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PREFACE

Time series of capital stocks play an important role in macroeconomic modelbuilding and ana-

lysis. They are also basic elements in the calculation of depreciation in the different production

sectors for national accounting purposes.

This report presents a theoretical framework for the construction of capital stock figures from

investment data. The results will be utilized in an empirical project which has been started recently

in the Central Bureau of Statistics.

Central Bureau of Statistics, Oslo, 8 November 1983

Arne Olen



FORORD

Tidsserier for kapitalbeholdninger spiller en viktig rolle i makrookonomisk modellbygging og ana-

lyse. I arbeidet med nasjonalregnskaper beregnes slike tidsserier blant annet som ledd i beregningen av

kapitalslitet i de enkelte produksjonssektorer.

I denne rapporten presenteres et teoretisk opplegg for beregning av kapitaltall på basis av

investeringsdata. Resultatene vil danne grunnlaget for et empirisk analyseprosjekt som nylig er satt i

gang i Byråets forskningsavdeling.

S tatistisk Sentralbyrå, Oslo, 8. november 1983

Arne !Dien
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ABSTRACT

The construction of time series for capital stocks from data on gross investment is an essential

element in the analysis of the firms' investment behaviour as well as in national accounting. In this

report a general framework for the construction of such data is presented. Two capital concepts are

involved - the gross capital - representing the capital's capacity dimension - and the net capital -

representing its wealth dimension. The two associated concepts retirement (replacement) and depreciation

are also dicussed, as is the formal relationship between the measurement of the capital volume and the

measurement of the price of capital services. Finally, we propose and discuss some parametric survival

profiles which may be useful in empirical applications.
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1. INTRODUCTION *)

The measurement of real capital has been characterized as "one of the nastiest jobs that econo-

mists have set to statisticians" (John R. Hicks (1969, p. 253)). Closely related to it is the problem

of measuring capital services, capital value, capital prices, capital service prices, and depreciation.

The problem is not only one of measurement in the narrow statistical sense - a substantial part of the

difficulty lies in the definition of useful concepts for empirical work. The reason for this lies in

the fact that capital as an economic theoretical concept has at least two 'dimensions'. First, it is

a capacity measure, a representation of the potential volume of capital services which can be 'produced'

by the capital existing at a given point of time. Second, it is a wealth concept; capital has a value

because of its ability to produce capital services today and in the future. The former concept is the

one usually needed for production function studies, analyses of the firms' investment decisions, re-

search on productivity issues, etc. The latter concept will be involved in analyzing the profitability .

of the production sectors, financial market studies, national accounting, etc. Obviously, both concepts

have relevance to the building of large-scale macroeconomic models - a priori, there is, of course,

nothing which implies that they should be numerically equal.

In this paper, we give a theoretical framework for constructing capital stock data (and data on

related variables) from data on gross investment. Our approach will be a fairly general one, in that we

work with generally specified survival profiles in all sections but one. Attention will be focused on

two capital measures: the gross capital, which indicates the instantaneous productive capacity of the

capital objects, and the net capital, which indicates their prospective capacity. Both variables can

be constructed from previous investment data by applying two different, but related, weighting schemes.

This is also the case for the two derived variables retirement - which is related to gross capital - and

depreciation - which is based on net capital. The fifth variable with which we .shall be concerned is the

capital service price, which turns out to have a fairly close and empirically interesting relationship

to the other variables.

The problems and concepts involved in the measurement of capital are, to some extent, equivalent

to those encountered in demography. We may consider capital as a 'population' of•capital units, asso-

ciate investment with the 'birth' of a capital unit and retirement with 'death', etc. Demographic con-

cepts as age, age distribution, survival probability, expected life time etc. are also useful when dea-

ling with physical capital objects, and we shall make explicit reference to this equivalence at some

places in the paper. 	 There are, however, notable differences, especially when it comes to the defini-

tion of the wealth dimension of the capital stock, service prices,etc. Price variables, interest rates,

and related concepts have, of course, no demographic counterparts.

The paper is organized as follows: In section 2, we introduce the concept survival function and

give a formal definition of the variables gross capital and retirement (replacement). Two functions

which are convenient for the following discussion are introduced in section 3. In section 4, we inter-

pret the model probabilistically and show, inter alia s that the auxiliary functions introduced in section

3 are closely related to the moment generating function of the probability distribution of the capital's

life time. Section 5 is concerned with the capital value and the associated variables net capital and

depreciation. A corresponding definition of the capital service price is also given. In section 6, we

take a closer look at the relationship between gross and net capital, depreciation and capital service

price, both in the deterministic and stochastic interpretation of the model. Finally, in section 7, we

present a selection of parametric specifications of the survival functions which may be useful in em-

pirical applications. First, we consider the familiar exponential decay hypothesis - which has the remark-

able property that gross capital and net capital coincide. Then we discuss four classes of two-parame-

tric survival profiles, two of which are convex, two are concave, and some of their most interesting

special cases.

In this paper, no attention will be devoted to the possible distortive effects of the

corporate income tax system on the firm's investment decisions, through its impact on the capital ser-

vice price. This issue is dealt with a related paper (Biorn (1983)), and we therefore disregard taxes

altogether here.

*) I wish to thank Petter Frenger and Øystein Olsen for their constructive comments on an earlier ver-
sion of the paper, and Jørgen Ouren for his efficient programming of the computer routines.
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2. THE GROSS CAPITAL: CAPITAL AS A CAPACITY CONCEPT. RETIREMENT (REPLACEMENT)

Let J(t) denote the quantity invested at time t,measured in physical units or as a quantity in-

dex 1 ), where time is considered as continuous. More precisely,J(t) has the interpretation as the inten-

sity of the investment flow at time t, and J(t)dt is the investment effectuated from time t to time t+dt.

The proportion of an investment made s years (periods) ago which still exists as productive capital is

denoted by B(s). The function B(s) represents both the physical wear and tear, and the time profile

of the retirement of old capital goods. We shall consider it as a time invariant technical datum, in

the following to be referred to as the technical survival function.

In principle, B(s) may be decomposed as

B(s) = B S (s)B E (s),

where B S (s) represents the relative number of capital units surviving at age s (the survival curve) and

B E (s) indicates the efficiency of a capital unit of age s in relation to its efficiency at the time of

investment, i.e. at age 0 (the efficiency factor). We shall not, however, make use of this decomposition

in the following. We imagine that each capital good at each point of time contains a certain number

of 'efficiency units', each having the same current productive capacity. The survival function B(s) in-

dicates the relative number of efficiency units which are left s years after the initial investment was

made. The function thus represents both the loss of efficiency of existing capital objects and physical

disappearance, or retirement, of old capital goods. It is continuous and differentiable 2 ) and has the

following properties:

(1)	 0 < B(s) < 1, dB(s) < 0
d s	 -

for all s < 0,

B(0) = 1, lim B(s) = 0.
sØ

A typical survival function, with a finite maximal life time N, is illustrated in figure 1

below.

•s
FIGURE 1. A typical curvature of the technical survival fuction B(s). N = maximal life time

1) Assuming that J(t) is an aggregate of homogeneous capital goods.
2) At least in the interior of the interval on which B(s) is strictly positive. Confer figure 1
and the examples given in section 7.

B(s)

1 	
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The service flow from this capital stock is an argument in a static production function, to-

gether with labour services and other inputs, and we assume throughout than the units of measurement and

the form of the production function are chosen in such a way that one capital (efficiency) unit produces

one unit of capital services per unit of time. Then

(2) 	 K(t, ․ ) = B(s)J(t -s) 	 s > 0

has the double interpretation as the volume of the capital which is s years of age time t (i.e. the

capital of vintage t-s existing at time t) and the service flow produced at time t by capital of age s.

Aggregation over capital vintages gives the following expression for the total volume of capital

(flow of capital services) at time t:

(3)

^ 	 ^ 	 t
K(t) = I K(t, ․ )ds = I B(s)J(t-s)ds = I B(t-e)J(e)de

0 	 0

(e=t-s).

Capital thus defined is a technical concept; K(t) represents the current productive capacity of the total

capital stock at time t. We shall refer to it as the gross capital stock. Differentiating (3) with res-

pect to t we find that the rate of increase of the capital stock can be written as 3 )

K(t)) 	 dt   
_ 	 ( ) = 4 	 Kt _ dK t 	B(0)j(t) + fdB(t-e)

J( e ) de =J(t) + f
dt 	

d B s J(t-s)ds( ) 	 ^ s
-^ 	 0

CO

= J(t) - I b(s)J(t-s)ds,
0

where

b(s) = dB  

(5) i which implies, since B(0)=1,

B(s) = I b(z)dz
s

s > 0.

The volume of capital worn out or scrapped (i.e. the number of efficiency units which disappear)

at time t is the difference between J(t), the gross investment, and the rate of increase of the (gross)

capital stock. From (4) we find that the volume of retirement at time t can be expressed in terms of

the previous investment flow as follows:

CO•

(6) D(t) = J(t) - K(t) = f b(s)J(t-s)ds.
0

We can alternatively call D(t) the volume of replacement investment at time t, since it represents the

number of efficiency unit which would be required to replace retired equipment.

The function b(s) indicates the structure of the wear and tear and scrapping process: b(s)ds

is the share of an initial investment of one unit which disappears from s to s+ds years after the time

of installation. From (1) and (5) it follows that b(s) is non-negative for all s and that

CO

(7) 	 I b(s)ds = 1.
0

3) We utilize the following general formula for differentiating an integral:

d 	 b(t)b(t)
dt I 	 f(t,e)de = b (t)f{t,b(t)} - a'(t)f{t,a(t)} + 	 I 	 i7 f(t,e)de.

a(t) 	 a(t)
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This equation expresses the fact that all equipment installed will disappear sooner or later. We shall

call b(s) the (relative) retirement (replacement) function in the sequel.

Formulae for gross capital and retirement similar to (3) and (6) can be found in e.g.

Jorgenson (1974, pp. 191-192), and Hulten and Wykoff (1980, p. 100). The terminology,however, does

not seem to be consistent in the literature. Some authors (e.g. Steele (1980)) define gross capital

as the cumulated volume of past gross investment flow over a period of length N, the capital's life time,

i.e. in our notation

N
K(t) = I J(t-s)ds.

0

Others, e.g. Young and Musgrave (1980), use gross capital as synonymous with the capital measure derived

from the perpetual inventory method, in stating that "gross capital stock for a given year [is obtained] by

cumulating past investment and deducting the cumulated value of the investment that has been discarded".

(Young and Musgrave (1980, pp. 23-24)). In our notation, this corresponds to

CO

K(t) = I B S (s)J(t-s)ds.
0

This definition is also used by Johansen and Sørsveen (1967, p.182). It coincides with our definition

(3) if B(s)=BS (s), which implies BE (s) = 1 for all s>0, i.e. if the efficiency of the surviving capital

goods is the same for all vintages. 4 ) If, moreover, B S (s) = 1 for O<s<N, and 0 for s>N - i.e. if all

capital goods disappear simultaneously N years after investment - the three definitions of gross capi-

tal are equivalent. Our definition is the most general one, since it includes the others as special

cases.

3. TWO USEFUL FUNCTIONS

To facilitate the following discussion, we introduce two auxiliary functions

Ie p(z-s) B(z)dz 	 Ie 	 dTpTB T+s

	

( 	 )

(8) Ø (s) =5 	 =0 	
p 	B(s)	 B(s)

(9)

fe p(z-s) b(z)dz 	 le pT b(T+s)dT
S 	 0 

= 	 B(s) 	 = 	 B(s)

where p is a positive constant, T=z-s, and B(s) and b(s) are defined as above. The numerator of Ø p (s)

is the present value of the total flow of capital services produced by one initial unit of capital from

the time it passes s years of age until it is scrapped, discounted to the time when it attains age s

with a rate of discount equal to p. The denominator represents the share of the initial investment which

attains age s. 5 ) The ratio Øp(s) may thus be interpreted as the discounted future service flow per

capital (efficiency) unit which is s years of age. Similarly, '4 p
 (s) has the interpretation as the present

value of the remaining retirement flow per capital unit which is s years of age.

We then have in particular that

00

Øp ( 0) = I e PzB(z)dz
0

4) Our definition corresponds to the efficiency corrected capital stock as defined in section 4 of
the Johansen-Sørsveen paper.
5) Or, more precisely, the relative number of efficiency units left s years after the time of invest-
ment.

s>0,

sz0,
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is the present value of the total service flow from one new capital unit, and

00

4) P (0) = I e Pzb(z)dz
0

is the present value of the total replacement flow related to one new capital unit.

At this stage, however, it is not necessary to attach an economic interpretation to the func-

tions Ø P (s) and ij (s) and the parameter p; they may be considered as purely mathematical entities.

Note, in particular, that we have said nothing so far about the possible relationship between p and

economic market variables.

Obviously, Ø P (s) and ip(s) are both decreasing functions of p for all values of s. From (5)

and (9) it follows that

*0 ( s ) = 1 for all s.

If p>0, it is easy to show, by using integration by parts, that

(10) Ø P (s) _ P̂ {l - iU P (s)} s>O , P>O.

All expressions which can be written in terms of 4(s) can thus be written in terms of ii P (s), and vice

versa.

Differentiating (8) with respect to s, we find

(11) ØP` (s
	b(s  fe t j B(T+s) _ b(T+s) 	dT.

s 0 	 t B(s) 	 b(s)

This expression will be negative - i.e. Ø P (s) is a decreasing function of s - if the integral in (11)

is negative. Then p P (s) will be an increasing function of s, cf. (10). A sufficient condition for this

to hold for all s, regardless of the value of p, is that

(12) B(T +s) ^ b(T +s) 
B(s) 	 b(s)

for all s and T>0.

In the next section, we give an interesting probabilistic interpretation of Ø P (s) and i P (s).

4. A PROBABILISTIC INTERPRETATION

So far, we have considered the process generating the deterioration and retirement of the capital

units as a deterministic process and we have established the functions B(s), b(s),4 (s), and 4) (s) on

this basis. In this section, we shall give an alternative probabilistic interpretation and establish

a correspondence between the two interpretations which will be useful for later reference. 6 )

When a capital good is installed, the investor does not normally know its actual life time. Ex

ante it may be considered as a stochastic variable S, the function B(s) representing the survival proba-

bilities, i.e. B(s) is the probability that a new capital good 7 ) will survive for at least s years,

(13) B(s) = P(S>s)

Since B(s) is continuous, the distribution function of the life time is

P(S<s) = 1 - B(s),

and b(s), as defined in (5), is the density function of S, since

s?0.

