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PREFACE

Time series of capital stocks play an important role in macroeconomic modelbuilding and ana-
lysis. They are also basic eTements in the calculation of depreciation in the different production
sectors for national accounting purposes.

This report presents a theoretical framework for the construction of capital stock figures from
investment data. The results will be utilized in an empirical project which has been started recently
in the Central Bureau of Statistics.

Central Bureau of Statistics, Oslo, 8 November 1983

Arne Oien



FORORD

Tidsserier for kapitalbeholdninger spiller en viktig rolle i makrogkonomisk modellbygging og ana-
lyse. I arbeidet med nasjonalregnskaper beregnes slike tidsserier blant annet som ledd i beregningen av
kapitalslitet i de enkelte produksjonssektorer.

I denne rapporten presenteres et teoretisk opplegg for beregning av kapitaltall pd basis av

investeringsdata. Resultatene vil danne grunnlaget for et empirisk analyseprosjekt som nylig er satt i

gang i Byréets forskningsavdeling.

Statistisk Sentralbyréd, Oslo, 8. november 1983

Arne @ien
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ABSTRACT

The construction of time series for capital stocks from data on gross investment is an essential
element in the analysis of the firms' investment behaviour as well as in national accounting. In this
report a general framework for the construction of such data is presented. Two capital concepts are
involved - the gross capital - representing the capital's capacity dimension - and the net capital -
representing its wealth dimension. The two associated concepts retirement (replacement) and depreciation
are also dicussed, as is the formal relationship between fhe measurement of the capital volume and the
measurement of the price of capital services. Finally, we propose and discuss some parametric survival
profiles which may be useful in empirical applications.



1. INTRODUCTION™)

The measurement of real capital has been characterized as "one of the nastiest jobs that econo-
mists have set to statisticians" (John R. Hicks (1969, p. 253)). Closely related to it is the problem
of measuring capital services, capital value, capital prices, capital service prices, and depreciation.
The problem is not only one of measurement in the narrow statistical sense - a substantial part of_the
difficulty lies in the definition of useful concepts for empirical work. The reason for this lies in
the fact that capital as an economic theoretical concept has at least two 'dimensions'. First, it is
a capacity measure, a representation of the potential volume of capital services which can be 'produced’
by the capital existing at a given point of time. Second, it is a wealth concept; capital has a value
because of its ability to produce capital services today and in the future. The former concept is the
one usually needed for production function studies, analyses of the firms' investment decisions, re-
search on productivity issues, etc. The latter concept will be involved in analyzing the profitability
of the production sectors, financial market studies, national accounting, etc. Obviously, both concepts
have relevance to the building of large-scale macroeconomic models - a priori, there is, of course,
nothing which implies that they should be numerically equal.

In this paper, we give a theoretical framework for constructing capital stock data (and data on
related variables) from data on gross investment. Our approach will be a fairly general one, in that we
work with generally specified survival profiles in all sections but one. Attention will be focused on
two capital measures: the gross capital, which indicates the <nstantaneous productive capacity of the
capital objects, and the net capital, which indicates their prospective capacity. Both variables can
be constructed from previous investment data by applving two different, but related, weighting schemes.
This is also the case for the two derived variables retirement - which is related to gross capital - and
depreciation - which is based on net capital. The fifth variable with which we shall be concerned is the
capital service price, which turns out to have a fairly close and empirically interesting relationship
to the other variables.

The problems and concepts involved in the measurement of capital are, to some extent, equivalent
to those encountered in demography. We may consider capital as a 'population' of-capital units, asso-
ciate investment with the 'birth' of a capital unit and retirement with 'death', etc. Demographic con-
cepts as age, age distribution, survival probability, expected 1ife time etc. are also useful when dea-
1ing with physical capital objects, and we shall make explicit reference to this equivalence at some
places in the paper. There are, however, notable differences, especially when it comes to the defini-
tion of the wealth dimension of the capital stock, service prices,etc. Price variables, interest rates,
and related concepts have, of course, no demographic counterparts.

The paper is organized as follows: In section 2, we introduce the concept survival function and
give a formal definition of the variables gross capital and retirement (replacement). Two functions
which are convenient for the following discussion are introduced in section 3. In section 4, we inter-
pret the model probabilistically and show, inter alia, that the auxiliary functions introduced in section
3 are closely related to the moment generating function of the probability distribution of the capital's
life time. Section 5 is concerned with the capital value and the associated variables net capital and
depreciation. A corresponding definition of the capital service price is also given. In section 6, we
take a closer look at the relationship between gross and net capital, depreciation and capital service
price, both in the deterministic and stochastic interpretation of the model. Finally, in section 7, we
present a selection of parametric specifications of the survival functions which may be useful in em-
pirical applications. First, we consider the familiar exponential decay hypothesis - which has the remark-
able property that gross capital and net capital coincide. Then we discuss four classes of two-parame-
tric survival profiles, two of which are convex, two are concave, and some of their most interesting
special cases.

In this paper, no attention will be devoted to the possible distortive effects of the
corporate income tax system on the firm's investment decisions, through its impact on the capital ser-
vice price. This issue is dealt with a related paper (Bisrn (1983)), and we therefore disregard taxes
altogether here.

*) 1 wish to thank Petter Frenger and Oystein Olsen for their constructive comments on an earlier ver-
sion of the paper, and Jorgen Ouren for his efficient programming of the computer routines.



2. THE GROSS CAPITAL: CAPITAL AS A CAPACITY CONCEPT. RETIREMENT (REPLACEMENT)

Let J(t) denote the quantity invested at time t,measured in physical units or as a quantity in-
dex1), where time is considered as continuous. More precisely, J(t) has the interpretation as the inten-
sity of the investment flow at time t, and J(t)dt is the investment effectuated from time t to time t+dt.
The proportion of an investment made s years (periods) ago which still exists as productive capital is
denoted by B(s). The function B(s) represents both the physical wear and tear, and the time profile
of the retirement of old capital goods. We shall consider it as a time invariant technical datum, in
the following to be referred to as the technical survival function.

In principle, B(s) may be decomposed as

where Bs(s) represents therelative number of capital units surviving at age s (the survival curve) and
BE(s) indicates the efficiency of a capital unit of age s in relation to its efficiency at the time of
investment, i.e. at age 0 (the efficiency factor). We shall not, however, make use of this decomposition
in the following. We imagine that each capital good at each point of time contains a certain number

of 'efficiency units', each having the same current productive capacity. The survival function B(s) in-
dicates the relative number of efficiency units which are left s years after the initial investment was
made. The function thus represents both the loss of efficiency of existing capital objects and physical
disappearance, or retirement, of old capital goods. It is continuous and differentiable?) and has the
following properties:

dB(s
1, —aé—l <0 for all s < 0,

B(O) = 1, Tim B(s) = 0.

S—00

(1) 0 < B(s)

A

A typical survival function, with a finite maximal life time N, is illustrated in figure 1
below.

B(s)

—

N A.%

FIGURE 1. A typical curvature of the technical survival fuction B(s). N = maximal 1ife time

1) Assuming that J(t) is an aggregate of homogeneous capital goods.
2) At least in the interior of the interval on which B(s) is strictly positive. Confer figure 1
and the examples given in section 7.



The service flow from this capital stock is an argument in a static production function, to-
gether with labour services and other inputs, and we assume throughout than the units of measurement and
the form of the production function are chosen in such a way that one capital (efficiency) unit produces

one unit of capital services per unit of time. Then

(2) K(t,s) = B(s)J(t-s) s>0
has the double interpretation as the volume of the capital which is s years of age time t (i.e. the
capital of vintage t-s existing at time t) and the service flow produced at time t by capital of age s.
Aggregation over capital vintages gives the following expression for the total volume of capital
(flow of capital services) at time t:
t
B(s)J(t-s)ds = s B(t-6)J(e)de (6=t-s).

-

~ 8

(3) K(t) = J K(t,s)ds =

o
o 8

Capital thus defined is a technical concept; K(t) represents the current productive capacity of the total
capital stock at time t. We shall refer to it as the gross capital stock. Differentiating (3) with res-
pect to t we find that the rate of increase of the capital stock can be written as3)

. t ©
@) k() = B < p0)a(e) + 5 BLEE) g(eyds = a(t) + £ B 9(t-5)as
; . 0

= J(t) - Z b(s)J(t-s)ds, i

where

dB
b(s) = - SS ,

(5) which implies, since B(0)=1,

The volume of capital worn out or scrapped (i.e. the number of efficiency units which disappear)
at time t is the difference between J(t), the gross investment, and the rate of increase of the (gross)
capital stock. From (4) we find that the volume of retirement at time t can be expressed in terms of
the previous investment flow as follows:

(6)  D(t) = J(t) - K(t) = / b(s)J(t-s)ds.
0

We can alternatively call D(t) the volume of replacement investment at time t, since it represents the
number of efficiency unit which would be required to replace retired equipment.

The function b(s) indicates. the structure of the wear and tear and scrapping process: b(s)ds
is the share of an initial investment of one unit which disappears from s to s+ds years after the time
of installation. From (1) and (5) it follows that b(s) is non-negative for all s and that

3) We utilize the following general formula for differentiating an integral:
4 b b(t)
gt [ f(t.e)de = b'(t)f{t,b(t)} - a'(t)f{t,a(t)} + 7 % f(t,e)ds.

a(t) a(t)
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This equation expresses the fact that all equipment installed will disappear sooner or later. We shall
call b(s) the (relative) retirement (replacement) function in the sequel.

Formulae for gross capital and retirement similar to (3) and (6) can be found in e.g.
Jorgenson (1974, pp. 191-192), and Hulten and Wykoff (1980, p. 100). The terminology,however, does
not seem to be consistent in the literature. Some authors (e.g. Steele (1980)) define gross capital
as the cumulated volume of past gross investment flow over a period of length N, the capital's life time,
i.e. in our notation

K(t) = s J(t-s)ds.

o=

Others, e.g. Young and Musgrave (1980), use gross capital as synonymous with the capital measure derived
from the perpetual inventory method, in stating that "gross capital stock for a given year [is obtained] by
cumulating past investment and deducting the cumulated value of the investment that has been discarded".
(Young and Musgrave (1980, pp. 23-24)). In our notatioh, this corresponds to

K(t) =

o 8

Bs(s)J(t-s)ds.

This definition is also used by Johansen and Sgrsveen (1967, p.182). It coincides with our definition -
(3) if B(s)=BS(s), which implies BE(s) = 1 for all s>0, i.e. if the efficiency of the surviving capital

goods is the same for all vintages.4) If, moreover, Bs(s) = 1 for O<s<N, and 0 for s>N - i.e. if all
capital goods disappear simultaneously N years after investment - the three definitions of gross capi-
tal are equivalent. Our definition is the most general one, since it includes the others as special
cases.

3. TWO USEFUL FUNCTIONS

To facilitate the following discussion, we introduce two auxiliary functions

re?(Z78)g (34, 7 P B(1+s)dr

(8) e (s) =% =0 $20,
° B(s) B(s)

fe-p(z's)b(z)dz Je TP Th(+s)dr

(9) wo(s) .S 575 .0 e s20,

where o is a positive constant, t=z-s, and B(s) and b(s) are defined as above. The numerator of ¢p(s)
is the present value of the total flow of capital services produced by one initial unit of capital from
the time it passes s years of age until it is scrapped, discounted to the time when it attains age s
with a rate of discount equal to p. The denominator represents the share of the initial investment which
attains age s.5) The ratio % (s) may thus be interpreted as the discounted future service flow per
capital (efficiency) unitwhichis s years of age. Similarly, wp(s) has the interpretation as the present
value of the remaining retirement flow per capital unit which is s years of age.

We then have in particular that

o (0) = / e P?B(z)dz
e 0

4) Our definition corresponds to the efficiency corrected capital stock as defined in section 4 of
the Johansen-Sersveen paper.

5) Or, more precisely, the relative number of efficiency units left s years after the time of invest-
ment.
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is the present value of the total service flow from one new capital unit, and

v (0) = £ e P?b(z)dz
e 0

is the present value of the total replacement flow related to one new capital unit.

At this stage, however, it is not necessary to attach an economic interpretation to the func-
tions @o(s) and wo(s) and the parameter p; they may be considered as purely mathematical entities.
Note, in particular, that we have said nothing so far about the possible relationship between p and
economic market variables.

Obviously, @p(s) and wp(s) are both decreasing functions of p for all values of s. From (5)
and (9) it follows that

bpls) =1 for all s.

If >0, it is easy to show, by using integration by parts, that

21 '
(10) @p(s) =3 {1 wp(s)} s>0, p>0.
A1l expressions which can be written in terms of @p(s) can thus be written in terms of wp(s), and vice
versa.

Differentiating (8) with respect to s, we find

(11) ¢or(s) - g%g% ée-pw { B(r;s) _b T:s } dr.

This expression will be negative - i.e. @p(s) is a decreasing function of s - if the integral in (11)
is negative. Then wp(s) will be an increasing function of s, cf. (10). A sufficient condition for this
to hold for all s, regardless of the value of p, is that

(12) B(t+s < b(t+s

B(s b(s for all s and 1>0.

In the next section, we give an interesting probabilistic interpretation of @p(s) and wp(s).

4. A PROBABILISTIC INTERPRETATION

So far, we have considered the process generating the deteriorationand retirement of the capital
units as a deterministic process and we have established the functions B(s), b(s),@o(s), and wp(s) on
this basis. In this section, we shall give an alternative probabilistic interpretation and establish
a correspondence between the two interpretations which will be useful for later reference.s)

When a capital good is installed, the investor does not normally know its actual life time. Ex
ante it may be considered as a stochastic variable S, the function B(s) representing the survival proba-
bilities, i.e. B(s) is the probability that a new capital good7) will survive for at least s years,

(13) B(s) = P(S>s) s>0.
Since B(s) is continuous, the distribution function of the life time is
P(S<s) = 1 - B(s),
"~ and b(s), as defined in (5), is the density function of S, since
6) When considering deterioration as a stochastic process, we take a step into 'renewal theory', a

branch of mathematical statistics concerned with 'self renewing aggregates'. See Lotka (1939), Smith
(1958), and Cox (1962).

7) Or more precisely, each of its efficiency units; cf. section 2.
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b(s) = gz (1-B(s)} = - B'(s) 5>0.

The variable S represents the total 1ife time of a capital good. Consider also the remaining
life time of a capital good which has already attained age s, i.e. T=S-s. Using basic rules in pro-
bability calculus, we find that

(14)  P(Tz1iSzs) = P(SzresiSes) = BUEIS) - (a5, s20, T2,

where B(tls) is defined by the last equality. The conditional density function of the remaining life
time of capital which has attained age s is thus

(15)  b(ris) = - L4ris) - peis) 530, 0.

