input and output have moved proportionally if we take

account of technical change and factor substitution.
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Blue collar worker hours

Let us then turn to tables 2 (Textiles) and 6 (Chemicals). Clearly, the estimated

response coefficients are much smaller for blue collar worker hours than for materials.

There is a substantial increase (about 50 percent) in the estimated coefficients as

we move from one to seven years differences in the OLS regressions. Such increases

are visible for both industries. The long difference OLS estimates are close to the

IV estimates. We find these long difference OLS and the IV estimates to cluster

around 0.7 for Textiles, and around 0.5 — 0.6 for Chemicals. These estimates may

be interpreted as corresponding to strong "increasing returns to scale".

Finding strong "increasing returns to scale" for blue collar worker hours is sur-

prising and perhaps disappointing. Griliches and Hausman (1986), using panel data

for N = 1242 U.S. manufacturing firms observed over T = 6 years, estimated the

input response of labour to be closer to unity — around 0.9 when using 2SLS and

GMM to pay regard to , errors-in-variables. They suggested that the presence of

overhead labour could explain the slight tendency to increasing returns to scale in

their estimated input equations. Blue collar worker hours may be considered as

a measure of labour input (almost) without overhead labour. But we do not find

anything close to an input response elasticity equal to one for this measure of labour

input. Consequently, after we have removed overhead labour from our measure of

the labour input and have taken account of measurement errors, the "increasing

returns to scale" puzzle remains .

The large differences between the OLS estimates from short and from long dif-

ferences suggest the presence of considerable errors-in-variables, since the long dif-

ference estimates may have a smaller noise/signal ratio than the short difference

estimates. However, the above results indicate that there is not much measurement

error, or noise, in the narrow sense, in our output variable. Measurement errors

such as misreporting and punching errors should show up in the estimated input

response coefficients not only for labour, but also for materials presented in tables

1 and 5. Rather, the noise seems to reflect the differences between the firms' input

responses to "temporary" versus "permanent" changes in output, cf. section 1. Our

interpretation is that the firms mainly change their labour input to what they con-

sider as permanent changes in output. The observed changes in output include both

temporary and permanent changes, and consequently show a stronger year-to-year

variation than the permanent changes.

28



The number of blue collar workers

We have considered the number of blue collar workers as an alternative measure of

labour input. The estimated year specific input response coefficients are given in

tables 3 and 7. For brevity, we will drop the term "blue collar" in what follows. It is

interesting to compare the estimated response coefficients for manhours with those

of the number of workers. Such a comparison indicates the extent to which firms

use changes in hours per worker to adjust to output changes.

The estimated response coefficient for the number of workers exhibits much the

same pattern as the response coefficient for worker hours. In particular, they are

similar if we focus on the long difference OLS estimates or on the IV estimates. Not

surprisingly, we find that the firms do not adjust the number of hours per workers

when there are permanent changes in output. By looking at the OLS estimates for

one year differences, we find that worker hours respond more strongly to transitory

changes in output than do the number of workers. The means of the permanent

and the temporary input response coefficients are 0.54 and 0.39, respectively, for

Textiles, 0.28 and 0.22, respectively, for Chemicals.

To summarize: First, comparing the OLS results for worker hours and the num-

ber of workers, it is evident that there is a stronger tendency to labour hoarding

in the number of workers than in the number of working hours. Second, when we

compare the OLS results for short and long differences, or the IV estimates, we find

clear evidence of labour hoarding in both worker hours and the number of workers.

Finally, considering the long differences OLS and the IV estimates, we find similar

responses in the number of workers and the number of working hours, to permanent

changes in output. Thus, in the long run, the length of the working day is not a

margin the (individual) firm uses to adjust to changes in output. None of these

findings are surprising, but it is reassuring that they show up in our data.

The number of white collar workers

Tables 4 and 8 present the corresponding estimated input response coefficients for

the number of white collar workers. Its seems reasonable that this measure of labour

input responds very differently to temporary and to permanent changes in output.

This is confirmed when we compare the OLS estimates for the short and the long

differences, or if we compare the OLS and the IV estimates for the short differences.

The average response coefficient is as low as 0.15 for Textiles and 0.17 for Chemicals

when we focus on one year differences in the OLS regressions only. These estimates

29



reveal very modest responses to observed changes in output. Turning to seven years

differences, we find that the OLS estimates are 0.48 and 0.44, respectively. We

obtain similar estimates from the IV procedures.

The IV estimates based on the assumption of non-autocorrelated, i.e. MA(0),

measurement errors increase strongly as we move from short (one year) to gradually

longer differences for the Textile industry. This pattern is similar to the pattern of

the OLS estimates. One interpretation we may give of this finding is that instruments

based on the assumption of MA(0) errors do not give consistent estimates. These N

estimates, assuming MA(0) errors, suffer from a similar bias as the OLS estimates.

The estimates based on the MA(1) specification are less sensitive to the "length" of

the differences.

5.c Results based on the GMM for all years combined

Tables 9 and 10 report the main results obtained when we pool the data set un-

derlying all the estimates in tables 1 — 8, again considering each factor or factor

input measure separately and use the 1-step GMM estimator as given by (43), and

the 2-step GMM estimator as given by (51) — (53). The Textile industry favours

results based on the choice of instrumental variables valid under the assumption of

a MA(1) process for the error term in output. This is in accordance with the results

presented above. For most of the estimated input equations for Chemicals, however,

the MA(0) specification seems to be an acceptable simp lification. These conclusions

follows from Hausman tests [Hausman (1978)]; the test statistics are presented in

table 11. The GMM estimates assuming a MA(0) process for the error term, are

more efficient than estimates based on a MA(1) process, if the former is correct.

We can therefore use Hausman's difference formula for the vari ance of the difference

between the estimators. A MA(1) specification of the error structure does not seem

implausible since it could be generated by differences in the dating of the inputs and

the output.

