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Abstract:
The econometric disipline has been criticized for being too similar to mathematical statistics and only to
a limited degree linked to formalized theoretical models. This is particularly the case as regards
formulation and specification of the stochastic elements in econometric models. Ragnar Frisch, who is
known to be the originator of econometrics, expressed both in theory and practice an opposite ideal;
namely econometrics as an almost symbiotic blend of statistical methodology and mathematically
formulated theory, cf. Frisch (1926). See also Bjerkholt (1995).

Theory and econometric methodology for qualitative choice behavior is developed in a
tradition which I believe is somewhat closer to the ideal of Frisch than much of the traditional textbook
approach to econometrics. This stems from the fact that the theory of qualitative choice is rooted in a
tradition where probabilistic concepts and formulations play a key role in contrast to the point of
departure in traditional micro theory, which is deterministic. Since probabilistic concepts are integral
parts of the theory of qualitative choice this means that the gap between theory and empirical model
specification in applications often becomes less wide than is the case in the traditional micro-economic
approach.

The present compendium is the first version of an introductory course in the theory of
qualitative choice behavior (often called the theory of discrete choice). Some of the material I present
here draws on a Ph.D. course I gave at the Department of Economics, University of Wisconsin, during
the Fall semester of 1990.
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1. Introduction
The traditional theory for individual choice behavior, such as it usually is presented in textbooks of

consumer theory, presupposes that the goods offered in the market are infinitely divisible. However,

may important economic decisions involve choice among qualitative—or discrete alternatives.

Examples are choice among transportation alternatives, labor force participation, family size,

residential location, type and level of education, brand of automobile, etc. In transportation analyses,

for example, one is typically interested in estimating price and income elasticities to evalutate the

effect from changes in alternative-specific attributes such as fuel prices and user-cost for automobiles.

In addition, it is of interest to be able to predict the changes in the aggregate distribution of commuters

that follow from introducing a new transportation alternative, or closing down an old one.

The set of alternatives may be "structurally" discrete or only "observationally" discrete. The

set of feasible transportation alternatives is an example of a structurally categorical setting while

different levels of labor supply such as "part time", and "full time" employment may be interpreted as

observationally discrete since the underlying set of feasible alternatives, "hours of work", is a

continuum.

In several applications the interest is to model choice behavior for so-called

discrete/continuous choice behavior. Typical examples of phenomena where the response is

discrete/continuous are variants of consumer demand models with corner solutions. Here the discrete

choice consists in whether or not to purchase a positive quantity of a specific commodity, and the

continuous choice is how much to purchase, given that the discrete decision is to purchase a positive

amount. Another type of application is the demand for durables combined with the intensity of use.

For example, a consumer that purchases an automobile has preferences over the intensity of use, and a

household that purchases an electric appliance is also concerned with the intensity of use of the

equipment.

The recent theory of probabilistic, or discrete/continuous choice is designed to model these

kind of choice settings, and to provide the corresponding econometric methodology for empirical

analyses. Due to variables that are unobservable to the econometrician (and possibly also to the

individual agents themselves), the observations from a sample of agents' discrete choices can be

viewed as outcomes generated by a stochastic model. Statistically, these observations can be

considered as outcomes of multinomial experiments, since the alternatives typically are mutually

exclusive. In the context of choice behavior, the probabilities in the multinomial model are to be

interpreted as the probability of choosing the respective alternatives (choice probabilities), and the

purpose of the theory of discrete choice is to provide a structure of the probabilities that can be

justified from behavioral arguments. Specifically, one is, analogously to the standard textbook theory

of consumer behavior, interested in expressing the choice probabilities as functions of the agents'
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preferences and the choice constraints. The choice constraints are represented by the usual economic

budget constraint and in addition, the choice set (possibly individual specific), which is the set of

alternatives that are feasible to the agent. For example, in transportation modelling some commuters

may have access to railway transportation while others may not.

In the last 25 years there has been an almost explosive development in the theoretical and

methodological literature within the field of discrete choice. Originally, much of the theory was

develop by psychologists, and it was not until the mid-sixties that economists startet to adopt and

adjust the theory with the purpose of analyzing discrete choice problems. In the present compendium

we shall discuss central parts of the theory of discrete/continuous choice as well as some of the

econometric methods that apply.

In contrast to standard textbooks and surveys in econometric modelling of discrete choice such

as Maddala (1983), Train (1986), Amemiya (1981), McFadden (1984) and Ben-Akiva and Lerman

(1985), the focus of the present treatment is more on the theoretical developments than on statistical

methodology. The reason for this is two-fold. First, it is believed that it is of substantial interest to

bring forward some of the recent theoretical results that otherwise would not be easily accessible for

the non-expert student. Second, the statistical methodology for estimation, testing and diagnostic

analysis is rather well covered by the textbooks and surveys mentioned above. 1

This survey is organized as follows: In chapter 2 I give a brief overview of reduced form type

specifications and estimation of models with discrete or limited dependent response. In chapter 3 I

discuss some important elements of probabilistic choice theory, and in chapter 4 the issue is functional

forms and econometric specification of discrete choice models. In chapter 5 I discuss the modeling of a

few selected applications of discrete choice analysis, and in chapter 6 the extension to

discrete/continuous choice model is treated. In the final chapter I discuss applications on

discrete/continuous modeling.

1 Two elementary surveys in Norwegian are Lindquist (1992) and Dagsvik (1985).
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2. Statistical analysis when the dependent variable is discrete or limited
As mentioned in the introduction there are many interesting phenomena which naturally can be

modelled with a dependent variable being qualitative (discrete) or where the dependent variables may

be both discrete and continuous.

While most of the subsequent chapters will discuss theoretical aspects of discrete/continuous

choice, we shall in this chapter give a brief summary of the most common statistical models and tools

which are useful for analyzing such phenomena, without assuming that the underlying response

variables are generated by agents that make decisions. A more detailed exposition is found in Maddala

(1983), chapter one and two. However, the statistical methodology we discuss is of relevance for

estimating the choice models for agents (consumers, firms, workers, etc.), and will be further discussed

in subsequent chapters.

2.1. Models with discrete response

When analyzing "demand for housing", "tourist destinations", "type of accident", etc. the response — or

dependent variable — is typically discrete and it often has the structure of a binominal, or more

generally, a multinominal variable. Recall that in multinominal experiments with m possible categories

only one out of m outcomes can occur in each experiment. In other words, the outcomes are mutually

exclusive. For example, out of m possible housing alternatives the household will only select one.

Similarly, a student who has the choice between m different schools will only select one. Statistically,

a multinominal model is represented by probabilities, Pi , j = 1,2, ..., m, where Pi is the probability that

outcome j shall occur.

Let Yj denote the corresponding response variable, where Y i =1 if outcome j occurs and zero

otherwise. (For simplicity, we suppress the indexation of the agent.) Then

E Yi • P(Yi =1 • 1 + P(Yi = 0)•0 = P(Yi =1 E.- Pi . We can therefore write

Yj =P.
J
 +e.	 (2.1)

where fe i I are random terms with zero mean. Thus, once the systematic term P i has been specified as

a function of explanatory variables, one could estimate the unknown parameters by regression

analysis. However, it is problematic to specify the probabilities {Pi as linear functions of the

explanatory variables due to the fact that a linear specification does not necessarily satisfy the

constraints that 0 5_ Pj 1, and	 Pi =1 (cf. Maddala, 1983, p.p. 15-16).
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2.1.1. The multinomial Logit model

One convenient and commonly used specification that fulfills the above restrictions is the multinomial

logit model. One version of the multinomial logit model has the structure

exp 13
Pi =H i (X)= m

exP (X k

(2.2)

where X is, typically, a vector of agent-specific variables and 13 ; ,;= 1,2,..., m, are vectors of unknown

parameters. This specification is also convenient for estimation purposes as we shall see shortly. From

(2.2) it follows that an equivalent formultion to (2.2) is

H i (X) =
exp (X0 i — 13 i ))

(2.3) 

exp (x(13 k —(3 i))
k=2

for j = 1,2,..., m, which demonstrates that at most r3 i p l can be identified. Thus we can, without loss

of generality, put 13 1 = 0 (say). In models of the type (2.2) the interest is to explain how the

explanatory vector-variable, X, affect the distribution of fYi i.e., the probabilities H 3 (X)}. For

example, one may wish to assess how female labor force participation depends on variables such as the

woman's education, age of small children and labor market experience. In other applications the main

focus may be to establish the relationship between alternative-specific variables (attributes) and the

distribution of fYi 1. For example, in transportation analyses one is typically interested in how

individual transportation choices depend on prices and travel time of the respective transportation

alternatives. In this type of applications a logit formulation that is often used is

exp (Z i (3)
.H i (Z)= m

exp k 13)k=1

where now Z= (Z 1 , Z 2	 Z m , Z, is a vector of attributes specific to alternative j, and is an

unknown parameter vector (independent of j). Since

logH
H • (Z)

=(Z• —Z i )13
H i (Z)

we realize that is identified provided the dimension of fz i is less than or equal to m.

(2.4)

(2.5)
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To describe a more general case let X represent a vector of agent-specific characteristics and,

as above, let {Z i I be alternative-specific attributes. Let

R(Z i , X) = (R 1 (Z i , X), R 2 (Z i ,X),...,R K (Z j , X))

be a vector of functions where R k (Z i , X), k = 1,2,..., K, are known functions of and X. The vector

R^Z j , X) represents observable attributes associated with alternative j and modified by individual

characteristics (X) to accommodate (observable) population heterogeneity. A generalized version of

(2.4) and (2.5) is given by

H i (Z, X) =  m
 exp (R(Z i , )013)	

(2.6)

exp (1Z(Z k , XV)
k=1

where p is a K-dimensional parameter vector. The formulation (2.6) will be discussed further in

chapter 4.

As an example, consider a case with two-dimensional attribute vectors Z i = (Z i1 ,Z i2 ) and

one-dimensional X, and let

(Z i , =

R 2 (Z i , = Z ji X,

R 3 (Z i , = Z i2

and

R 4 (Zi, X) = Z i2 X •

In the binary case with m=2 the logit model is sometimes derived from a latent variable

specification as follows: Let

Y*=X13+u	 (2.7)

where Y* is a latent variable and u is a zero-mean variable with logistic distribution, i.e.,

1 
P(u5..y)=L(y)=

1+ exp(—y)
(2.8)
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Consistent with the notation above let the observable variable, Y2, be related to Y * by

1 if Y * >0

0 if Y *

and Y1 =1 — Y2 • It then follows that

p(y2 =1). p(y* > o) = p(—u < x0 	1
1 + exp(—X(3) •

(2.9)

For example, in the labor force participation example, Y * may be interpreted as the difference between

the agent's (expected) market wage and the reservation wage. This, and further examples will be

discussed in chapter 5.

2.1.2. The binary Probit model

The binary probit model is often motivated by a latent variable specification such as in (2.7), but with

u normally distributed instead of logistically distributed. If (D• denotes the cumulative normal

distribution, N(0,1), then the probit model follows by replacing L(y) by 4013(y) in which case we obtain

the binary Probit model as

X13	 ( 
t

2
13(Y2 = 1)= (1)(X13)

42,7c	
exp	

2
 dt (2.10)

The normal and the logistic distributions are rather close, and in most applications one has found that

the binary logit and probit models are almost indistinguishable.

In case there are extreme values of the explanatory variables the predictions from the logit and

probit model conditional on these extreme values may, however, differ since the logistic distribution

has slightly heavier tails than the normal distribution.

2.2. Models with discrete/continuous response

In this section we shall describe a type of statistical model, usually called the tobit model. The tobit

model (Tobin, 1958) is motivated from the latent variable specification (2.7), in section 2.1.1, but in

contrast to the case described there we now also observe the left hand side variable when it is positive.

Thus we observe Y defined by

{X13-Fu6 if X13-Fu6>0
Y=

0 otherwise,
(2.11)

where a > 0 is a scale parameter, and u is a zero mean random variable with cumulative distribution

function F(•). Another way of expressing (2.11) is as

Y2 =
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Y = max (0, X(3+ ua). 	 (2.12)

Tobin (1958) assumed that u is normally distributed N(0,1), but it is also convenient to work with the

logistic distribution.