When this probabilistic interpretation of the retirement process is adopted, the share of a
population of capital goods (efficiency units) which survive s years after investment will converge to-
wards B(s) with a probability of one as the number of capital goods increases, according to the "law
of the large numbers" - i.e. the former is a consistent estimator of the latter. Correspondingly,
b(s)ds is (approximately) the proportion of the capital goods (efficiency units) whose life time is
between s and s+ds years, and b(OlIs)ds = b(s)ds/B(s) represents the proportion of the capital goods
having attained age s which will disappear before age s+ds. The latter is thus a formal analogue to
the concept 'mortality rate' in demography,.i.e. the probability that a person of a certain age will die
during a given future period, e.g. the next year.

Which interpretations can then be given to the functions @p(s) and wp(s), defined in eqgs. (8)
and (9)? Let us first recall the definition of the concept Laplace transform. The Laplace transform ef
a stochastic variable X with a density function f(x), defined on [0,=), 158)

©

(16)  Le(r) = se”™F(x)dx,

O =

where ) is a parameter. Letting E denote the expectation operator, this is equivalent to

(17) Lf(x) = E(e "7).

Using (15), eq. (9) can be written as

©

(18) v (s) = se™PTb(11s)dr.

o

This is an expréssion of the form (16), with f(x) set equal to b(tls) and A set equal to p. Thus wo(s)
stochastically interpreted is simply the Laplace transform of T=S-s, the remaining life time of a capi-
tal good which has attained age s. This expression represented the present value of the remaining re-
tirement flow per capital unit of age s in the deterministic interpretation of the model.

Eq. (18) can alternatively be written as (cf. (17))

T

(19) v (s) = E(e(57)i555) = E(e®

0 3 S)s

using ";s" as a shorthand notation for "iS>s". For s=0 we have in particular

(20) 4, (0) = Ly(o) = E(e™),

8) See Feller (1966, Ch. XIII.1). The Laplace transform has a close relation to the moment genera-

L o X
ting function of the distribution. The moment generating function of X is s1mp1y Lf(-k) = E(e"").

Confer Feller (1966, p. 411), or Cox (%962, p. 9).
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i.e. wp(O) stochastically interpreted is the Laplace transform of the total life time of a new capital
unit, S. Expanding e-pT in (19)by Taylor's formula, we obtain

22 33
(21)  wg(s) = E(Q=eT + 5= - Sp—.ouis)

. . ‘
1+ -V BT s), s>0.

1 i.

"o~ 8

;
If we combine (21) and (10) we find

-1 071
(0 e gt s, 0.

(22) ¢o(s) = E(T; s) + ) T

Wt 8

1

By using this equation we can determine all the moments of the (conditional) distribution of the remaining
life time T once we know the function ¢ (s) for a value of o different from zero. A1l information about
the distribution of T is thus "condensed" in this function. If p=0, the second term of (22) vanishes -
i.e. all moments of second and higher order are "swept out" - and we get simply

(23)  E(Ts s) = oy(s) = ET%T 7 B(2)dz.

S

For s=0, we have in particular
(24) E(S) = E(T;0) = ¢0(0) = [ B(z)dz.
0

Equations (23) and (24) reveal an interesting correspondence between the deterministic and the
stochastic interpretation of the replacement process: What emerges as the undiscounted future service flow
from one capital unit of age s in the deterministic frameworkg) is the expected remaining life time of
a capital unit of age s in the stochastic version of the model, and vice versa. In particular, the to-
tal service flow from a new capital unit, deterministically interpreted, finds its counterpart in the
expected total 1ife time in the probabilistic interpretation.

5. THE NET CAPITAL: CAPITAL AS A WEALTH CONCEPT. CAPITAL SERVICE PRICE. DEPRECIATION

Gross capital as defined in section 2, by aggregating the surviving shares of the different
capital vintages expressed in efficiency units, is a capacity concept: K(t) represents the number of
capital (efficiency) units at time t on the one hand, and the instantaneous service flow from this
capital stock on the other. We now consider the value dimension of the capital.

The market value of the capital goods will, in general,reflect the cost of producing new invest-
ment goods on the one hand, and the capital users' expectations about future productivity on the other.
Let q(t) denote the price of investment goods at time t. The value of the investment outlay is then
g(t)Jd(t), which is, of course, also the value of the new capital installed at time t. The value of an
old capital good does not, in general, reflect its historic cost, but rather the service flow that it
is likely to produce during its remaining 1ife time. Let q(t,s) be the price of one capital unit
(efficiency unit) of age s at time t and K(t,s), as before, the number of such units. The value of
the capital which is of age s at time t is then V(t,s) = q(t,s)K(t,s), and the value of the total capi-
tal stock can be written as

9) Confer the interpretation of (8) above.
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(25)  V(t) = 5 V(t,s)ds =
0

q(t,s)K(t,s)ds = S q(t,s)B(s)J(t-s)ds,

o 8
o 8

the last equality following from (2).
The decomposition of V(t,s) into a price and a quantity component is, however, in a sense arbit-

rary. An alternative decomposition is V(t,s) = p(t,s)J(t-s), where p(t,s) = q(t,s)B(s) has the inter-

pretation as the price of capital of age s at time t per capital unit originally invested at time t-s.10)

The corresponding expression for the capital value,

(26)  V(t) =

O 8

V(t,s)ds = s p(t,s)J(t-s)ds,
0

will be convenient for the purpose of defining depreciation, as we shall see in appendix A.

How is q(t,s), or p(t,s), determined? A reasonable assumption is that q(t,s) is an increasing
function of the current investment price (the replacement price) q(t) for all s>0, and a decreasing func-
tion of the age s for each given t - the older a capital unit is, the lower will its price be, cet. par.
Obviously, we have g(t,0) = p(t,0) = g(t), and V(t,0) = q(t)J(t).

In this paper, we shall make the specific assumption that the relative prices per unit of capital
goods of different ages perfectly reflect the differences in their prospective service flows. More
precisely, the price per unit of the (discounted) future flow of capital services is assumed to be the
same for all capital vintages at each given point of time. Interpreting p as the rate at which future
capital services are discounted (cf. section 3), wecan formalize this hypothesis as

2 &5 - 44 for all t
P . and all s>0.

p

It implies a sort of 'law of indifference' to hold between the different capital vintages: A firm
buying at time t a capital unit (efficiency unit) of age s at the price q(t,s) pays the same price per
unit of discounted prospective capital services as a firm which buys a new capital unit at the price q(t).
If (27) is satisfied, the firm will be indifferent between expanding its capital stock by investing in
new and old equipment, or by changing the age composition of the capital stock by investing in one vin-
tage and disinvesting in another.'1) The common price per unit of (discounted) capital services is

(28)  c(t) = %L%%y - _a(t)

° se PSB(s)ds
0

The 'law of indifference' (27) can alternatively be stated in terms of the price p(t,s) =
q(t,s)B(s). It then says

(29) p(t,s) = q(t) for all t
-0(z-s) iz . and all s>0,
e B(z)dz S e P%B(z)dz
0

" - 8

i.e. p(t,s), considered as a function of s, declines in equal proportion to the decline in the dis-
counted remaining flow of capital services.

10) A third decomposition would be the following: Let B(s) = Bg(s)Bg(s), where Bs(s) represents the
survival curve and BE(s) the efficiency factor. We could then interpret Bs(s) as belonging to the
quantity component and BE(s) as belonging to the price component of V(t,s). The price variable,

ap(tss) = a(t,s)B(s) = p(t,s)/Bg(s),

would then represent the price per capital unit of age s at time t, corrected for, Toss of efficiency.

11) The latter conclusion, of course, presumes a neo-classical (putty-putty) production technology:
with full substitutability between the different capital vintages.
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We may interpret p as the rate of interest forgone by a producer who owns the capital and uses
its services instead of purchasing interest-bearing financial assets. If we set p=r-y, where r is the
nominal interest rate and y is the rate of increase of g, and if r and y are constants, then (28) is
equivalent to

qt)=?éndtﬂ)mzﬁz.A
0

This equation agrees with the first-order conditions for maximization of the present value of cash-flow
in a neo-classical model of producer's behaviour, when we replace c(t+z) by the value of the marginal
productivity of capitalat time t+z.]2)

For the majority of capital goods, neither second hand markets nor hire markets exist, i.e.
g(t,s) (or p(t,s)) and c(t) cannot be observed as market variables for s>0. The 'law of indifference’
(27) - (29) is then no testable hypothesis; rather, it may be considered as providing an implicit de-
finition of q(t,s) (or p(t,s)). It gives a procedure for comstructing series for q(t,s), and corresponding
indices for c(t), under perfect market conditions, from observed values of the investment price q(t)
and given values of the survival rates B(s) and the rate of discount p.]3)

Returning for a moment to the probabilistic interpretation of the deterioration process, we
find, by using (22), that {27) can be expressed in terms of the moments of the distribution of the capi-
tal's 1ife time as follows .

(30) q(t,s) - q(t)
. Zqyi=1 -1 RN R . for all t
E(T3s) + 152( 1) e g(T';s)  EG) 122( 1) e E(sh) and all s>0.

This equation has particular intuitive appeal in the case where the discounting rate p is zero. The 'law
of indifference' then simply says that the relative prices of the different capital vintages are equal

to the ratios of their expected remaining life times:
o a(t,s) _ E(Tss for all t
a(t) and all >0,
. p=0.

Combining (25), (27), and (28), we find that the value of the capital stock can be written as

(31) V(t) (t) s Eﬂii%g;iz J(t-s)d (t) 7 ¢ (s)B(s)J(t-s)d
= -s = S -s)as.
q 0 ‘I>p S C 9 o S

This equation gives a procedure for computing the capital value from data on q(t), J(t-s), B(s), and
p .. It also indicates two alternative ways of decomposing this value into a price and a quantity com-
ponent.

First, if we define the price component as equal to the current investment price, the quantity
component becomes

(32)  Ky(t) = X‘% - a-}-t-y £ a(tas)K(tas)ds = Z 6, (5)3(t-5)ds,
where
onts) 10 e
(33) Gp(s) = =% 70) = $>0.
P é e P?B(z)dz

12) See Biorn (1983, appendix) for a demonstration of this in a more general context.
13) In the rather few cases where q(t,s) (or p(t,s)) are observed market variables - e.g. cars, office
buiTdings, and dwellings - eq. (27) ( or (29)) can be used to estimate'éb(s) and hence, given the rate of

discount p, draw conclusions on the form of the underlying survival function B(s). Examples of analyses
of this sort are Hall (1971) and Hulten and Wykoff (1981).
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We see that KN(t), like K(t), is constructed by aggregating the previous investment flow, but the
weighting system is basically different. The weight assigned to investment made s years ago in
KN(t), Go(s), is the share of the total discounted service flow produced by one unit invested after
it is s years old, whereas K(t) is based on the technical survival rates B(s). Or othervise stated,
KN(t) is constructed on the basis of the prospective service flow, K(t) on the basis of the instanta-
neous service flow each capital vintage. From (33) we see that the weighting function Gp(s) satis-
fies

dG (s)
(3¢) 0s<G(s) <, _-%g- <0 for all s>0,
6,(0) =1, lim 6 (s) = 0,
S0

i.e. it has the same qualitative properties as B(s), cf. (1). Furthermore, it follows from (11) and (33)
that Gp(s)<B(s) for all s if the inequality (12) is satisfied for all s. This is thus a sufficient
condition for KN(t)<K(t) to hold for all t, irrespective of the discounting rate p and of the time
profile of the investment. We shall refer to KN(t) as the net capital stock in the following.14)

Second, if we decompose V(t) by setting its price component equal to the price per unit of
capital services, as defined in (28), we get a quantity component equal to

¢ (s)B(s)J(t-s)ds

(35)  Kg(t) = b .

= 1 1 e (2 8)B(2)dz1d(t-5)ds = K
0 s

Since ¢p(s)B(s)J(t-s) = {s e_D(Z'S)B(z)dz}J(t—s) is the present value of the remaining service flow
s
from capital vintage t-s, Ks(t) has the interpretation as the present value of the total future service

flow from the capital stock existing at time t.

With these definitions, we thus get the following simple and attractive relationship between the
capital value, the investment price, the price of capital services, the capital volume, and the volume
of capital services:

(36)  V(t) = a(t)Ky(t) = c(t)Kg(t),

or

Value of capital stock

Current investment price x Volume of net capital stock

Current capital service price
x Volume of (discounted) future services from existing capital stock.

14) This term is used to some extent in the literature on the measurement of capital, but its precise
meaning is not always made clear, and it seems to be some differences in terminology. Often, the concept
is defined by general statements like "Net capital stock is obtained .... by deducting [from the cumulated
past investment] the cumulated value of depreciation” (Young and Musgrave (1980, p. 24)), and "Gross
capital stock, less the amount of accrued capital consumption gives net capital stock. Net capital

stock is two dimensional in that it reflects not only the amount of capital in current use, but also

the unexpired future potential of those assets" (Steele (1980, p. 227)). This usage is consistent

with our definition in eq. (32) in some cases, but not in others.
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We now turn to the concept depreciation. It has the same formal relationship to the net capital
stock as the concept retirement, defined in section 2, has to the gross capital stock. Depreciation can,
however, be expressed both in value and volume terms. We define the (net) value of depreciation as the
difference between the current investment expenditure and the increase in the capital value, i.e.

(37) - E(t) = q(t)I(t) - V(t).

Likewise, the volume of depreciation is, by definition, the difference between the current investment
quantity and the increase in the net capital stock:

(38)  Dy(t) = J(t) - kN(t).
From (36) - (38) we obtain

(39) E(t)

q(t) [3(t) - Ky()) - a(t)Ky(t)
= q(t)Dy(t) - a(t)Ky(t),

i.e. the following accounting relationship exists between depreciation in value and volume terms:

(Net) value of depreciation

= Investment price x Volume of depreciation

- Increase in investment price x Volume of net capital stock.
Interpreting q(t)DN(t) as the gross value of depreciation and q(t)Ky(t) as the value of the appreciation
(capital gains), we can alternatively state this relationship as '

(let) value of deprectation

= Gross value of depreciation

- Value of appreciation.

We can express DN(t) and E(t) in terms of the previous investment flow J(t-s). From (32) we
:.15)
obtain

o

(40) kN(t) = J(t) - é g,(s)J(t-5)ds,
where
7 -e(z-s)
a6, (s) e Bs)y (s) [° P
(47) go(s) el i {1-p¢p(s)} = 7(0) ~ s
e P 7 e P%B(z)dz
0

the last three equalities following successively from (33), (10), (9), and (8). Hence,

© ® 5 © P (s)
(42)  Dy(t) = 6 9,(s)I(t-s)ds = é 6&%%7 {1-p0_(s5)}3(t-s)ds = é EffﬁY B(s)J(t-s)ds.