In the Textile industry (table 9), we find an estimated input response coefficient

significantly less than one, except for materials. Our estimates indicate very similar

input responses for changes in blue collar worker hours and for changes in the number

of blue collar workers, which is reasonable, as remarked above, since it seems unlikely

that firms adjust the number of hours per worker in response to permanent changes in

output. For white collar workers, the GMM estimate of the input response coefficient

is very low (around 0.4). When we compare the different input response elasticities,
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our results give a clear indication of a non-homothetic technology [confer (7) - (8)

and (9) - (11) and our related comments in section 2.] This is not only true for

materials as compared with labour input. The difference in the estimated input

response is also striking when we compare blue and white collar workers. The low

response of white collar workers to output changes confirm the view that this kind

of labour input is largely a fixed factor. Its small estimated response coefficient

is interesting when we recall that our latent variables modelling in combination

with instrumental variable procedures (to a large extent) eliminates the effects of

temporary changes in output. The low input response for this kind of labour was

also recognized in Griliches and Hausman (1986, p. 108). One of the interesting

results of our study is that removing this (approximately fixed) part of the labour

input, and focusing on blue collar worker hours only, did not pull the estimated

(permanent, long-term) input response coefficient very close to unity. Consequently,

the increasing returns to scale puzzle remains, even when we consider only the

response of (working hours for) blue collar workers to permanent changes in output.

The precision of the GMM estimates reported in tables 9 and 10 (estimated as

explained in section 4.d) is quite good. The efficiency gains when using the pooled

data set for all the T = 8 years, assuming MA(1) measurement errors (confer the

standard error estimates in the last column of tables 1 - 8), are  substantial. This

conclusion is strengthened when we recall that the year specific standard errors

estimates reported in tables 1 - 8 probably underestimate the correct standard

errors, since they, in contrast to those in tables 9 and 10, are not corrected for

heteroskedasticity.

Turning to the results for the Chemical industry (table 10), we find very low

estimates of the input response coefficients. As for Textiles, the only exception is

material input. The preferred estimates are based on the assumption of MA(0)

measurement errors, except for blue collar worker hours. As for Textiles, we find

a very similar input response for blue collar hours and the number of blue collar

workers. Again, the input response for white collar workers is much lower than for

blue collar workers.

6 Concluding remarks

In this paper, we have been concerned with the estimation of firms' input response -

in particular with respect to labour input - to changes in the output volume, within
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the framework of a single equation log-linear errors-in-variables model. Our main

argument for using this framework for our input response equations is not only the

potential existence of measurement errors in outputs and inputs in the narrow sense,

but also the hypothesis that the firms adjust their (labour) input only to output

changes which they consider permanent, not to temporary changes, both permanent

and temporary changes being treated as latent variables in the econometric model.

A basic idea of our estimation procedure is to use as IV's for the observed log-

differenced output the observed log of output in level form for other years than those

to which the differences refer. A problem with this approach is that the IV's in level

form thus constructed may be weak instruments, in the sense that they are weakly

correlated with the differenced variables for which they are used as instruments,

while being potentially correlated with the composite error term(s) of the input

response equation(s) under estimation. If a suggested IV is weakly correlated with

the variable in an equation for which it is intended to serve as an instrument, it

may be shown that even a small correlation between the disturbance/error term

and the suggested IV may give estimates which are severely biased. [Cf. Bound,

Jaeger, and Baker (1993)]. In our empirical application, leads and lags are always

treated symmetrically when selecting the instruments. An alternative approach

might be to use predetermined output variables as IV's for differenced outputs only.

This is an issue which is related to the issue of weak versus strong instruments.

Using only predetermined instruments might reduce the problem of correlation with

the disturbance term, but the power of the instruments will also decline (often

substantially according to our experience). Furthermore, the choice of instruments

should be related to the assumptions which are made with respect to the expectation

mechanism (for instance adaptive or rational expectations) for future output  changes

which governs the firms' observed factor adjustment in each year. These topics

clearly need further research.

Conclusions which can be tentatively drawn from the results in section 5 are the

following: (i) Despite our focus on the permanent input adjustment, there seems

to be "increasing returns to scale. This tendency is clearly seen for the labour

input. There are, however, substantial differences between the response coefficients

for different measures of labour. (ii) Because of the substantial differences between

the response coefficients between labour and materials on the one hand and between

different kinds of labour input on the other, the common a priori assumption of a

homothetic technology does not seem to be justified. (iii) The relationship between
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our estimated `input response coefficients' and the underlying scale elasticity in the

firms' production technology is not obvious.

The latter issue definitely deserves a closer examination, maybe within the frame-

work of a modelling and estimation of a complete system of factor equations derived

explicitly from the hypothesis of price taking and cost-minimizing firms with a non-

homothetic technology. Throughout, we have `swept away' from the input and output

variables all additive time specific components, by measuring the variables (in log

form) from their year specific means. An alternative approach is to attempt to model

explicitly the time effect by means of a small number of parameters as an integral

part of the model structure, instead of calculating and deducting T = 8 year specific

means for each observable variable `outside of' the model.
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Table 1. Textiles (ISIC 32). OLS and IV estimates of the materials output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.983 0.977 1.019
(0.052) (0.184) (0.194)

(2) 1976-77 0.899 1.062 1.250
(0.050) (0.087) (0.378)

(3) 1977-78 0.974 1.108 1.144
(0.046) (0.074) (0.118)

(4) 1 978-79 0.891 1.031 0.733
(0.047) (0.094) (0.144)

(5) 1979-80 0.996 1.138 0.903
(0.045) (0.075) (0.118)

(6) 1980-81 1.011 1.025 1.043
(0.040) (0.066) (0.119)

(7) 1981-82 0.991 1.158 1.135
(0.028) (0.245) (0.244)

(8) 1975-77 0.981 1.045 0.600
(0.048) (0.112) (0.457)

(9) 1976-78 1.044 0.972 1.244
(0.041) (0.064) (0.279)

(10) 1977-79 0.970 1.078 0.959
(0.044) (0.076) (0.097)

(11) 1978-80 0.983 1.045 1.003
(0.036) (0.058) (0.078)

(12) 1979-81 1.060 1.048 0.925
(0.040) (0.059) (0.142)

(13) 1980-82 1.002 0.990 1.028
(0.031) (0.064) (0.125)

(14) 1975-78 1.036 1.054 1.137
(0.044) (0.058) (0.399)