An example of a tobit formulation is the standard labor supply model. Here we may interpret

Xf3c +uac as an index that measures the desire to work of an agent with characteristics X. When this

index is positive, the desired hours of work is typically assumed proportional to Xi3c +uac where 1/c

is the proportionality factor. The variable vector X may contain education, work experience, and the

unobservable term u may capture the effect of unobservable variables such as specific skills and

training. When the index Xi3c +uac is negative and large, say, it means that the agent has strong

preference for leisure. Since the actual hours og work always will be non-negative we therefore get the

structure (2.11).

2.3. Estimation

We shall briefly review maximum likelihood estimation, Berkson's method and finally Heckman's two

stage method.

2.3.1. Maximum likelihood

Suppose the multinomial probability model has been specified, for example as (2.2), (2.4), (2.6), or as

a binary Probit model. Let Yki =1, if agent i in a sample of randomly selected agents, falls into

category j and zero otherwise, and let 	 )}. be the corresponding multinomial logit probabilities

given by (2.2) where X i is the vector of explanatory variables for agent i. The total likelihood of the

observed outcome equals

N m1-1 11 1-1 J (X,);
i=1	 j=1

where N is the sample size. The loglikelihood function can therefore be written as

N m

=	 Yii log H (X i ) •
	 (2.13)

i=1	 j=1

By the maximum likelihood principle the unknown parameters are estimated by maximizing with

respect to the unknown parameters.

The logit structure implies that the first order conditions of the loglikelihood function equals

N

a rk = i=1 	- H r 	) X ik = 0 (2.14)
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for r = 2,3, ..., m, k =1,2,...,K, where Xik is the k-th component component of X i .

When the logit model has the structure (2.6) then the first order conditions yield

a 	 N m

no =/f 	(Yii — Hi(Z,Xj0k(ZpXj)=0
uNk 	 i=1 j=1

(2.15)

for k =1,2,..., K.

McFadden (1973) has proved that when the probabilities are given by (2.6), the loglikelihood

function is globally strictly concave, and therefore a unique solution to (2.15) is guarantied.

2.3.2. Berkson's method

If we have a case with several observations for each value of the explanatoiy variable it is possible to

carry out estimation by Berkson's method (Berkson, 1953). Model (2.4) is an example of a case where

this method is applicable, since this model does not depend on individual characteristics. Let

1 N
= 	 Yi.

N i=1

and replace Hi by H j in (2.5). We then obtain

log
( H

\ H 1 )

(2.16)

where is a random error term. By the strong law of large numbers H j H ; with probability one as

the sample size increases, the error term r will be small when N is "large". Also by first order Taylor

approximation we get

= log	 J + 	 — }11)

H i 	H1

which shows that

( 1-1.
Ei i = Elog ....' — (Z i — Z 1 )(3

H,.)

H•EC-1,—H	 Efl i —H i )
(,---- log --L + i	 i 	  (z, -z 1 )0.

H 1)	 Hi	 Hi
(2.17)

H
= log —

H 1 ^

H.
log 

\ H 1
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Thus, even in samples of limited size the mean of the error terms in j is approximately equal

to zero. Define the dependent variable 	 by

( 	 .

J= log

We 	 dependent

variables and {Z i — Z 1 } as independent variables.

2.3.3. Maximum likelihood estimation of the Tobit model

Notice first that due to the form of (2.12) ordinary regression analysis will not do because of the

nonlinear operation on the right hand side of (2.12).

From (2.11) it follows that

P(Y = o)= P(u —xi3 a)= F(—X(3 / a)	 (2.18)

where F(y) denotes the cumulative distribution of u, and

PCY E 6/, y dy))= P(ua e (y — X(3, y + dy X13))= -1(-;F'( Y X13 )dy,	 (2.19)

for y > 0. Consider now the estimation of the unknown parameters based on observations from a

random sample of N individuals, and as above, let i =1,2,... be an indexation of the individuals in the

sample. Let S 1 be the set of individuals for which Y i > 0 and So the remaining set of individuals for

whom Yi = 0. We shall distinguish between two cases, namely the cases where we observe X i and Y i

for all the individuals (Case I), and the case where we do not observe X i when i ES 0 (Case II).

Case I: Xi is observed for all i E So u S1 (Censored case)

From (2.19) it follows that the density of Y i when Yi > 0 equals

F , r  y — X ; 13)
i s

while, by (2.18), the probability that i E S o equals

13



Therefore the total loglikelihood equals

•
(logF'( Y' X113) log+	 logq— x ' 13 ).

aieS0

(2.20)

Example 2.1 

Suppose F(y) is a standard normal distribution function, 41:1(y). Then since

f 
\ 	1

(11) =	
e—u2/2

NETT

it follows that the loglikelihood in this case reduces to

(yi -x 1 13)2- -
2a2
	  N logo' +	 log0(	

iES I 	ieSo

(2.21)

We realize that applying OLS to the equation Y = xp+ uo correspond to neglecting the last term in

(2.20) and will therefore produce biased estimates.

Example 2.2

Suppose that F(y) is a standard logistic distribution, L(y), given by (2.8). Since

1— L(—y)=L(y) and

L'(y)= L(y)(1.—L(y)) 	 (2.22)

the loglikelihood function in this case is

=	 (logL(
Y

i 
— 

Xin+log
(
1 L

(yi 
N log + XEso log L 	  . (2.23)

a

Case II: Xi is not observed for i E So (Truncated case)

In this case we must evaluate the conditional likelihood function given that the individuals

belong to S i . The conditional probability of Y i E (y, y + dy), y > 0, given that Y i > 0 equals

P (Yi E (y, y + dy)I > =

X p 1
P (Yi (y, y + dy), Y i > 0) P	

F. y —
E (y, y + dy))	 a 

i 	 16
P (Yi >	 P (Yi >0)	

1—F ( —X i
)
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Therefore, the conditional loglikelihood given that Y i > 0 for all i, equals

(logFfi -aXii3) log(1 Frai(3 ))- Nloga.
ies

(2.24)

2.3.4. Estimation of the Tobit model by Heckman's two stage method

Heckman (1979) suggested a two stage method for estimating the tobit model. We shall briefly review

his method for the case where F(y) is either the normal distribution or the logistic distribution.

Case I: F(y)=4:13(y)

From (2.11) we get

EMY>0)=30-1-aE(ulY>0).	 (2.25)

Since E Y > 0) in general is different from zero we cannot, as mentioned above, do linear

regression analysis based on the subsample of individuals in S i . Now note that

lquqy,y+dy)IY>0)=P(uE(y,y+dy)

que(y,y+dy),u>- XaP
P E (y, y + dy)) cic• '(y)dy 

(2.26)

P > -
< Xf3)	 op13)

o	 a )

since -u has the same distribution as u due to symmetry. We therefore get

E(ulY>0)= 	1	.1 u(13'(u)du.
orX )_ )_c!

L a ) a

But

u2

2u e 2
	 du = 

-
1 

e	 1	 ( (X13) 2 /2\ 
- c ,(X13

11V (11)d1.1 =	 =	 • exp -
Nan	 _x13 N/27c Nan	 a	 aXf3	 Xf3	 \a

a

which together with (2.27) yields

(2.27)

(2.28)
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xR
E(ulY> 0).  \ (3. =421)

41X13)
)

(2.29)

where the last notation (X) is introduced for convenience.

Heckman suggested the following approach: First estimate 13/a by probit analysis, i.e., by

maximizing the likelihood with the dependent variable equal to one if i E S 1 and zero otherwise. The

corresponding loglikelihood equals

logcb(--11-3X j+
ieSo

From the estimates 0* of pky, compute

(x i ir
x

i  0(xii3

and estimate and a by regression analysis on the basis of

Yi =	 +	 ± i

(2.30)

(2.31)

by applying the observations from S 1 . This gives unbiased estimates because it follows from (2.25) and

(2.29) that

EN I Yi >0 =E (Yi -	 I Y i > 0)

= E(cm i — 	 I Yi > 0)=aE(u i I Yi > 0)--

=4:01/4,( Xii3 )-ai i -0.
a

Heckman (1979) has obtained the asymptotic covariance matrix of the parameter estimates that take

into account that one of the regressors, Xi, is represented by the estimate, X i .

Note that this procedure leads to two separate estimates of a, namely the one obtained as a

regression coefficient in (2.31) and the one that follows by dividing the mean component value of the

estimated by the corresponding mean based on 13 * .

Heckman's method with logistically distributed random term

Assume now that u is distributed according to the logistic distribution L(y). Then by Lemma 2

in Appendix A it is proved that
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E I Y > 0). (1+ exp(—X( / 0))log (1. + exp(X(3 / 6))— )(13 / 6.	 (2.32)

In this case the regression model that corresponds to (2.31) equals

Yi =X i f3+06 i 	(2.33)

where

= + exp(—X i (3 * )) log (1+ exp(X 13 * )) — X i i3 * 	(2.34)

and f3 * is the first stage maximum likelihood estimate of 0/0 based on the binary logit model with

loglikelihood equal to (2.30) with (1)(y) replaced by L(y).

A modified version of Heckman's method

Since

P(Y > 0).
1

it follows from (2.32) that

1+expEX(3/a)

EY = P(Y > 0)(E(uIY > 0)0+X13)	 (2.35)

= a log (1 + exp(X13 / a)) — X130 + exp(—X(3 / 6))+ Xr3(1+ exp(—X(3 / a)) = a log (1 + exp(X(3 / a))

= a log (1 + exp(—X/3 / 6})+ Xr3 = X13 — a log P(Y > 0).

Eq. (2.35) implies that we may alternatively apply regression analysis on the whole sample based on

the model

+Si	 (2.36)

where

= log(l+exp(—X i fi * ))	 (2.37)

and 8i is an error term with zero mean. This is so because (2.35) implies that

E& =E(Y i — X i i3+alogP(Y i >0))= O.

With the present state of computer software, where maximum likelihood procedures are readily

available and easy to apply, Heckman's two stage approach may be of less interest.
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2.4. The likelihood ratio test

The likelihood ratio test is a very general method which can be applied in wide variety of cases. A

typical null hypothesis (H) is that there are specific constraints on the parameter values. For example,

several parameters may be equal to zero, or two or more parameters may be equal to each other. Let

(3 H denote the constrained maximum likelihood estimate obtained when the likelihood is maximized

subject to the restrictions on the parameters under H. Similarly, let 13 denote the parameter estimate

obtained from unconstrained maximization of the likelihood. Let 4H ) and 4) denote the

loglikelihood values evaluated at 11 1-1 and p, respectively. Let r be the number of independent

restrictions implied by the null hypothesis. It can be demonstrated that

(0 11 ) — 40)

is asymptotically chi squared distributed with r degrees of freedom. Thus, if —2 (ir )--40) is

"large" (i.e. exceeds the critical value of the chi squared with r degrees of freedom), then the null

hypothesis is rejected.

In the literature, other types of tests, particularly designed for testing the "Independence from

Irrelevant Alternatives" hypothesis (to be discussed in chapter 3) have been developed. I refer to Ben-

Akiva and Lerman (1985), p. 183, for a review of these tests.

2.5. McFadden's goodness -of-fit measure

As a goodness-of-fit measure McFadden has proposed a measure given by

p 2 =1---
£(0)

(2.38)

where, as before, t((3) is the unrestricted loglikelihood evaluated at (3 and .00) is the loglikelihood

evaluated by setting all parameters equal to zero. A motivation for (2.38) is as follows: If the estimated

parameters do no better than the model with zero parameters then 0)=t(0) and thus p 2 =0. This is

the lowest value that p2 can take (since if 4) is less than AO) , then 11 would not be the maximum

likelihood estimate). Suppose instead that the model was so good that each outcome in the sample

could be predicted perfectly. Then the corresponding likelihood would be one which means that the

loglikelihood 2(0 is equal to zero. Thus in this case p 2 =1, which is the highest value p2 can take.
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This goodness-of-fit measure is similar to the familiar R 2 measure used in regression analysis in that it

ranges between zero and one. However, there are no general guidelines for when a p 2 value is

sufficiently high, cf. section 5.10.
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3. Theoretical developments of probabilistic choice models

3.1. Random utility models

As indicated above, the basic problem confronted by discrete choice theory is the modelling of choice

from a set of mutually exclusive and collectively exhaustive alternatives. In principle, one could apply

the conventional microeconomic approach for divisible commodities to model these phenomena but a

moment's reflection reveals that this would be rather ackward. This is due to the fact that when the

alternatives are discrete, it is not possible to base the modelling of the agent's chosen quantities by

evaluating marginal rates of substitution (marginal calculus), simply because the utility function will

not be differentiable. In other words, the standard marginal calculus approach does not work in this

case. Consequently, discrete choice analysis calls for a different approach.