6) When considering deterioration as a stochastic process, we take a step into 'renewal theory', a
branch of mathematical statistics concerned with 'self renewing aggregates'. See Lotka (1939), Smith
(1958), and Cox (1962).

7) Or more precisely, each of its efficiency units; cf. section 2.
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s >0.b(s)= 	 {l-B(s)} = - B'(s)s

The variable S represents the total life time of a capital good. Consider also the remaining

life time of a capital good which has already attained age s, i.e. T=S-s. Using basic rules in pro-

bability calculus, we find that

(14) 	 P(T>TiS>s) = P(S>T+sIS>s) = BB s
T+s

)

) = B(TIS), 	 sz0, Tzs ,

where B(TIs) is defined by the last equality. The conditional density function of the remaining life

time of capital which has attained age s is thus

(15)	 b(Tis) 	 - dB(T►s) = b ( T+s) 
dT 	 B(s) s>0, T>0.

When this probabilistic interpretation of the retirement process is adopted, the share of a

population of capital goods (efficiency units) which survive s years after investment will converge to-

wards B(s) with a probability of one as the number of capital goods increases, according to the "law

of the large numbers" - i.e. the former is a consistent estimator of the latter. Correspondingly,

b(s)ds is (approximately) the proportion of the capital goods (efficiency units) whose life time is

between s and s+ds years, and b(01s)ds = b(s)ds/B(s) represents the proportion of the capital goods

having attained age s which will disappear before age s+ds. The latter is thus a formal analogue to

the concept 'mortality rate' in demography, i.e. the probability that a person of a certain age will die

during a given future period, e.g. the next year.

Which interpretations can then be given to the functions Ø (s) and i (s), defined in eqs. (8)
P 	 P

and (9)? Let us first recall the definition of the concept Laplace transform. The Laplace transform of

a stochastic variable X with a density function f(x), defined on [0,..), is 8)

00

(16) 	 L f (x) = fe -xx f(x)dx,
0

where A is a parameter. Letting E denote the expectation operator, this is equivalent to

(17) Lf(X) = E(e-").

Using (15), eq. (9) can be written as

(18) *P(s) = fe pTb(Tl_s)dT.
0

This is an expression of the form (16), with f(x) set equal to b(Tls) and x set equal to p. Thus i p (s)

stochastically interpreted is simply the Laplace transform of T=S-s, the remaining life time of a capi-

tal good which has attained age s. This expression represented the present value of the remaining re-

tirement flow per capital unit of age s in the deterministic interpretation of the model.

Eq. (18) can alternatively be written as (cf. (17))

( 19 ) P (s) = E(e -P(S-s) IS>s) = E(e -PT ; s),

using ";s" as a shorthand notation for "IS>s". For s=0 we have in particular

( 20 )
P ( 0 ) = L b (p) = E(e PS ),

8) See Feller (1966, Ch. XIII.l). The Laplace transform has a close relation to the moment genera-

ting function of the distribution. The moment generating function of X is simply L f (- a) = E(e ).

Confer Feller (1966, p. 411), or Cox (1962, p. 9).



i.e. iP p (0) stochastically interpreted is the Laplace transform of the total life time of a new capital

unit, S. Expanding e pT in (19) by Taylor's formula, we obtain

p 2T2 _ p 3T3= 	 •E (1- p T + ---^--- 	 6 	. . . . , s)

, .	i 	.
= 1 + 	 E 	 (-1) 1 p 	E(T i ; s),

i =1

If we combine (21) and (10) we find

.
= 	 + 	 _ 	 ^ -1 	

i-1
	 ^ ^(22) Ø(s) 	 E(T; s) 	 E ( 1) 	 p -r-- E(T , s

P i =2
s>0.

By using this equation we can determine all the moments of the (conditional) distribution of the remaining

life time T once we know the function Ø p (s) for a value of p different from zero. All information about

the distribution of T is thus "condensed" in this function. If p=0, the second term of (22) vanishes -

i.e. all moments of second and higher order are "swept out" - and we get simply

(23) E(T; s) = Ø (s) - 	 1	f B(z)dz.o 	 ^s̀̂"j s

For s=0, we have in particular

(24) 	 E(S) = E(T;0) = 4) 0 (0) = 1'
0
 B(z)dz.

Equations (23) and (24) reveal an interesting correspondence between the deterministic and the

stochastic interpretation of the replacement process: What emerges as the undiscounted future service fl ow

from one capital unit of age s in the deterministic framework 9) is the expected remaining life time of

a capital unit of age s in the stochastic version of the model, and vice versa. In particular, the to-

tal service flow from a new capital unit, deterministically interpreted, finds its counterpart in the

expected total life time in the probabilistic interpretation.

5. THE NET CAPITAL: CAPITAL AS A WEALTH CONCEPT. CAPITAL SERVICE PRICE. DEPRECIATION

Gross capital as defined in section 2, by aggregating the surviving shares of the different

capital vintages expressed in efficiency units, is a capacity concept: K(t) represents the number of

capital (efficiency) units at time t on the one hand, and the instantaneous service flow from this

capital stock on the other. We now consider the vaZue dimension of the capital.

The market value of the capital goods will, in general ,reflect the cost of producing new invest-

ment goods on the one hand, and the capital users' expectations about future productivity on the other.

Let q(t) denote the price of investment goods at time t. The value of the investment outlay is then

q(t)J(t), which is, of course, also the value of the new capital installed at time t. The value of an

old capital good does not, in general, reflect its historic cost, but rather the service flow that it

is likely to produce during its remaining life time. Let q(t, ․ ) be the price of one capital unit
(efficiency unit) of age s at time t and K(t, ․ ), as before, the number of such units. The value of
the capital which is of age s at time t is then V(t, ․ ) = q(t, ․ )K(t, ․ ), and the value of the total capi-
tal stock can be written as

9) Confer the interpretation of (8) above.

(21)
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(25) V(t) = I V(t, ․ )ds = I q(t, ․ )K(t, ․ )ds = I q(t, ․ )B(s)J(t-s)ds,
0 	 0 	 0

the last equality following from (2).

The decomposition of V(t, ․ ) into a price and a quantity component is however, in a sense arbit-
rary. An alternative decomposition is V(t, ․ ) = p(t, ․ )J(t-s), where p(t, ․ ) = q(t, ․ )B(s) has the inter-

pretation as the price of capital of age s at time t per capital unit originally invested at time t-s.
10)

The corresponding expression for the capital value,

(26) V(t) = I V(t, ․ )ds = I p(t, ․ )J(t-s)ds,
0 	 0

will be convenient for the purpose of defining depreciation, as we shall see in appendix A.

How is q(t, ․ ), or p(t, ․ ), determined? A reasonable assumption is that q(t, ․ ) is an increasing

function of the current investment price (the replacement price) q(t) for all s>0, and a decreasing func-

tion of the age s for each given t - the older a capital unit is, the lower will its price be, cet. par.

Obviously, we have q(t,0) = p(t,0) = q(t), and V(t,0) = c;(t)J(t).

In this paper, we shall make the specific assumption that the relative prices per unit of capital

goods of different ages perfectly reflect the differences in their prospective service flows. More

precisely, the price per unit of the (discounted) future flow of capital services is assumed to be the

same for all capital vintages at each given point of time. Interpreting p as the rate at which future

capital services are discounted (cf. section 3), we can formalize this hypothesis as

(27) Ø p (s) ) 	 Ø p ^^^

for all t
and all s>O.

It implies a sort of 'lain of indifference' to hold between the different capital vintages: A firm

buying at time t a capital unit (efficiency unit) of age s at the price q(t, ․ ) pays the same price per

unit of discounted prospective capital services as a firm which buys a new capital unit at the price q(t).

If (27) is satisfied, the firm will be indifferent between expanding its capital stock by investing in

new and old equipment, or by changing the age composition of the capital stock by investing in one vin-

tage and disinvesting in another. 11) The common price per unit of (discounted) capital services is

(28) c(t) = q(t) _ 	q(t) 
Ø^ -p

fe 
s
 B(s) ds

0

The 'law of indifference' (27) can alternatively be stated in terms of the price p(t, ․ ) _

q(t, ․ )B(s). 	 It then says

( 29 ) 	. 	p(t, ․) 	_ ^ 	 q(t) 	for all t
and all s>0,

I e-p(z-s) 	I e-p ZB(z)dz 
s	 0

i.e. p(t, ․ ), considered as a function of s, declines in equal proportion to the decline in the dis-

counted remaining flow of capital services.

10) A third decomposition would be the following: Let B(s) = B S (s)B E (s), where B s (s) represents the
survival curve and B E (s) the efficiency factor. We could then interpret B s (s) as belonging to the
quantity component and B E (s) as belonging to the price component of V(t, ․ ). The price variable,

gE(t, ․ ) = q(t , ․ )BE(s) = p(t, ․ )/B s (s),

would then represent the price per capital unit of age s at time t, corrected for loss of efficiency.

11) The latter conclusion, of course, presumes a neo-classical (putty-putty) production technology,
with full substitutability between the different capital vintages.
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We may interpret p as the rate of interest forgone by a producer who owns the capital and uses

its services instead of purchasing interest-bearing financial assets. If we set p=r-y, where r is the

nominal interest rate and y is the rate of increase of q, and if r and Y are constants, then (28) is

equivalent to

q(t) = ferzc(t+z)B(z)dz.
0

This equation agrees with the first-order conditions for maximization of the present value of cash-flow

in a neo-classical model of producer's behaviour, when we replace c(t+z) by the value of the marginal

productivity of capital at time t+z,12)

For the majority of capital goods, neither second hand markets nor hire markets exist, i.e.

q(t, ․ ) (or p(t, ․ )) and c(t) cannot be observed as market variables for s>0. The 'law of indifference'
(27) - (29) is then no testable hypothesis; rather, it may be considered as providing an implicit de-

finition of q(t, ․ ) (or p(t, ․ )). It gives a procedure for constructing series for q(t, ․ ), and corresponding
indices for c(t), under perfect market conditions, from observed values of the investment price q(t)

and given values of the survival rates B(s) and the rate of discount p.13)

Returning for a moment to the probabilistic interpretation of the deterioration process, we

find, by using (22), that (27) can be expressed in terms of the moments of the distribution of the capi-

tal's life time as follows

(30) q(t, ․) 	_ 	q(t) 

E(T;s) + E(-1) 1-l P i- 1 	E(S) + E(-1) i-1 	 i-1 	i
i =2 	 i.'-- E(T ' s) 	i =2 	 i. E(S )

for all t
and all s>0.

This equation has particular intuitive appeal in the case where the discounting rate p is zero. The 'law

of indifference' then simply says that the relative prices of the different capital vintages are equal

to the ratios of their expected remaining life times:

q(t, ․ )  _ E(T;s 
q(t) 	 E(S for all t

and all s>0,
p=O.

Combining (25), (27), and (28), we find that the value of the capital stock can be written as

Ø P (s)B(s)
(31) V(t) = q(t) f 

4)p(0)
	J(t-s)ds = c(t) f Ø P (s)B(s)J(t-s)ds.

	0 	 	0

This equation gives a procedure for computing the capital value from data on q(t), J(t-s), B(s), and

It also indicates two alternative ways of decomposing this value into a price and a quantity com-

ponent.

First, if we define the price component as equal to the current investment price, the quantity

component becomes

(32) K(t) = 
U t =  1 	 f q(t, ․ )K(t, ․ )ds = I G (s)J(t-s)ds,N 	 q t 	 q(t) 0 	 0 P

CO 	 CO

where

(33) GP(s) - 	 Ø 	- 		= 	
(s)B(s)Ø P

P 	f e P z B(z)dz

OD

I e P(z-s) B(z)dz

s>0.

0

12) See Bjorn (1983, appendix) for a demonstration of this in a more general context.
13) In the rather few cases where q(t, ․ ) (or p(t, ․ )) are observed market variables - e.g. cars, office
buildings, and dwellings - eq. (27) ( or (29)) can be used to estimate - 4)10 (s) and hence, given the rate of

discount p, draw conclusions on the form of the underlying survival function B(s). Examples of analyses
of this sort are Hall (1971) and Hulten and Wykoff (1981).
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We see that K N (t), like K(t), is constructed by aggregating the previous investment flow, but the

weighting system is basically different. The weight assigned to investment made s years ago in

KN (t), G P (s), is the share of the total discounted service flow produced by one unit invested after

it is s years old, whereas K(t) is based on the technical survival rates B(s). Or othervise stated,

KN (t) is constructed on the basis of the prospective service flow, K(t) on the basis of the instanta-

neous service flow each capital vintage. From (33) we see that the weighting function G p (s) satis-

fies

(34) 0 < G P (s) < 1,
dGP (s)

ds
	 <0 for all s>0,

= 1, lim G(s) = 0,

sØ

i.e. it has the same qualitative properties as B(s), cf. (1). Furthermore, it follows from (11) and (33)

that G P (s)<B(s) for all s if the inequality (12) is satisfied for all s. This is thus a sufficient

condition for KN (t)<K(t) to hold for all t, irrespective of the discounting rate p and of the time

profile of the investment. 	 We shall refer to K N (t) as the net capital stock in the following .14 )

Second, if we decompose V(t) by setting its price component equal to the price per unit of

capital services, as defined in (28), we get a quantity component equal to

(35) KS (t) - V(t  - r Ø 
P
(s)B(s)J(t-s)dsc(t 	 0 

_
	= f {r e P(z-s

) B(z)dz}J(t-s)ds = K N 	• Ø (0).
0 	 N 	 P

S

from capital vintage t-s, K S (t) has the interpretation as the present value of the total future service

flow from the capital stock existing at time t.

With these definitions, we thus get the following simple and attractive relationship between the

capital value, the investment price, the price of capital services, the capital volume, and the volume

of capital services:

(36) 	 V(t) = q(t)KN (t) = c(t)K(t),

or

Value of capital stock

= Current investment price x Volume of net capital stock

= Current capital service price

x Volume of (discounted) future services from existing capital stock.