(15) 1976-79 0.943 1.038 0.975
(0.046) (0.057) (0.195)

(16) 1977-80 1.016 1.044 1.081
(0.033) (0.042) (0.055)

(17) 1978-81 1.037 1.052 1.195
(0.036) (0.047) (0.369)

(18) 1979-82 0.991 1.090 0.921
(0.033) (0.048) (0.141)

(19) 1975-79 0.955 1.124 1.133
(0.043) (0.064) (0.124)

(20) 1976-80 1.042 1.047 1.087
(0.034) (0.031) (0.075)

(21) 1977-81 1.068 1.097 1.043
(0.034) (0.041) (0.102)

(22) 1978-82 1.009 1.040 1.029
(0.031) (0.043) (0.073)

(23) 1975-80 1.064 1.057 1.165
(0.036) (0.046) (0.071)

(24) 1976-81 1.061 1.105 0.301
(0.033) (0.038) (0.513)

(25) 1977-82 1.050 1.077 1.060
(0.028) (0.037) (0.056)

(26) 1975-81 1.080 1.114 1.061
(0.036) (0.043) (0.081)

(27) 1976-82 1.063 1.068 1.102
(0.028) (0.035) (0.069)

(28) 1975-82 1.073 1.098 1.127
(0,032) (0.040) (0.055)
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Table 2. Textiles (ISIC 32). OLS and IV estimates of the worker hours output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.386 0.517 0.565
(0.057) (0.201) (0.214)

(2) 1976-77 0.536 0.636 1.353
(0.061 (0.104) (0.545)

(3) 1977-78 0.442 0.596 0.512
(0.052) (0.085) (0.132)

(4) 1978-79 0.569 0.742 0.660
(0.054) (0.110) (0164)

(5) 1979-80 0.386 0.467 0.529
(0.053) (0.088) (0.140)

(6) 1980-81 0.635 0.726 0.431
(0.047) (0.078) (0.145)

(7) 1981-82 0.734 0.992 1.054
(0.051) (0.433) (0.448)

(8) 1975-77 0.452 0.577 -0.012
(0.059) (0.139) (0.563)

(9) 1976-78 0.581 0.533 0.660
(0.045) (0.070) (0.292)

(10) 1977-79 0.596 0.734 0.585
(0.055) (0.096) (0.122)

(11) 1978-80 0.451 0.590 0.645
(0.046) (0.075) (0.103)

(12) 1979-81 0.651 0.665 0.397
(0.047 (0.069) (0.170)

(13) 1980-82 0.785 1.033 0.703
(0.052) (0.133) (0.211)

(14) 1975-78 0.525 0.621 0.757
(0.048) (0.065) (0.454)

(15) 1976-79 0.630 0.664 0.526
(0.050) (0.061 (0.212)

(16) 1977-80 0.514 0.581 0.589
(0.051) "(0.066) (0.085)

(17) 1978-81 0.665 0.684 0.473
(0.046) (0.060) (0.468)

(18) 1979-82 0.782 0.837 0.550
(0.049) (0.071) (0.215)

(19) 1975-79 0.581 0.756 0.658
(0.050) (0.075) (0.140)

(20) 1976-80 0.585 0.635 0.543
(0.047) (0.056) (0.102)

(21) 1977-81 0.608 0.630 0.921
(0.051) (0.061) (0.163)

(22) 1978-82 0.765 0.836 0.680
(0.048) (0.067) (0.114)

(23) 1975-80 0.600 0.656 0.700
(0.047) (0.060) (0.091)

(24) 1976-81 0.652 0.678 0.561
(0.045) (0.052) (0.406)

(25) 1977-82 0.710 0.716 0.711
(0.049 (0.065) (0.097)

(26) 1975-81 0.654 0.697 0.642
(0.045) (0.054) (0.103)

(27) 1976-82 0.740 0.757 0.622
(0.046) (0.056) (0.122)

(28) 1975-82 0.748 0.735 0.704
(0.046) (0.059) (0.080)
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Table 3. Textiles (ISIC 32). OLS and IV estimates of the number of workers output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.361 0.427 0.469
(0.053) (0.185) (0.196)

(2) 1976-77 0.459 0.554 0.865
(0.057) (0.096) (0.427)

(3) 1977-78 0.341 0.474 0.513
(0.042) (0.068) (0.109)

(4) 1978-79 0.387 0.659 0.687
(0.048 (0.101) (0.154)

(5) 1979-80 0.189 0.267 0.318
(0.038) (0.062) (0.100)

(6) 1980-81 0.533 0.621 0.393
(0.049) (0.080) (0.146)

(7) 1981-82 0.612 0.645 0.724
(0.049) (0.397) (0.405)

(8) 1975-77 0.389 0.558 -0.245
(0.056) (0.132) (0.582)

(9) 1976-78 0.510 0.453 0.320
(0.045) (0.069) (0.298)

(10) 1977-79 0.438 0.674 0.742
(0.043) (0.078) (0.104)

(11) 1978-80 0.433 0.621 0.660
(0.046) (0.076) (0.105)

(12) 1979-81 0.426 0.494 0.157
(0.043) (0.064) (0.160)

(13) 1980-82 0.682 0.921 0.608
(0.052) (0.133) (0.212)

(14) 1975-78 0.474 0.541 0.308
(0.047) (0.064) (0.439)

(15) 1976-79 0.505 0.606 0.423
(0.049 (0.061) (0.208)

(16) 1977-80 0.465 0.565 0.628
(0.043) (0.057) (0.074)

(17) 1978-81 0.605 0.610 0.029
(0.048) (0.063) (0.587)

(18) 1979-82 0.614 0.667 0.318
(0.048) (0.069) (0.217)

(19) 1975-79 0.478 0.676 0.715
(0.048 (0.073) (0.096)

(20) 1976-80 0.536 0.584 0.522
(0.044) (0.053) (0.096)

(21) 1977-81 0.549 0.582 0.873
(0.047) (0.057) (0.153)

(22) 1978-82 0.693 0.779 0.638
(0.049) (0.069 (0.117)