3.1.1. The Thurstone model

Historically, discrete choice analysis were initiated by psychologists. Thurstone (1927) proposed the

Thurstone model to explain the results from psychological and psychophysical experiments. These

experiments involved asking students to compare intensities of physical stimuli. For example, a

student could be asked to rank objects in terms of weights, or tones in terms of loudness. The data

from these experiments revealed that there seemed to be the case that some students would make

different rankings when the choice experiments were replicated. To account for the variability in

responses, Thurstone proposed a model based on the idea that a stimulus induces a "psychological

state" that is a realization of a random variable. Specifically, he represented the preferences over the

alternatives by random variables, so that the individual decision-maker would choose the alternative

with the highest value of the random variable. The interpretation is two-fold: First, the utilities may

vary across individuals due to variables that are not observable to the analyst. Second, the utility of a

given alternative may also vary from one moment to the next, for the same individual, due to

fluctuations in the individual's psychological state. As a result, the observed decisions may vary across

identical experiments even for the same individual.

In many experiments Thurstone asked each individual to make several binary comparisons,

and he represented the utility of each alternative by a normally distributed random variable. Let U n

and Ui2 denote the utilities a specific individual associates with the alternatives in replication no. i,

i=1,2,...,m. Thurstone assumed that

U ij = v i + E ij

where E ii , j =1,2, i =1,2, ..., m, are independent and normally distributed with zero mean and standard

deviation equal to a. Thus according to the decision rule the individual would choose alternative one
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in replication i if Un is greater than Ui2 . Due to the "error term" E ii , the individual may make different

judgments in replications of the same experiment. Let Y 1 =1 if alternative j is chosen in replication i

and zero otherwise. The relative number of times the individual chooses alternative j, Pi , equals

Pi a-- 	 Yii 	,
=1

j = 1,2. When the number of replications increases, then it follows from the law of large numbers that

P1 tends towards the theoretical probability;

p1 -=p(u n >u i2 )=
( 	 ■

v i - V 2
(3.1)

where (*) is the standard cumulative normal distribution. The last equality in (3.1) follows from the

assumption that the error terms are normally distributed random variables. The probability in (3.1)

represents the propensity of choosing alternative j and it is a function of the standard deviations and

the means, vj . While vj repesents the "average" utility of alternative j the respective standard

deviations account for the degree of instability in the individuals preferences across replicated

experiments. We recognize (3.1) as a version of the binary probit model.

Although Thurstone suggested that the above approach could be extended to the multinomial

choice setting, and with other distribution functions than the normal one, the statistical theory at that

time was not sufficiently developed to make such extensions practical.

3.1.2. The neoclassisist's approach

The tradition in economics is somewhat different from the psychologist's approach. Specifically, the

econometrician usually is concerned with analyzing discrete data obtained from a sample of

individuals. With a neoclassical point of departure, the preferences are typically assumed to be

deterministic from the agent' point of view, in the sense that if the experiment were replicated, the

agent would make identical decisions. In practice, however, one may observe that observationally

identical agents make different choices. This is explained as resulting from variables that affect the

choice process and are unobservable to the econometrician. The unobservables are, however, assumed

to be perfectly known to the individual agents. Consequently, the utility function is modeled as

random from the observing econometricians point of view, while it is interpreted as deterministic to

the agent himself. Thus the randomness is due to the lack of information available to the observer.

Thus, in contrast to the psychologist, the neoclassical economist seems usually reluctant to interpret

the random variables in the utility function as random to the agent himself. Since the economist often
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does not have access to data from replicated experiments, he is not readily forced to modify his point

of view either. There are, however, exceptions, see for example Quandt (1956).

3.1.3. The general random utility framework

Formally, we shall decribe a random utility model by

(i) A univers of choice alternatives, S. Each alternative in S may be characterized by a set of

variables which we shall call attributes. Some of these attributes may be unobservable to the

econometrician.

(ii) A set of agent-specific characteristics of which some may be unobservable to the econometrician.

(iii) A random utility function	 where U; is the agent's utility of alternative j, jE S, and a distribution

function M which yields the joint distribution of the utilities in S, i.e.,

(3.2)

From the assumptions above it is possible in principle to derive the system of choice

probabilities, {Pi (B)}, where P;(B) is defined by

Pi (13) P (Uj =- 12(Uk )

	
(3.3)

and j E B c S. The interpretation of (3.3) is as the probability that the agent will choose alternative j

when the set of feasible alternatives are equal to B. It is important to stress that a choice probability is

a function of two arguments, namely j and B. For each given B, (B), j E B, are multinomial

probabilities. The relationship between 1) ;(B) and P;(A) for two different choice sets A and B is

governed by the joint distribution of the utilities. As explained above, the empirical counterpart of

P;(B) is the fraction of individuals with observationally identical characteristics that have chosen

alternative j from B.

Often , the random utilities are assumed to have an additively separable structure,

• 	 •U = +J VJ (3.4)

where v; is a deterministic term and is a random variable with joint distribution of the terms {E i }

assumed to be independent of {v i . In empirical applications the deterministic terms are specified as

functions of observable attributes and individual characteristics.

Similarly to Manski (1977) we may identify the following sources of uncertainty that

contribute to the randomness in the preferences:
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(i) Unobservable attributes: The vector of attributes that characterize the alternatives may only partly

be observable to the econometrician.

(ii) Unobservable individual -specific characteristics: Some of the variables that influence the

variation in the agents tastes may partly be unobservable to the econometrician.

(iii) Measurement errors: There may be measurement errors in the attributes, choice sets and

individual characteristics.

(iv) Functional misspecification: The functional form of the utility function and the distribution of the

random terms are not fully known by the observer. In practice, he must specify a parametric form

of the utility function as well as the distribution function which at best are crude approximations

to the true underlying functional forms.

(v) Bounded rationality: We may go along with the psychologists point of view in allowing the

utilities to be random to the agent himself. In addition to the assessment made by Thurstone, there

is an increasing body of empirical evidence, as well as common daily life experience, suggesting

that agents in the decision-process seem to have difficulty with assessing the precise value of each

alternative. Furthermore, their preferences may change from one moment to the next in a manner

that is unpredictable (to the agents themselves).

To summarize, it is possible to interpret the randomness of the agents utility functions as partly

an effect of unobservable taste variation and partly an effect that stem from the agents difficulty of

dealing with the complexity of assessing the proper value to the alternatives. In other words, it seems

plausible to interpret the utilities as random variables both to the observer as well as to the agent

himself. In practice, it will seldom be possible to identify the contribution from the different sources to

the uncertainty in preferences. For example, if the data at hand consists of observations from a cross-

section of consumers, we will not be able to distinguish between seemingly inconsistent choice

behavior that results from unobservables versus preferences that are uncertain to the agents

themselves.

Before we discuss the random utility approach further we shall next turn to a very important

contribution in the theory of discrete choice.

3.2. The Luce model

Luce (1959) introduced a class of probabilistic discrete choice model that has become very important

in many fields of choice analyses. Instead of Thurstone's random utility approach, Luce postulated a

structure on the choice probabilities directly without assuming the existence of any underlying

(random) utility function. Recall that Pi(B) means the probability that the agent shall choose alternative

j from B when B is the choice set. Statistically, for each given B, recall that these are the probabilities

in a multinomial model, (due to the fact that the choices are mutually exclusive), which sum up to one.

However, the question remains how these probabilities should be specified as a function of the
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attributes and how the choice probabilities should depend on the choice set, i.e., in other words, how

are {Pi (B)} and {Pj (A)} related when j E B n A ? To deal with this challenge, Luce proposed his

famous Choice Axiom, which has later been known as the IIA property; "Independence from

Irrelevant Alternatives". To describe IIA we think of the agent as if he is organizing his decision-

process in two (or several) stages: In the first stage he selects a subset A from B, where A contains

alternatives that are preferable to the alternatives in MA. In the second stage the agent subsequently

chooses his preferred alternative from A. So far this entails no essential loss of generality, since it is

usually always possible to think of the decision process in this manner. The crucial assumption Luce

made is that, on average, the choice from A in the last stage does not depend on alternatives outside A;

the alternatives discarded in the first stage has been completely "forgotten" by the agents. In other

words, the alternatives outside A are irrelevant. A probabilistic statement of this property is as follows:

Let PA(B) denote the probability of selecting a subset A from B, defined by

PA (3 ) =	 Pi (B)
jE A

Definitionl; Independence from irrelevant alternatives (IIA)

A system of choice probabilities, {pi (B)}, with Pj (B)# 0,1, satisfies IIA if and only if all

j, A, B such that j E A c B c S,

Pi(B)= PA (B) Pj (A).	 (3.5)

Eq. (3.5) states that the probability of choosing alternative j from B equals the probability of

selecting a subset A of the "best" alternatives in stage one times the probability of selecting alternative

j from A in the second stage. Notice that the second stage probability, P j(A), has the same structure as

Pi(B), i.e.,it does not depend on alternatives outside the (current) choice set A. Note that since this is a

probabilistic statement it does not mean that IIA should hold in every single experiment. It only means

that is should hold on average, when the choice experiment is replicated a large number of times, or

alternatively, it should hold on average in a large sample of "identical" agents. (In the sense of agents

with identically distributed tastes.) We may therefore think of IIA as an assumption of "aggregate

rationality".

It may be instructive for the sake of clarification of the IIA property to consider the

relationship between Pj(B) and the conditional choice probability given that the chosen alternative

belongs to B. More specifically, suppose for example that the universal set S is feasible. Then the
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conditional choice probability that alternative j is chosen, given that the chosen alternative belongs to

B c S, equals

Pi (S)

PB (S)

which only coincides with Pi(B) when IIA holds. While Pi(B) expresses the probability that j is chosen

when the choice set equals B, Pj (S)/PB (S) expresses the probability that j is chosen when the choice

set is S, given that the chosen outcome belongs to B. The empirical counterpart to P i (S)/PB (S) is the

number of agents that face choice set S and have chosen j, to the number of agents that face choice set

S and whose choice outcomes belong to B.

Definition 2; The Constant -Ratio Rule

A system of choice probabilities, {Pi (B)}, satisfies the constant-ratio rule if and only if for all

j, k, B such that j, kEBc S,

Pi (Pc, j}) I Pk (V, j})= Pi (B)IPk (B)
	

(3.6)

provided the denominators do not vanish.

The following results are due to Luce (1959):

Theorem 1

Suppose {Pi ( B)} is a system of choice probabilities. Then the HA assumption holds if and

only if there exist positive scalars, a(j), j E S, such that the choice probabilities equal

P	
a( j)

P.

Moreover, the scalars {a(j)} are unique apart from multiplication by a positive constant.

Proof: Assume first that (3.7) holds. Then it follows immediately that (3.5) holds. Assume next

that (3.5) holds. Define a(j)=c Pi (S), where c is an arbitrary positive constant. Then by IIA

a(k) .

keB

(3.7)
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Pi (S)	 a(j) c	 a(i) pi (B) = pB (S)
	 a(k)c	 a(k)

kkeB	 EB

where B c S. In particular,

Pj ({1,n) a(j)c a(j)

Pi 41, jD a(1)	 a(1)

which demonstrate that {a( j)} are unique up to multiplication by a positive constant.

Q.E.D.

Theorem 2

Let {Pi ( B)} be a system of choice probabilities. The Constant-Ratio Rule holds if and only if

IIA holds.

Proof: The constant ratio rule implies that for j, k e A c B c S

Pj (B) Pi ({j, kB Pi (A)

	

.10 ( A \ -
Pk (B) Pk (fi, 1C})	 k

Hence, since

Pi (B) Pk (A) = Pj (A) Pk (B)

and

Pk (A) = I,
kEA

we obtain

Pi (B) = (B)	 Pk (A) = Pj (A) E Pk (B)= Pj (A)PA (B).
keA	 kEA

Conversely, if IIA holds we realize immediately that the constant ratio rule must hold.

Q.E.D.