14) This term is used to some extent in the literature on the measurement of capital, but its precise
meaning is not always made clear, and it seems to be some differences in terminology. Often, the concept
is defined by general statements like "Net capital stock is obtained .... by deducting [from the cumulated
past investment] the cumulated value of depreciation" (Young and Musgrave (1980, p. 24)), and "Gross
capital stock, less the amount of accrued capital consumption gives net capital stock. Net capital
stock is two dimensional in that it reflects not only the amount of capital in current use, but also
the unexpired future potential of those assets" (Steele (1980, p. 227)). This usage is consistent
with our definition in eq. (32) in some cases, but not in others.

Since Ø (s)B(s)J(t-s) = { r e P(z- s) B(z)dz}J(t-s) is the present value of the remaining service flowP
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We now turn to the concept depreciation. It has the same formal relationship to the net capital

stock as the concept retirement, defined in section 2, has to the gross capital stock. Depreciation can,

however, be expressed both in value and volume terms. We define the (net) value of depreciation as the

difference between the current investment expenditure and the increase in the capital value, i.e.

(37) 	 E(t) = q(t)J(t) - V(t).

Likewise, the volume of depreciation is, by definition, the difference between the current investment

quantity and the increase in the net capital stock:

(38) DN(t) = J(t) - K N (t).

From (36) - (38) we obtain

(39) E(t) = q(t) [J(t) - KN(t)) - q(t)K(t)

= q(t)DN(t) - q(t)KN(t),

i.e. the following accounting relationship exists between depreciation in value and volume terms:

(Net) value of depreciation

= Investment price x Volume of depreciation

- Increase in investment price x Volume of net capital stock.

Interpreting q(t)D N (t) as the gross value of depreciation and q(t)K N (t) as the value of the appreciation
(capital gains), we can alternatively state this relationship as

(Net) value of depreciation

Gross value of depreciation

- Value of appreciation.

We can express D N (t) and E(t) in terms of the previous investment flow J(t-s). From (32) we
obtain 15 )

00

(40) KN(t) = J(t) - I g p (s)J(t-s)ds,
0

where

dGp (s)
(41) gp(s) 	 ds 	 - Ø

.

I e_p(Z-s)bB(s)t) p (s) 	 S
{1 - (34 p(S)} 	

Ø (0) 	 ...
P 	I e p zB(z)dz
 0

dz

the last three equalities following successively from (33), (10), (9), and (8). Hence,

B(s) 	^ P(s)
(42) 	 DN(t) = I g p (s)J(t-s)ds = I 

Ø (
0 ) {1 -pØ p (s)}J(t-s)ds = I Ø(0) B(s)J(t-s)ds.

0	 O p 	 O p

15) Confer the formally similar derivation of (4) above.
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Eqs. (39), (32), and (42) then give

(43) E(t) = q(t) I {g p (s) - q 	Gp (s)}J(t-s)ds
0

= q(t) g(t) B(s) {1 -( 	 Ø s}J t-s ds.
4) p (0) 
	

Cl(t)
	) 	 p ( ) 	 (	 )

0 

Equations (42) and (43) indicate a procedure for calculating depreciation in volume and value terms which

is consistent with (3), (32), and (6) for gross capital, net capital, and replacement.

The function g p (s), as defined in (41), represents the structure of the depreciation, in the same

way as b(s) represents the retirement process. In particular, g p (s), like b(s), may be given a probability

density interpretation since it is nog-negative with

CO

(44) f g p (s)ds = 1.
O

Literally, depreciation means 'decline in value (or decline in price)'. Hence, it may be ar-

gued that this variable should be defined on the basis of the price component of the capital stock, not

as a quantity concept, as (38) and (42) implies. In appendix A, we interpret depreciation in terms of

the vintage prices p(t, ․ ), and show that this interpretation is equivalent to the quantity inter-
pretation given above. It represents an alternative way of decomposing the value E(t).

6. THE RELATIONSHIP BETWEEN DEPRECIATION, GROSS CAPITAL, NET CAPITAL, AND CAPITAL SERVICE PRICE -

FURTHER RESULTS

There exist other relationships between the variables we have introduced in the previous sections

which are worth noting. We shall call attention to a few of them.

From (3), (32), (33), and (42) it follows that depreciation, net capital, and gross capital satis-

fy the following equation

(45) DN(t) + pKN(t)	Ø(t) 
= K t ) .

P

Recalling our definitions of these three variables, this is a remarkably simple relationship. It can,

for instance, be used in combination with (6) and (38) to facilitate the computation of gross and net

capital from investment data - or to check the consistency of the resulting series. Furthermore, com-

bining (28) and (45), we find

(46) q(t)DN(t) + pg(t)KN (t) = c(t)K(t).

If we interpret p as an interest rate and Pq(t)K N (t) = pV(t) as the implicit interest cost on the

capital value, this equation says that

(Gross) value of depreciation + Interest on capital value

= Capital service price x Volume of. gross capital stock.

It gives, in other words, two alternative ways of expressing the current 'user value' of the capital

stock.

If the interest rate applied in discounting the future capital services, p, is zero, (45) becomes

simply



(p=0).

I B(s)ds
0
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I B(s)J(t-s)ds

(47) 	 D (t) - K(t}  _ 0N 	 ØO(0)

In this case, the depreciation is proportional to the gross capital stock, the factor of proportionality

being the inverse of the total service flow from one capital unit during its life time.

When p=0, there are also interesting probabilistic analogues to the deterministic interpretations

given above. First, from (30) and (32) it follows that the volume of the net capital can be written as

K (t) = I 
E(S-s;s) K(t, ․ )ds

N 	 O E(S)
(p=0).

It thus emerges as a weighted sum of the remaining part of each capital vintage, the weights being the

expected remaining life time as a fraction of the total life time. Gross capital is the corresponding

unweighted sum

CO

K(t) = I K(t, ․ )ds.
0

Interpreting the model in "demographic" terms, (while disregarding differences in efficiency) we might

thus say that the measurement of gross capital finds its counterpart in a traditional population census,

whereas the measurement of the net capital corresponds to a fictitious population census in which each

person is given a weight equal to his expected remaining life time as estimated from life tables. (If

p > 0, higher order moments of the distribution of the life time should also be- taken into consideration,

cf. (30), and the comparison loses some of its intuitive appeal.)

Second, since E(S) = 4) 0 (0) (cf. (24)), the expressions for the depreciation given in (47) can

interpreted stochastically as

CO

I P(S>s)J(t-s)ds

(48) 	DN(t) =   	= 0 	(p=4), E S 	 ^
I P(S>s)ds
0

i.e. depreciation is equal to gross capital divided by the expected life time of a new capital unit

(first equality), or equivalently, equal to a weighted average of the past gross investment flow with

the survival probabilities B(s) = P(S>s) used as weights (second equality). We get a similar relation-

ship between the price variables. From (23), (24), (27), and (28), we find

(49) 	 c
_ qt 	 t,s
- E S } - E S-s;s for all s (p=0),

i.e. the capital service price is equal to the market price per capital unit divided by its expected

(remaining) life time. .And this equality holds for all capital vintages. (Again, when p>0, higher

order moments should also be taken into account.)

Third, as we noticed above (eqs. (41) and(44)) g p (s) has properties which suggest its inter-

pretation as a density function. This function has the same formal relationship to the net capital

KN (t) as the function b(s) has to the gross capital K(t). Since b(s), interpreted stochastically, is

the density function of the life time of the gross capital, S, this motivates giving g p (s) the inter-

pretation as the density function of the 'life time of net capital', S N . The formal definition of S N

would then be

P(S N>s) = Gp(s) 	 . 	 for all s>0.
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Using (41), we find that its expectation is in general

00

I sB(s)ip (s)ds
P

(50) E(S ) = I sg (s)ds - 0 	N 	 0 	 p 	 Ø p (0)

For p=0 we get in particular

00

I sB(s)ds

(51) E(SN)  = I s g 0 (s)ds = 2 	(p=0). 0 	0 O B(s)ds

Thus defined, the expected life time of the net capital would then emerge as a weighted average of the

life time with the survival probabilities used as weights.

The latter equation can be given an interesting reformulation. Using integration by parts, it is easy

to show that I sB(s)ds = E(S2 )/2, provided that lim s 2B(s) = 0. Hence, recalling (24), we find
0 	 sØ

E(S ) 	 2 	 tE(S)J2+ Q 2 	Q(52) 	 N = 1 	 E(S )= 1 	 S 	= 1 {1 +[  S  J 2 } 	 (p- 0 ) ,
E(S) 	 2 [E(S)J 2 	 EE(S)32 	 E(S)

where a2 is the variance of S. The ratio between the expected life time of the net capital as defined

above and that of the gross capital thus has its lowest value, 1/2, for Q S=0, i.e. when there is no

uncertainty with respect to the life time of the gross capital; all units disappear at the same time.

The ratio increases with the square of the coefficient of variation of the life time, as/E(S). If the

coefficient of variation is unity, the expected life time of gross and net capital coincide.

7. PARAMETRIC SURVIVAL FUNCTIONS

The results derived in the previous sections are valid for any survival function B(s) which

satisfies the general restrictions (1). In this section, we present aselection of parametric functions

which may be useful for empirical applications. For each B(s) we derive the corresponding functions

Gp (s), Ø p (s), and 1
P

	These functions can be used on the one hand for the quantification of gross

and net capital, retirement, depreciation, and capital service price on the basis of investment data -

on the other hand for estimating and testing hypotheses about the form of the survival function

from data on vintage prices.

We present four classes of survival functions, each characterized by two parameters. The first

parameter represents the maximal life time of the capital, the second indicates the 'curvature' of the

survival profile. Important special cases of these functions are also considered. The results will be

presented partly algebraically, and partly in the form of tables and diagrams. For the sake of reference

we shall, however, start by considering a one parameter survival function, namely the familiar specifi-

cation with exponentially declining survival rates.

Exponentially declining survival function: B(s) = e —
Ss

Consider the parametrization

(53) 	 B(s) = e-65
	s>0,

where 6 is a positive constant. Probabilistically interpreted, the life time S then has an exponential

distribution. 	 Inserting (53) in (5), (8), and (9), we find

CX)
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s>0.

(54) b(s) = 6e-6S,

(55) (1)(0(s)  _ p + 6 ,

(56) 	 i(s) = 	
6

 p +6

This parametrization thus has the particular property that Ø p (s) and i p (s) are constants independent of

s. The (conditional) Laplace transform of the remaining life time is equal to the Laplace transform of

the total life time for all ages s. Since

1 	 1 [1 - p + (p)2 - 	
p+6 	 6 	 S 	 6

we find, by using (22), that

(57) E(T;s) = E(S) =

E(T2 ;s) = E(S2) = Z ,

6 2

and hence

(58) var(T 2 ;s) = var (S 2 ) = E(S 2 ) -.[E(S)] 2 = 1
6

for all s>0,

for all s>0.

In this case, the remaining life time has a (conditional) expectation equal to 1/6 and a (conditional)

variance equal to 1/6 2 for all s.

From (33), (41), and (55) we find moreover that

(59) Gp(s) = B(s) = e-e5,

(60) gp(s) = b(s) = se
-6s

and hence, using (32) and (42), that

00

(61) KN(t) = K(t) = Ie -S5J(t-s)ds,
0

00

(62) DN(t) = D(t) = I 6e-6SJ(t-s)ds = 6KN (t) = 6K(t).
0

for s>0,

These relationships hold regardless of the value of the discounting rate p. Thus, in the exponential

case, gross capital is numerically equal to net capital, and retirement (replacement) coincides with de-

preciation1 6) The rate of retirement is equal to the rate of depreciation, and the common value is constant

and equal to I. This is another particular property of this survival function.

Its implication for the price variables is also remarkably simple. From (27) and (55) it

follows that

(63) 	 q(t, ․ ) = q(t) 	 for all s>0,

i.e. the price per capital efficiency unit will be the same for all ages. The equivalent relationship ex-

pressed in terms of the price per capital unit originally invested is

16) This conclusion concurs with eq. (52) which implies that E(S N ) = E(S) when the coefficient of

variation of S is unity. This is in fact the case for the exponential distribution, since' the expec-
tation and the standard deviation are both equal to 1/6 in this case, cf. (57) and (58).
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for 0<s<N

for s>N,

First we consider

(66) 	 B(s) = B I (s;N,n) =

0
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(64) p(t, ․ ) = e-ss q(t), 	 for all s>0,

i.e. this price declines exponentially with age at the rate S. Combining (28) and (55) we find that

the capital service price is equal to

(65) c(t) = q(t)(p+S) •

If we let o=r - ci (t )/q (t) , r denoting the nominal market interest rate, i.e.  i f we make the reasonable equili-

brium assumption that the capital users (capital owners) consider the current 'real interest rate' when

discounting the future flow of capital services from time t (confer section 5), this expression is iden-

tical with the familiar textbook formula for the user cost of capital in a neo-classical model of capital

accumulation,

c(t) = q(t) {r+s-g(t)/g(t)1 .

From the point of view of empirical applications, the exponential model is very restrictive

since it has only one parameter. Its implicit assumption of an infinite maximal service life is also incon-

venient and implausible, as is the constancy of the rate of depreciation which it imposes. In the following, we

outline four classes of two-parametric survival functions with a finite maximal life time, two of which

are convex and two concave.

where N and n are positive 17) constants, n integer. The corresponding retirement (density) function
is

(67) 	 b(s) = b I (s;N,n) =

r-

n (l _ s )
N

n - 1
N for 0<s<N

for s>N . _.

It is convenient to introduce the auxiliary function

I 	 , = N- 	 -p(z - s) 	 _ z n(68) C p (s,N,n) 	 1' e 	 (1 	 NI d z
5

When p=0, integration yields directly

(69) CI
0
(s;N,n) = N (1 _ s ) n+l = 41- I(s;N,n +l)n+^` 	 N 

0<s<N.

0<s<N.

If p > 0, the function satisfies the following recurrence formula, proved in appendix B:

17) Formally, B I is also defined for n=0, but not b I ; confer below.
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(70) CIp 	 p(s;N,n) = 1 [( 1 - s ) n - nN C I (
p

s;N , n -1 )]N 

= 1 [B I (s;N,n) - n C IpN 	 (s;N,n-1)]

C I (s;N,-O) = H(N-s) = 1[1 -e p(N-s)1,
P 	 P 	 P

n = 1,2,....,

where, in general, Ha (M) denotes the present value of a constant annuity of 1 discounted over M years

at the rate a.