(23) 1975-80 0.550 0.592 0.631
(0.046) (0.057) (0.088)

(24) 1976-81 0.583 0.621 0.655
(0.046) (0.054) (0.415)

(25) 1977-82 0.646 0.677 0.672
(0.048) (0.063) (0.095)

(26) 1975-81 0.598 0.630 0.584
(0.046) (0.055) (0.104)

(27) 1976-82 0.661 0.690 0.636
(0.048 (0.058 (0.115)

(28) 1975-82 0.676 0.673 0.638
(0.047 (0.059 (0.080)
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Table 4. Textiles (ISIC 32). OLS and IV estimates of the number of white collar workers output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.435 0.233 0.276
(0.084) (0.297) (0.312)

(2) 1976-77 0.126 0.312 0.744
(0.072) (0.123) (0.566)

(3) 1977-78 0.103 0.171 0.415
(0.086) (0.138) (0.222)

(4) 1978-79 0.050 0.400 0.209
(0.072) (0.149) (0.217)

(5) 1979-80 0.145 0.215 0.481
(0.051) (0.084) (0.142)

(6) 1980-81 0.153 0.271 0.278
(0.053) (0.088) (0.159)

(7) 1981-82 0.312 0.307 0.310
(0.054) (0.438) (0.443)

(8) 1975-77 0.428 0.631 1.383
(0.078) (0.184) (0.838)

(9) 1976-78 0.175 0.525 1.182
(0.069 (0.122) (0.600)

(10) 1977-79 0.245 0.353 0.501
(0.075) (0.128) (0.168)

(11) 1978-80 0.195 0.299 0.450
(0.069) (0.111) (0.154)

(12) 1979-81 0.211 0.313 0.392
(0.050) (0.073) (0.175)

(13) 1980-82 0.293 0.383 0.301
(0.050) (0.105) (0.203)

(14) 1975-78 0.461 0.411 2.067
(0.073) (0.098) (1.110)

(15) 1976-79 0.300 0.460 0.592
(0.069) (0.086) (0.303)

(16) 1977-80 0.311 0.361 0.480
(0.072) (0.094) (0.122)

(17) 1978-81 0.230 0.399 0.639
(0.063) (0.084) (0.669)

(18) 1979-82 0.311 0.351 0.509
(0.051) (0.073) (0.218)

(19) 1975-79 0.478 0.432 0.771
(0.063) (0.093) (0.184)

(20) 1976-80 0.386 0.505 0.565
(0.067) (0.080) (0.147)

(21) 1977-81 0.300 0.356 0.564
(0.066) (0.079) (0.204)

(22) 1978-82 0.343 0.361 0.613
(0.057) (0.079) (0.141)

(23) 1975-80 0.502 0.520 0.594
(0.065) (0.082) (0.125)

(24) 1976-81 0.378 0.467 1.024
(0.059) (0.069) (0.637)

(25) 1977-82 0.352 0.399 0.468
(0.061) (0.080) (0.121)

(26) 1975-81 0.497 0.452 0.519
(0.062) (0.074) (0.141

(27) 1976-82 0.419 0.459 0.546
(0.057) (0.069) (0.138)

(28) 1975-82 0.458 0.507 0.484
(0.058) (0.074) (0.100)
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Table 5. Chemicals (ISIC 35). OLS and IV estimates of the materials output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.838 0.745 0.773
(0.032) (0.116) (0.115)

(2) 1976-77 0.809 1.032 0.734
(0.041) (0.127) (0.172)

(3) 1977-78 0.910 0.972 1.030
(0.034) (0.064) (0.089)

(4) 1978-79 0.928 0.960 1.042
(0.035) (0.057) (0.081)

(5) 1979-80 0.902 1.037 1.209
(0.055) (0.115) (0.184)

(6) 1980-81 1.030 0.886 0.898
(0.054) (0.090) (0.223)

(7) 1981-82 0.983 0.564 0.542
(0.037) (0.389) (0.397)

(8) 1975-77 0.899 1.083 1.099
(0.038) (0.178) (0.239)

(9) 1976-78 0.982 1.179 0.608
(0.042) (0.109) (0.381)

(10) 1977-79 0.942 1.029 1.028
(0.030) (0.047) (0.057)

(11) 1978-80 1.023 1.078 1.125
(0.037) (0.064) (0.085)

(12) 1979-81 0.851 0.900 1.299
(0.049) (0.084) (0.547)

(13) 1980-82 0.970 0.934 0.938
(0.038) (0.073) (0.219)

(14) 1975-78 0.933 0.958 0.611
(0.033) (0.070) (0.250)

(15) 1976-79 0.972 1.051 0.776
(0.034) (0.048) (0.256)

(16) 1977-80 1.014 1.056 1.009
(0.032) (0.041) (0.064)

(17) 1978-81 0.961 0.962 0.027
(0.038) (0.052) (0.859)

(18) 1979-82 0.905 0.971 2.054
(0.039) (0.063) (1.560)

(19) 1975-79 0.937 0.993 0.992
(0.029) (0.054) (0.063)

(20) 1976-80 0.998 1.109 0.977
(0.035 (0.054) (0.083)

(21) 1977-81 0.985 1.016 0.978
(0.032) (0.042) (0.068)

(22) 1978-82 1.013 1.024 1.066
(0.033) (0.046) (0.072)

(23) 1975-80 0.937 1.039 1.030
(0.030) (0.046) (0.059)

(24) 1976-81 1.002 1.006 0.955
(0.037) (0.046) (0.097)

(25) 1977-82 1.012 1.058 0.987
(0.030) (0.038) (0.056)

(26) 1975-81 0.929 1.004 1.039
(0.031) (0.046) (0.059)

(27) 1976-82 1.012 1.053 0.932
(0.031) (0.043) (0.075)

(28) 1975-82 0.941 1.030 1.080
(0.028) (0.041) (0.058)
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MA(1)

0.022
(0.135)

0.098
(0.238)

0.185
(0.144)

0.412
(0.116)

0.381
(0.184)

-0.221
(0.303)

0.424
(0.519)

-0.462
(0.416)

0.677
(0.442)

0.316
(0.085)

0.432
(0.118)