15) Confer the formally similar derivation of (4) above.
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Egs. (39), (32), and (42) then give
(43)  E(t) = q(t) ! g (s) - %%%% 6,(5)1(t-5)ds

> B a(t
a(t) 67%%7 11-(p+ g-&%) o (5)30(t-s)ds.

Equations (42) and (43) indicate a procedure for calculating depreciation in volume and value terms which
is consistent with (3), (32), and (6) for gross capital, net capital, and replacement.

The function gp(s), as defined in (41), represents the structure of the depreciation, in the same
way as b(s) represents the retirement process. In particular, gp(s), 1ike b(s), may be given a probability
density interpretation since it is non-negative with

(44) / gp(s)ds = 1.

Literally, depreciation means 'decline in value (or decline in price)'. Hence, it may be ar-
gued that this variable should be defined on the basis of the price component of the capital stock, not
as a quantity concept, as (38) and (42) implies. In appendix A, we interpret depreciation in terms of
the vintage prices p(t,s), and show that this interpretation is equivalent to the quantity inter-
pretation given above. It represents an alternative way of decomposing the value E(t).

6. THE RELATIONSHIP BETWEEN DEPRECIATION, GROSS CAPITAL, NET CAPITAL, AND CAPITAL SERVICE PRICE -
FURTHER RESULTS

There exist other relationships between the variables we have introduced in the previous sections
which are worth noting. We shall call attention to a few of them.

From (3), (32), (33), and (42) it follows that depreciation, net capital, and gross capital satis-
fy the following equation

K(t

]
p

(45)  Dy(t) + oKy(t) =

Recalling our definitions of these three variables, this is a remarkably simple relationship. It can,
for instance, be used in combination with (6) and (38) to facilitate the computation of gross and net
capital from investment data - or to check the consistency of the resulting series. Furthermore, com-
bining (28) and (45), we find

(46)  q(t)Dy(t) + pq(t)Ky(t) = c(t)K(t).

If we interpret p as an interest rate and pq(t)KN(t) = pV(t) as the implicit interest cost on the
capital value, this equation says that

(Gross) value of depreciation + Interest on capital value

= Capital service price x Volume of.gross capital stock.

It gives, in other words, two alternative ways of expressing the current 'user value' of the capital
stock.

If the interest rate applied in discounting the future capital services, p, is zero, (45) becomes
simply '
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In this case, the depreciation isproportional to the gross capital stock, the factor of proportionality
being the inverse of the total service flow from one capital unit during its life time.

When p=0, there are also interesting probabilistic analogues to the deterministic interpretations
given above. First, from (30) and (32) it follows that the volume of the net capital can be written as

K(t,s)ds (0=0).

It thus emerges as a weighted sum of the remaining part of each capital vintage, the weights being the
expected remaining life time as a fraction of the total life time. Gross capital is the corresponding
unweighted sum

K(t) = f K(t,s)ds.

o 8

Interpreting the model in "demographic" terms, (while disregarding differences in efficiency) we might
thus say that the measurement of gross capital finds its counterpart in a traditional population census,
whereas the measurement of the net capital corresponds to a fictitious population census in which each
person is given a weight equal to his expected remaining life time as estimated from 1life tables. (If
o > 0, higher order moments of the distribution of the 1ife time should also be taken into consideration,
cf. (30), and the compari;on loses some of its intuitive appeal.)

Second, since E(S) = ¢0(O) (cf. (24)), the expressions for the depreciation given in (47) can

be interpreted stochastically as

o

J P(S>s)J(t-s)ds
(48) DN(t) TERY T (D=O.):

S P(S>s)ds
0

i.e. depreciation is equal to gross capital divided by the expected 1ife time of a new capital unit
(first equality), or equivalently, equal to a weighted average of the past gross investment flow with
the survival probabilities B(s) = P(S>s) used as weights (second equality). We get a similar relation-
ship between the price variables. From (23), (24), (27), and (28), we find

(49)  c(t) = ﬂg%% - priltes for all s (p=0),

i.e. the capital service price is equal to the market price per capital unit divided by its expected
(remaining) life time. - And this equality holds for all capital vintages. (Again, when p>0, higher
order moments should also be taken into account.)

Third, as we noticed above‘(eqs. (41) and (44)) gp(s) has properties which suggest its inter-
pretation as a density function. This function has the same formal relationship to the net capital
KN(t) as the function b(s) has to the gross capital K(t). Since b(s), interpreted stochastically, is
the density function of the 1ife time of the gross capital, S, this motivates giving gp(s) the inter-
pretation as the density function of the 'life time of net capital', SN. The formal definition of SN

would then be

P(SNZS) = Go(s) ’ for all s>0.
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Using (41), we find that its expectation is in general

©

s sB(s)wO(s)ds
(50)  E(S,) = 59, (s)¢s - g“"’E‘Tﬁ7“‘“

For p=0 we get in particular

- 7 sB(s)ds
(51)  E(Sy) =/ s gy(s)ds = T (0=0).
0 é B(s)ds

Thus defined, the expected 1ife time of the net capital would then emerge as a weighted average of the
1ife time with the survival probabilities used as weights.
The latter equation can be given an interesting reformulation. Using integration by parts, it is easy

to show that / sB(s)ds = E(S%)/2, provided that 1im s2B(s) = 0. Hence, recalling (24), we find

0 S
(52)  EGN) 4 E(;Z) ) LE(s)1% N P
=L - = {14] 1°) (p=0),
AR Srpyt Sl ARt 7 U+lersy

where cg is the variance of S. The ratio between the expected 1ife time of the net capital as defined

above and that of the gross capital thus has its Tlowest value, 1/2, for o.=0, i.e. when there is no

S
uncertainty with respect to the life time of the gross capital; all units disappear at the same time.
The ratio increases with the square of the coefficient of variation of the life time, oS/E(S). If the

coefficient of variation is unity, the expected 1ife time of gross and net capital coincide.

7. PARAMETRIC SURVIVAL FUNCTIONS

The results derived in the previous sections are valid for any survival function B(s) which
satisfies the general restrictions (1). In this section, we present aselection of parametric functions
which may be useful for empirical applications. For each B(s) we derive the corresponding functions
Gp(s), ¢p(s), and wp(s). These functions can be used on the one hand for the guantification of gross
and net capital, retirement, depreciation, and capital service price on the basis of investment data -
on the other hand for estimating and testing hypotheses about the form of the survival function
from data on vintage prices.

We present four classes of survival functions, each characterized by two parameters. The first
parameter represents the maximal 1ife time of the capital, the second indicates the 'curvature' of the
survival profile. Important special cases of these functions are also considered. The results will be
presented partly algebraically, and partly in the form of tables and diagrams. For the sake of reference
we shall, however, start by considering a one parameter survival function, namely the familiar specifi-
cation with exponentially declining survival rates.

Exponentially declining survival function: B(s) = e~%8

Consider the parametrization

(53)  B(s) = &S 550,

where § is a positive constant. Probabilistically interpreted, the 1ife time S then has an exponential
distribution. Inserting (53) in (5), (8), and (9), we find
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(55) o (s) = =t

-
(56) v (s) = 535 : $0.

This parametrization thus has the particular property that @p(s) and ¢p(s) are constants independent of

s. The (conditional) Laplace transform of the remaining 1ife time is equal to the Laplace transform of
the total Tife time for all ages s. Since

11422
e AL ¢ R 1,

we find, by using (22), that
(57)  E(Tss) = E(S) = 1,
E(%55) = E(s7) = &5, for all s>0,
8
and hence

(58)  var(T%;s) = var (S%) = E(S%) - [E(S)1% = for all s»0.

o:'\J——d

In this case, the remaining 1ife time has a (conditional) expectation equal to 1/8 and a (conditional)
variance equal to 1/62 for all s.
From (33), (41), and (55) we find moreover that

(59)  6,(s) = B(s) = e %S,

(60) g, (s) = b(s) se” %S for s>0,

and hence, using (32) and (42), that

(61)  Ky(t) = K(t) = e 850(t-s)ds,
0

(62)  Dy(t) = D(t) = Z se”%3(t-s)ds = eKy(t) = 6K(t).

These relationships hold regardless of the value of the discounting rate o. Thus, in the exponential
case, gross capital is numerically equal to net capital, and retirement (replacement) coincides with de-
preciation?e) The rate of retirement is equal to the rate of depreciation, and the common value is constant
and equal to §. This is another particularproperty of this survival function.

Its implication for the price variables is also remarkably simple. From (27) and (55) it
follows that

(63) a(t,s) = g(t) for all s>0,

i.e. the price per capital efficiency unit will be the same for all ages. The equivalentrelationship ex-
pressed in terms of the price per capital unit originally invested is

16) This conclusion concurs with eq. (52) which implies that E(SN) = E(S) when the coefficient of

variation of S is unity. This is in fact the case for the exponential distribution, since ‘the expec-
tation and the standard deviation are both equal to 1/6 in this case, cf. (57) and (58).
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(64)  p(t,s) = e *%q(t), for all s>0,

i.e. this price declines exponentially with age at the rate §. Combining (28) and (55) we find that
the capital service price is equal to

(65)  c(t) = q(t)(e+s) .

If we let o=r - q(t)/q(t), r denoting the nominal market interest rate, i.e. if we make the reasonable equili-
brium assumption that the capital users (capital owners) consider the current 'real interest rate' when
discounting the future flow of capital services from time t (confer section 5), this expression is iden-
tical with the familiar textbook formula for the user cost of capital in a neo-classical model of capital
accumulation,

c(t) = q(t){r+s=q(t)/q(t)} .

From the point of view of empirical applications, the exponential model is very restrictive
since it has only one parameter. Its implicit assumption of an infinite maximal service 1ife is alsc incon-
venient and implausible, as is the constancy of the rate of depreciation which it imposes. In the following, we
outline four classes of two-parametric survival functions with a finite maximal 1ife time, two of which
are convex and two concave.

-3 : for O<s<N
(66)  B(s) = BI(s;N,n) =
0 for s>N,

where N and n are positive]7) constants, n integer. The corresponding retirement (density) function
is

%(1 - W) for 0O<s<N
I -
(67) b(s) = b"(s3N,n) =
0 for s>N..
It is convenient to introduce the auxiliary function
I N -p(z-s) zZ\n
(68) Cp(s;N,n) =/e (1 - §) 4z O<s<N.
s
When p=0, integration yields directly
I, . _ N s\n+l N I
(69) CO(S,N,n) = n_+T (] - —N) = —n—'f'TB (S',N,n'('.l) OSSSN.

If p > 0, the function satisfies the following recurrence formula, proved in appendix B:

17) Formally, BI is also defined for n=0, but not bI; confer below.
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(70)  cl(sihn) %{(1 SR Ci(s;N,n-])]

1.1, . _n Iy _
E[B (s3N,n) N Cp(s,N,n 1)1 n=1,2,....,

Cg(S;N;O) H(N-s) = %[]_e-o(N-s)],

P
where, in general, Ha(M) denotes the present value of a constant annuity of 1 discounted over M years
at the rate a.

Inserting (66) and (67) in (8) and (9), it follows that @p and wp can be expressed as

(7)o (s) Eéffiﬁjfl O<s<N
s) = <s<N,
P B™(s3N,n) o

] Cg(s;N,n-])
(72) v (s) =qg—1—— : O<s<N.
e Nl(sin,n)

Hence, using (33) and (41), we find that the weighting functions for net capital and depreciation are,

respectively,
CI(s;N,n)
(73) G (s) = F——
e C2(03N,n)
P
cls;
n p(s,N,n-1)
(74) g .(s) =g F——
e C.(03N,n)

For p=0 we get.in particular

(1= ™7 = Bl(sin,ne),

8y (s)
gols) = B (1= )" = bl(siN,ne1).

When no discounting of future capital services is performed, there is thus a very simple relationship
between the weighting function of the gross capital and that of the net capital in this case: We only
have to change n to n+l to get from the former to the latter.
From (23), (66), (69), and (71) we find
N-s

(75) E(Tss) = Qo(s) =TT

i.e. the expected remaining 1ife time is a linearly decreasing function of age, with a rate of decrease
equal to 1/(n+1). In particular, the expected life time of a new capital unit is
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The corresponding 'expected life time of net capital', as defined in (51), is

E(Sy) = 7z (0=0),

and hence their ratio

E(Sy)
(76) ?(?NT - %% (p=0)

is less than one for all admissible values of n and increases to one with increasing n, regardless of
the value of N.

The expressions for the price variables follow by substituting (71) in (27), (29), and (28).
For the vintage prices we get

Ci(s;N,n)
I,A. s\n
CD(O,N,n)(1 - N)

(77)  a(tss) = q(t)

L.
Cp(s,N,n)

t * b ]
at) cpI(o;N,n)

(78)  p(tss)

and the capital service price becomes

(79)  c(t) = —I—i(—f)—— )
Cp(O;N,n)

In these expressions, the effect of the interest rate p on the one hand, and the parameters characteri-
zing the survival profile, N and n, on the other, are intermingled. Since Ci(O;N,n) is a highly non-
linear function of p, N, and n, we cannot, for instance, decompose the capital service price into two-
additive components, one representing 'interest cost' and the other representing 'depreciation'. This
is an important difference between this survival function and the exponential one, which admits an addi-
tive decomposition; cf. (65). We can, however, find the isolated effect of the depreciation component
by setting p=0 in (77)-(79). This gives

a(tss) = q(t)(1 - §) »

p(t,s) = a(t)(1 - 3™ ' O<s<N,

In this degenerate case, the capital service price is inversely proportional to the maximal 1ife time N
and proportional to n+l.

The class of survival profiles (66) contains several specifications discussed in the literature
as special class. Let-us look briefly at a few of them.

1In this case, all capital objects are assumed to retain their full productive capacity during N
periods and are then completely scrapped. Probabilistically interpreted, the distribution of the tech-
nical life time S is a 'one point distribution'; the entire 'probability mass' is concentrated in the
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point s=N. From (70), (76), (77), and (78) we find

1-e-P(N-s) Hp(N'S)
a(t,s) = p(t,s) = q(t) . T q(t) ——
e HQ(N)

The latter is the familiar formula

investment price

user cost = -
se annuity factor

Eq. (73) gives in this case, when we use de L'Hopital's rule,

~ ]_e'p(N's) B s
GD(S) = Tj;:BN—___ =550 1 N
and hence
-p(N-s)
- oe 1
gp(s) .l_e-pN =0 N
Finally, when n=0, (76) gives
E(Sy)
N1 =
HON (p=0)

which agrees with (52), since the simultaneous exit specification implies, as already remarked, that the
1ife time S has a one point distribution, and, consequently, oS=0. The ratio of E(SN) and E(S)

cannot take a lower value than it does in this case, s0 the simultaneous exit assumption is also in this
respect an extreme specification.