Inserting (66) and (67) in (8) and (9), it follows that Ø p and tp p can be expressed as

C I ( s;N,n)
P

)
(71) Øp(s) = 	 0<s<N,

B (s;N,n)

C I (s;N,n -1)
( 72 ) 	 *p(s) = N ^ 

B (s;N,n)
0<s<N. .

Hence, using (33) and (41), we find that the weighting functions for net capital and depreciation are,

respectively,

C I (s;N,n)
(73) Gp(s) - 	IC(0;N,n)

C I (s;N,n -1 )
(74) g p (s )= 	 N I C(O;N,n)p 

For p=0 we get in particular

G (s) = (1 _ s ) n+1 = BI(s;N,n+1),
0 	 N

9 0 
(s) = n+1 (1 N - pn  = bI(s;N,n+l).

When no discounting of future capital services is performed, there is thus a very simple relationship

between the weighting function of the gross capital and that of the net capital in this case: We only

have to change n to n+l to get from the former to the latter.

From (23), (66), (69), and (71) we find

(75) 	 E(T;s) = Ø (s) = N-s ,
0 	 n+1

i.e. the expected remaining life time is a linearly decreasing function of age, with a rate of decrease

equal to 1/(n+l). In particular, the expected life time of a new capital unit is

E(S) = N '
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The corresponding 'expected life time of net capital', as defined in (51), is

E(SN ) = N 	 (p=0),
 n+^

and hence their ratio

E(SN) _ n+l
(76) 	 E(S) 	 n+2 (p=0)

is less than one for all admissible values of n and increases to one with increasing n, regardless of

the value of N.

The expressions for the price variables follow by substituting (71) in (27), (29), and (28).

For the vintage prices we get

C I (s;N,n)
(77) q(t, ․ ) = q(t) p

C I (O;N,n)(1 - s ) n
p 	 N

C I (s;N,n)
(78) p(t, ․ ) = q(t) • 	 PI 

C p (O;N,n)

and the capital service price becomes

(79) 	 c(t) = 	
q(t) 

C p (O;N,n)

In these expressions, the effect of the interest rate p on the one hand, and the parameters characteri-

zing the survival profile, N and n, on the other, are intermingled. Since C I (O;N,n) is a highly non-
linear function of p, N, and n, we cannot, for instance, decompose the capital service price into two•

additive components, one representing 'interest cost' and the other representing 'depreciation'. This

is an important difference between this survival function and the exponential one, which admits an addi-

tive decomposition; cf. (65). We can, however, find the isolated effect of the depreciation component

by setting p=0 in (77)-(79). This gives

q(t, ․ ) = q(t)( 1 - ^) ,

p(t, ․ ) = q(t)(1 - Mr1+1 0<s<N,

c(t) = q(t)n+ l .

In this degenerate case, the capital service price is inversely proportional to the maximal life time N

and proportional to n+l.

The class of survival profiles (66) contains several specifications discussed in the literature

as special class. Let us look briefly at a few of them.

n=0: Simultaneous exit L"one horse s hay"^

In this case, all capital objects are assumed to retain their full productive capacity during N

periods and are then completely scrapped. Probabilistically interpreted, the distribution of the tech-

nical life time S is a 'one point distribution'; the entire 'probability mass' is concentrated in the
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point s=N. From (70), (76), (77), and (78) we find

1-e p(N -s) 	 H (N-s)

q(t, ․ ) = p(t, ․ ) = q(t) • 	 _pN 	 = q(t)  p 
1 -e 	 H p (N)

c(t) = q(t) • 	 p 	  - q t) 	•
1 _e-pN
	 Hp N

The latter is the familiar formula

user cost - investment price 
annuity factor 	 '

Eq. (73) gives in this case, when we use de L'H8pita1's rule,

1-e P(N-s)
G (s) _ 	 _ 	 > 1
P 	 1 _e-PN 	 10-'0

and hence

Pe
-p(N-s)
	1g p (s) __pN	  p-40' N •

1 -e

Finally, when n=0, (76) gives

E(S N )	1_
E(S) (P=0),

which agrees with (52), since the simultaneous exit specification implies, as already remarked, that the

life time S has a one point distribution, and, consequently, Q S=O. The ratio of E(S N ) and E(S)

cannot take a lower value than it does in this case, so the simultaneous exit assumption is also in this

respect an extreme specification.

n=1: Linear survival function

When n=1, the survival function is a linearly decreasing function of s,

B(s) = 1 - N ,

b(s) = 1 	0<s<N.

Probabilistically interpreted, the life time has a uniform distribution on the interval [O,N]. Using the

recurrence formula (70) , we find

C I (s;N^l) = 1 [1 - s - 1 	{1-e
-p(N-s) }],

P 	p	 N 	NP

and hence, from (73) and (74),



_ (N-s)p-{l -e p(N -s) }
Gp (s) Np - {l-e -pN } 	P-4°> (1 -

1 - e-p(N-s) 	2	 s
9 p (s) _ 	 _ pN 	 p..^0> N( 1 - N) •

N - {1 - e 	 }/p

The vintage prices and the capital service price are in this case

	(N-s)p-{1- e - p (N-s) 1
	N-s-Hp(N-s)

q(t, ․ ) = g(t) 	_pN	 s 	 = cl( t ) 	
CNp - { 1 - e 	 }](1 - 171) 	 [N-Hp(N)1(1 ^)

p(t , ․ ) = q(t) 
(N-s)p-{l-e-p(N-s) }

Np-{ 1-e
_p N

 }

N-s-H p (N-s)

= q(t) N
-H

 p

(N) 

c(t) = q (t) 	p -pN 	 = q(t) 
p 

1 - {1 - e	 }/(Np) 	 1- N H p (N)

Finally, from (76) we find

E(S N ) `_ 2
E(S) 	 3 (p=0),

i.e. when the survival function is linearly decreasing, the expected life time of the net capital

will be two thirds of the life time of the gross capital.

Strictly convex survival functions

All members of this class of survival functions in which n>2 are (strictly) convex functions of

the age s. Or stated otherwise, the relative retirement (density) function b(s) is a decreasing func-

tion of s, since (67) implies

db(s) _ _ n n -1 	 (1 _ s ) n-2 < 0
ds 	N	 N

for n>2.

Moreover, b(s) is itself convex for n>2, since

d 2b(s) _ n(n- 1)(n-2)

ds 2 	N 3

s^n-3 > 0
for n>2.

This situation is illustrated in the upper half of figure 2.

In the limiting case where n goes to infinity while N is fixed, the survival function degene-

rates to

B(s) = B I (s;N,^) =
1 for s=0

0 for s>0,

26

2

i.e. the capital is scrapped momentaneously once it has been installed. On the other hand, if n and N

both go to infinity while their ratio is restricted to be a finite constant s, i.e.,



n -*
N -^

n
N =

00

CO
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we find from 66
 

and (67), when we recall the definition of e,

B(s) = (1 - N ) n 	 e-ss ,

N 	 N

and hence, using (68) (or (70)),

I 	 e-Ss	C p (s;N,n)-0
P+s 	 •

This limiting case is thus simply the exponential case discussed above.

CLASS II: Concave: B(s) = 1 - (!) 777

The second class of survival functions we shall consider is

(80) B(s) = R IT (s;N,m) =
1-(N) m for 0<s<N  

0 	 for s>N,

where N and m are positive constants, m integer. Its retirement (density) function is

II f!ql)m-1
(81) b(s) = b 	 (s;N,m) = for 0<s<N

for s>N.

For ease of exposition, we introduce the auxiliary function

II 	 , 	 N -p(z-s) 	m(82) Cp ( s s N ,m ) = fe 	 (N) dz
s

When p=0, we find directly

(83) Co
II (s;N,m) = 	 NTITT[1 - (s

N
)m+1] = N

m l 
BII(s;N,m+l)

0<s<N.

0<s<N.

If p>0, the function values can be calculated recursively from the following formula, proved in appendix

B:

(84)=_ ^[(S)m -e p(N-s) + ^ II (s;N,m -1)]
p 	 p N 	 N p

= H (N-s) + 1 {mC IT (s;N,m-1) - B II (s;N,m)} 	 m=1,2, 	
p N p

C II (s;N,O) = H (N -s) = 1-[1- e-p(N-s) ].
P 	 P 	 P
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Inserting (80) and (81) in (8) and (9), we find

1 [1 _ e-P(N-s) 1 _ CII(s;N,m) 	
H (N-s) _ CII(s;N,m)

P 	 P 	_  P 	 P 
(85) ØP(s) = 	 II 	 IIB 	 (s;N,m) 	 B (s;N,m)

C II (s;N,m-1)RI 	P (86) 1P (S) - N 	 IIP 	 B (s;N,m)

0<s<N,

0<s<N.

We can then, by using (33) and (41), write the weighting functions for net capital and depreciation as

follows

H (N-s) - C II (s;N,m)

H
(87) Gp (s) = 

 P 	 IIP̂  

HP 	P(N) - C (O;N,m)

C II (s,N,m-1)
(88) g(s) - m 	PP 	N H (N) - C II (O;N,m)

P 	 P

For p=0 we get in particular

G0 (s) = 1 - 5 - s [ 1 - (s)m] = (1 + 1 )(1 - s) - ^ II (s;N,m+1 ) ^ N mN 	 N 	 m	 N 	 m

g(s) = m+1 [1 	s m	 m+ 1 	 1 II
0 	 . 	 mN 	 (N) ] 	 mN 	 m (s;N,m+l).

Combining (23) with (80), (83), and (85), we get the following nonlinear expression for the
expected remaining life time as a function of age:

N-s - N [1 - ( s )
m+l ]

(89) 	 E(T;s) = Ø0
 (s) = 	 m+1 	 N 

. 	 s m
1 - (N)  

N
m+^

m(1 - 	
) 	s

	s m 	 N
1 - (N)   

In particular, we find by setting s=0 that the expected life time of a new capital unit is

(90) E(S) = mmT .

The corresponding 'expected life time of net capital', as defined in (51), is

(91) E(S) = ( m+1 N
N 	 2 (m+)2_ )'

and thus their ratio,

E(SN) 	 (m+1) 2 _ 1 1 
( 92 ) 	E(S)	 2m(m+2 ) 	2 [ 1 + m(m+2) ]

decreases from 2/3 to 1/2 as m increases from 1 to infinity.



29

The expressions for the vintage prices are in this case

H (N-s) - C II (s;N,m)
(93) q(t, ․ ) = q(t) 	 P 	 P 

{H (N) - C II (O;N,m)}{l - (S) }

	P 	 P

H (N-s) - C II (s;N,m)
(94) p(t, ․ ) = q(t) P 	 P 

H (N) - C II (O;N,m)
	P 	 P

and the capital service price is

(95) 	 c(t q(t) 

H (N) - Cp(O;N,m
P

This is also- as the corresponding formula in class I, (79)- a highly non-linear expression in p, N, and
m. If we set P=O, while making use of (83), we can isolate the effect of the depreciation parameters
N and m. This gives

m

q(t , ․ ) = q(t)

p(t, ․ ) = q(t) {l - 	 - 	 [1 - (S) J }N mN 	 N

c(t) = q(t) m+1
mN •

In this degenerate case, the capital service price is inversely proportional to the maximal life time N

and proportional to (m+l)/m.

Let us consider briefly some special cases of this class of survival functions: First, when

m=1, we are back again at the linear survival function. Second, if mØ (with N finite), the model de-

generates to the simultaneous exit specification, since lim(s/N) m is zero when s<N, and one when s=N.

These two cases were discussed above, as special cases of class I.

m>2: Strictly concave survival functions

When m>2, we see from (80) that the survival function is (strictly) concave in s, or stated

otherwise, the relative retirement (density) function b(s) is an increasing function of s, since (81)

implies

	db(s) _ m(m-1) (s ) 	 >0

N
2ds 	 2 	 (N) for m>2.

An interesting property of this class of survival profiles is that the weighting functions of

gross and net capital may have different curvature. If,for instance, p=0, the latter is convex, since

dG 2 (s) 	 dg (s) 	 m- 1
0

0 	 0 	 m+1 ( s ) 

ds2 	 ds 	 2 Ti	 >
_ 	 _ 

N



1
n+ 1

N

N s
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while the former is, as already declared, concave. In this case, the retirement (density) function b(s)

and the corresponding depreciation function g 0 (s) also show different curvature; the former is convex,

d 2 b(s) _ m(m-l)(m -2) ,s m-3
2 N 3 N) 	 > 0

ds 2

the latter concave,

d 2g (s) 	 m-20	 _ _ (m+l)(m-l) (s) 	 < 0
ds 2	N 3 	 N

for m>2,

for m>2.

There is then no conflict between assuming that the technical outwear of the capital follows a concave

function - i.e. that the deterioration is increasing with age - and assuming that the decline in the

capital value is represented by a convex function - i.e. that the depreciation is decreasing with age.

This situation illustrated in the lower half of figure 2.

FIGURE 2. TYPICAL CASES WITH CONVEX AND CONCAVE SURVIVAL PROFILES

B(s) and G 0 (s) both convex: Class I with n ? 2.

m
N

m+1
mN

B(s) concave, G 0 (s) convex: Class II with m Z.2.
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Numerical and graphical illustrations

Numerical illustrations of the functional forms in class I and II are given in tables 1-5.

Function values of B(s), b(s), G (s), g (s), and Ø (s) are calculated from the formulae a bove 18) for a
P, 	 P 	 P

maximal life time N equal to 6, 20, and 50, and an interest rate p equal to 0 and 0.10. The different

values of the 'curvature parameters' n and m considered illustrate  the flexibility of these two parame-

trizations.

More detailed, graphical illustrations for N=20 are given in figures 3-13. Figures 3 and 4

contain the survival function and the corresponding replacement (density) function in class I for

n=1, 2, 5, and 10. Figures 5 and 6 give similar functions for class II. Figures 7-9 visualize the

difference between the survival function and the corresponding weighting function for net capital,

whereas figures 10 and 11 illustrate these differences in terms of the replacement (density) function

and the depreciation function. The function Ø P (s), which represents the discounted service flow per

capital (efficiency) unit as a function of age, is illustrated in figures 12 and 13. Recall that the

graphs for p=0 also indicate the decline in the expected remaining life time.