0.887
(0.576)

0.676
(0.284)

0.094
(0.317)

0.486
(0.381)

0.492
(0.090)

-0.357
(0.895)

1.092
(1.088)

0.506
(0.096)

0.568
(0.119)

0.341
(0.104)

0.605
(0.108)

0.601
(0.084)

0.417
(0.140)

0.515
(0.087)

0.489
(0.084)

0.600
(0.116)

0.642
(0.086)

Tabte 6. Chemicals (ISIC 35). OLS and IV estimates of the worker hours output relationship

Coefficient (standard error)

Consistent IV estimates

Years for difference OLS MA(0)

(1) 1975-76 0.123 -0.001
(0.037) (0.136)

(2) 1976-77 0.227 0.446
(0.057) (0.170)

(3) 1977-78 0.421 0.602
(0.054) (0.103)

(4) 1 978-79 0.291 0.319
(0.051) (0.083)

(5) 1979-80 0.213 0.462
(0.058) (0.123)

(6) 1980-81 0.384 0.533
(0.062) (0.105)

(7) 1981-82 0.603 0.446
(0.060) (0.515)

(8) 1975-77 0.360 0.163
(0.045) (0.211)

(9) 1976-78 0.630 0.895
(0.055) (0.145)

(10) 1977-79 0.355 0.455
(0.046) (0.070)

(11) 1978-80 0.390 0.442
(0.052) (0.090)

(12) 1979-81 0.427 0.677
(0.052) (0.093)

(13) 1980-82 0.620 0.620
(0.049) (0.095)

(14) 1975-78 0.349 0.651
(0.047) (0.108)

(15) 1976-79 0.526 0.638
(0.054) (0.075)

(16) 1977-80 0.410 0.511
(0.045) (0.058)

(17) 1978-81 0.463 0.495
(0.052) (0.071)

(18) 1979-82 0.578 0.677
(0.048) (0.077)

(19) 1975-79 0.372 0.673
(0.043) (0.088)

(20) 1976-80 0.564 0.672
(0.050) (0.078)

(21) 1977-81 0.426 0.565
(0.048) (0.064)

(22) 1978-82 0.610 0.618
(0.049) (0.068)

(23) 1975-80 0.453 0.660
(0.042) (0.066)

(24) 1976-81 0.645 0.661
(0.051) (0.064)

(25) 1977-82 0.573 0.597
(0.046) (0.058)

(26) 1975-81 0.427 0.687
(0.044) (0.071)

(27) 1976-82 0.698 0.745
(0.048) (0.066)

(28) 1975-82 0.558 0.704
(0.042) (0.063)
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Table 7. Chemicals (ISIC 35). OLS and IV estimates of the number of workers output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.162 -0.011 0.001
(0.035) (0.130) (0.129)

(2) 1976-77 0.102 0.369 0.201
(0.054) (0.164) (0.223)

(3) 1977-78 0.296 0.535 0.289
(0.049) (0.095) (0.124)

(4) 1978-79 0.220 0.265 0.371
(0.051) (0.082) (0.116)

(5) 1979-80 0.173 0.408 0.266
(0.053) (0.112) (0.167)

(6) 1980-81 0.388 0.618 0.068
(0.057) (0.098) (0.251)

(7) 1981-82 0.539 0.107 0.079
(0.062) (0.577) (0.585)

(8) 1975-77 0.288 0.301 -0.151
(0.044) (0.201) (0.316)

(9) 1976-78 0.611 0.994 0.833
(0.056) (0.153) (0.461

(10) 1977-79 0.251 0.402 0.273
(0.044) (0.068) (0.081

(11) 1978-80 0.319 0.409 0.429
(0.051) (0.089) (0.116)

(12) 1979-81 0.412 0.633 0.778
(0.050) (0.089) (0.532)

(13) 1980-82 0.598 0.694 0.948
(0.050) (0.096) (0.314)

(14) 1975-78 0.403 0.646 0.294
(0.044) (0.099) (0.285)

(15) 1976-79 0.536 0.604 0.365
(0.052) (0.071) (0.370)

(16) 1977-80 0.299 0.438 0.370
(0.045) (0.058) (0.090)

(17) 1978-81 0.406 0.463 -0.467
(0.052) (0.071) (0.927)

(18) 1979-82 0.541 0.654 0.170
(0.049) (0.078) (1.019)

(19) 1975-79 0.364 0.709 0.539
(0.043) (0.089) (0.096)

(20) 1976-80 0.546 0.605 0.448
(0.049) (0.075) (0.117)

(21) 1977-81 0.347 0.484 0.291
(0.045) (0.061) (0.098)

(22) 1978-82 0.570 0.607 0.587
(0.050) (0.070) (0.111)

(23) 1975-80 0.434 0.638 0.604
(0.042) (0.067) (0.085)

(24) 1976-81 0.626 0.632 0.314
(0.050) (0.063) (0.142)

(25) 1977-82 0.489 0.565 0.510
(0.046) (0.058) (0.086)

(26) 1975-81 0.433 0.680 0.501
(0.043) (0.069) (0.082)

(27) 1976-82 0.674 0.733 0.536
(0.049) (0.067) (0.119)

(28) 1975-82 0.563 0.704 0.672
(0.042) (0.063) (0.085)
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Table 8. Chemicals (ISIC 35). ØLS and IV estimates of the number of white collar workers output relationship

Years for difference

Coefficient (standard error)

OLS

Consistent IV estimates

MA(0) MA(1)

(1) 1975-76 0.103 -0.248 -0.244
(0.050) (0.196) (0.196)

(2) 1976-77 0.178 0.194 -0.600
(0.076) (0.219) (0.373)

(3) 1977-78 0.159 0.321 0.481
(0.047) (0.090) (0.132)

(4) 1978-79 0.276 0.258 0.467
(0.056) (0.090) (0.128)

(5) 1979-80 0.123 0.258 0.461
(0.103) (0.216) (0.328)

(6) 1980-81 0.045 0.261 -0.315
(0.080) (0.135) (0.342)

(7) 1981-82 0.256 1,355 1.411
(0.073) (0.862) (0.886)