The results above are very powerful in that they establish statements that are equivalent to the

IIA assumption, and they yield a simple structure of the choice probabilities. For example, if the
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univers S consists of four alternatives, S = {1,2,3,4}, there will be at most 11 different choice sets,

namely {1,2}, {1,3}, (2,3}, {1,4}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4), {2,3,4}, {1,2,3,4}. This

yields altogether 28 probabilities. Since the probabilities sum to one for each choice set we can reduce

the number of "free" probabilities to 17. However, when IIA holds we can express all the choice

probabilities by only three scale values, a2, a3 and a4 (since we can choose a 1 =1). We therefore realize

that the Luce model implies strong restrictions on the system of choice probabilities.

There is another interesting feature that follows from the Luce model, expressed in the next

Corollary.

Corollary 1

If IIA holds it follows that for distinct i, j and k E S

({i, iD P. 	Pk ({k, iD= P, (fi,kDPkak, J1) PJ
	 (3.8)

The proof of this result is immediate.

Recall that IIA only implies rationality "in the long run", or at the aggregate level. Thus the

probability of intransitive sequences (chains) is positive. The result in Corollary 1 is a statement about

intransitive chains beause the interpretation of (3.8) is that

P	 j ›- k ›- = P ›- k ›- j >-

where >-- means "preferred to". In other words, the intransitive chains i j ›-Ic i and i ›- k 	 i

have the same probability. This shows that although intransitive "chains" can occur with positive

probability there is no systematic violation of transitivity. In fact, it can also be proved that if (3.8)

holds then the binary choice probabilities must have the form

P	 a(j) 
= a(i) + a(i)

(3.9)

where {a(j), j E s} are unique up to multiplication by a constant, cf. Luce and Suppes (1965).

However, (3.8) does not imply HA. Equation (3.8) is often called the Product rule.

3.3 The relationship between IIA and the random utility formulation

After Luce had introduced the IIA property and the corresponding Luce model, Luce (1959), the

question whether there exists a random utility model that is consistent with IIA was raised. A first

answer to this problem was given by Holman and Marley in an unpublished paper (cf. Luce and

Suppes, 1965, p. 338).
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Theorem 3

Assume a random utility model, U1 = log a( j )+E , where E i , jES, are i. i.d. according to

the standard type III extreme value distribution 2

Then, for jEBc S,

)1)(E.<x =exp(-11.

P(Ui=max k)=.  a(i) 
kEB	 a(k)

keB

(3.10)

(3.11)

Thus, by Theorem 3 there exists a random utility model that rationalizes the Luce model.

Proof: Let us first derive the cumulative distribution for Vj max kEB \ (j) U k • We have

P(Vi 5. y)=	 P(Ek y—loga(k))- n exp(—a(k)e -Y)=eXp(—e
-y

 D i )
kEB {j}	 kEB (j)

(3.12)

where

Hence

Di =	
\ {j} 

a(k). (3.13)

00

P(U i =maxIJ k )=P(U i >Vj )=P(e j +loga(j)>Vi )= f Ny>Vj )P(U i E(y,y+dy)). (3.14)
kEB

Note next that since by (3.10)

P (11 i 5_ y) = P (c i + log a( j) < y)= exp (—e -Y a( j))

it follows that

P (c i + log a( j) E (y, y + dy)) = exp (—e -Y a( j)) a i 	dy. .

Hence

2 In the following the distribution function (3.10) will be called the standard extreme value distribution.
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P > Vi ) P	 E(y,y +dy))= exp(--D i 	)exp(—a(j)ela(j)e -Y dy
•••••• 0 0 	 •■• 0 0

0 0

= a(j) f exp (D i +a(j))e-Y)e -Y dy (3.15)

Since

a(j) a(j) 	exp (Di +a(i))e--D j +a(i)	 r D j +a(j) .

=  

Di + a(j) =	 a(k)
keB

the result of the Theorem follows from (3.14) and (3.15)

Q.E.D.

An interesting question is whether or not there exists other distribution functions than (3.10)

which imply the Luce model. McFadden (1973) proved that under particular assumptions the answer is

no. Later Yellott (1977) and Strauss (1979) gave proofs of this result under weaker conditions. Yellott

(1977) proved the following result.

Theorem 4

Assume that S contains more than two alternatives, and U = log a( j )+E , where E i , jE S,

are i.i.d. with cumulative distribution function that is strictly increasing on the real line. Then (3.11)

holds if and only if Ei has the standard extreme value distribution function.

3.4. Stochastic models for ranking

So far we have only discussed models in which the interest is the agent's (most) preferred alternative.

However, in several cases it is of interest to specify the joint probability of the rank ordering of

alternatives that belong to S or to some subset of S. For example, in stated preference surveys, where

the agents are presented with hypothetical choice experiments, one has the possibility of designing the

questionaires so as to elicit information about the agents' rank ordering. This yields more information

about preferences than data on solely the highest ranked alternatives, and it is therefore very useful for

empirical analysis. This type of modeling approach has been applied to analyze the potential demand

for products that may be introduced in the market.

The systematic development of stochastic models for ranking started with Luce (1959) and

Block and Marschak (1960). Specifically, they provided a powerful theoretical rationale for the

structure of the so-called ordered Luce model. The theoretical assumptions that underly the ordered

Luce model can briefly be described as follows.
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Let pB = (p 1 , p 2 	pm ) be the rank ordering of the alternatives in B, where m is the number

of alternatives in B, and B c S. This means that p i denotes the element in B that has the i'th rank.

Moreover, let P(pB ) denote the probability that the agent shall prefer rank ordering p B of B, and,

consistent with the notation above, let Pp, (B) be the probability that the agent shall rank alternative i

on top when B is the set of feasible alternatives. Recall that the empirical counterpart of these

probabilities are the respective number of times the agent chooses a particular rank ordering to the

total number of times the experiment is replicated, or alternatively, the fraction of (observationally

identical) agents that choose a particular rank ordering.

Definition 3

The ranking probabilities constitute a random utility model if and only if

P(PB) = P (U(p 1 )> U 2 )> > U

for B c S , where {U ( ), j E S}, are random variables.

Definition 4: Generalized IIA

The ranking probabilities satisfy the Independence from Irrelevant Alternatives (HA) property

if and only if any BC S

P(PB) .=Pp, (B)PP2 (B\ {13 1 })*** PPm-/ ({Pm--/' A m }).
	 (3.16)

Definition 4 states that an agent's ranking behavior can (on average) be viewed as a multistage

process in which he first selects the most preferred alternative, next he selects the second best among

the remaining alternatives, etc. The crucial point here is that in each stage, the agent's ranking of the

remaining alternatives is independent of the alternatives that were selected in earlier steps. In other

words, they are viewed as "irrelevant".

We realize that Definition 1 is a special case of Definition 4.

Theorem 5

Assume that the ranking probabilities are consistent with a random utility model and that HA

holds. Then there exists positive scalars, a( j), j ESS . such that the ranking probabilities are given by

the model,
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	p(po=n 	a(p i )

	ieB 	 a(p k Y
keljA{Po—P1-1}

(3.17)

for B c S, where p 0 { . The scalars, {a( j )}, are uniquely determined up to multiplication by a

positive constant.

Block and Marschak (1960, p. 109) have proved Theorem 5, the first part of which is a

generalization of a result in Luce (1959, p. 72), cf. Luce and Suppes (1965). As an example consider

the case when B={1,2,3} and p B = (2,3,1). Then (3.17) reduces to

a
P(2,3,1)=

a(2) 	 a(3) 
a(1)+a(2)+a(3) a(1)+a(3) •

The next result shows that (3.17) is consistent with a simple random utility representation.

Theorem 6

Assume a random utility model with U( j )= log a( j )+E , where E i , j e S , are i. i.d. with

standard extreme value distribution function. Then

P(p B ) P (t1 1 )> U 2 )> ...> U .)) = 
	coi)

ieB	 keBA{po,p1,...,pg_i}a(P k) .

(3.18)

Also here we realize that Theorem 1 is a special case of Theorem 6 because the choice

probability Pi(B) is equal to the sum of all ranking probabilities with p 1 = j. A proof of Theorem 6 is

given in Strauss (1979).

3.5. Stochastic dependent utilities across alternatives

In the random utility models discussed above we only focused on models with random terms that are

independent across alternatives. In particular we noted that the independent extreme value random

utility model is equivalent to the Luce model. It has been found that the independent multinominal

probit model is "close" to the Luce model in the sense that the choice probabilities are close provided

the structural terms of the two models have the same structure. However, the assumption of

independent random terms is rather restrictive in some cases, which the following example will

demonstrate.
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Example 3.1. (A version of the red-bus/blue-bus problem, Debreu, 1960)

Consider a commuter choice problem in which there are two transportation alternatives,

namely "car", (1), "bus", (2). The fraction of commuters that go by car and bus is 1/3 and 2/3,

respectively. If we assume that Luce's model holds we have

al + a2 3

1

	

P1 ({1,21)= 	 =

With a l =1 it follows that a 2 = 2. Suppose now that another bus service is introduced (alternative 3)

that is equal in all attributes to the existing bus service except that its buses have a different color from

the original buses. Thus, there are now red and blue buses which constitute two bus transportation

alternatives. Since the new bus alternative is essential equivalent to the existing bus service it must be

true that the corresponding response strengths must be equal, i.e., a 3 = a 2 = 2. Consequently, since

the choice set is now equal to {1,2,3} we have according to (3.7) that

P1({1,2,3}) =	 al 1 _ 1
-Fa 2 +a 3 1+2+2 5

But intuitively, this seems unrealistic because it is plausible to assume that the commuters will tend to

treat the two bus alternatives as a single alternative so that

P1 41,2,31) = —3-

and

P2 (11,2,3D= P3 ([1,2,3D = .

This example demonstrates that if alternatives are "similar" in some sense, then the Luce model is not

likely to be valid.

Let us return to the general theory, and try to list some of the reasons why the random terms of

the utility function may be correlated across alternatives.

For expository simplicity consider the (true) utility specification

	U. =Z. 13 +X Z.	 +x z.	 +e.	.11 	 2	 2	 J2	 3 (3.19)

and suppose that only Zi1 and X 1 are observable. Thus, in practice we may therefore be tempted to

resort to the misspecified version

u*; zp	 +	 132 +	 + E ;

	 (3.20)
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where 1.tj has the interpretation

gi 1-- 03 Zj 2 EX 2 ,	 (3.21)

E i E i + X 2 Z i2 13 3 —13 3 Z i2 EX 2 ,	 (3.22)

and where we now treat the unobservable components X2 and Zi2 as random variable. (In (3.21) and

(3.22) the mean is taken across the population.) Suppose that E j , j =1,2,... , are independent. By

(3.22) we get

COV (E: ,	 =133 Z i2 Z i2 Var X 2 •	 (3.23)

Thus, we realize in this case that the error terms fej I are correlated.

If X2 is observable but {Z i2 } is not, we may in empirical estimation resort to the specification

Uj* =Z j1 N 1 +x 1 z j1 13 2 + X 1 fi j +E j
	 (3.24)

where

fi i =13 3 Z i2 •

In this case we therefore still have independent error terms provided we introduce alternative-specific

dummies in the deterministic terms of the utilities.

Finally suppose that {Z i2 } are observable while X2 is not. Then a natural specification would

be

where

and

Hence we get

fJ j = Z i1 	+X1 Z i2 0 2 -i-Z i3 f3 3

= e i + X 2 Z i2 13 3 Z i2 13 3

53 = 13 3 EX 2 •

(3.25)

(3.26)

(3.27)

COV(Ei , Ej) = 113 .32 Zi Zi VarX2	 (3.28)
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which demonstrate that we may get interdependent random terms solely from unobserved population

heterogeneity.

3.6. The multinomial Probit model

The best known multinomial random utility model with interdependent utilities is the multinomial

probit model. In this model the random terms in the utility function are assumed to be multinormally

distributed (with unknown covariance matrix). The concept of multinomial probit appeared already in

the writings of Thurstone (1927), but due to its computational complexity it has not been practically

useful for choice sets with more than five alternatives until quite recently. In recent years, however,

there has been a number of studies that apply simulation methods in the estimation procedure,

pioneered by McFadden (1989). Still the computational issue is far from being settled, since the

current simulation methods are complicated and costly to apply in practice. The following expression

for the multinomial choice probabilities is suggestive for the complexity of the problem. Let h(x; S2)

denote the density of an n-dimensional multinormal zero mean vector-variable with covariance matrix

a. We have

h(x;s2). (270-n12 inj -"2 exp(--21 x'Cr i x)
	

(3.29)

where 1E21 denotes the determinant of a. Furthermore

v i -v,	 v i -v ; 	vrv n

1)(v.+E.=max(v E ))=k<n 	k -I- k	 •••	 ,Q)dxi...dxj...dxn. (3.30)
■00 	 -00 	 •00

From (3.30) we see that an n-dimensional integral must be evaluated to obtain the choice

probabilities. Moreover, the integration limits also depend on the unknown parameters in the utility

function. When the choice set contains more than five alternatives it is therefore necessary to use

simulation methods to evaluate these choice probabilities.