When n=1, the survival function is a linearly decreasing function of s,

B(s) =1 -

=ln

1
N O<s<N.

Probabilistically interpreted, the 1ife time has a uniform distribution on the interval [0,N]. Using the
recurrence formula (70), we find

Lissn,1y = 101 - 8 - 1 (q-eme(N-s)
Co(siN1) = o1 - § - 5 {1-e 1,

and hence, from (73) and (74),
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i (N—s)p-{l-e-p(N's)}

2
G (s) . —> (1 -3)°,
p No - {1-ePNy  ¢0 N
-0(N-s) .
1-e 2 S
9,(s) = ——=—— = (1 - %) -
o N-(1-eNyy 00 NN

The vintage prices and the capital service price are in this case

N-s-Hp(N-s)

gy (esho-pi-e®s)y
No-(1-e7*M11(1 - 5 [N-H_(N)1(1=5)

q(t,s) = q(t)

_ iN'SZE:{]'e‘D(N-S)} } N-s-Hp(N—s)
p(t,s) = q(t) Np-{]-e-pN} q(t) N:p;rﬁy———— >
c(t) = q(t) ——L—g—— = q(t) £ .
e T Ho(N)

Finally, from (76) we find

E(Sy)”
HO

wfro

(p=0),

i.e. when the survival function is linearly decreasing, the expected life time of the net capital
will be two thirds of the 1ife time of the gross capital.

A1l members of this class of survival functions in which n>2 are (strictly) convex functions of
the age s. Or stated otherwise, the relative retirement (density) function b(s) is a decreasing func-
tion of s, since (67) implies

dols) . -nlncd) (- 82 < g for n>2.
3 N N -

Moreover, b(s) is itself convex for n>2, since

2
d®b(s) _ n(n-]%(n-g),(] - %)”'3 >0 for n>2.

ds? N

This situation is illustrated in the upper half of figure 2.
In the limiting case where n goes to infinity while N is fixed, the survival function degene-
rates to

I {? for s=0
B(s) = B (s3N,») =

0 for s>0,

i.e. the capital is scrapped momentaneously once it has been installed. On the other hand, if n and N
both go to infinity while their ratio is restricted to be a finite constant &, i.e.,
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we find from (66) and (67), when we recall the definition of e,

lon)
—
wv
~
"
—
p—
1

and hence, using (68

C;(S;N,n) - & __

) (or (70)),

-8s
p+d

This 1imiting case is thus simply the exponential case discussed above.

where N and m are po

]_(%?m for O<s<N
0 for s>N,

sitive constants, m integer. Its retirement (density) function is

m,s \m-1
(81)  b(s) = bl(s;N,m) = {NR) for Ogs<N
0 for s>N.
For ease of exposition, we introduce the auxiliary function
11 N . (z-s) z.m
(82)  C *(ssN,m) = se° () dz 0<s<N.
P s ==
When p=0, we find directly
I, .. _ N _osymily o N IT
(83) CO (ssN,m) = ﬁ?T[] (N) ] = ﬁ?TB (ssN,m+1) O<s<N.

If >0, the function
B:

(84) CéI(S;N,m)

1T, ..
Cp (s3N,0)

values can be calculated recursively from the following formula, proved in appendix

1 -o(N- I
E[(%)m_ o(N-s) + %Cp (s3N,m-1)]
H (N-s) + %{%C;I(S;N,m-1) - M sN,m)} m=1,2,. ... ,
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Inserting (80) and (81) in (8) and (9), we find

Trq_mp(N-s)y _ T, RS S P
{1-e 1= (sshom)  H (N=s) = C 7 (s3Nom)

(85) o (s) = = O<s<N,
e BII(S;N,m) BII(s;N,m)
e lisin,m-1)
(86) v (s) =§dr—— Oss<N.
° B (s;N,m)

We can then, by using (33) and (41), write the weighting functions for net capital and depreciation as
follows

H (N-s) - CII(s;N,m)
(87) G (s) = -£ 119 ’
g HO(N) = € 7(0sN,m)

11
Cp (s,N,m-1)

i
HN) - C

(88) g (s) =g o

For p=0 we get in particular

RO R RGN -

1 1
Go(s) =1 - % II(s;N,mH) s
m+1 1 1,11,
90(§) = it - (%)m] = E%N - o0 T (ssN,mel).

Combining (23) with (80), (83), and (85), we get the following nonlinear expression for the
expected remaining life time as a function of age:

N s m+1 s
N-s = —[1 - ()" '] m(1 - )
1-(§) 1-(y)

In particular, we find by setting s=0 that the expected life time of a new capital unit is

(90)  E(s) =
The corresponding 'expected 1ife time of net capital', as defined in (51), is

(91)  E(sy) = %—lyz"‘;lz’“ ,

and thus their ratio,

E(Sy ) 2
N me) 1
(2) Y Timtmezy - 2L T mme2))

decreases from 2/3 to 1/2 as m increases from 1 to infinity.
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The expressions for the vintage prices are in this case

H,(N-s) - Cil(s;N,m)

s

(93)  q(t,s) = q(t) _
o) - el - (5

11, .
Hp(N-s) I?p (ssN,m)

Hp(N) - Cp (O?N,m)

(94)  p(tss) = q(t)

n
lo]

‘

and the capital service price is

q(t)
I

Hp(N) = Cp (O0sN,m)

(95)  c(t) =

This is also-as the corresponding formula in class I, (79)- a highly non-linear expression in p, N, and
m. If we set p=0, while making use of (83), we can isolate the effect of the depreciation parameters

L]

N and m. This gives

S
N s
q(t,s) q(t) ——'s— T EN s
N

p(t,s)

]
Nal
=S

ot
—
-
—
]
=]
2
=]
—
—
]
—
=2ln

<
—
-

b

e(t) = a(t) Ty

In this degenerate case, the capital service price is inversely proportional to the maximal 1ife time N
and proportional to (m+1)/m.

Let us consider briefly some special cases of this class of survival functions: First, when
m=1, we are back again at the linear survival function. Second, if ms< (with N finite), the model de-

generates to the simultaneous exit specification, since 1im(s/N)™ is zero when s<N, and one when s=N.
M0

These two cases were discussed above, as speéia1 cases of class I.

When m>2, we see from (80) that the survival function is (strictly) concave in s, or stated
otherwise, the relative retirement (density) function b(s) is an increasing function of s, since (81)

implies
m-2
Q%é_l = m;] (%) >0 for m>2.
N

An interesting property of this class of survival profiles is that the weighting functions of
gross and net capital may have different curvature. If, for instance, p=0, the latter is convex, since

2
dG0 (s)_ -dgo(s) ) Til.(i) m-1 o
ds2 - ds =~ 2 'N i
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while the former is, as already declared, concave. In this case, the retirement (density) function b(s)
and the corresponding depreciation function go(s) also show different curvature; the former is convex,

2 m-3
d b(;l - m(m-]%(m-Z) (%) > 0 for m>2,
ds -

=Zln

the latter concave,

2
490(s)  (me1)(m-1) (3)""2
3

<0 for m>2.
d52 N

There is then no conflict between assuming that the techmical outwear of the capital follows a concave
function - i.e. that the deterioration is increasing with age - and assuming that the decline in the
capital value is represented by a convex function - i.e. that the depreciation is decreasing with age.
This situation illustrated in the lower half of figure 2.

FIGURE 2. TYPICAL CASES WITH CONVEX AND CONCAVE SURVIVAL PROFILES

A ‘}
1
n+1
N
B {s) 90(5)
n
N
Go(d
b(s)
N s N
B(s) and Go(s) both convex: Class | withn=2.
4
A A
m
Bls) N
1
m+1
mN
»
N 7s ’s

B(s) concave, Go(s) convex: Class |l withm = 2.
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Numerical and graphical illustrations

Numerical illustrations of the functional forms in class I and II are given in tables 1-5.
Function values of B(s), b(s), Gp(s), gp(s), and @p(s) are calculated from the formulae above]s) for a
maximal life time N equal to 6, 20, and 50, and an interest rate o equal to 0 and 0.10. The different
values of the 'curvature parameters' n and m considered illustrate the flexibility of these two parame-
trizations. .

More detailed, graphical illustrations for N=20 are given in figures 3-13. Figures 3 and 4
contain the survival function and the corresponding replacement (density) function in class I for
n=1, 2, 5, and 10. Figures 5 and 6 give similar functions for class II. Figures 7-9 visualize the
difference between the survival function and the corresponding weighting function for net capital,
whereas figures 10 and 11 illustrate these differences in terms of the replacement (density) function
and the depreciation function. The function @D(s), which represents the discounted service flow per
capital (efficiency) unit as a function of age, is illustrated in figures 12 and 13. Recall that the
graphs for p=0 also indicate the decline in the exbected remaining Tife time.

Finally, in figures 14 and 15, we illustrate the decline in the vintage prices g(t,s) as a pro-
portion of the price of a corresponding new capital unit, gq(t). Since this ratio is equal to ¢p(s)/¢p(0),
cf. (27), the graphs in figures 14 and 15 simply emerge by rescaling the graphs in figures 12 and 13.

18) In these calculations we did not, however, use the recurrence formulae (70) and (84) for the com-
putation of the functions Cg(s;N,n) and Cil(s;N,m), since this algorithm turned out to give numerically

imprecise results owing to cumulative rounding errors, in particular when o is small and n, or m, is
large. Instead, we programmed the computer algorithm directly from the definitions (68) and (82), using
Simpson's formula, which turned out to give more accurate results. In terms of computer time, these
two procedures are largely equivalent.



TABLE 1, Survival functions for gross capital | B(s).
Class I and IT.
Technical life time: N = 6, 20, and 50.

43

N =6
simult. CLASS II ‘ CLASS I

s exit |

m=10 m=5 m=2 n=1 n=2_ n=> n=10
% %} 1. 00002 1. 00000 1. 06230 %% %) 1. 6 1. 00000 1. 00000 1. 00000
%) 1.02000 1.00000 8.93387 8.97222 8.83333 8.69444 8.40188 8.16151
a2 1. 00000 8.99998 8.99588 8.88889 8.66667 8.44444 8.13169 0.081734
a3 1.00003 8.999a32 8.96875 8. 75009 8. 50000 8. 25000 8.83125 8.00038
04 1.00000 @.98266 8.86831 8.55556 8.33333 8.11111 8.00412 0. 02032
@5 1.00000 0.83849 8.59812 0.3a556 8.16667 0.82778 0.00013 0. 60022
%6 0. 62002 % %% % % 0. 00002 7 N%% %% 0. 0600d (<)% %% % %) <5555 %) 8. 00020



TABLE 1 (cont.)

N = 20
simult. CLASS II : CLASS I

s exit

m=10 m=S m=2 n=1 n=2 n=5 n=10
7% 1.08000 1. 02000 1.00000 1.00000 1.08000 1.0050 1.00332 1.066533
(%) | 1. 03000 1.00000 1. 63200 8.99750 0.95000 0.93250 0.77378 08.593874
a2 1.00000 1.00000 8.99999 =% % %) 8. 93020 B8.81003 B.59349 0.34868
a3 1.00000 1.080209 8.99932 8.97750 8.85000 8.72258 B8.44371 0.19687
24 1. 02000 1. 60000 0.99968 8. 9600d (G JS% %% %) 8.64028 08.32768 08.18737
% 1.00000 1.00008 8.939a2 08.93750 8. 75000 8.56258 8.23732 8.05631
26 1.00000 0.93999 0.99757 0.91000 9. 70258 8. 45203 8.16897 8.062825
%14 1.02000 0.993997 08.93475 8.87750 8.65003 8.42259 B8.11683 B8.01346
% 2} 1.00000 08.99990 8.98976 0.84002 0. 60004 02.36000 8.87776 8.80685
%] 1.00000 0.93966 8.98155 8.797508 8.55000 8.30258 8.05833 B8.62253
10 1.00000 8. 9992 8.96875 8. 75000 B. 50000 8.25820 p.83125 0.06298
11 1.00000 8.99747 68.94967 8.69750 0. 45624 0.28258 B8.81845 8.060334
12 1.00002 B8.99335 08.92224 0.64000 8. 48000 0. 16008 8.01024 0.00310
13 1. 00000 8.98654 8.88397 0.57750 0. 35009 8.12250 8.8a3525 (%% %% % C)
14 1.00009 B8.97175 8.83193 08.51000 8. 30000 (%% % % 5] 0.63243 8. 00281
15 1.00000 0.84369 0.76270 8.43750 8.25000 8.06250 %% % %) 5] (7% % % % 5]
16 1.00008 0.89263 8.67232 0. 36000 0. 20003 0. 064000 8.060332 %% %% % %]
17 1. 00000 0.602313 8.55629 8.27750 0. 15600 0.62250 IM% %% %3] 8. 060200
18 %% %% 8.65132 8.403951 8.19303 8. 10308 08.01003 8.00331 N5 % %% %]
19 1. 02008 0.40126 8.22622 08.03758 0.05008 B8.02258 (%% % %% %] 7% % % % %]
e’ 0. 63200 [ N% %% %Y%) (%8% % %% % A% % %% %) 0. 00000 (%% % %% %] 5% %% % ] (54% %% 5% %)

€€




TABLE 1 (cont.)