(8) 1975-77 0.400 0.437 0.173
(0.059) (0.268) (0.366)

(9) 1976-78 0.275 0.579 0.023
(0.078) (0.201) (0.633)

(10) 1977-79 0.195 0.485 0.362
(0.050) (0.081) (0.094)

(11) 1978-80 0.428 0.692 0.816
(0.072) (0.129) (0.173)

(12) 1979-81 0.294 0.498 -0.541
(0.089) (0.155) (1.002)

(13) 1980-82 0.223 0.257 0.102
(0.070) (0.136) (0.409)

(14) 1975-78 0.410 0.271 -0.184
(0.059) (0.127) (0.449)

(15) 1976-79 0.342 0.292 0.864
(0.070) (0.096) (0.542)

(16) 1977-80 0.370 0.595 0.635
(0.064) (0.084) (0.132)

(17) 1978-81 0.462 0.495 -0.264
(0.074) (0.101) (1.059)

(18) 1979-82 0.310 0.385 0.737
(0.077) (0.123) (1.536)

(19) 1975-79 0.341 0.335 0.121
(0.058) (0.107) (0.129)

(20) 1976-80 0.393 0.529 0.591
(0.078) (0.120) (0.187)

(21) 1977-81 0329 0.627 0.540
(0.064) (0.088) (0.140)

(22) 1978-82 0.406 0.446 0.765
(0.068) (0.095) (0.158)

(23) 1975-80 0.451 0.521 0.343
(0.069) (0.104) (0.134)

(24) 1976-81 0.467 0.463 0.545
(0.080) (0.101) (0.211)

(25) 1977-82 0.346 0.525 0.642
(0.059) (0.076) (0.117)

(26) 1975-81 0.441 0.446 0.226
(0.067) (0.101) (0.130)

(27) 1976-82 0.460 0.448 0.411
(0.071) (0.096) (0.169)

(28) 1975-82 0.443 0.441 0.259
(0.063) (0.092) (0.128)
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Table 9. Textiles (ISIC 32). GMM and 2SLS estimates of the output response for various factor inputs.
MA(0) or MA(1) measurement errors are assumed. All years and differences are pooled

Materials Blue collar
worker hours

Blue collar
workers

White collar workers

MA(0) measurement errors

1 step GMM 1.073 0.701 0.630 0.426

(2 step) GMM 1.044 0.692 0.520 0.281
(0.022) (0.030) (0.035) (0.045)

MA(1) measurement errors

1 step GMM 1.087 0.782 0.737 0.390

(2 step) GMM 0.937 0.817 0.850 0.407
(0.030) (0.036) (0.043) (0.060)

Plants	 270	 270	 270	 270

Table 10. Chemicals (ISIC 35). GMM and 2SLS estimates of the output response for various factor inputs.
MA(0) or MA(1) measurement errors are assumed. All years and differences are pooled

Materials Blue collar
worker hours

Blue collar
workers

White collar workers

MA(0)-measurement errors

1 step GMM 1.023 0.615 0.590 0.461

(2 step) GMM 1.016 0.596 0.616 0.417
(0.017) (0.027) (0.030) (0.044)

MA(1)-measurement errors

1 step GMM 1.039 0.320 0.321 0.288

(2 stpe) GMM 1.021 0.349 0.587 0.347
(0.029) (0.036) (0.045) (0.069)

Plants 247 247 247 247

Table 11. Tests for the validity of instruments based on MA(0) vs. MA(1) structure in the residual terms'.
(See tables 9 and 10)

Materials Blue collar
worker hours

Blue collar
workers

White collar
workers

Textiles
(ISIC 32) -5.25* 6.28* 13.21* 3.17*

Chemicals
(ISIC 35) 0.21 -10.37* -0.86 -1.32

Footnotes: * Significantly different from 0 at 1% significant level.
I The test statistics are asymptotically distributed as N(0,1) under the assumption of MA(0) residuals.
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Appendix A. Stochastic specification. Details

The purpose of this appendix is to explain the derivation of eqs. (13) — (14) from

(7) — (8) and discuss their stochastic specification in more detail than we did in

section 3 above.

Defining

(A.1) beita — eits
	 i = 1, .. .,M, t,s = 1,... ,T,

we can reformulate (7) and (8) as

(A.2)
* _ *

X t — x s — e(git gia) + e;713

j =1,.. .,N,  i = 1,...,M, t,s = 1,.. ., ,

where

(A.3) its = Kits + beits (q t — qis )

N

> 7J kfl(w*k /w*k)^^it {{_ ^lJ +	 ^Ji ) — t ln(Ø it /Øis )
k=1

+ beits(gt — q s) — Seita in(Ct /mis)•

We assume that the firm and year dependent input response coefficients, Eita, are

distributed independently of the latent output volume q t and of the composite

variables 4ts .  Since (A.2) and (A.3) are obtained by exploiting a mean value theorem

(cf. section 2), this is a strong, but important assumption. The two latter variables,

however, may be correlated. Below, we specify further our stochastic assumptions

about (A.2) and (A.3).

Let us first, however, take a look at the relations which correspond to (A.1)

— (A.3) in case of non-hornotheticity of the production technology. We can then

assume, within a corresponding simplifying random coefficients framework, that the

input response elasticities tits can be treated as random variables with firm and year

invariant, but input specific, means equal to ti. Defining

(A.4) beits = its

we can modify (A.2) — (A.3) to

j =1,...,N, i = 1,...,M, t,s = 1, ... , T ,

(A.5) x t 	 xis _ '
1 

* -- * t^
(qit qia ) + S its ,

j =1,.. .,N,  i = 1,...,M, t,s =
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where

(A.6)	e:3 _ 4ts
*

 = 	 + 513(qit — qis )

N
	= 	

k 	 k 	 (
	 —— ^ ^iits ^(w t ^w s ) + ^(•f tl.fia) 	 h(ØitiØia)

k=1

—+ Sei ts (g t g a )	 Seita h( Øi t /Øis ) ,

the formal difference from the homothetic case being that € and & it, now have the

input superscript j.