3.7. The Generalized Extreme Value model

McFadden (1978) introduced the class of GEV model which is a random utility model that contains

the Luce model as a special case.

Theorem 7

Let G be a non-negative function defined over R: that has the following properties:

(i) G is homogeneous of degree one,
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(ii) lim G(x i ,•••,x j ,•••,xn )=.0, i = 1,2, ..., n,

(iii) the kth partial derivative of G with respect to any combination of k distinct components exist, are
continuous, non-negative if k is odd, and are non-positive if k is even.

Then, if the random terms of the utility function has joint distribution function

F(x) = exp(—G(e -x'	 (3.31)

it follows that

a i G(evi,ev, ,...,ev.)
P(V i -FE = MaX k £ 0)= 	

_n	 G	 ,	 ..., en)

where ai denotes the partial derivative with respect to component j.

(3.32)

Above we have stated the choice probability for the case where all the choice alternatives in S

belong to the choice set. Obviously, we get the joint cumulative distribution function of the random

terms of the utilities that correspond to any choice set B by letting x i = 00 , for all i e B. This

corresponds to letting v i =— oc, for all i e B in the right hand side of (3.32).

To see that the Luce model emerges as a special case let

n

	Xk
	 (3.33)

k=1

from which it follows from (3.32) that

P. (B) = e
V ;

e
v k

keB

Example 3.2. 

Let S = {1,2,3} and assume that

	0 1 ,x 2 ,x 3 )= x i +(x 21/e +x .11/6 )
\e
	(3.34)

where 0 < 9	 It can be demonstrated that 0 has the interpretation

	

corr(E 2 ,e 3 )= 1 —03 2 	(3.35)

and
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P1 (S ) = eV1

+ (e v2/e +e "3/e

(e v2/e -1-ev3/1-1 e
Pi (S)

+ (e v2le ±evole '

and

e v1

(S) 
e v1 + exp (max(v 2, v3))

(3.39)

exp (max(v 2 , v 3 ))I (v i = max(v 2 , v 3 ))
P. (S) =

e v1 + exp max v, , v 3 ))
(3.40)

corr@i,Ei)= 0, j= 2,3.

From Theorem 7 we obtain that

and

for j = 2,3. If B = {1,2,3}, then

e v'
P1 41,21) = 	

e 1 +e 2

When alternative 2 and alternative 3 are close substitutes 0 should be close to zero. By applying

l'HOpital's rule we obtain

(3.36)

(3.37)

(3.38)

v2te	 y a mlim log	 + e	 = max (v 2 , V 3 ).
03-40

Consequently, when 8 is close to zero the choice probabilities above are close to

for j = 2,3, where I(A) is the indicator function that is equal to one if A is true and zero otherwise,

provided v 2 # v 3 . For v 2 = v 3 we obtain

and

ev1
P1 (S) =  v	 v

e +e 2

(3.41)

36



e v2
P.(S) =

2(e v' +e v2 )
(3.42)

for j = 2,3.

Consider the red-bus/blue-bus problem on page 31, where v 2 = v 3 , which by (3.38), (3.41)

and (3.42) yield

P1 41,21)=1 / 3

and

P2 ({1,2,3}) = P3 0,2,31) = 2 / 3.

Thus the model generated from (3.34) with 8 close to zero is able to capture the underlying structure

of the red-bus/blue-bus problem.

3.7.1. The Nested multinomial logit model (nested logit model)

The nested logit model is an extension of the multinomial logit model which belongs to the GEV class.

The nested logit framework is appropriate in a modelling situation where the decision problem has a

tree-structure. This means that the choice set can be partitioned into subsets that group together

alternatives having several observable characteristics in common. It is assumed that the agent chooses

one of the subsets Ar (say) in the first stage from which he selects the preferred alternative. The red-

bus/blue-bus problem has such a tree structure: Here the first stage concern the choice between car and

bus while the second stage alternatives are "red-bus" and "blue-bus" in case the first stage choice was

bus.

Example 3.3 

To illustrate further the typical choice situation, consider the choice of residential location.

Specifically, suppose the agent is considering a move to one out of two cities, which includes a

specific location within the preferred city. Let Usk denote the utility of location kEL i within city j,

j =1,2, where Li is the set of relevant locations within city j. Let U jk = V ik ± E jk where

( 	

(,k 5x2k) = exp 	 (e_"11 e -x", 	 e -x21 e -x22
	

(3.43)
\kEL I

and
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(2 v 1/0i

G 6/ 11 1 Y12'w 1 Y21/ — *) = E 	 Yjk
j=1 \keL i

The structure (3.44) implies that

Corr (E ik , E jr = 1 — 8 , for r#k,

and

(3.44)

(3.45)

corT(Eis,Eir)= 0 for jai .	 (3.46)

The interpretation of the correlation structure is that the alternatives within Li are more "similar" than

alternatives where one belongs to L1 and the other belongs to L2.

Let Pjr denote the joint probability of choosing location r E L i and city j. Now from Theorem

7 we get that

Pjr = P it = max(maxU fr )) =
1=1,2	 reL,

G e v" er n

G v" e v ''  

-1

e v 'k le ' 	 e 
v,r/0, (3.47)

v fic /e

1=1	 keL,

where aikG is the partial derivative of G with respect to component (j,k). Note that we can rewrite

(3.47) as

ev'k/e'
/0

e v" '

jr
(3.48)= p.

e evik/0i

i=1

where

P. = 	 P.ik •
keLj

(3.49)

The probability Pi is the probability of choosing to move to city j (i.e. the optimal location lies within

city j). Furthermore

e vir lei
P. —

 \

kels i

2	 (	 3i
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Per =
	

v /O.e 

Pi	 e vik

IceL j

(3.50)

is the probability of choosing location r E L i , given that city j has been selected. We notice that

'jr /Pi does not depend on alternatives outside Li . Thus the probability Pir can be factored as a product

consisting of the probability of choosing city j times the probability of choosing r from L i , where the

last probability has a structure as if Li were the choice set. We realize that it is therefore consistent

with the Luce model. However, only when 9 =1 are the probabilities P 1 and P2 consistent with the

Luce model. Graphically, the above tree structure looks as follows:

Location within	 Location within
city one	 city two

So far no theoretical motivation for the GEV model has been given, apart from the property

that it contains the Luce model as a special case. I shall therefore conclude this section by reviewing

two invariance properties that characterize the GEV class, and discuss their implications.

Definition 5; The DIM property 3

The utilities {U . satisfy DIM if and only if the distribution of maxitli is independent of which

variable attains the maximum.

Definition 6; The MSD property'

The utilities ft	 satisfy MSD if and only if the distribution of maxitli is the same (apart from

a location shift) as the distribution of U1.

3 DIM is an acronym for; Distribution in Invariant of which variable attains the Maximum.
4 MSD is an acronym for; The Maximum utility has the Same Distribution as the distribution of U 1 + b.
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If the utilities satisfy DIM it means that the indirect utility is not correlated with the utility of

the chosen alternative.

This property corresponds to the notion that the indirect utility in the deterministic micro

theory has prices and income as arguments, but the chosen quantities do not enter as arguments, nor do

their corresponding direct utility.

The MSD property is natural, since it implies that the stochastic properties of the utilities are

invariant under aggregation of alternatives. To realize this suppose that the univers of alternatives is

divided into subsets of alternatives called "aggregate alternatives". Thus each aggregate alternative

consists of one or several "basic" alternatives. It is understood that the consumer's choice of an

aggregate alternative means that he chooses a basic alternative that belongs to the aggregate one.

Consequently, the utility of the aggregate alternative must be the maximum of the utilities of the basic

alternatives within the aggregate one. Under MSD, the utility of the aggregate alternative will

therefore have the same distribution (apart from a location shift) as the basic utilities.

Theorem 8

Assume that Uj =vj +E i , where the cal f. F of E =	 E 2 , ... ,E n ) does not depend on Iv j }.

(i) Then F satisfies DIM if and only if

F (Y1' 2 , • • • yn = V (G (e -Y1 , e -Y2 	CY"))
	

(3.51)

where G is a homogeneous function and v is a positive function (subject to F being a proper

distribution function).

(ii) If	 have a common cumulative distribution function then F satisfies MSD if and only if

(3.51) holds.

A proof of Theorem 8 is given by Robertson and Strauss (1981).

From (3.51) and Theorem 7 we realize that when w(x)= exp(—x) we obtain the GEV class.

Strauss (1979) has proved the following result which follows readily from Theorem 8, and

extends the result of Theorem 7. This result shows that the choice probabilities do not depend on v.

Corollary 2

If (3.51) holds then the choice probabilities are given by

a i G(e v' , e"	 e vn)
P (v • + E = MaX vk £ k)) 	J k5n G(eviyev2,•••,evn)
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6 Y 2 , -*, Y ri)= V
( n

a yk
F 

k=1

(3.52)

Thus, from Theorem 7 we realize that the class of models determined by (3.51) is equivalent to

the GEV class.

Until resently it has not been clear which restrictions on the choice probabilities are implied by

the GEV class. Dagsvik (1995) proved that the GEV class is very large; in fact the GEV class yields

no other restrictions on the choice probabilities beyond those following from the random utility

assumption.

Theorem 9

Assume that	 =vi +E j , where the cumulative distribution function F ofE does not depend

on Iv j }. If (3.51) holds then IIA holds if and only if

where a > 0 is an arbitrary constant.

A proof of Theorem 9 is given by Strauss (1979).

From (3.52) we realize that when v(x)= exp(—x) we obtain the independent extreme value

model.

Example 3.4

Another example is obtained when

in which case (3.52) yields

1v(x) = 
1+ x

F (y11)1 2 , •••dn) := 

(3.53)

(3.54)  

1+	 e Yk

k=1

Example 3.5 

Assume that

with a >1. Then (3.52) implies that

W(x) = exp (_x va (3.55)
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(	 n	 \ 1/a \

	F(y 1 ,y 2 ,...,y0=exp	 e -ayk	 (3.56)
k=1

In this model it can be demonstrated that

corr(Ei,Ej)=-1--a12
	 (3.57)

which shows that the Luce model is consistent with a random utility model with any correlation

(different from zero and one) between the utilities as long as the correlation structure is symmetric.
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4. Specification of random utility models
As above we assume that the random utility model is additive, i.e., U j =v j +c j , where vj is the

structural term and c =fr i , £ 2 ,..., E n ) is a random vector with cumulative distribution function

Pfr i Y1 ,E 2 5 Y2 ,-,E n
	 (4.1)

4.1. The structural terms

Let Z j =(Z il , Z i2 ,...,Z iK ) denote a vector of attributes that characterize alternative j. In the absence

of individual characteristics, a convenient functional form is

V i = Z j 13— 	 Zik 13 k .	 (4.2)
k=1

A more general specification, which was already mentioned in chapter 2, is

V i = 1, Rk (Zj , X)Ok
	 (4.3)

k=1

where R k j , X) , k=1,...,K, are known functions of the attribute vector and a variable vector X that

characterizes the agent.

Example 4.1 

If X = (X, , X 2 ) and Z j =(Z i1 ,Z i2 ), a type of specification that is often used is

vj Z j1 f31 Z j2 13 2 1-Zvi X 1 13 3 ± Z ji X 2 0 4 ÷Z j2 X 1 13 5 +
	

X2 P 6 .	 (4.4)

In some applications the assumption of linear-in-parameter functional form may, however, be too

restrictive.

Example 4.2. (Box-Cox transformation):

Let Z j =(Z jl ,Z j2 ), Z ik >0, k =1,2,

and  

r —12J 2
a 2    

V. = Pi ± P2	 (4.5)      
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where a l , a 2 , , 0 2 are unknown parameters. The transformation

ya —1
'
	 (4.6)

y > 0, is called a Box-Cox transformation of y and it contains the linear function as a special case

(a = 1).When a -4 0 then

ya —1	
logy.

a

When a <1, (y a — 1)/a is concave while it is convex when a > 1. For any oc, ()f a — 1.)/a is

increasing in y.