N = 50
simult. CLASS 11 cLASS 1
exit

= m=10 m=5 n=2 n=1 n=2 n=S n=10

2% 1.00029 1.06a200 1.08229 1.08000 1.00029 1. 00023 1.62000 1.066029
81 1. 03200 1.63320 1.00029 0.939608 (S 5% % % B.95340 8.98332 8.81707
74 1.00802 1.005228 1.023029 B8.933408 0.96828 0.52168 B8.81537 B8.66483
a3 1.00008 1.00320 1. 00020 0.99640 9.84000 0.83360 0.73398 0.533862
84 %% %% 5] 1. 00008 1.00029 0.99360 8.32000 0.84640 0.65928 0.43439
25 1.03000 1. 90000 0.93399 B.99900 5% % %) 0.81320 B8.59043 B.34868
06 1.063008 1.002320 0.99938 0.93568 8. 63000 0.77440 8.52773 8.27850
a7 1.00008 1.065320 8.99995 0.938840 8.86028 8.73960 8.47843 B8.22132
|88 1.032320 1. 65320 0.99394 0.97440 0.84020 0.7e5608 0.41821 B8.17499
a9 1.03398 1.03200 0.99981 8.96760 9.82029 0.67240 0.37874 0.13745
;19 1.02009 1. 00008 8.93968 8. 96000 B.820% B.64000 0.32768 0.18737
1 1.02008 1. 00008 0.93948 0.95160 0.78000 0.68840 0.28372 8.03336
12 1.08029 1.03208 9.99320 0.584240 0.76802 08.57768 0.25355 0.05429
13 1.03009 1.093320 B8.93881 B8.932408 9. 74808 B8.54768 8.22193 0.84924
14 1.83200 1.62000 0.93378 2.92168 0. 72022 B8.51840 0.19349 0.83744
1S 1.683332 8.383939 0.99757 B8.916238 0. 76003 8.453% 0.16847 0.82825
16 1.83500 8.93399 B.93664 B8.83760 8.68022 0.46240 0.14539 0.82114
17 1.80820 8.93998 0.93546 B.834409 0. 66020 8.435608 0.12523 8.081568
18 1.06000 9.9999% @.939395 B.87040 0. 64000 0.403608 8.10737 8.81153
19 1.063530 0.923%4 8.932088 0.85560 8.62024 0.33440 8.29161 9.03339
29 1.03322 9.93330 8.93376 8.84033 8.663233 0. 36829 8.87776 8.0623:585
21 1.83333 8.93333 8.93593 B.82360 0.58229 8.33640 B8.86564 B8.03431
22 1.05200 08.93973 08.98351 0.80640 0.56820 0.31360 0.85587 8.63333
23 1.00229 8.959958 0.97549 9.78840 8. 540624 8.29160 8.84532 0.08211

123




TABLE 1 (cont.)

N =50 (cont.)

simult. cCLASS II CLASS I
exit
s m=10 m=5 m=2 n=1 n=2 n=S n=10
24 1.00000 0.99935 8.97452 8. 76969 8.52000 8.27040 8.83582 8.00145
25 1.00000 0.93932 8.96875 8. 75000 0. 50000 0.25000 9.83125 0.00098
b 1.83908 @.93355 8.96198 B8.72960 B.48208 8.23848 0.82548 8.80565
27 1.03200 8.99789 0.95408 - @.70348 0. 46000 0.21160 8.82060 0.00342
B8 1.08300 8.99697 8.94493 8. 68548 0. 44000 8.19350 08.081649 8. 80227
29 1.02320 8.99569 §.S3436 8.66350 8. 42000 8.17640 0.013a7 0.63017
30 1.80030 " @.99335 B8.92224 8.64000 9.4838 8. 16000 9.01824 0.80318
31 1.00200 8.93161 8.58339 8.61560 0.33200 0.14440 0.83752 0.0802%6
€74 1. 00000 8.98847 8.83263 0.55340 9. 36800 8.12968 8. 00605 0. 62334
33 1.00000 8.98432 8.87477 0.56440 0.34000 0.11569 0.00454 %% %%
34 1.00000 8.97886 8.85461 8.53760 0.32009 8.108248 8.62336 9.03201
35 1.00208 8.97175 . 8.83193 8.51090 0. 33330 8.09320 8.03243 0. 05301
36 1,053 8.95:256 .62351 B.48160 0. 28000 8.07849 8.99172 9. 60220
37 1.83399 8.95876 8.77810 8.45248 0.26000 0.05768 8.0911S 9. 63300
38 1. 00200 0.93571 B.74645 8.42249 0.24200 0.e5760 8.083039 8.83322
9 1.82309 0.91654 0.71128 8.39160 8. 22000 B.04849 9.03352 8.083332
49 1.008029 0.83263 8.67232 B. 35633 8.206329 8. 84000 8.060332 0.63320
a1 1. 833X B8.856255 8.62926 P.32760 8.18332 8.083249 8.63219 8. 83739
}42 1.83330 8.625108 8.55179 B.23448 8.16602 8.82568 8.63210 8. 63322
43 1.3 9.77878 @.52257 B.26040 8.14629 8.81560 8.832335 a. 83328
44 1. 80030 B.72150 @.47227 B.22560 0.12820 8.01448 0.63332 0. BAd
45 1.08232 0.65132 9.48351 8.19333 0.16222 8.01632 8.63331 8.03320
46 1.00200 B.56561 0.34032 8.15358 8.63020 8.00548 8.82533 8.63339
47 1.03339 B.45129 @.26618 0.11649 8. 5833 B.83358 8. 06322 B.623709
}48 1. BA332 8.33317 @.18463 8.067640 8.064632 8.63160 8.6553 8. 6332
' @3 1.63373 8.15233 0.083503 B.22950 8. 62020 8.63348 8. 63330 8. 33333
- 8.63330 8.83333 3. B350 B8.83532 (A% %% % %) 8.0632323 B.0B333 8.03322

G¢



TABLE 2, Replacement

Class I and II.

Technical life time: N =

(density) functions, b(s).

6, 20, and 50.

N =6
CLASS 1II CLASS 1

imult -
S s:mt m=10 m=S m=2 n=1 n=2 n=S n=10

00200 1.66667

R %%%"% R 252" 0. P00 0. 16667 8.33333 8.83333

‘g? 3'm 0. PR 0. 00064 8.985556 0.16667 8.27778 9.40168 3.3233%
2 | o 00000 0. 0028 0.01029 2.11111 0. 16667 . 8.22222 0. 16461 0.04
3 | o pooee 8.08325 .05208 0. 16667 0.16667 0.16667 0.05208 0.0a326
24 | o poooo 0.84335 0. 16461 9.22222 0. 16667 B.11111 8.091829 e.mm
5 | o o000 0.32301 0.40168 8.27778 8. 16667 B8.05556 0. 00064 2.
%6 M 1.66667 8.83333 9.33333 0. 16667 0. 00200 %% %% IR % %% %

9¢



TABLE 2 (cont.)

N = 20
simult. CLASS II ' CLASS 1

s exit m=10 m=5 m=2 n=1 n=2 n=5 n=10
09 0, 80000 8. 00000 %% %% %) N7 %%%0) 8.85009 8. 16009 8.25000 B8.50300
01 0..80000 %555 0. 00000 0. 22500 9. 25000 8.083500 8.28363 8.31512
%74 0. 60000 %% %% %) 0. 00032 0.01000 0.25000 8. 095900 0.16483 8.19371
23 0..03020 % %550 8.00913 8.081500 9. 05000 0.08509 0. 13250 8.11581
84 % %% %) %% %55 0.00040 0.62000 8. 25000 0.058200 0.18249 0.06711
s 0..02000 %555 0.00933 0.082500 8.25000 0.87500 0.879109 0.083754
05 0..00000 9. 00001 0.008282 0.083900 8. 25000 0. 87000 0.06082 0.62818
a7 0..80000 9. 00004 0.08375 8. 83509 8. 25000 0. 86500 0.84463 0.0910836
es 9..060020 0.00013 0. 00640 0. 84000 8. 25000 8. 66000 0.03240 0.00504
29 %% 5%"% ) 0.00038 0.81025 0.84500 0. 95000 0. 85500 0.082283 0.08239
10 0..00000 0.00098 8.01563 8. 85000 0.05000 0.05000 0.01563 9. 0238
11 0..00000 0.08239 0.82283 8.095500 0.085000 8.84500 0.81825 0.00a38
12 .. 00000 0.00584 0.83240 0. 66000 8.25000 8.084000 0. 00649 0.62013
13 9. 00000 0.081836 8.84463 0.06500 8.25000 0.83500 0.08375 0.060234
14 %% %) 0.082018 0.06082 0.087000 8.25000 0. 83000 0.08282 0. 00001
15 %555 0.83754 0.87910 0.087500 0.085000 0.82500 0.00033 0. 6200
16 0. 62020 8.06711 0. 16240 0. 080003 0.05000 %77 %) 0. 00849 % % %%
17 % %%5 %) 0.11581 8.13250 8.88500 0.095000 0.81500 0.00013 I N%%%%0)
18 % %55 ") 8.19371 0. 16482 0. 89000 9. 25000 0.081000 8.00033 % %% %0
19 0. 00000 0.31512 0.20363 9. 89500 0.05000 8. 00500 L N%%%%% %% % %0
20 NA " 8.50000 0.25000 9. 10009 0. 85000 %% %% 0. 00000 %% %%0%)

LE




TABLE 2 (cont.)

N = 50
simult. CLASS 1II . CLARASS 1
exit

s m=10 m=5 m=2 n=1 n=2 n=5 n=10
% Y] (%% %% % 5] iM% % %% 8% %% %] %% % % % Y] 9.62009 8.084000 2. 18000 0. 20320
%) % 5% %% % %% %] % %% %% 8.00330 0.82000 8.63320 0.03224 8. 16675
a2 0. 00000 8. 060320 %% %% %) 0.08160 (% %% % %) 8.63840 9.88493 0.13351
a3 9. 03000 2. 02000 %% %% %) 8.03240 (7 I %7%% % %) 8.083760 8.07887 0.11460
24 8% % %% % 8. 62 4% % %% %] 0.08320 % %% % %) 0.83682 B.87164 0.03443
%) 0.063032 A% %% %] %% % % %) | 0.00400 0. 82000 B.03600 8.06561 08.87748
06 0. 60020 %% %%%%) 8% %% %74 0.08480 0.82000 8.83529 8.05997 9.85339
a7 %% %% Y] 8. 6322 0. 63024 0.038560 0.82000 B9.83449 8.05470 8.85147
23 8.63000 (% %% % %) 0. 02007 B.00640 [ PR%%% % %) 0.03360 8.84979 0.84164
(%°] %% % %Y%) (0% % % % %] 0.60010 0.88720 9.82020 0.03289 0.84521 8.83352
10 (%% % % ] 2. 00200 P.62216 (%% %S % %) 9.82020 0.083200 8.84256 0.82684
11 % %% 5 %) (%% %% %) 0.02023 0. 08380 8.062009 8.063120 0.083782 8.082137
12 5% %% % Y] a. 8.062333 a. 9.82000 0.03048 0.83336 8.01692
13 (8% % % % %) a. 0.03346 a. 0.62833 0.082960 08.82999 0.81331
14 8. 80230 a. 8.083361 a. 0.82620 8.62639 8.62687 8.010840
15 8. 83232 Q. 8.005381 a. 8.6283 B.62843 8.082401 0.064337
16 % %% 5 %) a. 8.08105 a. 0. 82033 B.627208 0.62138 0.03622
17 5% % %% % a. 0.00134 a. 0.82030 8.082640 8.01897 0.62475
18 (o5 %%5%%) AN% % 0.02168 0.01440 0.62802 8.82568 0.81678 8.083360
19 % % 5% %] %% %% %€ 0.63209 0.081520 ?.82020 0.82482 9.01478 0.83271
20 0. 62332 (2 N%'% %% 0.03256 0.01600 9.02030 B.062400 8.012% 0.0a202
21 (%% 5% %) 8. 63333 8.83311 8.01688 8.062833 2.82328 P.01132 - 8.83149
22 8. 02330 0.02312 B8.682375 B.01760 2.82030 0.82240 9.83333 9.02108
23 % %% % %) 8.00018 0.00448 0.01848 2.062000 8.0621608 0.08350 0.80878

8¢




TABLE 2 (cont.)

N = 50 (cont.)
simult. CLASS II CLAS S" 1
exit
s m=10 m=5 m=2 n=1 in=2 n=S n=10
24 %% 5% 5% %) 8.003827 0.63531 0.81920 8.82820 2.82850 2.83731 B.02256
25 %% %% 5% 9.003839 0.082625 8. 82000 0.8202% [ %% %) 2.83625 8.00839
26 8.00020 8. 08856 8.08731 8.062v89 (o, % %% % %) 8.815209 B8.03531 0. 00327
27 % %% % %) 0.82978 0.00358 0.82160 0. 82000 ?.01840 ?.80448 ?.080018
28 8. 623039 0.02188 0.63333 8.082240 8.82000 8.081760 8.03375 8.063212
29 0. 62329 8.02143 8.81132 0.082320 8.82030 9.01689 8.008311 8. 03308
39 8.63200 8.03282 8.8129% 0.062483 8.62322 0.01600 8.082256 8.80035
31 - 8. 6atud 8.03271 0.01478 0.062489 8.062000 0.01528 8.62229 9.83233
R 8. 83028 8.63350 8.81678 8.82560 0.82000 0.01440 8.02168 08.020082
33 8. 88333 8.83475 8.81837 0.62640 0.082000 0.01350 8.22134 8. 3630301
34 8. 83030 8. 83622 8.82138 8.82720 8. 82000 8.01289 8.83185 8.83291
€S 8. 62030 8.02837 8.62401 0. 62800 8.082000 8.01200 0.02331 8. 83320
36 8.063339 0.21848 8.82687 0.062639 8.62822 0.81129 8.02361 08.83002
37 8. 083333 8.01331 8.62933 6.62350 B8.62030 0.01040 8.63345 8. 63732
38 8.83333 0.81632 8.83336 B.63040 %% %) B.p3559 8.63%33 2.63553
39 8. 63233 0.82137 8.837a2 8.63129 0.82630 0.83339 8.83323 8.63239
49 8.63333 8.82684 B8.84E36 8.63203 0.82620 0.03532 8.63216 8. 63232
41 8.063333 8.83352 9.@4521 8.0632e0 8.62032 0.00728 " 8.83310 8. 85303
42 8.83333 - B.B4164 8.043979 B.063359 0.62003 ?.03540 8.83057 G. 0033
43 8.03500 8.05147 8.63472 B.63440 B.67033 8.067560 8.a33234 8. 63339
44 8.63332 8.65339 B8.65937 2.83520 B8.22633 8.23459 8.0 8. 83530
45 8. 03532 B.67748 B.85561 8.835082 B8.62532 0.03483 8. 8. 63039
46 8. %3300 8.03443 8.07164 8.83589 8.62630 0.62320 8. 0.63023
47 8.063330 8.11459 8.67697 8.03760 0. 82u00 8.020249 8.6 8. Pro0d
a8 8.83732 B.133351 8.83493 8.83340 8.62832 8.82160 8. 8. 6232
43 8.033%3 B8.16575 B.G5224 B8.03520 8.(7603 8.62350 2.6 B. 0503
%) NA 8. 26330 8. 1653 8.08403%2 8. 57533 8. 6u20 8.0 8. 63323
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TABLE 3. Weiqhting functions for net capital, G(s).
Class I and II,
Technical life time: N = 6, 20, and 50.