Finally, in figures 14 and 15, we illustrate the decline in the vintage prices q(t, ․ ) as a pro-

portion of the price of a corresponding new capital unit, q(t). Since this ratio is equal to Ø P 	Ø(s)/ P (0),

cf. (27), the graphs in figures 14 and 15 simply emerge by rescaling the graphs in figures 12 and 13.

18) In these calculations we did not, however, use the recurrence formulae (70) and (84) for the com-

putation of the functions C (s;N,n) and C II (s;N,m), since this algorithm turned out to give numerically
P 	 P

imprecise results owing to cumulative rounding errors, in particular when p is small and n, or m, is
large.Instead, we programmed the computer algorithm directly from the definitions (68) and (82), using
Simpson 's formula, which turned out to give more accurate results. In terms of computer time, these
two procedures are largely equivalent.



TABLE 1. Survival functions for gross capital , B(s).

Class I and II.

Technical life time: N = 6, 20, and 50.

N = 6

s

simult.
exit

CLASS II CLASS I

m=10
-

m=5 m=2_ 	 - 	 ., n=1 n=2 ^ =5 =^ 1Ø
;ØØ 1.00000 1. ØØMØØ 1.00000 i . f ^^ , LwowØØoØØ i . wo 0 - i . ØØow
.01 1 .0Øm0 i.00Ø00 Ø.99957 0.97222 0.83333 0.69444 0.40188 0.16151
1Ø2 1.00000 0.99998 0.99588 0.88889 0.66667 0. 44444 0.13169 0.01734 
03 1.00000 0.99902 0.96875 0.75000 0.50000 0. 25000 0.03125 0.00098
Ø4 1.00000 0.98266 0.86831 0.55556 0.33333 0.11111 0.00412 0.00002
05 1.00000 0.83849 0.59812 0.30556 0.16667 0.02778 0.00013 0. 0,0000

_ 	 06 0.00000 0.00000 0.00000 . 0.00000 0.00000 0.00000 0.00000 0.00000



TABLE 1 (cont.)

N = 20

s

simult.

• 	 exit

,

CLASS
- 	
II . CLASS I

-------

m=10 m*5 m*2 n*1 n*2 n*5 n*10
tiil 1.00000 1.00000 1.00000 1.00000 1.00000 Looms. isoloaao Loewe
01 Lwow Lwow 1.00000 0.99750 0.95000 0.90250 0.77378 0.59874
02 1.00000 i.00000 0.99999 0.99000 0.90000 0.81000 0.59049 0.34868
03 1.00000 1.00000 0.99992 0.97750 0.85000 0.72250 0.44371 0.19687
04 1.00000 1.00000 0.99968 0.96000 0.80000 0.64000 0.32768 0.10737
05 1.00000 1.00000 0.99902 0.93750 0.75000 0.56250 0.23730 0.05631
06 1.00000 0.99999 0.99757 0.91000 0.70000 , 	 0.49000 0.16807 0.02825
07 1.00000 0.99997 0.99475 0.87750 0.65000 0.42250 0.11603 0.01346
08 1.00000 0.99990 0.98976 0.84000 0.60000 0,36000 0.07776 0.00605
09 1.00000 0.99966 0.98155 0.79750 0.55000 0.30250 0.05033 0.00253
10 1.00000 0.99902 0.96875 0.75000 0.50000 0.25000 0.03125 0.00098
11 1.00000 0.99747 0.94967 0.69750 0.45000 0.20250 0.01845 0.00034
12 1.00000 0.99395 0.92224 0.64000 0.40000 0.16000 0.01024 0.00010
13 1.00000 0.98654 0.88397 0.57750 0.35000 0.12250 0.00525 0.00003
14 1.00000 0.97175 - 	 0.83193 0.51000 0.30000 0.09000 0.00243 0.00001
15 1.00000 0.94369 0.76270 0.43750 0.25000 0.06250 0.00098 0.00000
16 1.00000 0.89263 0.67232 0.36000 0.20000 0.04000 0.00032 0.00000
17 1.00000 0.80313 0.55629 0.27750 0.15000 0.02250 0.00008 0.00000
18 1.00000 0.65132 0.461951 0.19000 0.10000 0.01000 0.00001 0.00000
19 1.00000 0.40126 0.22622 0.09750 0.05000 0.00250 0.00000 0.00000
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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TABLE 1 (cont.)

N = 50 (cont.)

s

simult.
exit

CLASS 	 II ,

____
CLASS
...._._

I .

m=10 m=5 m=2 n=1 n=2 n=5 n=10

24 1.00000 0.99935 0.97452 0.76960 0.52000 0.27040 0.03802 0.00145
25 1.00000 0.99902 0.96875 0.75000 0.50000 0.25000 0.03125 0.00098
26 1.00000 0.99855 0.96198 0.72960 0.48000 0.23040 0.02548 0.00065
27 1.00000 • 0.99789 0.95408 0.70840 0.46000 0.21160 0.02060 0.00042

28 1.00000 0.99697 0.94493 0.68640 0.44000 0.19360 	 • 0.01649 0.00027

29 Lwow 0.99569 0.93436 0.66360 0.42000 0.17640 0.01307 0.00017 	 ,
30 Lwow, 0.99395 0.92224 0.64000 0.43330 0.16000 0.01024 0.00010

31 1.00000 0.99161 0.90839 0.61560 0.38000 0.14440 0.00792 0.00006

3233

1.0
1.00000

980. 	 847
0

0.89263
0.87477

0.59400
0.56440

0.36000
0.34000

0.12960
0.11560

0.00605
0.00454

0.eleale4
0.00002

34 1.00000
1.00000

0.97886
0.97175

0.85461
0.83193

0.53760
0.51eloo

0.32000
0.30330

0.10240
0.09000

0.00336
0.00243

0.00001
0.0003135

•3637
1.00303
1.00000

0.96256
0.95076

0.0351
0.77810

0.48160
0.45240

0.28000
0.26000

0.07840
0.06760

0.00172
0.00119

0.03303
0.00000

'38 1.00000 0.93571 0.74645 0.42240 0.24000 0.05760 0.3038e o.00laae
39 1.00000 0.91654 0.71128 0.39160 0.22000 0.04840 0p03352 opoaoag
40 1. 515	 Ali 0.89263 0.67232 0.36030 0.20330 0.04000 0.03332 0.00033
141 1.03333 0.85255 0.62926 0.32760 0.18aore 0.03240 0.63319 0.131aaao
42 ipeaaara 0.62510 0.58179 0.29440 0.16330 0.02560 0.00e10 0.00030
143 1.00323 0.77670 0.52957 0.26040 0.14000 0.01960 0.03335 0.03330
44 i.@ææ 0.72150 0.47227 0.22560 0.12333 0.01440 0.03332 0.00000 	 .

6
1.am03
i.oloacio

0.65132
0.56561

0.40951
0.34092

0.19333
0.15360

0.10330
0.08330

0.01003
0.00640

0.03331
0.02630

0.03033
0.03000

47 1.03033 0.46139 0.26610 • 0.11640 0.060133 0.e3363 0.b3333 3.ca--.1,13
IQ 1.Cia3& 0.33517 0.16463 0.07640 0.04000 0.03160 0.16333a 0.o3:-.J3a
149 1.63330 0.16233 0.03608 0.03952 0.02000 0.00040 0.00300 e.33333
to osebayao 3.0a333 0.03300 0.03333 0.00000 0.00000 0.00330 0.03330



TABLE 2. Replacement (density) functions. b(s).

Class I and II.

Technical life time: N = 6, 20, and 50.

N= 6

CLASS II CLASS I

S
simult.
exit m*10 	 m*5 	 m*2 n*1	 n*2 n=5 	 n=10

0.00000
0.00000
0.00000
0.00000
0.00000
0.Y00/00

	

0.00000 	 0.010000 	 0.00000

	

0.00000 	 0.00064 	 0.0'6556

	

0.190008 	 0.01029 	 0.11111

	

0.00326 	 0.05208 	 0.16667

	

0.04335 	 0.16461 	 0.22222

	

0.32301 	 0.40188 	 0.27778

	

1.66667 	 0.83333 	 0.33333

	

0.16667 	 0.33333

	

0.16667 	 0.27778

	

0.16667 	 0.22222

	

0.16667 	 0.16667

	

0.16667 	 0.11111

	

0.16667 	 0.05556

	

0.16667 	 0.00000

	0.83333	 1.66667

	

0.40188 	 0.32301

	

0.16461 	 0.04335

	

0.06208 	 0.00326

	

0.01029 	 0.00008

	

0.00064 	 0.0000

	

0.00000 	 0.00000



TABLE 2 (cont.)

N = 20

s

simult.

exit

CLASS II * CLASS I

m=10 m=5 m=2 n=1 n=2 n=5 n=10

00 0,00000 0.00000 0.00000 0.00000 0.05000 0.10000 0.25000 0.50000
01 0..00000 0.00000 . 0.05000 . 0.31512
02 0.00000 0.00000 0.00002 0.01000 0.05000 0.09000 0.16403 0.19371
03 0.00000 0.00000 0.00013 0.01500 0.05000 0.08500 0.13050 0.11581
04 0.0.0000 0.00000 0.00040 0.02000 0.05000 0.08000 0.10240 0.06711
05 0.00000 0.00000 0.00098 0.02500 0.05000 0.07500 0.07910 0.03754
06 0.00000 0.00001 0.00202 0.03000 0.05000 0.07000 0.06002 0.02018
07 0.00000 0.00004 0.00375 0.03500 0.05000 0.06500 0.04463 0.01036
08 &mew 0.00013 0.00640 0.04000 0.05000 0.06000 0.03240 0.00504
09 0..E2030 0.00038 0.01025 0.04500 0.05000 0.05500 0.02288 0.00230
to 0. wow 0.00098 0.01563 0.05000 0.05000 0.05000 0.01563 0.00098
11 0.00000 0.00230 0.02288 0.05500 0.05000 0.04500 0.01025 0.00038
12 memo 0.00504 0.03240 0.06000 0.05000 0.04000 0.00640 0.00013
13 0.1idsd, 0.01036 0.04463 0.06500 0.05000 0.03500 0.00375 0.00004
14 0.00000 0.02018 0.06002 0.07000 0.05000 0.03000 0.00202 0.00001
15 0.sms 0.03754 0.07910 0.07500 0.05000 0.02500 0.00098 0.00000
16 0.00000 0.06711 0.10240 0.08000 0.05000 0.02000 0.00040 0.00000
17 0.00000 0.11581 0.13050 0.08500 . 	 0.05000 0.01500 0.00013 0.00000
18 0.00000 0.19371 0.16402 0.09000 0.05000 0.01000 0.00003 0.00000
19 0. 00 0.31512 0.20363 0.09500 0.05000 • 0.00500 0.00000 0.00000
20 NA 0.50000 0.25000 0.10000 0.05000 0.00000 0.00000 0.00000

_
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TABLE 2 (cont.)

N = 50 (cont.)

s

(..----mm.m

simult.
exit

CLASS 	 II CLASS' I •
.

n=16-m=10 m..5 m=2 n=1 ;na2 n=5

---i
24 0.00000 0.00027 0.00531 0.01920 • 0.00731 0.00056
25 0.00000 0.00039 0.00625 0.02000 ø.woato . 0.00039
26 0.00000 0.00056 0.00731 s 0.02080 0.02000 0.01920 0.00531 0.00027
27 0.00000 0.00078 0.ocl853 0.02160 0.02000 0.01840 0.03448 0.00018
28 0.00000 0.00108 0.00983 0.02240 0.02000 0.01760 0.00375 3.1E3012
29 0.olo030 0.00149 0.01132 0.02320 0.02000 0.01680 0.00311 0.o030e
30 eLogoao• 0.00202 0.01296 0.02400 0.02330 0.01600 0.00256 0.1 	 .
31 • malow 0.00271 0.01478 0.02480 0.Ge330 0.01520 0.00209 0.00003

32 0.o0303 0.00360 0.01678 0.02560 0.02000 0.01440 0.00168 0.00002

33 0.30303 0.00475 0.01897 0.02640 3-32333 0.01360 0.00134 miacitei
34 0.00000 0.00622 0.02138 0.02720 0.02000 0.01280 0.00105 0.33301
35 0.00000 0.00807 0.02401 0.02800 0.02000 0.01200 0.00^31 0.00000
36 0.00000 0.01040 0.02687 0.02880 0.02033 0.01120 0.03361 0.03300

37 0.s-/2,4% 0.01331 0.02999 0.02960 0.e2oa3 0.01040 3,o3346 o.oaa3a
38 ELooaao 0.01692 0.03336 0.03040 0.33303 0.00960 0.03033 o.oaaaa
39 e.gioogo 0.02137 0.03702 0.03120 ox2p3el moaso 0.03323 o.oaaag
40 0.00000 0.02684 0.04036 0.03200 0.02000 0.00800 0.03016 0.03000

41 o.gnoaao 0.03352 0.04521 0.03280 0.02033 0.00720 ' 	 0.643310 o.o3a0o.
42 0.03330 0.04164 , 	 0.04379 0.03360 0.C2C,33 0.03540 0.o3ae7 0.03333

43 0.0,3033 0.05147 0.03470 0.03440 0.ear;33 0.03560 0.03334 , 	 0.03303
44 0.03330 0.06330 0.05997 0.03520 0.02633 0.03480 0.33302 0.03330
45 0.03333 0.07748 0.e8561 0.03600 0.02030 0.33403 magol 0.33333
46 maaoo 0.03443 0.07164 0.03680 0.02030 0.00320 0.14i , 0.e3333
47 0.33wo 0.11460 0.07807 0.03760 0.02000 0.00240 oewage meow
48 0.03300 0.13351 0.03493 0.03340 0.020340 0.00160 0.03030 0.c.163ao
49 0.03333 0.16675 0.03224 0.03520 0st7,17_1333 0.03330 0.633 0.03'23
50 NA 0.2633 0.16333 0.04333 0.6,-.13 0.03333 0.r.'„-.-;333 0.03330



TABLE 3. Weicr,htina, functions for 'net capital, G(s).

Class I and II.

Technical life time: N = 6, 20, and 50.