A problem which is usually overlooked in discrete choice analyses is the fact that

simultaneous equation problems can arise as a result of unobservable attributes. Consider again

Example 4.1, and suppose that 4 2 and X2 are not observed. Suppose that we try to deal with the

missing variable problem by applying Zjigi as a proxy for ZjiX2134, Xiji2 as a proxy for 42X1 P5 and pp

as a "proxy" for Zi2X213 5 Zj2P2 where lib iij2 and lip are unknown parameters. This corresponds to

a utility function with error term

Ej Ei + Z i1 X 2 13 4	+ Z i2 X 2 13 5 + Z j2J3 2 g i2 •	 (4.7)

Now if X 1 and X2 are correlated we realize that 6; will be correlated with the deterministic term

Vi zi.1 031 + )4. Zi1X1133 + X µ;2 + lip •	 (4.8)

This simple example shows that simultaneous equation bias may be a serious problem in many cases

where data contains limited information about population heterogeneity. Note that even if we were

able to observe the relevant explanatory variables, we may still face the risk of getting simultaneous

equation bias as a result of misspesified functional form of the detterministic term of the utility

function. This is easily demonstrated by a similar argument as the one above.

4.2. The independent random utility model

If	 ,E.3 j E S , are independent then the choice probabilities can be expressed as

Pi (B) =	 Fk — v k )F.1(y — v i dy
	 (4.9)

ke131{j}

where Fi (y) = 13 (E j y), and B c S.
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To realize that (4.9) hold note that since c i , j E S , are independent we get

P(
 max U k P
keB\{j} n (Ek-y-vo= 1-1	 )=	 Fk(y-vo.

\kEB\{j} 	 I kEB\{j} 	 kEB\{j}

Furthermore,

E (y, y + dy)) = F;(y)dy.

Hence,

Pi (B) = P (U i > k yet} 	U k )=. P(y> k r€73at } U k )F;(y)dy =	 Fk 	 v )F;(y) dy •

keB\W

Example 4.3. (Multinomial logit)

Assume that

Fi (y)= e -e -Y 	(4.10)

Then (4.9) yields

V 'e
P. (B) = 	 (4.11)

e vk
kEB

Example 4.4. (Independent multinomial probit)

If

then

1	 --12-Y2
F7(Y) = V(Y) N' e (4.12)

1
(B) =	 41:067— v k )exp(--2-(y— v i )

kEB\D}
Y •

(4.13)

It has been found through simulations and empirical applications that the independent probit model

yields choice probabilities that are close to the multinomial logit choice probabilities.
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Example 4.5. (Binary probit)

Assume that B= {1,2} and Fj (y)= c13(y,5). Then

p(ui >u 2 ).43(v i - v 2 ).	 (4.14)

Example 4.6. (Binary Arcus-tangens)

Assume that B={1,2} and

2 
F;(y) = rc (1 + 4y 2 )

The density (4.15) is the density of the standard Cauchy distribution. Then

P(U 1 >U 2 )=-
1

+ 1 Arctg(v i —v 2 ).
2 n

(4.15)

(4.16)

The Arcus-tangens model differs essentially from the binary logit and probit models in that the tails of

the Arcus-tangens model are much heavier than for the other two models.

4.3. Elasticities

When the choice probabilities have the form

e V '
Pi (B)--: 	e vk

kEB

the elasticities have a particular simple form. We have

for i* j.

,a log pi (B)	 ay.;. 6, pi 03)) Zit' 	 'a log Zir 	\	 az jr

a log P i (B)	 a v.
i

	 = Pi (B)Z 	 'a log Z ir 	r a z ir

(4.17)

(4.18)
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exp

r	 P1 If i

( 0
1
 _Z 2 )02\

2
\D log P1 

a(Z ir -z

The binary case

In the binary case with

1

P1 = 1+expOz 2 -zopy

we get the derivative of log P 1 with respect to the r-th component of Z 1 — Z 2 ;

a log P1 	. (1 — Pi )(3 r -a(z ir - z2r)

In the probit case with

Pi •= c13 ((zi -- Z2V)

we get

In the Arcus-tangens case with

P, = —
1 

+ —
1 

Arctg ((Z 1 — Z 2 )(3)
"	 2	 7C

we get

a log Pi 	..:__ 	Pr
a(z, - z2r) n(1+01 - Z2)(3)-

„
)P1 

.



,

i( L )a2 \
— 1

(5.4)+ '
	 (.4

1
a2

V(C,L) =

5. Examples of discrete choice analysis

5.1. Labor supply (I)

Consider the binary decision problem of wanting to work or not. Take the standard neo-classical

model as a point of departure. Let V(C,L) be the agent's utility in consumption, C, and annual leisure,

L. The budget constraint equals

C=hW+I	 (5.1)

where W is the wage rate the agent faces in the market, h is annual hours of work and I is non-labor

income (for example the income provided by the spouse). The time constraint equals

h+1.-5..M(=8760). 	 (5.2)

According to this model utility maximization implies that the agent supplies labor if

a 2 vo,m) =w .w>	 (5.3)a i v(I,m)

where aj denotes the partial derivative with respect to component j. If the inequality is reversed, then

the agent will not wish to work. W * is called the reservation wage. Suppose for example that the utility

function has the form

where a l < 1, a 2 < 1, 13 1 > 0, 13 2 > 0. Then V(C,L) is increasing and strictly concave in (C,L). The

reservation wage equals

a2V(I,M) 13 2 1-aw * =	 =	 I 1 .a i vq,m)

After taking the logarithm on both sides of (5.3) and inserting (5.5) we get that the agent will supply

labor if

132logW > (1.---a 1 )log I + logk).

Suppose next that we wish to estimate the unknown parameters of this model from a sample of

individuals of which some work and some do not work. Unfortunately, we cannot base the estimation

(5.5)

(5.6)
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procedure immediately on (5.6) because the wage rate is not observed for those individuals that do not

work. For all individuals in the sample we observe, say, age, non-labor income, length of education

and number of small children. We assume that the parameter P2/131 depend on age and number of small

children, X2, such that

0 	=7-_ 2 	2__	 _log ( 1j---2 	X b + E
P1 j

(5.7)

where E2 is a random term which accounts for unobserved variables that affect the preferences and b is

a parameter vector. To deal with the fact that the wage rate is only observed for those agents who

work, we shall next introduce a wage equation. Specifically, we assume that

logW=X i a+E i	(5.8)

where X 1 consists of length of education and age and a is the associate parameter vector. E i is a

random variable that accounts for unobserved factors that affect the wage rate, such as type of

schooling, the effect of ability and family background, etc. For simplicity we assume that a l is

common to all agents. If E l and E2 are independent and normally distributed with E e i = 0,

Var E = a?'
' we get that the probability of working equals a probit model given byJ	 J

P2 E.- P(W>W * )=0:13 
( 

Xs + (a l — 1)log I	
(5.9)

j

where 00 is the cumulative normal distribution function and s is a parameter vector such that

Xs =X l a.— X 2 b . From (5.9) we realize that only

S i 	a —1
	 , and  1 Vol +a;	 Alizq +0 22'

, k =1,2, • • • „

can be identified.

If the purpose of this model is to analyze the effect from changes in level of education, family

size and non-labor income on the probability of supplying labor then we do not need to identify the

rest of the parameters. Let us write the model in a more convenient form;

P2 = Cro (Xs * c log I),	 (5.10)

where c= — a l 	+62 and s; = s tja i2 +62 . We have that
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exp
a log P2 = c 4131 (XS * — c log I)
	 = c 	\	

2
	 .1  .

a log I	 41)(Xs* — c log I) 	 013 (Xs * — c log I) .NriTc

r
Xs

*
 —c logI) 2

(5.11)

Eq. (5.11) equals the elasticity of the probability of working with respect to in non-labor income.

Suppose that the random terms E i and E2 are i.i. standard extreme value distributed. Then it

follows that P2 becomes a binary logit model given by

exp log W)	 1 
P2 

exp (E log W)+ exp (E log W* 1+ exp (—Xs * + c log I)

From (5.12) we now obtain the elasticity with respect to I as

a log P2 =
C	 P2 )= 	a log I	 1+ exp (Xs * c log I)

(5.12)

(5.13)

5.2. Labor supply (II)

Consider the choice of whether or not to work. The agent is assumed to face a set B of feasible jobs

where job j has wage rate The set B is unobservable to the econometrician. The econometrician

only observe if the agent works or not and the corresponding wage rate if the agent works. Let

U i =elogWi +E;, j€13	 (5.14)

be the utility of job j, where ei is supposed to account for non-pecuniary aspects with job j, and 8 > 0

is a parameter. The utility of not working equals

U 0 =v 0 + E 0 	(5.15)

where vo is a structural term and Co is a random variable. In (5.14), W i is possibly correlated with E;

and we therefore introduce an instrument variable equation

log Wi = xr3 Ti ; 	(5.16)

where X is a vector that consists of individual characteristics such as length of education and

experience, and is a zero mean random term that may be correlated with E; . When (5.16) is inserted

into (5.14) we get

U. =0X13+E.J	 J (5.17)
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1
P2 

1 exp 0 — — pZ — X(39) •
(5.21)

where c i = E;	 . Let n be the number of jobs in B. If we assume that c j , j = 0,1,2, ..., n, are i.i.

standard extreme value distributed then the probability of choosing job j equals

Xf3	 f3ee	 e Xe 
P (IJ  = max (U 0 , max U ))— 	 =k = ve 0 +1, e	 eWOkeB	 v° +ne e f3 •

keB

(5.18)

Hence the probability of working (which is the probability of choosing one of the jobs in B) equals

P2 =
n e eX13 

(5.19)
e `'° n e exp •

Suppose n depends on regional and/or group-specific unemployment rate, Z, in the following manner

logn =pZ + 8	 (5.20)

where p and 8 are unknown parameters. Then P2 takes the form

Consider next the estimation of (5.16) from the subsample of working individuals. Since

c j = c i +Orl i it follows that the mean of i j is not necessarily equal to zero, given that j is the chosen

alternative, i.e.,

U j = max (U 0 , max Uk # 0.
keB

Define F by

= occ i + j 	(5.22)

where a is an unknown parameter that is equal to

cc = cov j , E j )/Var c i .	 (5.23)

This implies that ci and	 are uncorrelated. Moreover, we have, by Lemma 1 in Appendix A that

U j = max (IJo, max U k = E (1J j
keB	 J

= E max (U 0 , max U k )— xpe.
keB

EI E j U j = max (U 0 , max U k  I— X(39
keB (5.24) 
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U j = max (U 0 9
max U
keB k

Under the assumption of extreme value distributed utility terms we get

E max (U 0 , max U k = log	 exi3e + e v° + 0.5772 = log (n e x15° +e v° )+ 0.5772.	 (5.25)
keB keB

Hence, by combining (5.25) and (5.22) we get

E (Fri j  U j = max (UO, max Uk = a E (Ei
keB

U j = max (U 0 , max U kkeB  

= a log (n e x" + e v° — aX130 + 0.5772a

= —a log P2 + a log n + 0.5772 • a = — a log P2 + apZ + a8 + 0.5772 • a.

Consequently, we can write the wage equation as

log WW =	 - a log P2 4- apZ + 8 * + en;

where 5 * = a8 + 0.5772 • a and Trj is a random term with the property that

(5.26)

(5.27)

E (ri *j U j =max (13 0 , max U k = O.
keB

(5.28)  

Thus we can estimate (5.27) consistently from the subsample of working individuals.

Consider finally the conditional variance

Var (Ti j

From Lemma 1 in Appendix A we get

Var (E j U j = max (130/ max U kkeB

= Var (U i U j = max (U 0 , max U k
keB

= Var (max (U0 , max U k = Var E j .
kEB

The last equality in (5.29) follows from the fact that

(5.29)

max U 0 , max U k
kEB

has the same distribution as q, apart from an additive deterministic term. Consequently, since ej and

j are independent,
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0, keB	 kI)	 U = max (13 max U =

e v(wj)

e v°	 ev(Wk)

yED kEB(y)
e v° 	n(y)ev(Y)

yED

e 
v(w

i

e v° + 	 e v(Wk)

kEB

e 
v(w

i

(5.33)

U i =max(U o ,max U k ) =Varij i +a 2 VarE i =Varri i .
keB

(5.30)  

The last result shows that in contrast to the case with normally distributed disturbances, (cf. Heckman,

1979) the conditional variance of given that j is the chosen alternative equals the corresponding

unconditional variance.