Interest rate : Rho (¢ ) = 0 and 0.10.

N =6
Rho = 8 Rho = 0.10
simult class 1I class I class I simult. class II class I class I
s exit m=S n=1 n=> exit m=S n=1 n=5

**bﬂ 1.00000 . 1. 00000 1. 60000 1. 02022 1. 00000 1. 00000 1. 030008 1.060000
.81 8:83333 0. 82200 0.69444 0.33499 0.87207 08.83635 8.71588 0.33944
‘82 0.66667 8. 68227 P.44444 0.88779 0.73369 0.65584 0.47254 0.09029
VEB B.SM 0.44312 0.2500 0.01563 08.57444 8.45977 8.27429 B8.081628
®4 8‘33333 8.21756 0.11111 0.00137 8.48176 0.25848 8.12587 0.83145
5 0.1666? 0.06698 P.62778 (%% % % % 8.210952 0.88266 0.83251 (%% % % %74
26 B:M (% %% %%] 7% % %% %) (%% % %% Y% 0. 08009 8. 66000 %% % %] (%% % %% %]

oy



TABLE 3 (cont.)

N = 20
Rho = @ Rho = 0.18

simult class 1I class I class I simult class II class 1 class I
s exit - m=5 n=1 : n=5 exit m=5 n=1 n=5
(% %] 1.00008 1.62000 1. 00000 1.060003 1.0629000 1. 60009 1. 60000 1. 0030
o1 8. 95020 0.34000 8.93250 08.73503 8.98354 8.97412 0.92446 B.74376
(7724 0. 90003 8. 88000 8.81000 0.53144 8.96535 8.94553 8.85823 08.544108
a3 8.85000 0. 82000 B.72250 0.37715 0.94524 8.91393 8.77746 0.39078
24 A E %% %% . 8.76001 0.64800 8.26214 @.923a2 8.87943 8.70631 B.27491
(% o) 8. 75000 0. 78085 8.56250 0.17798 0.89846 0.84051 0.63693 0.18893
26 0. 70000 0.64815 0. 49000 0.11765 0.87132 8.733a7 8.56952 8.12644
a7 0.65000 0.58337 8.42250 08.87542 0.84133 B8.75144 0.58428 0.08297
78 0.60000 0.528382 0. 36000 0.04666 0.80818 0.70040 B8.44145 B8.05141
es 8. 550008 0.46166 8.38250 8.82768 0.77155 B.64485 08.38127 0.0830389
10 8. 50000 0.408313 B.25000 B.01562 0.73166 0.58469 08.32483 0.081766
11 8. 45080 0.34554 0.28258 0.02339 0.68631 8.52851 B8.27043 0.080951
12 8. 40000 0.28933 0. 16000 0.00410 B.63686 8.45246 8.21961 0.068475
13 0.35009 8.23583 0.12250 0.00184 8.58221 8.38153 8.17315 8.08216
14 0. 30000 0.18353 0.0850002 0.00a73 08.52181 8.39930 0.13107 0. 08087
15 0.25020 0.13569 8.062508 0.09024 8.455a5 8.23673 9.039383 0.00829
16 8. 20000 0.09243 0.084000 0. 02206 0.38128 B8.16724 8.66194 (2% %% % 2]
17 0. 15608 B8.05543 0.82250 8% %% %) | B.29975 8.16399 8.83595 (%% % % %}
18 0. 16000 8.82629 0.01009 (%% %% %) 8.28964 8.85182 8.01659 (%% %% %
19 0.e5000 9.09782 0. 00250 (%% % %% %] 0.11006 0.01403 B.08426 (%% % %% %]
20 0.0000 (%% % %% %) %% % %% %] - 0. 00000 S N%% %% %) (%% % %% %) (%% % %% %) (%% % % % %]

Ly



" TABLE 3 (cont.)

N = 50
Rho = O Rho = 8.10

simult. class 11l class 1 class 1 simult. class I1 class I class I
s exit m=5 n=1 n=5 exit m=5 n=1 n=5
(% %) 1. 02320 1.066020 1. 00600 1. 00008 1.063200 1.623000 1.06320 1.00332
o1 B.93320 0.97608 0.96040 0.88584 0.93329 8.93769 8.97522 8.839335
a2 0. 96520 8.95208 8.52160 0.78276 9.933508 8.93514 8.95046 0.79783
a3 8. 34000 8.92800 8.83360 0.68587 8.99763 8.93232 0.92571 8.78331
84 8. 52000 0.92408 B8.84648 8.60635 B. 99666 B8.98320 8.93399 0.62886
%53 8. 55300 3. 88300 02.81003 08.53144 0.93560 8.93576 8.87633 0.55631
6 =S %% %) 8.856008 B8.77448 0.46449 0.93442 0.98195 8.85163 0.49372
ar S S5% %) 8.83200 B.739698 B.40457 8.99312 B.97775 0.82708 0.43155
08 B.84622 B.88320 8.78560 0.35139 B.99169 8.97311 8.83239 8.37832
@3 B.82000 B.78401 8.67240 8.334061 0.93210 08.96798 B.77783 0.33255
10 0.623220 0. 76001 0. 64000 0.26214 0.98834 0.96234 8.75331 0.28781
11 % =% % %) 8.73602 8.603408 8.22520 B.98640 B8.95611 8.72833 B8.24968
12 0. 76028 B8.71204 0.57760 8.19279 8.98426 0.943825 8.706440 8.21576
13 8.740632 0. 68326 0.54760 a.16421 P.93189 08.84171 8.68333 0.18569
14 8,726 0.66410 8.518409 08.13931 B8.87927 8.93343 B8.65572 9.15913
15 0. 76320 08.64015 0.45533 8.11765 8.97638 8.92434 B8.63148 8.13375
16 8. 68008 8.61621 0.462408 8.e3387 0.97318 B8.91438 8.68732 0.11525
17 0. 66000 0.59231 0.43560 0.83265 8.95965 08.93349 8.58324 8.03735
18 0. 64000 8.56844 0. 408358 0.85872 0.96574 a8.89159 8.55925 0.63178
19 8.62020 0.54460 8.38448 8.65650 8.95143 8.87852 8.53536 B.e£931
20 8. 652308 8.52832 8. 36033 0.064666 8.95666 8.86452 0.51158 B.e5671
21 8.58223 8.49710 B8.33540 0.083897 B8.95139 0.84921 8.48793 8.84677
22 0.56820 B8.47345 8.313608 0.083084 0.94556 8.83262 B.46442 0.83330
23 8. 54800 8.443939 8.291608 0.82479 B8.93912 B8.81469 8.441086 2.83113

ey



TABLE 3 (cont.)

N = 50 (cont.)

. 2, :3' ‘j a

Rho = @ Rho = 8.10
simult. class 1II class 1 class I simult. class II class I class I
s exit m=5 n=1 n=5 exit m=5 n=1 n=5
24 9.52600 8. 42645 0.27849 0.81977 8.93281 0.79535 8.41786 0.82503
25 8.50208 6.48312 8.25820 8.081562 0.92414 8.77456 0.39485 3.82025
26 9. 48020 0.37935 0.23840 0.81223 B.91545 B.75225 B.37285 8.81587
a7 .8.46823 0.35696 8.21164 0.03347 8.93584 8.72837 B8.34847 0.81243
28 8. 44000 8.33417 0.193:9 8.03726 8.83523 8.78232 0.32715 8.82363
29 0. 42632 f.31161 0.17640 8.83549 9.85359 0.67581 9.335108 B.63737
39 8. 43323 0.28333 8.16830 0.634108 8.87853 8.64789 8.28335 0.83556
31 8.38230 B.26736 B.14440 2.03321 0.85620 B.61674 8.26195 0.03414
3?2 8.35823 8.24574 D.12950 B.63218 f.84 B.58478 8.24092 8.63383
- 33 B.34033 0.22453 8.11559 8.03154 B.82286 8.55127 8.22633 8.e3217
34 0.32833 0.26377 8.18248 0.00187 0.8a352 B.51627 0.28214 0.@3153
35 8. 33 0.18353 8. 05322 8.60a73 0.78214 B.47239 8.16248 8.63185
36 B.25533 B8.16335 8.67848 8.63548 0.75851 8.447 B.16133 8.62578
37 B.26659 B.14434 8.65769 8.080331 8.73240 B. 44356 P.14289 8. Bz046
38 8.24833 8.12654 8.es576a 8.63319 8.78355 B.35482 8.125@9 8. 329
39 8.22823 0.16334 8.04348 B8.0623311 B.67165 0.32393 8.10333 8.82217
49 8. 23 8.¢3243 8.64833 B8.62336 8.63541 0.28354 8.63181 B.GC3210
41 0.16232 B8.675H 2.¢3243 8.063333 8.59746 B.24333 8.67651 B.062235
42 6. 16632 B.0.226 B.62550 8.032232 B.55441 B.22376 e.0oz23 8.02033
43 08.1455 8.84531 0.0615:0 0. 63301 B.53583 8.16537 B. 04935 . 63221
44 0.12823 0.832583 0.081440 8.0633232 8.45425 B.12833 8.83714 8.83322
45 8. 16542 08.82629 8.81822 8.633233 B8.35514 8. (#3483 B.B2659 8.63433
46 8. 3590 8.e1727 B8.63548 8. 6302 0.33192 B8.065442 8.81755 %)
47 8.02539 - B.G3397 B8.0633258 8.62533 B.264334 8.062345 6.91819 @
48 B.Bass B.62455 0.63160 8. 63240 0.18750 2.21814 B.6457 2
49 8.Gma0 8.63117 B.63340 B8.63533 0.05531 a.063431 8.03121 ]
58 8.63333 8.65372 B.833233 8.62323 8. 63353 2.63353 o] 2

LBBoa
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TABLE 4. Depreciation (density) functions, g(s).
Class I and II.
Technical life time: N =6, 20, and 50.

Interest raté: Rho (F) = 0 and 0,10.

N = 6
Rho = O Rho = 8.10

. lass II class 1 class 1 : simult. class II class 1 class I
S Sé:ﬁit © m=S n=1 n=5 exit m=S n=1 n=5
) 0. 20000 0.33333 1.80000 0.12164 B. 15561 0. 30320 9.98659
‘g? gigg 0.19957 0.27778 0.40188 0.13443 0.17134 0. 26441 0.40273
s 9. 16667 0.15918 0.22222 0.13169 0.14857 8. 18397 B.22154 0. 13487
a3 0. 16667 9.19375 B.16667 0.083125 2.16419 0.20164 0.17417 B.03233
24 0. 16667 0.17366 2.11111 0.08412 0.18146 8.19610 0.12181 0.00433
5 0.16667 0.11962 9. @5556 0. 00013 0. 20055 B.14462 0.26395 0.00014
06 0. 16667 0. B0 0. BOA00 0. BOBD . p.22164 8.00000 0. 00000 9. 83000

1A'




TABLE 4 (cont.)

N = 20
Rho = @ Rho = 0.18

simult. class II class I class I simult. class 1II class I class I
s exit m=5S n=1 n=5 exit m=S n=1 n=S
1% %) 0.05000 8. 06000 8. 10029 8.30000 8.081565 B.062468 8.07616 8.28833
%1 8.085000 8. 06000 8.039503 0.23213 P.81730 8.82719 0.87491 8.22611
774 0.05000 0. 66022 2 NS %% 8.17715 8.081912 8.0830a5 8.87352 8.17490
a3 9.05000 0. 06000 8.03500 8.13311 0.82113 8.83329 0.87199 8.13323
B4 0.05000 0.85998 (% %°5% % %] 9.63339 08.82335 B.83666 0.07832 8.89376
25 8.85000 0.85934 8.6750d 0.07119 8.082581 0.064843 8.85843 8.87326
26 ?.050008 8.85985 0.067632 8.0850842 0.082852 8.84449 0.06636 0.05262
a7 9.05800 0.85568 8.06500 8.83481 0.83152 0.0483802 0.086408 8.083685
53] 0.85000 B8.85939 8. 66000 8.62333 0.03483 8.085329 0.86155 8.682506
29 0.05008 0.85689 8.05520 0.01510 6.063859 8.85782 B8.85876 0.081646
10 0.05000 0.05813 8.05009 08.023937 0.84255 8.86223 0.85568 8.01837
11 0.05600 0.85698 0.8450d 8.060554 B8.84782 8.06628 8.85227 8.00622
12 0.05008 0.85533 8. 064000 0.88387 B8.85197 8.06967 0.084858 8.03350
13 0.85008 8.653%4 0.03500 0.08158 8.05743 8.67199 0.084434 0.00182
14 0. 65008 0.84932 8.03000 0.00073 0.066347 B8.87276 8.83974 B.000386
15 9.05820 0.084576 B.02500 0.00829 0.07915 B8.87136 0.083466 [ N% % %€ S)
16 0.05820 0.84834 8.62000 8.060010 08.877S2 8.86785 8.62924 0.00312
17 0.050630 8.83333 0.01580 0. 060082 0.088568 8.05833 0.e2283 % M%% % %C]
18 0.85000 0.82457 0.01820 (% % %% Y] 0.03469 08.04592 08.81597 (7% %% %]
19 0.25620 08.81357 8. 02500 8. Ba 0.108465 0.62678 0.00338 (%% % % %%
29 %% % %) (%% %% %"%] %% %% Y] %% % % % ] 0.11565 (%% % %% %) %% % %% Y] % %% % % %)

537



TABLE 4 (cont.)