Interest rate : Rho (n = 0 and 0.10.

s

' Rho * 0 Rho * 0.10

simult.
exit

class II
m*5

class I
n*1

class I
n*5

simult.
exit

class II
m*5

class I
n*1

class I
rp5

.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 :::Co1. 1.0,0000

.211 0.83333 0.80000 0.69444 0.33490 0.8720.7 0.83635 0.71588 0.33944

,02 0.66667 0.60027 0.44444 0.08779 0.73069 0.65584 0.47254 0.649020

03 0.50000 0.40312 0.25000 0.01563 0.57444 0.45977 0.27429 0.01628

04 0.33333 0.21756 0.11111 0-00137 0.40176 0.25848 0.12587 0.00145

05 0.16667 0.06698 0.02778 0.00002 0.21092 0.08266 0.03251 0.00002

ffi 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



TABLE 3 (cont.)

N = 20

s

Rho . 0 Rho 	 0.10

simult.
exit

class II
m*5

class I
ngi 	 ^

class I
n*5

simult.
exit

class II
mg5

class 1
n=1

class I
n.5

EU 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
01 0.95000 0.94000 0.90250 0.73509 0.98354 0.97412 0.92446 0.74376
02 0.90000 0.88000 0.81000 0.53144 0.96535 0.94553 0.85023 0.54410
03 0.85000 0.82000 0.72250 0.37715 0.94524 0.91393 0.77746 0.39078
04 0.80000 	 • , 0.76001 0.64000 0.26214 0.92302 0.87903 0.70631 0.27491
es 0.75000 0.70005 0.56250 0.17798 0.89846 0.84051 0.63693 0.18893
06 0.70000 0.64015 0.49000 0.11765 0.87132 0.79807 0.56952 0.12644
07 0.65000 0.58037 0.42250 0.07542 0.84133 0.75144 0.50428 0.08207
08 0.60000 0.52082 0.36000 0.04666 0.80818 0.70040 0.44145 0.05141
09 0.55000 0.46166 0.30250 0.02768 0.77155 0.64485 0.38127 0.03089
10 0.50000 0.40313 0.25000 0.01562 0.73106 0.58480 0.32403 0.01766
li 0.45000 0.34554 0.20250 0.00830 0.68631 0.52051 0.27003 0.00951
12 0.40000 0.28933 0.16000 0.00410 0.63686 0.45246 0.21961 0.00475
13 0.35000 0.23508 0.12250 0.00184 	 , 0.58221 0.38153 0.17315 0.00216
14 0.30000 0.18353 0.09000 0.00073 0.52181 0.30900 	 - 0.13107 0.00087
15 0.25000 0.13560 0.06250 0.00024 0.45505 0.23673 0.09383 0.00029
16 0.20000 0.09243 0.04000 0.00006 0.38128 0.16724 0.06194 0.1115SC

17 0.15000 0.05543 0.02250 0.00001 0.29975 0.10390 0.03595 0.00001
18 0.10000 0.02629 0.01000 0.00000 0.2E1964 0.05102 0.01650 0.00000
19 0.05000 0.00702 0.00250 0.00000 0.11006 0.01409 0.00426 0.00000
20 10o0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



TABLE 3 (cont.)

N = 50 

Rho • 0

class II
m*5    

Rho • 0.10          

simult.
exit

class
n=1

class I
n*5 

simult.
exit

class II
m*5

class I
n*1

class I
n*5

cm 	 Lwow 	 Lwow 	 Lwow 	 Lwow 	 Lwow 	 Lwow 	 Lwow 	 1.00330
01 	 0.93300 	 0.97600 	 0.96040 	 0.88564 	 0.99929 	 0.99769 	 0.97522 	 0.89385
02 	 0.960a0 	 0.95200 	 0.92160 	 0.78276 	 0.99850 	 0.99514 	 0.95046 	 0.79703
03 	 0.94000 	 0.928013 	 0.88360 	 0.68987 	 0.99763 	 0.99232 	 0.92571 	 0.70891
04 	 0.92000 	 0.90400 	 0.84640 	 0.60635 	 0.99666 	 0.98920 	 0.90099 	 0.62836
05 	 0.90000 	 0.88000 	 0.81030 	 0.53144 	 0.99560 	 0.98576 	 0.87630 	 0.55631
06 	 0.88000 	 0.85600 	 0.77440 	 0.46440 	 0.99442 	 0.98195 	 0.85163 	 0.49072
07 	 0.86030 	 0.83200 	 0.73960 	 0.40457 	 0.99312 	 0.97775 	 0.82700 	 0.43155
08 0.84000 	 0.80800 	 0.70560 	 0.35130 	 0.99169 	 0.97311 	 0.80239 	 0.37832
09 	 0.82000 	 0.78401 	 0.67240 	 0.30401 	 0.99010 	 0.96798 	 0.77783 	 0.33055
10 	 0.Es3300 	 0.76001	 0.64000 	 0.26214 	 0.98834 	 0.96234 	 0.75331 	 0.28781
il 	 0.78150 	 0.73602 	 0.60840 	 0.22520 	 0.98640 	 0.95611 	 0.72883 	 0.24968
12 	 0.76030 	 0.71204 	 e.5.re60 	 0.19270 	 0.98426 	 0.94925 	 0.70440 	 0.21576
13 	 0.74000 	 0.68806 	 0.54760 	 0.16421 	 0.98189 	 0.94171 	 0.6833 	 0.18569
14 	 0.72000 	 0.66410 	 0.51640 	 0.13931 	 0.97927 	 0.93343 	 0.65572 	 0.15913
15 	 0.70033 	 0.64015 	 0.49033 	 0.11765 	 0.97638 	 0.92434 	 0.63148 	 0.13575
16 	 0.68000 	 0.61621 	 0.46240 	 0.09887 	 0.97318 	 0.91438 	 0.60732 	 0.11525
17 	 0.66000 	 0.59231 	 0.43560 	 0.08265 	 0.96965 	 0.93349 	 0.58324 	 0.09735
18 	 0.64000 	 0.56844 	 0.40960 	 0.06872 	 0.96574 	 0.89159 	 0.55925 	 0.03178
19 	 0.62030 	 0.54460 	 0.38440 	 0.05680 	 0.96143 	 0.87862 	 0.53536 	 0.06831
20 	 0.60300 	 0.52032 	 0.36E10 	 0.04666 	 0.95666 	 0.86452 	 0.51158 	 0.05671
21 	 0.58000 	 0.49710 	 0.33640 	 0.03807 	 0.95139 	 0.84921 	 0.48793 	 0.04677
22 	 0.56000 	 0.47345 	 0.31360 	 0.03084 	 0.94556 	 0.83262 	 0.46442 	 0.03830
23 	 0.54000 	 0.44989 	 0.29160 	 0.02479 	 0.93912 	 0.81469 	 0.44106 	 0.03113
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TABLE 4. Depreciation (density) functions, g(s).

Class I and II.

Technical life time: N =6, 20, and 50.

Interest rate: Rho (9) = 0 and 0.10.

N = 6

Rho a 0 Rho 	 0.10

_........_
simult. class II class I class I simult. class II 	 class I class I•

S exit m*5 nal n*5 exit m=5 	 nal n=5

.00 0.16667 0.20000 0.33333 1.00000 0.12164 0.15561 	 0.30320 0.98659

ea 0.16667 0.19997 0.27778 0.40188 0.13443 0.17194 	 0.26441 0.40273

02 0.16667 0.19918 0.22222 0.13169 0.14857 0.18897 	 0.22154 0.13407

03 0.16667 0.19375 0.16667 0.03125 0.16419 0.210164 	 0.17417 0.03233

04 2.16667 0.17366 0.11111 0.03412 0.18146 0.19610 	 0.12181 0.00433

05 0.16667 0.11962 0.05556 0.00013 0.20055 0.14462 	 0.06395 0.00014

ffi 0.16667 0.00000 0.00000 0.00000 0.22164 0.100000 	 0.00000 0.00000



TABLE 4 (cont.)

N = 20

s

Rho * 0.10

simult.
exit

class II
m*5

class I
n*1

class I
n*5

simult.
exit

class II
m=5

class I
n*i

class I
n=5

.00 0.05000 0.06000 0.10000 0.30000 0.01565 0.02460 0.07616 0.28833
21 0.05000 0.06000 0.09500 0.23213 0.01730 0.02719 0.07491 0.22611
,02 0.05000 0.06000 0.09000 0.17715 0.01912 0.03005 0.07352 0.17490
ga 0.05000 0.06000 0.08500 0.13311 0.02113 0.03320 0.07199 0.13323
04 0.05000 0.05998 0.08000 0.09830 0.02335 0.03666 0.07030 0.09976
05 0.05000 0.05994 0.07500 0.07119 0.02581 0.04043 0.06843 0.07326
e6 0.05000 0.05985 0.07000 0.015042 0.02852 0.04449 0.06636 0.05262
07 0.05000 0.05968 0.06500 0.03481 0.03152 0.04880 0.06408 0.03685
08 0.05000 0.05939 0.06000 0.02333 0.03483 0.05329 0.06155 0.02506
09 0.05000 0.05889 0.05500 0.01510 0.03850 0.05782 0.05876 0.01646
10 0.05000 0.05813 0.05000 0.00937 0.04255 0.06223 0.05562. 0.01037
11 0.05000 0.05698 0.04500 0.00554 , 	 0.04702 0.06628 0.05227 0.00622
12 0.05000 0.05533 0.04000 0.00307 0.05197 0.06967 0.04850 0.00350
13 0.05000 0.05304 0.03500 0.00158 0.05743 0.07199 0.04434 0.00182
14 0.05000 0.04992 0.03000 	 - 0.00073 0.06347 0.07276 0.03974 0.00086
15 0.05000 0.04576 0.02500 0.100029 0.07015 0.07136 0.03466 0.00035
16 0.05000 0.04234 0.02000 0.00010 0.07752 0.06705 0.02904 0.54.12
17 0.05000 0.03338 0.01500 0.00002 0.08568 0.05893 0.02283 0.00003
18 0.05000 0.02457 0.01000 0.550as 0.09469 0.04592 0.01597 0.00000
19 0.05000 0.01357 0.00500 0.00000 0.10465 0.02678 0.00838 0.5ssss
20 0.05000 0aw 0.00000 0.00000 0.11565 0.00000 0.00000 0.00000



00
•01
02
03
04

06

07

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

TABLE 4 (cont.)

N 50 

S

simult.
exit

Rho . 0

class II
m*5

class I 	 class I
n.1 	 n.5

simult.
exit

class II
m*5

class I
n=1

class I
n*5

Rho = 0.10

0.02000 	 0.02400 	 0.04000 	 0.12000 	 0.00068 	 0.00220 	 0.02479 	 0.11102
0.02000 	 0.02400 	 0.03920 	 0.10847 	 0.00075 	 0.00243 	 0.02477 	 0.10136
0.02000 	 0.02400 	 0.03840 	 0.09784 	 0.00083 	 0.00268 	 0.02475 	 0.09236
0.02000 	 0.02400 	 0.03760 	 0.08807 	 0.00092 	 0.00296 	 0.02473 	 0.08398
emomo 	 0.02400 	 0.03680 	 0.07909 	 0.00101 	 0.00328 	 0.02471 	 0.07620
0.02000 	 0.02400 	 0.03600 	 0.07086 	 0.00112 	 0.00362 	 0.02468 	 0.03898
0.02000 	 0.02400 	 0.03520 	 0.06333 	 0.00124 	 0.00400 	 0.02465 	 0.06229
0.02000 	 0.02400 	 0.03440 	 0.05645 	 0.00137 	 0.00442 	 0.02462 	 0.05612
0.02030 	 0.02400 	 0.03360 	 0.05019 	 0.00151 	 0.00487 	 0.02458 	 0.05042
0.02000 	 0.02400 	 0.03280 	 0.04449 	 0.613167 	 0.00538 	 0.02454 	 0.04518
0. 02oaus 	 0.02399 	 0.03200 	 0.03932 	 0.00184 	 0.00593 	 0.02450 	 0.04037
0.02000 	 0.02399 	 0.03120 	 0.03465 	 0.00204 	 0.00653 	 0.02445 	 0.03596
0. 025130 	 0.02398 	 0.03040 	 0.03043 	 0.00225 	 0.00719 	 0.02440 	 0.03193
0.02000 	 0.02397 	 0.02960 	 0.02663 	 0.00249 	 0.00790 	 0.02434 	 0.02826
0..023ao 	 0.02396 	 0.02880 	 0.02322 	 0.00275 	 0.00368 	0.02428	 0.02492
0.02000 	 0.02394 	 0.02800 	 0.02017 	 0.00304 	 0.00951 	 0.02420 	 0.02189
0.02000 	 0.02392 	 0.02720 	 0.01745 	 0.00336 	 0.01041	 0.02412 	 0.01916
0.02000 	 0.02389 	 0.02640 	 0.01503 	 0.00371 	 0.01138 	 0.02404 	 0.01669
0.02000 	 0.02385 	 0.02560 	 0.01288 	 0.00410 	 0.01242 	 0.02394 	 0.01448
0.02000 	 0.02381 	 0.02480 	 0.01099 	 0.00454 	 0.01352 	 0.02383 	 0.01250
geolairao 	 0.02375 	 0.02400 	 0.00933 	 0.00501 	 0.01470 	 0.02372 	 0.01074
osonwo 	 0.02369 	 0.02320 	 0.00788 	 0.00554 	 0.01594 	 0.02358 	 0.03917
0.w020 	 0.02360 	 0.02240 	 0.03661 	 0.00612 	 0.01725 	 0.02344 	 0.00779
0.02000 	 0.02351 	 0.02160 	 0.00551 	 0.00677 	 0.01862 	 0.02328 	 0.00658



TABLE 4 (cont.)

N = 50 cont.)