5.3. Labor supply (III)

Consider an alternative modelling framework to the one discussed in'section 5.2. We assume that the

agent faces a set B (unobservable) of feasible job opportunities. Let

U i = v(Wi 	(5.31)

j =1,3,...,n, be the utility of job j with wage rate 	 where v(Wi ) is the structural part of the utility

function that is common to all agents, while Ej is an agent-specific random term that accounts for non-

pecuniary aspect associated with job j. Similarly, let

U 0 = V o +£0 	(5.32)

be the utility of not working. Suppose furthermore that E j , j = 0,1,..., are i.i. standard extreme value

distributed.

Let B(w) be the subset of B that consists of all feasible jobs with wage rate w, and let n(w) be

the number of jobs in B(w), and let D be the set of all possible wages. The probability of choosing job

j in B equals

Hence the probability of choosing a job with wage rate w equals   

e v(w3)  

P(w)	 D. = 	jEB(W)

jEB(W)	 ev°	 n(y)ev(Y)
yED

n(w)e v(w) 	e C1(w)

e v°	 n(y)ev(Y)	 ev°	 eV(Y)

yED	 yED 

(5.34)
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where

V(y)= log n(y) + v(y).	 (5.35)

From (5.35) we realize that we cannot without further assumptions separate n(w) from v(w).

To this end suppose that the agent also receives nonlabor income. For example, a married woman or

man may receive income from the spouse. In this case

v(w) = v * + I)	 (5.36)

where I denoted nonlabor income, and v * (•) is a concave parametric function. If we denote the

corresponding choice probability by P(w,I) it follows from (5.36) and (5.34) that for given w o and 10

P(w,I) 
log ,	 = v * (w + I)— v * (w o + I () )	 (5.37)

FV'vo , To))

which shows that v * •) is identified apart from an additive constant.

5.4. Transportation

Suppose that commuters have the choice between driving own car or taking a bus. One is interested in

estimating a behavioral model to study, for example, how the introduction of a new subway line will

affect the commuters' transportation choices. Consider a particular commuter (agent) and let U 3 (x) be

the agent's joint utility of commodity vector x and transportation alternative j, j =1,2. Assume that the

utility function has the structure

Ui(x)=Uii +U 2 (x).	 (5.38)

The budget constraint is given by

(5.39)

where p is a vector of commodity prices and ci is the per-unit-cost of transportation. By maximizing

Ui(x) with respect to x subject to (5.39) we obtain the conditional indirect utility, given j, as

Vi(p,y—qi)=Un +V2 (p,y—q i )	 (5.40)

where

V2 (p, y) = max U 2 (X) .	 (5.41)
P)(=Y

Assume that
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U li = Olog Ti + E i 	(5.42)

where 'Tj is the travelling time with alternative j, p is an unknown parameter and {E i }are random

terms that account for the effect of unobserved variables, such as walking distances and comfort. We

assume that E l and E2 are i.i. standard extreme value distributed. Assume furthermore that

V2 (p,y —q i )=V3 (p)+Olog(y	 (5.43)

where 8 > 0 is an unknown parameter. The assumptions above yield

vi = fi log Ti + e log (y — q j + E j	(5.44)

which implies that

Pi ({1,2}) =
exp (3 log Tj + 0 log (y q j ))

(5.45) 
/2k.1 exp (0 log Tk ± log — q k

for j =1,2. After the unknown parameters p and 8 have been estimated one can predict the fraction of

commuters that will choose the subway alternative (alternative 3) given that T3 and q3 have been

specified. Here, it is essential that one believes that T T and ch are the main attributes of importance. We

thus get that the probability of choosing alternative j from {1,2,3} equals

exp log Ti + 61og — q j ))
Pj ({1,2,3}) = 3

Ek.i exp (Nog Tk 0 log — q k

(5.46)

5.5. Firms' location of plants (I)

In this example we outline a framework for analyzing firms' location of plants. Specifically, we

assume that the firms face the choice of establishing a plant in one of m differents sites (counties).

Suppose furthermore that firms profit functions (or expected profit functions) depend on observable

characteristics that are common for all sites within particular regions. Let C r denote the set of counties

within region r, r =1,2,..., m, and let n r be the number of counties in C r. The regional attributes of

interest may be population density and macro indicators that describe the industry structure. Finally,

certain tax rates may differ across regions (tax shelters). Consider an arbitrarily selected firm. Let

U ri = v r + E,i denote the firms utility of establishing a plant in county j E Cr  where fE ri I are i.i.

standard extreme value distributed terms that account for unobserved region and county-specific
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attributes and {y r }are structural terms that depend on the attributes specific to region r. Let Pri be the

probability of a location in county j in region r. We get

	e v r	 evr
Ph P (U ri = max (max U ik )) = 	

i	 IceCi

	

evr	 ni e vi

	

i=1 kEC i 	i=1

Hence, we get that the probability of a location within region r equals

e vr
Pr =	 = : rm 	9

jEC,	 ni e
i=1

where

(5.47)

(5.48)

	y r = V r +10gn r 	(5.49)

If we assume that V r = Z,13 , where Zr is the vector of observable attributes associated with region r,

we get

	=Z r 13+ logn r 	(5.50)

5.6. Firms' location of plants (II)

We now consider an extension of the setting in section 5.5. Suppose now that the error terms for

counties within a common region are correlated. This may be a plausible assumption since it is often

the case that counties within regions are more homogeneous than counties across regions. We shall

now apply the nested logit framework to model this case. Let 

m 	nr	 ■0
G(Y) =	 Y lrile  (5.51)

and let

r=1	 j=1  

F(x) = exp(—G{e -" 11 ,

be the joint distribution function of E(-11 ,•••7E ini 9.••9CM1'•••9Cmn m ). Then it follows that

corr(e ri ,E,i )=1— 0 2 	(5.52)

for i# j, i,jEC r , and
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e vr n 1/9
Pr_ I Pry—

m	 r =
	

m
jEcr	 I e vi n!" 	 e v:

i=i	 i=i

ev;
(5.55)

corr(e ri ,E si )= 0	 (5.53)

for iEC„j€ C s , r s, where 0 < 8 5_1. From Theorem 7 we get

\ 0- 1

e v 
r
 /0

evr n ue 	1
(5.54)■0

I v. „6 nre n i

i=1
I

which yields

e vi
 /8

where

1	 1
v: = v r + e logn r =Z r i3+ 0 logn r (5.56)

Provided n l , n 2 ,..., are known we can estimate 13 and 1/0 from observations on plant locations with

{Z r  log n r as explanatory variables.

From (5.55) we get

and

a log Pr 1	 p
alogn r 9	 ri

a log Pk = 1 p

alogn r

(5.57)

(5.58)

for k * r. The interpretation of (5.57) and (5.58) is as the effect from increasing the size of C r. For

example, one may wish to assess the effect of changing the number of counties that belong to a region

with "tax shelters".

5.7. Firms' location of plants (III)

The setting here is the same as the one in section 5.6. Suppose now that {li r } are unobservable, but

that we observe the number of locations in at least one county in each region, say in county number

one. Let Mr' be the observed number of locations in county one in C r, and let Mr be the total number of
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observed locations within region r. Finally, let M 	 Mr . Then Mil/Mr is an estimate of Pr1 and
r=1

M r /M is an estimate of Pr. Since by (5.54)

Prl = Pr •

1
n r

it follows that consistent estimates for n r is given by

M2r
fi r = 	 , r =1,2,...,m.

M rl M
(5.59)

5.8. Potential demand for alternative fuel vehicles

This example is taken from Dagsvik et al. (1996). To assess the potential demand for alternative fuel

vehicles such as; "electric" (1), "liquid propane gas" (lpg) (2), and "hybrid" (3), vehicles, an ordered

logit model was estimated on the basis of a "stated preference" survey. In this survey each responent in

a randomly selected sample was exposed to 15 experiments. In each experiment the respondent was

asked to rank three hypothetical vehicles characterized by specified attributes, according to the

respondent's preferences. These attributes are: "Purchase price", "Top speed", "Driving range between

refueling/recharging", and "Fuel consumption". The total sample size (after the non-respondent

individuals are removed) consisted of 662 individuals. About one half of the sample (group A)

received choice sets with the alternatives "electric", "lpg", and "gasoline" vehicles, while the other half

(group B) received "hybrid", "lpg" and "gasoline" vehicles. In this study "hybrid" means a

combination of electric and gasoline technology. The gasoline alternative is labeled alternative 4.

The individuals' utility function was specified as

U i (t) = ; WO + + e i ( t)	 (5.60)

where Zi(t) is a vector consisting of the four attributes of vehicle j in experiment t, t =1,2, ...,15 , and tij

and 3 are unknown parameters. Without loss of generality, we set .t 4 = 0 . As mentioned above group

A has choice set, C A = {1,2,4} , while group B has choice set, C B = {2,3,4}. Let Piit(C) be the

probability that an individual shall rank alternative i on top and j second best in experiment t, and let

Y-h. (t) =1 if individual h ranks i on top and j second best in experiment t, and zero otherwise. From

section 3.4 it follows that if Ic i (t)} are assumed to be i.i. standard extreme value distributed then
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Age

18-29

	

Females	 Males

-2.530	 -2.176
	(-17.7)

	
(-15.2)

-0.274
	

0.488
	(-0.9)

	
(1.5)

	1.861
	

2.130
	(3.1)

	
(3.3)

-0.902	 -1.692

	

(-3.0)
	

(-5.1)

	

0.890	 -0.448

	

(4.2)
	

(-2.0)

	

1.185
	

0.461

	

(7.6)
	

(2.8)

	

1.010
	

0.236

	

(8.2)
	

(1.9)

	

1380	 1110

	

92	 74

	

2015.1	 1747.8

	

0.19	 0.12

30-49

	

Females	 Males

	

-1.549	 -2.159
	(-15.0)

	
(-20.6)

	

-0.820	 -0.571

	

(-3.3)
	

(-2.4)

	

1.018
	

1.465

	

(2.0)
	

(3.2)

	

-0.624	 -1.509

	

(-2.5)
	

(6.7)

	

0.627	 -0.180

	

(3.6)
	

(-1.1)

	

1.380
	

0.649

	

(10.6)
	

(5.6)

	

0.945
	

0.778

	

(9.2)
	

(8.5)

	

2070	 2325

	

138	 150

	

3140.8	 3460.8

	

0.15	 0.17

50-

	

Females	 Males

-1.550	 -1.394

	

(-11.9)	 (-11.8)

-0.320	 -0.339

	

(-1.1)	 (-1.2)

	

0.140	 1.000

	

(0.2)	 (1.8)

-0.446	 -1.030

	

(-1.5)	 (-3.7)

	

0.765	 -0.195

	

(3.6)	 (-1.0)

	

1.216	 0.666

	

(7.7)	 (4.6)

	

0.698	 0.676

	

(5.7)	 (5.6)

	

1290	 1455

	

86	 96

	

2040.9	 2333.8

	

0.12	 0.10

Attribute

Purchase price (in 100 000 NOK)

Top speed (100 km/h)

Driving range (1 000 km)

Fuel consumption (liter per 10 km)

Dummy, electric

Dummy, hybrid

Dummy, 1pg

# of observations

# of respondents

log-likelihood

McFadden's p2

exp(Zi(t)(3+gi)	 exp(Zj(013-1-1.0
Pijt (C) = 	

exp	 (OP	 eXp(Zr(t)13-1-gr)

	

reC	 reC\fil

where C is equal to CA or CB,. We also assume that the random terms le j (t)} are independent across

experiments. Consequently, it follows that the loglikelihood function has the form

(5.61)

15 1

	E=1, 1,	 1, yiii(olog piit (c A )±y,	 E Yi; (0 10g Piit(CB
t=1	 hEA	 i	 j	 hEB	 i	 j

(5.62)

The sample is further split into six age and gender groups, and Table 5.1 displays the estimation results

for these groups.

Table 5.1. Parameter estimates *) for the age/gender specific utility function

*)' t-values in parenthesis.

Table 5.1 displays the estimates when the model parameters differ by gender and age. We

notice that the price parameter is very sharply determined and it is slightly declining by age in absolute

value. Most of the other parameters also decline by age in absolute value. However, when we take the
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standard error into account this tendency seems rather weak. Further, the utility function does not

differ much by gender, apart from the parameters associated with fuel-consumption and the dummies

for alternative fuel-cars. Specifically, males seem to be more sceptic towards alternative-fuel than

females.