N = 50
Rho = @ Rho = B.18

simult. class II class I class I simult. class Il class 1 class 1
s exit m=5 n=1 n=5 exit m=5 n=1 n=5
4% %] 0. 82083 8.062400 8. 084000 8. 12000 0.60068 8. 08220 08.82479 8.11102
%) | 0.62009 0.062400 0.63329 0.18847 0.8337S 8.08243 0.82477 8.10136
a2 (% % %% % %) 8.062400 0.63840 8.89784 0.63283 B.08268 B8.82475 0.03236
23 8.82800 8.02408 8.837608 8.66837 8.83032 8.0632% 08.82473 8.03338
84 8.8202 8.82420 8.83680 0.875a3 0.03101 38.68328 8.82471 8.87620
%) 8.82009 0.82400 8.083603 B.87886 9.00112 B8.08362 B.082468 0.85838
%6 8.82023 0.062400 0.63520 8.06333 0.08124 8. 00400 8.82465 8.85229
a7 0.82020 0.082400 0.063440 - 8.95645 P.02137 B.080442 B.82462 0.85612
23 8.82000 0.82400 0.63360 0.85819 9.028151 8.00487 8.82458 0.65042
(%] 8. 82020 0.02400 B8.083269 B8.84449 0.83167 0.03538 0.82454 B8.84518
10 0.82830 08.082399 8.83209 0.083332 0.63184 8.03593 8.82450 8.04837
11 8. 820 B8.82393 0.03120 8.03465 8.02204 B8.00653 0.682445 8.0359%
12 8.82039 B8.062398 B8.03040 0.083043 0.83225 8.0a3719 8.62440 8.83193
13 8.82008 0.82397 8.82960 0.82663 8.63249 8.637% B8.62434 B8.02826
14 0.82039 8.8239% 8.826880 B8.82322 0.062275 B.03368 0.82428 8.082492
15 o % %% % 0.823%4 0.62600 8.62017 0.683304 8.60351 8.82429 p.82183
16 8.62828 8.082392 8.082720 08.81745 0.83336 8.01841 08.82412 08.81916
17 8.82023 8.82339 8.82640 8.015483 0.83371 8.81138 0.082484 8.81659
18 (7 %7 % % %) 8.82385 0.82560 0.01268 0.82410 0.081242 8.82394 0.01448
19 0.082820 0.62381 8.82482 0.01899 0.63454 0.81352 0.82383 B8.81258
20 9.82039 0.82375 B.024%2 B8.02933 B.68501 0.81470 8.82372 B.01874
21 0. 82832 8.62369 0.82320 B8.63768 8.82554 0.015%4 8.82358 0.83317
22 8.82630 8.82359 8.62240 0.03661 8.80612 8.81725 8.682344 8.83779
23 %% % G | 0.82351 B8.82160 0.8a3551 . 0.82677 0.81862 0.82328 B.082658

9v



TABLE 4 (cont.)

N = 50 (cont.)

Rho = @ rho = 8.18

simult. cless II class I class T simult. class II class 1 class I
S exit m=5 n=1 n=5 exit m=5 n=1 n=S
24 8.8200d 8.82333 8.082089 0.08456 8.08748 8. 82826 8.62310 8.083551
25 8.82022 8.82325 0.02820 8.0a375 0. 80826 0.82155 8.62291 8.082453
26 8. 82829 8.82333 8.019208 8.03386 0.00913 0.82323 0.82269 8.03373
27 8. 82009 8.082295a 0.01840 0.03247 0.01089 8.082467 8.82246 8.63310
28 8.82039 8.82268 8.01760 8.00198 0.01116 8.082628 0.82219 8.063252
29 0. 62020 8.02242 0.01632 0.02157 0.81233 8.82731 0.62199 8.03282
39 8.0283% 0.22213 0.01689 8.08123 0.81363 8.82954 0.62158 8.63168
31 B.82023 8.62169 8.01520 0. 03335 8.81505 0.83116 8.62122 8.063126
P 0.8z833 8.82142 0.01448 0.83373 8.81664 0.083274 0.82833 8.03337
3 8.82039 0.082999 0.01360 @.03355 @.81833 8.03427 0.082040 8.063374
34 8.2 8.82e51 8.01289 0.00240 8.62833 8.83571 8.61932 8. 63356
5 8. 82633 8.81937 0.01209 8.63329 8.82246 0.83783 8.01539 0.83041
3% 8. 8200 0.01936 8.01129 0.8022 8.62483 0.02320 0.81639 0.63423
37 8.62833 B.016857 0.01040 0.e2214 8.0G2744 8.65316 B.01816 8.065321
33 9.d825 8.61731 8. 63550 8.03318 8.a3332 8.63333 8.81744 B.64314
39 8.e2e3d 8.017a7 0.62363 8.63335 0.83351 0.84833 8.01665 8.60333
49 8.82333 0.81614 0.08233d 0.63224 8.063704 0.84835 8.81578 8.63235
41 8. 62633 8.81510 8.0837208 0.683332 8.84033 8.62337 0.81451 . B.6323
a2 8. 62609 0.81235 8.22548 8. 03301 8.84524 2.B30 8.01374 8. 53552
43 8.62833 8.01271 8.03350 8. 6021 2.02022 8.82758 8.81255 g.¢
44 8. 62033 e.01123 8. 0245 @.63333 0.82525 8.8z 8.u1126 B.G
45 8.823323 8.Cu333 8.63453 0.063339 0.65105 8.83236 0.8:332 Q.
46 8. 62033 8.63318 8.63328 8.083332 8.85749 8.062540 8.63323 .
47 0. aza33 8.83539 0.03248 8.063330 0.87458 8.82335 0.62347 8.0
48 8.82020 8. 02443 8.63160 8. 63533 8.63243 0.01765 a.e2452 8.¢
43 8.62633 8.063231 8.63330 8. 07330 8.¢31108 B. 633 8.62233 0.0
50 0. ze%d 0.02333 8.83333 8. 6e050 @.16358 8. 60323 B. 0535 a.c

Ly



TABLE 5. Discounted future service flow per capital unit
as a function of age,{

Technical life time: N =

§

¢O(s) = Expected remaining life time.

6, 20, and 50.

Interest rate: Rho (§ ) 0 and 0.10,
N =26
RHO = B RHO = B.10
simult, class II class I class I simult. class II class I class I

s exit m=5 n=1 n=5 exit m=5 n=1 n=5
1% %) (oY% %% % %) o % % %% %) CN %% %% %] % %% %] 4.51188 3.91225 2.48318 8.92031
o1 % %%0% %) 4.00054 2. 50000 8.83333 3.93469 3.27244 2.13060 8.77733
%4 8% % % % | 3.01377 2. B B8.66667 3.29680 2.57642 1.75799 0.63839
a3 CN%%%5% 9% 2. 88064 1.56330 8. 50000 2.59182 1.85675 1.36060 8.47935
24 2. 63000 1.25276 1.060039 8.33333 1.81269 1.16458 8.93654 08.32484
(% 9) 1.060000 8.55991 4. 50008 a.16667 8.95163 0.54870 8.48374 0.16432
26 G% %% % %) (%% % %] (%% % %% %) (%% %% % %] (%% %5%"%) (%% %% %) % %% %] %% %% %]

8t



TABLE 5 (cont.)
N = 20
RHO = @ RHO = 8.10

simult. class II class I class 1 simult. class II class I . class I
s exit m=5 n=1 n=S exit m=5S n=1 n=5
aa Ve % %% %] 16.66670 16.00000 3.33333 8.64664 8.82551 5.67664 2.575108
a1 19.00000  15.66670 9. 50000 3.16667 B8.58431 7.81785 5.52401 2.47517
a2 18. 8029 © '14.66689 9. 6233 % %%%% 8.34701 7.58843 5.36273 2.37289
a3 17 . 68000 © 13.66770 8. S003 2.83333 8.17316 7.33531 5.19222 2.26791
04 16.080000 . 12.67090 %% %% %) 2.66567 7.98163 7.85689 5.01182 2.16841
a5 15. 6200 11.67859 7. S0000 2. 5082 7.76879 6.75209 4,82v383 2.085820
% 3 14. 00009 18.69510 Y% %% %% 2.33333 7.53463 6.42050 4.61851 1.93721
%14 13. 60004 9.72386 6.500038 2.16667 7.27468 6.06251 4.40406 1.82132
a3 12. 60000 8.77013 (8% %% % %) 2. 00002 6.98806 5.67323 4.17659 1.78245
09 11.00000 7.83900 5. 56000 1.83333 6.67129 5.27252 3.93517 1.588508
10 %% % % % %) 6.93548 oy %% %% %) 1.66667 6.32129 4.84475 3.67877 1.45533
11 9, P33 6.06413 4. 50000 1.58000 5.93439 4.39373 3.48632 1.32685
12 8. B3 5.22878 4. 0003 1.33333 5.50671 3.93743 3.11661 1.19493
13 7.00000 4.43234 3.50000 1.16667 5.63415 3.46386 2.89836 1.05946
14 (% %% % %) 3.67679 8% %% % %) 1.00000 4.51183 2.93835 2.48319 8.920831
15 % % % % %] 2.96348 2. 50000 8.83333 3.93469 2.49a97 2.13%61 8.77733
16 4. 03000 2.29129 2 . B3 8. 66667 3.25689 1.99648 1.75800 8.63839
17 IC% %% 5%%] 1.66069 1.50000 8.50823 2.59182 1.49899 1.350868 8.47935
18 Yol % % % % %) 1.06993 1.060000 8.33333 1.81269 8.99389 8.93653 0.324084
19 1.00000 8.51708 8. 50000 0. 16667 0.95163 8. 50000 8.48374 8.16432
e s} 7% % % % %) (7% % % % %] 7% % % % %) 8. 00003 5% % %% 5] % %%5%%) %% %% %) %% % % % &)

6V



TABLE 5 (cont.)

N = 50
Rho = @ - Rho = 8.10

simult. class II class I class 1 simult. class II cless 1 class I
s exit m=5S n=1 n=5 exit m=5 n=1 n=5
(%% 58. 60209 41.66670 25. B30 8.33333 9.93262 9.78515 8.81352 4.73832
a1 49, B0 40.66670 24. 56220 8.16667 9.92553 9.76255 7.97442 4.68582
574 48. 02020 39.66670 24, 00020 8. 03220 5.91770 9.73738 7.93385 4.63222
a3 47 . 83000 38. 66678 23.50020 7.83333 9. 92524 9.703939 7.89172 4.57739
84 46. 03533 37.66680 23. 60020 7.66667 9.83348 3.67951 7.84797 4.52151
(%53 45, 83292 36.66709 22. 58320 7.5602 9.83831 9.64587 7.88249 4.46453
6 44, 6022 35.66764 22,8333 7.33333 S.87722 9.60378 7.75520 4.40543
a7 43. 00000 34.66854 21.568300 7.16666 9.86431 9.56733 7.78599 4.34718
o8 42,8300 33.67839 21.82020 7. 82000 9.85004 9.52299 7.65477 4.28575
a9 41. 65220 32.67310 29. 58000 6.83333 8.83427 9.47366 7.60141 4,22518
10 48, 62520 31.67730 29. 62239 6.66666 9.81684 S.41%61 7.54588 4.16218
11 39. 860300 39.68340 19. 56000 6. 50000 9.79758 9.36849 7.48781 4.85832
12 33. 82300 29.65158 1. BB223 6.33333 9.77629 9.29598 7.42738 4.83249
13 37.08032 28.78339 18.50320 6.16666 9.75276 9.22575 7.35412 3.96561
14 36. 83322 27.71840 18. BBad 6.63333 S.72676 9.14547 7.29313 3.89733
15 35. 6382 26.73770 17.56320 5.83333 S.69832 9.e5681 7.22914 3.82761
16 34. 63322 25.76210 17.83302 S5.66656 8. 66626 8.97745 7.15698 3.75648
17 33. 83332 24.73228 16.56330 5.5853 9.63117 8.881609 7.03146 3.68355
18 32. 83329 23.82859 16. 632 5.33333 9.55238 8.77741 7.83238 3.60333
19 31.80502 22.87322 15.56230 S.16567 9.54951 8.66614 6.91951 3.53333
28 30. 86303 21.52539 15. 63320 5.83333 8.58213 8.54598 6.83262 3.45532
21 29. 63029 28. 95070 14,5683 4.83333 S.44977 8.41966 6.74145 3.37645
2 28. 02339 20.85790 14. 03222 4.66666 9.33192 8.28391 6.64575 3.29532
23 27.0002 19.13989 13. 50000 4.58500 8.32734 8.13349 6.54528 3.2123%6

0§



TABLE 5 (cont.)

N = 50 (cont,)

Rho = 8 Rho = @.10
. simult. class II class I class I simult class II class I class I
exit m=5 n=1 n=5 exit m=5 n=1 n=5

24 26. 18.233209 13. 63330 9.25726 7.98615 6.43951 3.12750
25 25. 17.33870 12.56320 9.17915 7.82365 6.32833 3.84859
26 24. 16.45710 12. 63320 9.05282 7.65176 6.21132 2.85187
27 23. 15.58910 11.56200 8.99741 7.47824 6.63647 2.8683%6
28 2. 14.73520 11. 63320 8.89197 7.27888 5.95819 2.76791
29 21. 13.89600 18.582339 8.77543 7.07746 5.82121 2.67264
) 28.¢ 13.87193 16. 63339 B.64654 6.858574 S.67667 2.57503
31 18. 12.26358 9.56323 8.56431 6.64349 5.52404 2.47515
e 18. 11.47103 9. B2 8.34781 6.41849 5.36276 2.37273
3 17. 18.65482 8. 58032 8.17316 6.16648 5.18225 2.26732
34 16. 9.93585 8.63323 7.93183 5.91122 5.81184 2.16041
5 15. 9.15197 7.50520 7.76678 5.64442 4.82630 2.85021
36 14 8. 46565 7. 6233 7.53483 5.36582 4.61854 1.93721
37 3 7.75615 6.502323 7.27468 5.87363 4.48403 1.82133
33 12 7.80345 6.0633239 6.53335 4.77188 4.17651 1.70246
9 11 6.33752 5.50320 6.67129 4.45568 3.53518 1.5524

48 18. 5.72822 5. 63033 6.32129 4.12658 3.67878 1.45532
41 S. £.85542 4.5533 5.93433 3.78351 3.46532 1.32655
a2 B.C 4.45832 4.065532 5.58571 3.4Z785 3.116509 1.18454
43 7.0 3.64549 3. 55953 5.63415 3.6556 2.87435 1.065548
44 6.6 3.25337 3. 85543 4.51183 2.e£523 2.45219 8.e2831
45 5. 2.67476 2.505023 3.93459 2.20724 2.17259 B.77733
46 4. 2.11834 2.65333 3.29:89 1.84833 1.75723 8.63333
47 3. 1.56177 1.56393 2.59182 1.4132 1.35850 8.47535
48 2.0 1.62719 1,679 1.812€9 8.50119 8.53553 8.324064
49 1.6 6.56573 6. 5000 8.95163 B.45317 @.48374 B.16432
50 8.0 B. 065353 8.03232 B. 3233 B.62553 B.053.9 B.02533

LG
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n=1
8.75

n=2
8.59

n=S
B.25

n=10
% 8% %)

(%) 4 8 12 16

FIGRE 3. Survival functions for gross capital, B(s).
Class I. N=28.

%} _ 4 8 12 16 29

FIGIRE 4. Replacement (density) functions, b(s).
Class I. N=29.
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m=1 m=2 m=5 \m=10
8.75
0.50
8.25
8.00

%) 4 8 12 16 29

FIGURE 5. Survival functions for gross capital, B(s).
Class II. N=28.