S

Rho m 0
,

Rho - 0.10

simult.
exit

class II
mm5

class I
nml

class I
nm5

-------------.

simult.

exit

class II
m=5

cl ass I
nmi

class I
n=5

-

24 0.02000 0.02339 0.02080 0.00456 0.00748 . 0.03551
25 0.02000 0.02325 0.02000 0.00375 0.00826 0.02155 0.02291 0.00459
26 0.02000 0.02309 0.01920 0.00306 0.00913 0.02309 0.02269 0.00379
27 0.02000 0.02290 0.01840 0.00247 0.01009 0.02467 0.02246 0.03310
28 0.020ao 0.02268 0.01760 0.00198 0.01116 0.02628 0.02219 0.00252

29 0.02000 0.02242 0.01680 0.00157 0.01233 0.02791 0.02190 0.03202

30 0.02000 0.02213 0.01600 0.00123 0.01363 0.02954 0.02158 0.03160

31 0.02000 0.02180 0.01520 0.00095 0.01506 0.03116 0.02122 0.00126
32 0.0ai3a 0.02142 0.01440 0.03373 0.01664 0.03274 0.02083 0.00397
33 .0.02033 0.02099 0.01360 0.03355 0.01839 0.03427 0.02040 0.00074
34 0.02000 0.02051 0.01280 0.00340 0.02033 0.03571 0.01992 0.03356

35 0.02000 0.01997 0.01200 0.03329 0.02246 0.03703 0.01939 0.00341
36 0.02333 0.01936 0.01120 0.00021 0.02483 0.03320 0.01E33 0.021009

37 0.0:0033 0.01867 0.01040 0.03314 0.02744 0.00316 0.01816 0.63:21
38 0.02330 0.01791 0.03050 0.33310 0.03032 0.03938 0.01744 0.00314

39 0.02200 0.01707 0.0a3ea 0.03336 0.03351 0.04030 0.01665 0.03339

40 0Ar0;m 0.01614 0.00330 0.03334	 - 0.03734 0.04035 0.01578 0.03335

41 0.02000 0.01510 0.03720 0.03332 0.04033 0.03397 0.01491 . 	 0.03303

42 0.02033 0.012D6 0.03540 0.03301 0.04524 0.63-303 0.01374 0.j..722
43 0.023:33 0.01271 0.b0 0.0pa31 0.33 0.Æ'758 0.012S6 0.CC331
44 0.02633 0.01133 0.CC433 0.03333 0.525 0.0-.7.--333 0.01126 0.b3333
45 0.02303 0:00303 0.034:33 0.03333 0.05106 0.03236 0.&32 0.00033
46 0.02033 0.00318 	 , 0.03320 0.03330 0.06749 0.02640 0.60023 0.00003
47 0.02030 0.00339 0.03240 0.03330 0.07458 0.02335 0.03547 0.0i33a
48 0.02030 0.00443 0.03160 0.03330 0.03243 0.01705 0.03452
49 0.0zoa3 0.03231 0.03330 0.03330 0.09110 0.03934 0.60033 0.0:2-33
53 0.02a33 0.6;3333 0.0:233 0.EC:1:53 0.1C358 0.1323 0.33 0.C..3



TABLE 5. Discounted future service flow per capital unit
as a function of age,(P(s).

k (s) =,Expected remaining life time.

Technical life time: N = 6, 20, and 50.

Interest rate: Rho ($) ) = 0 and 0.10.

N= 6

RHO = 0 RHO = 0.10
1

simult. class II class I class I simult. class II class I class I
S exit m=5 n=1 n=5 exit m=5 n=1 n=5

00 6.010000 O00 % 3.00000 1.00000 4.51188 3.91225 2.48018 0.92031
el 5.00000 4.00054 2.50000 0.83333 3.93469 3.27244 2.13060 0.77733
02 4.00000 3.01377 2.00000 0.66667 3.29680 2.57642 1.75799 0.63039
03 3.00000 2.08064 1.50000 0.50000 2.59182 1.85675 1.36060 0.47935
04 2.00000 1.25276 1.00000 0.33333 1.81269 1.16458 0.93654 0.32404
05 1.00000 0.55991 0.50000 0.16667 0.95163 0.54070 0.48374 0.16432
06 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



20.00000
19.00000
18.00000
17.00000
16.00000
15.00000
14.00000
13.00000
12.00000
11.00000
10. SSiSS

9. MSS

8.00000
7.00000
6.00000
5.00000
4.00000
3. 515iSS

2.00000
1.00000
0.00000

16.66670
15.66670
44.66680
13.66770
12.67090
11.67890
10.69510
9.72386
8.77013
7.83900
6.93548
6.06413
5.22878
4.43234
3.67679
2.96308
2.29129
1.66069
1.06990
0.51708
0.00000

10.00000
9.50000
9.00000
8.50000
8.00000
7.50000
7.00000
6.50000
6.00000
5.50000
5.00000
4.50000
4.00000
3.50000
3.
2.50000
2.00000
1.50000
1.00000
0.50000
0.00000

3.33333
3.16667
3.00000
2.83333
2.66667
2.50000
2.33333
2.16667
2.00000
1.83333
1.66667
1.50000
1.33333
1.16667
1.00000
0.83333
0.66667
0.50000
0.33333
0.16667
0.00000

	

8.64664 	 8.02551 	 5.67664 	 2.57510

	

8.50431 	 7.81785 	 5.52401 	 2.47517

	

8.34701 	 7.58843 	 5.36273 	 2.37280

	

8.17316 	 7.33531 	 5.19222 	 2.26791

	

7.98103 	 7.05689 	 5.01182 	 2.16041

	

7.76870 	 6.75209 	 4.82033 	 2.05020

	

7.53403 	 6.42050 	 4.61851 	 1.93721

	

7.27468 	 6.06251 	 4.40406 	 1.82132

	

6.98806 	 5.67923 	 4.17659 	 1.70245

	

6.67129 	 5.27252 	 3.93517 	 1.58050

	

6.32120 	 4.84475 	 3.67877 	 1.45533

	

5.93430 	 4.39873 	 3.40632 	 1.32685

	

5.50671 	 3.93743 	 3.11661 	 1.19493

	

5.03415 	 3.46386 	 2.80836 	 1.05946

	

4.51188 	 2.98085 	 2.48019 	 0.92031

	

3.93469 	 2.49097 	 2.13061 	 0.77733

	

3.29680 	 1.99640 	 1.75800 	 0.63039

	

2.59182 	 1.49890 	 1.36060 	 0.47935

	

1.81269 	 0.99980 	 0.93653 	 0.32404

	

0.95163 	 0.50000 	 0.48374 	 0.16432

	

0.00000 	 0.00000 	 0.00000 	 0.00000

IS SS%

go
01
02
03
04
05
06
07
@a
09
10
11
12
13
14
15
16
17
18
19
20 

RHO 0   RHO * 0.10      

simult.
exit

class II
m*5

class
n=1

class I
n*5

simult. 	 class II 	 class I 	 , class I
exit 	 m*5 	 n*1 	 n*5

TABLE 5 (cont.)

N = 20



TABLE 5 (cont.)

N  = 50

Rho-0 = 0.1 0

simult.
exit

class II
m=5

class I
n*1

class I
n=5

simult.
exit

class II 	 class I 	 class I
m=5 	 n=1 	 n=5

01
02
03
04
05
e6
07
08
09
10
11
12
13
14
15
16
17
18
19

21
22
23

50.00000
49.00000
48.00000
47.00000
46.owoo
45.00000
44.00000
43.00000
42.00000
41.00000
42.oa000
39.00002
38.00000
37.00000
36.owoo
35.w-ow
34.03300
33.03300
32.00300
31.ocwo
30.00333
29.03003
28.03003
27.00000

41.66670
40.66670
39.66670
38.66670
37.66680
36.66700
35.66760
34.66860
33.67030
32.67310
31.67730
30.68340
29.69190
28.70330
27.71840
26.73770
25.76210
24.79220
23.82890
22.87300
21.92530
20.98670
20.05790
19.13980

25.00000
24.50000
24.00000
23.50000
23.00000
22.50000
22.00000
21.5owe
21.o-woo
20.53300
20.00000
19.50000
19.00000
18.50000
18.00000
17.50030
17.03303
16.50030
16.03300
15.5owe
15.oawo
14.53333
14.00330
13.50000

8.33333
8.16667
8.00000
7.83333
7.66667
7.50000
7.33333
7.16666
7.03003
6.83333
6.66666
6.50000
6.33333
6.16666
6.00303
5.63333
5.66666
5.50300
5.33333
5.16667
5.e3wo
4.63333
4.66666
4.50000

9.93262
9.92553
9.91(43
9.90904
9.89948
9.88891
9.87722
9.86431
9.85004
9.83427
9.81684
9.79758
9.77629
9.75276
9.72676
9.69802
9.66626
9.63117
9.59238
9.54951
9.50213
9.44977
9.39190
9.32794

9.78515
9.76255
9.73758
9.70999
9.67951
9.64587
9.60878
9.56793
9.52299
9.47366
9.41961
9.36049
9.29598
9.22575
9.14947
9.06681
8.97745
8.88109
8.77741
8.66614
8.54698
8.41966
8.28391
8.13949

8.01352
7.97442
7.53385
7.89172
7.84797
7.80249
7.75520
7.70599
7.65477
7.60141
7.54580
7.48781
7.42730
7.36'412
7.29313
7.22914
7.15698
7.03146
7.00?-38
6.91951
6.8æ26,2
6.74145
6.64575
6.54520

4.73880
4.68602
4.63222
4.57739
4.52151
4.46453
4.40643
4.34718
4.28675
4.22510
4.16219
4.09800
4.03249
3.96561
3.89733
3.82761
3.75640
3.63355
3.60333
3.53339
3.45530
3.37645
3.29532
3.21236



TABLE 5 (cont.)

N = 50 (( cont,)

s

Rho = 0 Rho * 0.10

simult.
exit

class II
m-5

class I
n=1

class I
n=5

sin-kilt.
exit

class II
m-5

class I
n=1

class I
1-15

24 26.00000 18.23320 13.o-13o 4.33333 	 . 9.25726 7.98615 6.43951 3.12750
25 25.00000 17.33870 12.50000 4.16667 9.17915 7.82365 6.32833 3.04069
26 24.00000 16.45710 12.wo3lo 4.03330 9.09282 7.65176 6.21132 2.95187
27 23.023130 15.58910 11.50000 3.83333 8.99741 7.47024 6.03807 2.86096
28 , 22.00000 14.73520 11.00p000 3.6E666 8.89197 7.27888 5.95819 2.76791

29 21.o333o 13.89600 1o.sowo 3.50330 8.77543 _ 	 7.07746 5.82121 2.67264

30 20.06a30 13.07190 10.b3330 3.33333 8.64664 6.86574 5.67667 2.57508

31 • 19.03330 12.26350 9.50030 3.16667 8.50431 6.64349 5.52434 2.47515

32 18.00300 11.47100 9.00000 3.133320 8.34701 6.41049 5.36276 2.37279

33 17.ea3ao 10.69480 8.50030 2.83333 8.17316 6.16648 5.19225 2.26792

34 16.06300 9.93505 e.o00o3 2.66667 7.99103 5.91122 5.01184 2.16041

35 15.03330 9.19197 7.50000 2.56330 7.76870 5.61442 4.82036 2.05021

36 14.03330 8.46565 7.63333 2.33333 7.53403 5.36582 4.61854 1.93721

37 13.W333 7.7615 6.56333 2.16:367 7.27468 5.07508 4.43433 1.82133

38 12.03330 7.06345 . 	 6.o6aag 2.011330 6.53335 4.77183 4.17661 1.7246

39 11.03330 6.33752 5.50330 1.83333 6.67129 4.45503 3.93518 1.59:349

40 1o.o3333 5.72322 5.0:1333 1.66667 6.32120 4.12669 3.67878 1.45532

41 9.0333 5.047 4.5L4333 1.53 5.93433 3.78391 3.43C-,32 1.32E-

42 8.633 4.45E92 4.C3333 1.333-A 5.53571 3.42706 3.11660 1.19494

43 7.0L-Z63 3.8--249 3.5:1;.1a3 1.4.."--S7 5.03415 3.0.:%5 2.P5 1.ffS46

44 6.63333 3.25337 3.033 1.6--310 4.51103 2.6E92'3 2.4,7219 0.92331

45 5.00330 2.67476 2.533;33 0.8-i333 3.93469 2.26724 2.13T30 0.77733

46 4.3a3-J3 2.11034 2.Ka33 . 0.E6567 3.29680 1.84E;99 1.75793 0.63333

47 3.Koole 1.56177 1.56333 0.5,-.1333 2.59162 1.413D3 1.3B330 0.47935
48 2.C:)333 1.E2719 1.C,'Z'',60 0.333 1.81269 0.96119 0.53653 0.32404
.49 1.033 0.5570 15.5.3 0.137 0.95163 0.45317 0.43374 0.10432
,50 0.64333 0.L.;333 0.C,3_,J3 0.613 0.1b2-5,A2 0.63333 0. Gra7;;3 0 CC:;33

I 	 '
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FIGURE 3. Survival functions for gross capital, B(s).
Class I. N=20.  

0.40
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0. 013
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FIGURE 4. Replacement (density) functions, b(s).
Class I. N=20.
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FICA 5. Survival functions for gross capital, B(s).
Class II. N=20.

FIGURE 6. Replacement (density) functions, b (s) .
Class II.  N=219.
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FIGURE 7. Survival function for gross capital, B(s),and corresponding
weighting functions for net capital, G(s).
Class I. N=20, n..2.

FIGURE 8. Survival function for gross capital, B(s), and corresponding
weighting functions for net capital, G(s).
Class II. N=20, m=2.
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FIGURE 9. Survival function for gross capital, Es),  and corresponding
weighting functions for net capital, G(s).
Class II. N=20, m=10,
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FIGURE 12. Replacement (density) function, b(s), and correspondin9
depreciation functions, g(s).
Class I. N*20, n*?.

FIGURE 11. Replacement (density) function, b(s), and corresponding
depreciation functions, 9(5).
Class II. N*20, m*2.
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FIGURE 12. The function 4(s).
Class I. N=20, n=2.
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■•■

FIGURE 13. The function (1)(s).
Class II. N=20, m=2.
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We shall also briefly discuss two classes of two-parametric survival functions - one convex,

one concave - which emerge as simple transformations of the standard exponential function (53).

CLASS III: Convex: Truncated exponential

A main problem with the standard exponential survival function B(s)=e
-6s

 is its assumption of

an infinite service life. In practice, the distribution must be truncated in some way. This motivates

considering the following modification, in which maximal life

to N:

(96) 	 B(s) = B III 	 =

r-
e-ss _ e -sPJ

1 _e-sN

time is restricted to be finite and equal

for 0<s<N

for s>N, .0

where s is positive. The corresponding replacement (density) function is

for s>N.