Returning to the homothetic case, we assume that the logarithms of the output

and the input quantities observed are [cf. (13) and (14)]

qit = qt + vit 	 i =1,...,M,  t =1,...,T,

wit = xit + rilt 7 	 = 1, • • • , N, i = 1, • • • , M, t = 1, • • • ,T,

where vit and r't are measurement errors with zero means. The stochastic specifica-

tion of the model has four elements.

(i) We assume that'

(A.9) r * Pit, 	 beita) and (q;ct , fikts' vkt, kt) Sekta)

are stochastically independent for all firms k # i,

j = 1,...,N, i,k = 1,...,M, t,s = 1,...,T,

and that

(A.10) (q:1, 4s q) are independently distributed of (vim, T,,, Seipr

j =1,...,N,i=1,...,M, t,s,q,m,n,p,r=1,...,T.

(ii) We specify the measurement errors as having an arbitrary heteroskedasticity

Ød/or autocorrelation, i.e.

(a.7)

(A.8)

(A.11)

(A.12)

C(Vit) via) = E(vitvis)

C (Tit , Tia) = E(Tit71s )

v
aits

Tj
ait,

j = 1, ...,N, i = 1, ...,M, t,s = 1, ... , T,

'Independence of (q7„ Kita ) and (qk t , Kl oa ) may, however, be unrealistic if firms i and k belong

to the same subsector and are affected by the same kind of chocks.
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where C is the covariance operator and the a's in general vary across i, t, and s. If

the additional customary assumption of stationarity of the measurement errors for

any firm i is made, then a•:t,t+l and a•:i t+i vary with j, i, and 1, but are invariant to

t.

(iii) Similar flexible assumptions are made for the random input response coef-

ficients, i.e.

(A.13) C(Eits , Eipr ) = CRits , baipr) = Qitspr

i = 1,...,M, t,s,p,r = 1,.. ., T.

If the additional assumption of stationarity of the input response coefficients for any

firm i is made, then at,t+l,P ,P +m vary with i, 1, and m, but is invariant to t and p.

(iv) We assume that q t and is , the latter being the composite expression given

by (8), may be correlated not only for s = t or r = t, but also for t s r. Both,

like the measurement errors and the random coefficients, may have an arbitrary

heteroscedasticity and/or autocorrelation, i.e.

(A.14)

(A.15)

(A.16)

C(gt , q t )

C(Kits , 4p)

C(Sits , qip,

q*ails ,

^itspr

Kj q*
^itsp

j = 1,...,N,i=

t,s,p,r = 1,...,T.

Unlike (vit , r' pits), stationarity of (qt, hits) for any i and j will not, in general, be a

realistic assumption. In the empirical application in section 5, however, we will use

more restrictive assumptions about the "cross-autocorrelation" between hits and q:p

than given in (A.16) [cf. eqs. (23) and (54) in the main text].

Combining (A.2) with (A.7) and (A.8), it follows, under homotheticity, that the

input demand equations, expressed in terms of logarithmically differenced observa-

tions on output and input volumes between years t and s, are [cf. (15) and (16)]

(A.17) xi 	= ( qjj — gis) +

j = 1 , •••,N, i = 1,...,M,

t,s = 1,...,T,

45



where

(A.18) e'sts =	 ^ 	 (r!-r1) -e(vi t -vi s )Sits +

*
+ bFits(git — gis ) + ( Tit — rt.) — e(vit — vis),

i = 1,. . .,N, i = 1,...,M, t,s= 1,...,T.

From (A.7) and (A.9) - (A.16) it follows that the variables on the right hand side

of (A.17) for arbitrary years t and s, with B t , defined in (A.18), have the following

covariances: (i) with the logarithm of the observed level of output in an arbitrary

year p

(A.19)
g	 vv

^![(git — gis ), gip] —_ (j; — ^ia
*
p ) + (^itp — ^iap ) ^

(A.20)	 C[eits ^ gip]
_ 	 Kj g* 	

(o-:;  — 
v )_ ^

i t s p 	 p ^i s p

j = 1,...,N,  i = 1,...,M, t,s,p= 1,..., ,

and (ii) with the observed logarithmic change in the observed output between two

arbitrary years r and p

	(1;
	q*

	7sr) — ^iap ^itr + ^

v 	 _ v	 v
+ (pp7r+(7r ) , al's„

	C [eita (qiP gir)] = (^ tap 	Q tsr* ) 	e(0 p aiap ! a: tr + aia r ) ,

j =1,...,N,  i = 1,...,M, t,s,p,r = 1, .. . , .

It also follows that the autocovariances of the composite variables eira, for an arbi-

trary firm i and an arbitrary input j, are given by

(A.23)	 C[^t„ eipr]
_ Kj
! ^itapr +

b
	( 

g*	 q*	 q* + q* )^it spr al; — ^isp  arr ^iar

� T	 T  
	 <Sr(^itp  ^iap (7‘ii;r + 

+ e2(Q tp — ap Q tr + <ar )

j = 1 ,... ,N, i = 1,...,M,

t,s,p,r= 1,...,T.

(A.21) C[(git - qis),(gip -Qir)] =

(A.22)
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Now, (A.22) implies that

(A.24)	 C[9ts, (qit _ qis )]	 =	 0 for any

	Kjq* — Kjq* _ v 	 v
	 <ss =' ==	 citat	 o•itsa — °itt 2(7ita   	O,

j =1,...,N, i = 1,...,M, t,s = 1 , ..., T.

Since, in the presence of `simultaneity' and/or measurement errors in output, (A.24)

may be satisfied only by chance, ordinary least squares (OLS) estimation of the in-

verse mean scale elasticity € from (A.17) —whether based on the M observations

on (æ;t — Si .) and (q;, — q;,) for given j and (t, s), or on all the MT(T — 1)/2 pos-

sible pairs of differenced observations  (for t > s) for given j — will in practice be

inconsistent. Hence, we have the same OLS inconsistency problem as in classical

errors-in-variables models. However, provided that certain additional assumptions

are made, (A.19) — (A.22) are useful in suggesting candidates for instrumental vari-

ables (IV's) for (q1 — Q;,) in (A.17). These IV's may be building blocks in the

construction of consistent estimators of € which are more efficient than simple IV

estimators. This problem will be addressed in section 4.