8.48

8.29

8.09

e 4 8 12 16 20

FIGURE 6. Replacement (density) functions, b(s).
Class II. N=28.
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8.75 B(s)
B.59
G(s)
Rho=8
Rho=8.1
Rho=8.2
8.25
8.0
%} 4 8 12 16

FIGURE 7. Survival function for gross capital, B(s),and corresponding
weighting functions for net capital, G(s).
Class I. N=28, n=2.

B(s)
8.75
8.59
G(s)

Rho-B’//;'

Rho=8.1
8.25 Rho=8.2
0.08

2 4 8 12 16

FIGURE 8. Survival function for gross capital, B(s), and corresponding
weighting functions for net capital, G(s).
Class II. N=2B, m=2.
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B(s)
8.75
G(s)

Rho=8~"
8.50 Rho=8.1

Rho=8.2
8.25
8.00

%) 4 8 12 16

FIGRE 9. Survival function for gross capital, B(s), and corresponding
weighting functions for net capital, G(s).
Class II. N=28, m=10.



56

g(s)
Rho=0
& Rho=2.2

0.100

b(s
8.2°8
8.008

%) 4 8 12 16

FIGURE 18. Replacement (density) function, b(s)

depreciation functions, g(s).

Class I. N=28, n=2.

, and corresponding

8.975

0.659

8.8

8.000

g(s)
Rho=8
Rho=0.2—"2

b(s)

FIGURE 11. Replacement (density) function, b(s),

depreciation functions, g(s).
Class II. N=28, m=2.
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6.0 Rho=8
4.0 Rho=8.1
Rho=8.2
2.0
8.0
e 4 8 12 16
FIGIRE 12. The function §(s).
Class I. N=28, n=2.
Rho=8
10.0
Rho=0.1
5.0
Rho=8.2
2.0
e 4 8 12 16

FIGRE 13. The function §(s).

Class II. N=29, m=2.
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We shall also briefly discuss two classes of two-parametric survival functions - one convex,
one concave - which emerge as simple transformations of the standard exponential function (53).

CLASS III: Convex: Truncated exponentia

A main problem‘with the standard exponential survival function B(s)=e_Gs

is its assumption of
an infinite service life. In practice, the distribution must be truncated in some way. This motivates

considering the following modification, in which maximal 1ife time is restricted to be finite and equal

to N: r~
-8s _=6N
e -e for O<s<N
111 1-¢~SN ol
(96) B(s) = B"""(s3N,8) =
0 for s>N, .
-
where & is positive. The corresponding replacement (density) function is
'
-8s
se for O<s<N
111 1-¢~N o
(97) b(s) = b"""(s3N,8) =
L 0 for s>N.

It is convenient to reformulate the model in terms of the function Ha(M) = (1—e'aM)/a, which may
be interpreted as the present value of a constant annuity of 1 over M years discounted at the rate a.
This gives

Lo Ho(Nes)
(98)  B(s) = e %S ﬁETWT"' :
(99)  b(s) = e %S Hé}N) O<s<N.

Substituting these expressions in (9), while making use of (10), we get

H.(N-s)-H , .(N-s)
_ 6 +8
(100) a (s) = pHs?N_S) ,

Hp+5(N-s)

(101) wp(S) = “H(NS)
Hence, using (33) and (41), we find that the weighting functions for net capital and depreciation are,

respectively,

HG(N—s) - Hp+5(N-s)
M) = F ()

(102) 6, (s) = e s

pH , (N-s)

(103) g (s) = e %S ha)

These expressions are different from (98) and (99), i.e. in the truncated exponential model, the con-
cepts gross and net capital do not - in contrast to those in the standard exponential model - coincide.
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From (23) and (100) we find that expected remaining 1ife time as a function of age is in this
case

1 N-s
104)  E(Tis) = o,(s) = 1 - ’
(104) (Tss) ols) =3 S,

which is a decreasing function of § and an increasing function of N: The last term in this expression
shows the effect of the truncation of thedistribution. This effect can also be read off from the expres-
sions for the vintage prices and the capital service price. Inserting (100)in (27), (29), and (28), we get

{H(N-s) = H . (N-s)IH_(N)
105 t,s) = q(t) — p*d IR
(105)  alt.s) = alt) g (wy=H_, , (NIA,(R-5)

(N-5) = H_,s(N-5)
-8 +3
(106)  p(ts) = a(t)e™™ 5y Hpia T
. PHg(N) i
(107) c(t) = q(t) Hs T Hp+6 Ny -

Since Ha(M) - 1/a, it is easy to verify that (100)-(107) give the same result as (55)-(57), (59)-(60),
Mo

(63)-(65) when the maximal 1ife time N goes to infinity.

Three particular cases of this class of survival functions are worth noting:

First, as already noted, when =, the model converges towards the standard exponential model.

Second, when -0, eq. (96) approaches B(s) = 1 - s/N, i.e. a linearly decreasing survival func-
tion, at the limit. ’ .

Third, when é-=, the model degenerates to B(0) = 1, B(s) = 0 for s>0, i.e. a specification with
instantaneous scrapping of the capital. .

When O<é<e, the survival function and the retirement (density) function are both convex in this
case, since

d%B(s _ 526705 0
% ST N
ds 1-e
and
dzbgs) - 536788 >0
ds? 1SN

The basic curvature of this class of functions is thus the same as in class I for 2<n<=. There
is, however, one notable difference: The retirement function b(s) is continuous at s=N in class I - since
(67) implies b(N)=0 (whenever n>1) - whereas it is discontinuous in class III - since (97) implies

b(N) = se”N/(1-e7Ny 5 0.
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CLASS IV: Concave: Inverse truncated exponential

We can generate a fourth class of two-parametric survival profiles by reversing the sign of the
parameter & in class III. This, qf course, also implies a reversing of its curvature. Lety = -6,
where y is defined to be positive. This gives the survival function

eWNoers

for O<s<N
YN
(108)  B(s) = BYV(s3N,y) = (& ]
0 for s>N,
with the corresponding replacement (density) function
Ys
5 for O<s<N
LIy, _ (e
(109) b(s) = b "(s;5N,y)
0 for s>N.

Since H_a(N) = e Ha(N) we find directly, by substituting y = - & in (98)-(103),

n
<
.

(110)  B(s)

(111)  b(s) = eY(N=s) 1

4 HY(N-S)-e'Y( oo (N-5)
(M2) s(s) = T
H __(N-s)
- N.. -
M3) () = 0 oy

(114) G (s) = pr = , .
e H (N)-e Y Hoy (V)
H  (N-
(5) g (s) = e (M) " p'YE NS)
° HO(N)-e Y™ H __(N)
Y pP=Y

Expected 1ife time as a function of age is in this case

N-s 1

(116)  E(Tss) = oy(s) = TT(T‘T—?T A
. -e

and for the vintage prices and the capital service price we get, respectively,

(H (N-s)-e"Y(N-s)y N- N
(117)  q(t,s) = q(t) y(f-s)-e oy (N5 ) -H (N) ’

N
TH (N)-e"0H__(N)}-H, (N-5)
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H_(N-s)-e YN8y ()
(118)  p(t,s) = q(t) X £x

Ho(N)-e" ™ (N)

Y Py
pH_(N)
(119)  c(t) = q(t) & .
H (N)-e""H___(N)
Y I

We note the following particular cases of this specification:

First: when N-=, the model converges towards B(s) = 1 for all s>0, i.e. a specification with
infinite service life and no deterioration of the capital.

Second, when y-0, (108) degenerates to the linear function B(s) = 1-s/N.

Third, when y»~, we get the simultaneous exit specification (B(s) = 1 for O<s<N, 0 otherwise)
as the limiting case.

When O<y<=, the survival function is (strictly) concave and the retirement (density) function is
convex in this case, since

dzB(S) - . yzeYs

< 0,
ds? Ny

and

2 3 vs
d"b(s) _ y'e s 0.

d52 e

19)

The curvature of this class of functions is thusbasically the same as inclass II for 2<m<e,
There is, however, one notable difference: In class II, we have b(0) = O (when m>1), whereas
b(0) = y/(eYN-1)>0 in class IV; i.e. in the former, the retiremént starts at zero, in the'1atter, the
initial retirement is positive.

Overview and a generalization

The relationship between the four classes of two-parametric survival functions presented
above is illustrated in figure 16. We see that the linear function B(s) = 1-s/N is a member of all
these families of survival functions. The simultaneous exit model (one horse shay) emerges as a
special case of class I, II, and IV. Furthermore, the standard exponential function
B(s) = e %s is a common member of class I and III, as is also the specification with instantaneous re-
tirement of the capital. These parametrizations thus make it possible - if suitable data are available -
to test whether the standard specifications of the retirement process (exponential, linear, simultaneous
exit) are valid approximations or not.

Still more interesting from this point of view would be a model which contains all the four
classes of survival profiles as special cases, and hence can be used as the basis for a multiple testing
scheme. One such model is the following function with four parameters, N, A, o, u:

19) Note that egs. (66), (80), (96), and (108) imply the following symmetry between the models in
class I and III1 on the one hand and those in class II and IV on the other

BII(s;N,n) = 1-BI(N-s;N,n),

BV (s3N,8) = 1-BT1 (-5, 6).
Thus, for each model in class II we can find a corresponding model in class I, and for each model in class
IV we can find a corresponding model in class III, and vice versa. It is easy to show that two models
which are symmetric in this sense have the general property that the sum of their expected 1ife times

is equal to the maximal 1ife time N.



CLASS I:

B(s) = (1-3)"
nz0, N>0

O<s<N

Standard exponential]]
B(s) = e °°
>0 .
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CLASS II:
B(s) =1 - ()"

m>1, N>0
O<s<N

Instantaneous retire-

ment:

5(s)- i for s=0

0 for s>0

Simultaneous exit:
for s<N

1
0 for s>N

B(s)=

CLASS III:

-8s__ =8N
B(S) = E—T_—e—
1-e SN

§>0, N>0

0<ssN

FIGURE 16.

The relationship between some two-parametric survival functions.

CLASS 1IV:




N v ( S)u
A+ —j -+ 2 ‘
(120)  B(s) = < ON o D<s<N;
(* * JJ - 220,

O<U<°°9

—oLg<®o,

We note that

Class I corresponds to: A=1, o=-N, u=n.
Class II corresponds to: A=0, o=N, u=m.
Class III corresponds to: A=1, p=-80, g-=w.
Class IV corresponds to: A=1, u=yo, g-=.

This function could be used, for instance, to test specifiéa]]y for convexity or concavity of the re-
tirement process by testing the parameters u and o. Needless to say, such a model would place strong
claims on data.
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Appendiz A
THE PRICE INTERPRETATION OF DEPRECIATION

In this appendix we show that the quantity interpretation of depreciation, as given in egs.
(38) and (42), has a 'dual' price interpretation.
The capital value can, after substituting o=t-s in (26), be written as

t
(A1) V(t) = s p(t,t-0)d(0)do,

-0

where p(t,t-6) = q(t)f e_p(Z't+O)B(z)dz/fe'sz(z)dz, which follows from (29). Hence,
t-0 0

t
p(£,0)(t) + s SLLE0) y(0)e

(A.2)  V(t)

t t
a(t)a(t) + s 2RLEE0) yoygo 4 f 2B{EE0) y(0)ap,

- -

which gives the following expression for E(t)

. t ¢
(A-3)  E(t) = a(t)(t) - () = - [y 22LET0) gy 4y 2BLEL0) y(gao).

-0

We have now written the value of depreciation in terms of the change of the prices of old capital units.
This change has two parts, corresponding to the two componénts of the total derivative dp(t,t-0)/dt.
The first,

where Gp is defined as in (33), represents the increase in the prices of all vintages of old capital
goods which accompany the increase in the price of new capital goods. The second component,

B(t-0)-p ? e'p(z‘t+@)s(z)dz -

(r.5) B{LEOL - . g = 2 - q(t)g(t-e),

e P?B(z)dz

o 8

where 9, is defined as in (41), is the 'cohort component'. It represents the decline in the vintage
prices with increasing age. This component reflects the fact that all capital objects become gradually
older and therefore yield a gradually decreasing flow of prospective capital services. Combining (A.4)
and (A.5) with (32) and (42), we get

t
(h.6) s 2RLEE0) yio)ge - a(t)K (1),
and

t
(n.7) s 2B

-0

et d(e)do = - a(t)y(t).
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Eqs. (A.6) and (A.7) show that the decomposition of E(t) given in (A.3) agrees with that in
(39). The former interprets depreciation "from the price side", the latter interprets it "from the
quantity side". We may say that they are 'dual’ interpretations})

1) The latter interpretation agrees with that of Hall (1968, pp. 40-41) and Jorgenson (1974,

pp. 205-207), who, following Hotelling (1925), define depreciation as the decline in prices of used capi-
tal goods over time. From their definitions, however, we cannot establish relationships between the
quantity and price concepts similar to eqgs. (36), (42), (43), (A.6), and (A.7) above, since Hall and
Jorgenson avoid using a counterpart to our concept net capital in their analysis.
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Appendix B
PROOF OF THE RECURRENCE FORMULAE (70) AND (84)

In this appendix, we give proofs of the two recurrence formulae used in section 6 when discussing
class I and II of parametric survival profiles.

Class 1. We define the auxiliary function Cg(s;N,n) as

N
(8.1)  Cl(sshon) = 5 eP(Z8)(q - §) dz.
P s

N
. = - 1 me(zms) zZy' oo 1 gme(zes)y oz
C_(s3N.n) l se (-9 g{ S e - -g) ) dz
The Tatter integral .is equal to /(Np) ° Ci(s;N,n-]L
Hence, *
8.2)  clissn) = 11 -5 - cissnne) 0505 n=1,2,...; O<s<N.
. p o t ] D N Np p s s s L] b s “’ - -
The initial value for recursive application of (B.2) is
I N o(z-s) .. _ 1.1 _-p(N-s)
(B.3) C (s3N,0) = s e dz = —[1-e 1. O
P s P
Class II. The auxiliary function Cgl(s;N,m) is defined as
N m
(B.4) CgI(s;N,m) =1 e®(28) (Z)lgy,
s
Using integration by parts, we find
N m N m-1
I, = - Leme(zms)zy oy 1 gme(zms)y m oz
CD {ssN,m) = g 5 e (N) é{ S e } N (N) dz.
The latter integral is equal to -m/(Np)CgI(s;N,m-l).
Hence,
1 -o(N- .
(B.5) cil(s;N,m)=3[(§)m-e o(N-s)y . CiI(s;N,m-U , p>0; m=1,2,...; O<s<N.

The initial value for recursive application of this formula is

.(8-6) C;I(S;N,O) = e-p(z-s)dz = []-e'D(N'S)]. O

n =
O |—

Thus, the two recurrence formulae have the same initial value.
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