(97) 	 b(s) = b III
(s;N,(5) =  

for 0<s<N

It is convenient to reformulate the model in terms of the function H a (M) = (1-e -8M )/a, which may

be interpreted as the present value of a constant annuity of 1 over M years discounted at the rate a.

This gives

_ss H (N-s)
(98) B(s) 	 e 	 Hs (N)

(99) b(s) = e-6s 	1 
,N)

0<s<N.

Substitutina these expressions in (9), while making use of (10), we get

H s (N - s)'Hp+s (N - s)
(100) Øp (s) = pHs (N-s) 	 '

_ Hp+s (N-s) 
(101) ^ p (s) - 	 H

s
 (N_s) •

Hence, using (33) and (41), we find that the weighting functions for net capital and depreciation are,

respectively,

-6S H s (N-s) - Hp+s (N's)
(102) Gp(s) = e

	H s (N ) - H p+s (N)

_S s 	pHp+
s(N's)

(103) g p (s) = e 	H s (N) - Hp+ s (N) •

These expressions are different from (98) and (99), i.e. in the truncated exponential model, the con-

cepts gross and net capital do not - in contrast to those in the standard exponential model - coincide.
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From (23) and (100) we find that expected remaining life time as a function of age is in this

case

(104) 	 E(T;s) = Ø (s) = 
1 
- Ns 	

0 	 S 	 e S(N -s

which is a decreasing function of S and an increasing function of N 	 The last term in this expression

shows the effect of the truncation of the distribution. This effect can also be read off from the expres-

sions for the vintage prices and the capital service price. Inserting (100) in (27), (29), and (28), we get

{H S (N -s) - H p + S (N - s) }H S (N)
(105) q(t, ․ ) = q(t) 	 {H6(N) 
	 p

 - H + 
S
 (N)}H

 S (N_s) 	,

-Ss HS(N -s) - Hp +S (N -s)
(106) p(t, ․ ) = q(t)e

I-1 6 (N)  - H 	 (N)
 p + S

pH (N)
(107) 	 c(t) = q(t) •  HS (N) - H p +S (N)

	 •

Since Ha (M) -' 1/a, it is easy to verify that (100)-(107) give the same result as (55)-(57), (59)-(60),
M4—

(63)-(65) when the maximal life time N goes to infinity.

Three particular cases of this class of survival functions are worth noting:

First, as already noted, when NØ, the model converges towards the standard exponential model.

Second, when 6-0, eq. (96) approaches B(s) = 1 - s/N, i.e. a linearly decreasing survival func-

tion, at the limit.

Third, when SØ, the model degenerates to B(0) = 1, B(s) = 0 for s>0, i.e. a specification with

instantaneous scrapping of the capital.

When 0<6<c, the survival function and the retirement (density) function are both convex in this

case, since

d 2B(s) 	S 2 e-6s

2 	 -SN > 0ds 	1-e

and

d 2b(s) 	 S 3e-6s

2 	 -SN > 0 '
ds 	1-e

The basic curvature of this class of functions is thus the same as in class -I for 2<n<c. There

is, however, one notable difference: The retirement function b(s) is continuous at s=N in class I - since

(67) implies b(N)=0 (whenever n>1) - whereas it is discontinuous in class III - since (97) implies

b(N) = Se
-SN/(1-e) > 0.
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CLASS IV: Concave: Inverse truncated ex2onential

We can generate a fourth class of two-parametric survival profiles by reversing the sign of the

parameter 6 in class III. This, of course, also implies a reversing of its curvature. Let Y 	 - 6,

where y is defined to be positive. This gives the survival function 	 .

(108) 	 B(s) = B IV (s;N,Y) = ilreN_ e 5
eYN

-1

0

for 0<s<N

for s>N,

with the corresponding replacement (density) function

Y eYs for o<s<N
-1

0 	 for s>N.

Since H_ a (N) = eaNH (N) we find directly, by substituting y = - 6 in (98)-(103a

H (N-s)

	

(110) 	 B(s) = H (N) 	,
Y

	

(111 ) 	 b(s) = e-((N - s) 	1 	^_HY (N)

(112) 	 ØP
H (N- s) - e - Y (N-s) H 	 (N-s)_  Y 	 P-Y 

PH(N -s)

_Y(N_s) 
HP

-s ) (113) ^ P (s) = e 	
H (N-s )
Y

H (N-s)-e Y (N-s) H 	
(N-s)

(114) GP (s) =  Y 	 P_ Y 

HY (N) -e
-YN

 HP _Y (N)

_Y(N_s) 	 PHP_Y(N-S)
(115) g P (s) = e 	_YN

	•HY(N) -e 	 HP_Y(N)

0 	1_e Y(N - s)

Expected life time as a function of age is in this case

(116) E(T;s) = Ø (s) = 	N-s  	 1

and for the vintage prices and the capital service price we get, respectively,

(109) 	 b(s) = b IV
(s;N,y) =

eyN

{H ( N _ s )_ e Y(N - s) H 	(N-s )},H (N)
Y 	 P

-
 Y 

{H (N) - e YNH (N) }'H (N - s)Y	 P
_ 
Y 	 Y

(117) 	 q(t, ․ ) = q(t)
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H (N-s)'e-Y(N-s)H(N-s)
(118) p(t, ․ ) = q(t)  Y 	 P_ Y 

H (N) - e YN H (N)	Y 	 P _ Y

(119) c(t) = q(t)
PHY (N) 

o.

HY (N) - e
_ 
Y HP _Y (N)

We note the following particular cases of this specification:

First: when NØ, the model converges towards B(s) = 1 for all s>0, i.e. a specification with

infinite service life and no deterioration of the capital.

Second, when Y-,0, (108) degenerates to the linear function B(s) = 1-s/N.

Third, when YØ, we get the simultaneous exit specification (B(s) = 1 for 0<s<N, 0 otherwise)

as the limiting case.

When 0<y<c, the survival function is (strictly) concave and the retirement (density) function is

convex in this case, since

d 2 B(s) _ 	 Y2es

ds

<

 YN- < 0,s 	 e 	 1

and

d 2 b(s) _ Y 3eYs

ds 2 	 Y _ 1
' O.Ne 

The curvature of this class of functions is thusbasically the same as in class II for 2<m<.... 19)

There is, however, one notable difference: In class II, we have b(0) = 0 (when m>1), whereas

b(0) = Y/(eYN -1)>0 in class IV; i.e. in the former, the retirement starts at zero, in the latter, the
initial retirement is positive.

Overview and a generalization

The relationship between the four classes of two-parametric survival functions presented

above is illustrated in figure 16. We see that the linear function B(s) = 1-s/N is a member of all

these families of survival functions. The simultaneous exit model (one horse shay) emerges as a

special case of class I, II, and IV. Furthermore, the standard exponential function

B(s) = e-6s is a common member of class I and III, as is also the specification with instantaneous re-
tirement of the capital. These parametrizations thus make it possible - if suitable data are available -

to test whether the standard specifications of the retirement process (exponential, linear, simultaneous

exit) are valid approximations or not.

Still more interesting from this point of view would be a model which contains all the four

classes of survival profiles as special cases, and hence can be used as the basis for a multiple testing

scheme. One such model is the following function with four parameters, N, x, a, u;

19) Note that eqs. (66), (80), (96), and (108) imply the following symmetry between the models in
class I and III on the one hand and those in class II and IV on the other

B II (s;N,n) = 1-B I N-s;N,n ,

B IV (s;N, ․ ) = 1_B III (N_s;N,6).

Thus, for each model in class II we can find a corresponding model in class I, and for each model in class
IV we can find a corresponding model in class III, and vice versa. It is easy to show that two models
which are symmetric in this sense have the general property that the sum of their expected life times
is equal to the maximal life  time N.



Instantaneous retire-
ment:

^1 for s=0
B(s)-

_

LO for s>0

CLASS IV:
eYN

-e Ys
B(s)=  YN

-e 	 1
Y>0, N>0
0ss<N

CLASS III:
e-6s _ e-6N

B(s) 	
-SN

1-e
S>0, N>0
0<s<N

CLASS I:
B(s) = (1 _ ft)fl
n>0, N>0
0<s<N

CLASS II: 	s m
B(s) = 1 - (N)
m>l, N>0
0ss<N 

Standard exponential:

B(s) = e-Ss

s>0

Linear:

B(s)= 	
1 -N for s<N

0 	 for s>N

Simultaneous exit:

1 for s<N
B(s)=

0 for s>N

^
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FIGURE 16. The relationship between some two-parametric survival functions.
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(120) 	 B(s) _
X + N u — X + S u

6 	 Q 

x+ Nu_ a u
Q

0<s<N ;

a>0,

0<u<03,
—oo<Q<oo ,

We note that

Class I corresponds to: A=1, Q=-N, u=n.

Class II corresponds to: a=0, a=N, u=m.

Class III corresponds to: a=1, u =- SQ,
Class IV corresponds to: a=1, u=YQ, G9.

This function could be used, for instance, to test specifically for convexity or concavity of the re-

tirement process by testing the parameters u and G. Needless to say, such a model would place strong

claims on data.



t,t - e
a t-e)

CO

B(t-0)-p I e

- q(t) 	 t-e

z - t+o)6(z)dz .
.
_ - g(t)9(A.5) _

I e p zB(z)dz
0

t-o),

65

Appendix A

THE PRICE INTERPRETATION OF DEPRECIATION

In this appendix we show that the quantity interpretation of depreciation, as given in eqs.

(38) and (42), has a 'dual' price interpretation.

The capital value can, after substituting e=t-s in (26), be written as

t
(A.1) V(t) = f p(t,t-o)J(e) de ,

where p(t,t-e) = q(t): e p(z-t+e) B(z)dz/fe p zB z dz, which follows from (29). Hence,
t-e 	 0

' 	dp(t,t - e ) (A.2) V(t) = p(t,0)J(t) + I 	 dt 	 J(o)de

	=q(t)J(t)+ 
t ap(t,t - e ) 	_	 _ + t ap(t,t —e) 	_	 _

 f 	 at 	 J(o)do 	 f 	 a(t-o) J(o)do,

which gives the following expression for E(t)

A.3 	 E t = 	 t J t - V t = - 
	 a p (t , t-e) 	_	 + 	ap(t,t-e)	__( 	 ) 	 ( ) 	 qC ) ( ) 	 ( ) 	 Ef 	 at 	 J(o)do 	 f 	 a(t_e) 	 J(o)do

We have now written the value of depreciation in terms of the change of the prices of old capital units.

This change has two parts, corresponding to the two components of the total derivative dp(t,t-o)/dt.

The first,

.
f e

-p(z-t+o) B(z)dz
(A.4) 	 ap( t 't-e) = å(t) t-0 	  = q(t)G p (t-e), a t

fe
_ 
pzB(z)dz

0

where G
P
 is defined as in (33), represents the increase in the prices of all vintages of old capital

goods which accompany the increase in the price of new capital goods. The second component,

where g p is defined as in (41), is the 'cohort component'. It represents the decline in the vintage

prices with increasing age. This component reflects the fact that all capital objects become gradually

older and therefore yield a gradually decreasing flow of prospective capital services. Combining (A.4)

and (A.5) with (32) and (42), we get

aP(t^t - e) 	•(A.6) 	 f 	 at 	 J(o)do = g(t)K N (t),
-^

and

t
(A.7)

	ap t,t-oa(t-e J(o)do = - q(t)D N (t).
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Eqs. (A.6) and (A.7) show that the decomposition of E(t) given in (A.3) agrees with that in

(39).	 The former interprets depreciation "from the price side", the latter interprets it "from the

quantity side". 	 We may say that they are 'dual' interpretations

1) The latter interpretation agrees with that of Hall (1968, pp. 40-41) and Jorgenson (1974,
pp. 205-207), who, following Hotelling (1925), define depreciation as the decline in prices of used capi-
tal goods over time. From their definitions, however, we cannot establish relationships between the
quantity and price concepts similar to eqs. (36), (42), (43), (A.6), and (A.7) above, since Hall and
Jorgenson avoid using a counterpart to our concept net capital in their analysis.



67

Appendix B

PROOF OF THE RECURRENCE FORMULAE (70) AND (84)

In this appendix, we give proofs of the two recurrence formulae used in section 6 when discussing

class I and II of parametric survival profiles.

Class 1. We define the auxiliary function C I (s;N,n) as
P

I 	.
	 = 

N _ p(z _ s) 	- z n(B.l) 	 C p (s,N,n) 	 I e 	 (1 	 N) dz.

Using integration by parts, we obtain

I 	 •
	 =  

	 _p(z_s) 	 _ z n + N 	 1 _ p(z _ s )
	 - N) 	 dz ,S 

The latter integral is equal to n/(Np) • C I
P
(s;N,n-1).

Hence,

n
(B.2) 	 C I (s;N,n) = ^(1 - S ) 	 - n 	 • C I (s;N,n -1),

P 	p	 N 	 Np 	 p

The initial value for recursive application of (B.2) is

I 	 , 	 N -p(z -s) 	 1 	 -p(N -s )
(B.3) 	 C p (s,N,O) = I e	 dz = p[1 -e 	 ]. 	 ❑

p>0; n=1,2,...; 0<s<N.

Class II. The auxiliary function C II (s;N,m) is defined as
P

II 	 , 	 N -p(z-s) z m(B.4) 	 C p ( s , N , m ) = I e 	 (N) dz .
s

Using integration by parts, we find

II 	 , 	 = N _ 1 	 -p(z -s) z _ N _ 1 -p(z-s) 	 m z m-1	C p (s,N,m) - I 	p e 	 (N ) 	 I{ 	 p e 	 }• N (N ) 	 dz.
	s 	 s

The latter integral is equal to -m/(Np)C I10 I (s;N,m-1).

Hence,

(B.5) 	 C II (s;N,m =1[( s } m_e -P(N - s)] + m C II
(s;N,m-1) ,

P N 	NP P
p>0; m=1 ,2, . . . ; 0<s<N.

The initial value for recursive application of this formula is

B. 	 II 	 = N 	p(z - s)( 6) 	 C p (s;N,O) 	 I e
5

_ i [1-e P( N-s )], ❑

Thus, the two recurrence formulae have the same initial value.
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