Instead of using (A.17) as our estimating equation for the inverse mean scale

elasticity e, we make one additional transformation: We measure the (logarithmic)

input and output volumes from their respective year specific means. A similar pro-

cedure is followed in MaCurdy (1982). Hence, using to symbolize deviations from

year means, we express (A.17) by means of

(A.25)

(A.26)

(A.2?)

= xit

'4;1 	 • qit — Q'-t

ö;'ta — ejita 	 Oi.ta

where x?t
 =	 q-t = 	 qit /M, and C s = E li4_ 1 eita /M (j = 1, ... , N,

t, s = 1, . , T), respectively. This transformation, although reducing the effective

variation of the input and output variables in the sample, removes any additive year

specific effects, like log- linear trends, from the logarithmic structural variables as

ktswell as from the composite "residual variables" ^ta• Hence, xi qit , and  are

more likely to be stationary than 4 t , qit, and eits •
Now, for any sequences (a l , b 1 ), ... , (aM , bM ), we have the identities

	1 	-

j> akbk = Sab + ab
k_1
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and

ai bi = b + ai b + a bi + åi bi ,

where a = EM 	b = > 1 b1 /M, ai = ai — å, bi = bi — b, and Sab —

^M 1 åi b= lM. Hence it follows that if the ai and the bi sequences are approximately

uncorrelated, i.e. Sab 0, and if all å i 4 are `second order terms' which can be

ignored, then
1

ai bi — E ak bk ^ å bi -{- åi
M k =1

Utilizing the latter approximation, while recalling (A.10), we find that (A.17) and

(A.18), after deduction of year specific means, change into

(A.28)

(A.29)

 ët,= ^(Qts) + 	,

	Pits

...-^-'JJ((–* 	 f ((
^^*

 ^' ^its + 	 —4.:)S^ita \Q•t 	 + b^ •ta \git 	Qia )

+ (Fit F-18)   

j =1,...,N,  i = 1,...,M, t,s=1,.. ., ,

respectively. Note that, formally, the variables in (A.28) are obtained by a double

differencing: a differencing within firms [(x — xi a ), and Nit — Qia )] is combined with

a differencing within years [(i = xit — x^) and Rig = qit — Q'•t )].

Using (A.7), (A.9) — (A.16), and (A.26) — (A.29), we find

(A.30) C[git, gkp] = Sik (O tp <ip) - (1/M)(aj, + D•ttp + al; + aktp)

(1/M)(ellt; + etp ) ,
.... 	 _

(A.31) CAL . , Qkp ]

jj = bikes tsp 	(11M)'^ tap + ^k tap ) + ( 1 /M) *^•tap

— [6ik(oi tp — ° iap) 	 (1/M)(o tp Qiap + ^ktp (7ktp)

(1/M ) (o tp — Q åp)] f

j =1,...,N, i,k = 1,...,M, t,s,p= 1, ••• ,T,

where Sik = 1 for k = i and = 0 for k i and subscript • again denotes averaging

over i, i.e. -t = LM i Dtp /M , tp =  a tp /M, ands.p = LM 1 cr71..1,7M. in
case of homoskedasticity of all variables, i.e. alt*, = pia , osts = arta , and a-s p = 0t p
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(A.38)

(A.39)

(A.40)

(A.41)

Crii t

Ci[Q'it,qkp]

^.
C[^ts

^]C[Pits ^ gkp

0, for k	 ,

ej q
— aitsp 	^itsp

ti 0, for k	 ,

! ^'gq 	 qqtiO'itp ... Qitp

for i = 1, ... , M, the latter relationships can be simplified to

(A.32) C[git, qkp] = [Sik — (1/M)](.4p + 0tp) ,

(A.33) Ci [eits, qkp] _ [Sik -
 (1/M)]a% *

 - t [Sik (1/M)](ctP	 Pca )

j = 1,...,N, i,k = 1,...,M, t,s,p = 1,...,T.

Defining, in the general case with heteroskedasticity,

(A.34) ^ tp = (1 — 2 /M)(Critp + Q tp) + (1/M)(o ? :p + a tp) ,

(A.35) ^tp = q*
 -}- ^ tp ,

(A.36) 	 —9j
 p = (1 — 2/M )cr t p -1- (1/)ci*ts

4(1 2/M)(a: tp a sp) + (1/M)(m), esp.)] ,

(A.37) 0
^  åp = ^ t P — (0p — 0',p) ,

j =1,...,N, i = 1,.. .,M, t,s,p=1,...,T,

we then have approximately, provided that the number of firms M is sufficiently

large, that

i = 1, . . . , N, i,k=1,...,

t,s,p= 1,...,T.

In case of homoskedasticity, (A.38) — (A.41) can be simplified to

(A.42)

(A.43)

C [qit, qkp] = [Sik — (1/M)]c p ^' sikal;
^.

(( 	 ^' 	 Bj9 ,., kka:1;„C[^ts^ qkp] = [Sik (1/M)]^tsp ^' 

j =1,.. .,N, i , k =1,..., M,

t,s,p = 1,...,T,
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where

(A.44)

(A.45)

qq _. 	q*vQt p — Qtp -}- Qt p

e)q _ K1q* 	
4Crtv

v 1
tap i ^tsp — 	 p  Qap

j = 1,...,N, t,s,p = 1,...,T.

In the general case with heteroskedasticity, (A.19) — (A.23) are then replaced by

qq(A.46)	 CRit— Qria}^Qip^ _ ^:tp — alsqp• 	 Critp 	 Qstp 

..,. _
	

—Ojq
CrePit„Q'ip] = Crites), ti ^e sp

(A.48) C[(—,), lgip — iir)] — 0-Stp ^ ^stp — aitr + ^isr

qg^' G"— — ^isp 	 ^itr + ^isr

(A.49)

.^...

C^^t„ ^ gip — Qrir 	
=B.) g — ae^ q

itsp 	 itsr
^, 	 ej 	 Ojq
^' ^itap — Critsr

i =
 1,...,N,i= 1,...,M,

t,s,p,r = 1,...,T.
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