To check how well the model performs, we have computed McFadden's p 2 and in addition we

have applied the model to predict the individuals' rankings. The prediction results are displayed in

Tables 5.2 and 5.3, while McFadden's p 2 is reported in Table 5.1. We see that McFadden's p 2 has the

highest values for young females, and for males with age between 30-49 years.

Table 5.2. Prediction performance of the model for group A. Per cent

First choice Second choice Third choice

Gaso- Gaso- Gaso-
Gender Electric Lpg line Electric Lpg line Electric Lpg line

Females:
Observed 52.1 26.1 21.9 22.3 46.5 31.2 25.6 27.4 46.9
Predicted 45.6 36.3 18.1 32.8 38.5 28.8 21.6 25.3 53.2

Males:
Observed 40.0 34.5 25.5 20.3 43.5 36.2 39.7 22.0 38.3
Predicted 32.6 44.2 23.3 32.1 35.5 32.4 35.3 20.3 44.3

Table 5.3. Prediction performance of the model group B. Per cent

First choice Second choice Third choice

Gaso- Gaso- Gaso-
Gender Hybrid Lpg line Hybrid Lpg line Hybrid Lpg line

Females:
Observed 45.0 42.0 13.0 33.0 44.9 22.1 22.0 13.1 64.9
Predicted 43.0 40.3 16.7 36.9 37.8 25.3 20.1 21.9 58.0

Males:
Observed 38.1 46.2 15.7 32.9 41.0 26.2 29.0 12.8 58.1

Predicted 35.3 45.2 19.5 37.4 35.0 27.6 27.3 19.8 52.9

The results in Table 5.3 show that for those individuals who receive choice sets that include

the hybrid vehicle alternative (group B) the model fits the data reasonably well. For the other half of

the sample for which the electric vehicle alternative is feasible (group A), Table 5.2 shows that the

predictions fail by about 10 per cent points in four cases. Thus the model performs better for group B

than for group A.
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exp(
aj — pj

6 )
1); = Q ; (p) = 	 (5.64)

exp (ak — Pk  )

k=1

5.9. Oligopoly with product differentiation

This example is taken from Anderson et al. (1994). Consider n firms which each produces a variant of

a differentiated product. The firms' decision problem is to determine optimal prices of the different

variants.

Assume that firm j produces at fixed marginal costs ci and has fixed costs 	 There are N

consumers in the economy and consumer i has utility

U ii = y i +a i p i + ac ii .	 (5.63)

for variant j, where y i is the consumers income, as is an index that captures the mean value of non-

pecuniary attributes (quality) of variant j, and c 1 is an individual-specific random taste-shifter that

captures unobservable product attributes as well as unobservable individual-specific characteristics

and a > 0 is a parameter (unknown). If we assume that E ii , j =1,2,...,n , i =1,2, ..., N, are i. i. standard

extreme value distributed we get that the aggregate demand for variant j equals NP R where

Assume next that the firm knows the mean fractional demands {Q i (p)} as a function of prices, p.

Consequently, a firm that produces variant j can calculate expected profit, conditional on the prices;

= (p i —c i )NQ i (p)—K i 	(5.65)

Now firm j takes the prices set by other firms as given and chooses the price of variant j that

maximizes (5.65). Anderson et al. (1994) demonstrate that there exists a unique Nash equilibrium set

of prices, p*=(p
*
1 D 

*

2	

*

,•••IPn which are determined by

p i = c i + 	
1— Q i (p * ) .

Thus, when estimating the model (5.64) one should take into account the additional restrictions

determined by (5.66).

(5.66)

5.10. Social network

This example is borrowed from Dagsvik (1985). In the time-use survey conducted by Statistics

Norway, 1980-1981 the survey respondents were asked who they would turn to if they needed help.
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The respondents were divided into two age groups, where group (i) and (ii) consist of individuals less

than 45 years of age and more than 45 years of age, respectively. Here, we shall only analyze the

subsample of individuals less than 45 years of age. The univers of alternatives S consisted of five

alternatives, namely

S = {Mother (1), father (2), brother (3), sister (4), neighbor (5)1.

However, the set of feasible alternatives (choice set) were less for many of the respondents.

Specifically, there turn out to be 11 different choice sets in the sample; B 1 ,B 2 ,...,B ii . The data for

each of the 11 groups are given in Table 5.5. Group (i) consists of 526 individuals.

The question is whether the above data can be rationalized by a choice model. To this end we

first estimated a logit model

(Bk
e

jEBk , (5.67)
e v k

kEBk

where k =1,2,...,11, and v 5 = 0. Thus this model contains four parameters to be estimated. Let Pik

be the observed choice frequencies conditional on choice set Bk. Let t * denote the loglikelihood

obtained when the respective choice probabilities are estimated by Pki , j E B k . From Table 5.5 it

follows that t * = — 405.8. In the logit model there are four free parameters, while there are 24

different probabilities in the 11 multinomial models in the a priori statistical model. Consequently, if

t 1 denotes the loglikelihood based on the logit model it follows that —2 (e l — t * is (asymptotically)

Chi squared distributed with 20 degrees of freedom. Since the corresponding critical value at 5 per

cent significance level equals 31.4 it follows from estimation results reported in Table 5.4 that the logit

model is rejected against the non-structural multinomial model. One interesting hypothesis that might

explain this rejection is that alternative five ("neighbor") differs from the "family" alternatives in the

sense that the family alternatives depend on a latent variable which represents the "family aspect", that

make the family alternatives more "close" than non-family alternatives. As a consequence, the family

alternatives will have correlated utilities. To allow for this effect we postulate a nested logit structure

with utilities that are correlated for the family alternatives. Specifically, we assume that

corr(u i ,u i )=1 —e 2 ,

for i# j, i,j# 5, and

corqU i ,U 5 )= 0,
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e vdeP.m
evkie

(5.68)

for i < 5, where 0 <	 This yields

kEB

when 5 e B ,

Pj (B) =

v.
e '/	 e vk /e

keB\{5}
(5.69) \e

e" +	 ek/e
kEB \{5}

when j 5, 5 E B, and

P5 (B) =
e V5

(5.70)  

ens +	 evkie
ocEB \ {5}

As above we set v 5 = 0.

The parameter estimates in the nested logit case are also given in Table 5.4. We notice that

while only v 1 and v4 are precisely determined in the logit case all the parameters are rather precisely

determined in the nested logit case. The estimate of 0 implies that the correlation between the utilities

of the family alternatives equals 0.79.

From Table 5.4 we find that twice the difference in loglikelihood between the two models

equals 17.6. Since the critical value of the Chi squared distribution with one degree of freedom at 5

per cent level equals 3.8, it follows that the logit model is rejected against the nested logit alternative.

As above we can also compare the nested logit model to the non-structural multinomial model.

Let ,e 2 denote the loglikelihood of the nested logit model. Since the nested logit model has five

parameters it follows that —2 (t 2 — t * ) is (asymptotically) Chi squared distributed with 19 degrees of

freedom. The corresponding critical value is 30.1 at 5 per cent significance level and therefore the

estimate of —2 (t 2 — t * ) in Table 5.4 implies that the nested logit model is not rejected against the

non-structural multinomial model. Thus, in terms of goodness-of-fit there seems to be an essential

difference between the logit and the nested logit formulation. However, as measured by McFaddens

p2, the difference in goodness-of-fit is only one per cent! This shows that one should be very cautious

when interpreting p2.
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Parameters

Vi

V2

V3

V4

0

loglikelihood £

McFadden's p2

—2 (e j

Logit model

Estimates

2.119

-0.519

0.099

0.725

-424.9

0.33

38.2

Nested lo

Estimates

1.932

0.654

0.801

1.242

0.455

-416.1

0.34

22.0

git model

t-values

31.8

5.5

8.3

16.8

15.0

18.9

0.7

0.2

4.8

t-values

Table 5.4. Parameter estimates

In Table 5.5 we report the data and the prediction performance of the two model versions. The

table shows that the nested logit model predicts the fractions of observed choices rather well.
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Table 5.5. Prediction performance of the logit- and the nested logit model

Alternatives
Choice	 1	 2	 3	 4	 5	 # obser-
sets	 Mother	 Father	 Brother	 Sister	 Neighbor	 vations 

Observed	 30	 NF	 NF	 NF	 6	 36
B1	 Predicted Logit	 32.1	 NF	 NF	 NF	 3.9

Predicted Nested lolit 	31.4	 NF	 NF 	 NF	 4.6 
Observed	 NF	 NF	 36	 NF	 20	 56

B2	 Predicted Logit	 NF	 NF	 29.4	 NF	 26.6
Predicted Nested logit	 NF	 NF	 38.6	 NF	 17.3 
Observed	 21	 NF	 2	 NF	 1	 24

B 3 	Predicted Logit	 19.2	 NF	 2.5	 NF	 2.3
Predicted__ Nested logit 	19.4	 NF	 1.5	 NF	 2.9___.........._
Observed	 NF	 NF	 9	 21	 2	 32

B4	 Predicted Logit	 NF	 NF	 8.5	 15.8	 7.7
Predicted Nested logit 	NF	 NF	 7.0	 18.6	 6.4___............._________
Observed	 NF	 5	 NF	 NF	 2	 7

B 5 	Predicted Logit	 NF	 2.6	 NF	 NF	 4.4
Predicted Nested logit 	NF	 4.6	 NF	 NF	 2.4 
Oserved	 65	 3	 NF	 NF'	 10	 78

B6	 Predicted Logit	 65.4	 4.7	 NF	 NF	 7.9
Predicted Nested lo_git 	64.5	 3.9	 NF	 NF	 9.6 
Observed	 50	 4	 4	 NF	 6	 64

B7	 Predicted Logit	 48.3	 3.5	 6.4	 NF	 5.8
Predicted Nested lolit 	49.2	 3.0	 4.1	 NF	 7.7____........________..............._
Observed	 23	 NF	 NF	 7	 8	 38

B g 	Predicted Logit	 27.8	 NF	 NF	 6.9	 3.3
Predicted Nested lo_git 	27.5	 NF	 NF	 6.0	 4.4............................__...................______
Observed	 45	 2	 NF	 5	 8	 60

B9	 Predicted Logit	 41.7	 3.0	 NF	 10.3	 5
Predicted  Nested logit 	 41.5	 2.5	 NF	 9.1	 6.8 
Observed	 21	 NF	 2	 6	 8	 37

B 10 	Predicted Logit	 24.7	 NF	 3.3	 6.1	 3.0
Predicted Nested lolit 	25.2	 NF	 2.1	 5.5	 4.2 
Observed	 64	 4	 5	 15	 6	 94

B 11 	Predicted Logit	 60.0	 4.3	 7.9	 14.8	 7.2
Predicted Nested logit 	 61.3	 3.7	 5.1	 13.4	 10.5

NF = Not feasible.
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6. Discrete/continuous choice

6.1. The general setting

In many situations a decision-maker makes interrelated choices where one choice is discrete and the

other is continuous. For example, a worker may face the decision problem of which job to choose and

how many hours to work, (conditional on the choice of job). Another example is a consumer that

considers purchasing electric versus gas appliances, as well as how much electricity or gas to consume.

A third example is a household that chooses which type of car to own and the intensity of car use.

Such choice situations are called discrete/continuous, reflecting the fact that the choice set

along one dimension is discrete while it is continuous along another dimension. Theories and methods

for specifying and estimating structural models for discrete/continuous choice have been developed

among others by Heckman (1974, 1979), Dubin and McFadden (1984), Lee and Trost (1978), King

(1980) and Dagsvik (1994).

We now consider an agent that faces two choices; first which alternative to choose, from a

finite and exhaustive set of mutually exclusive alternatives, and second; how much of a particular good

to consume. Since it is often the case that these choices depend on the same underlying factors this

should be taken into account in the formulation of the model and in the corresponding econometric

specification. Suppose for expository simplicity that there are only two continuous goods. Let

U j (x 1 , x 2 ) be the utility of alternative (j, x l , x 2 ), where j =1,2, ..., indexes the discrete alternatives

and (x 1 , x 2 ) the continuous ones. Thus the agent's optimization problem is to maximize U j (x 1 , x 2

with respect to (j, x l , x 2 ) subject to the budget constaints j E B and

x i p i +x 2 p 2 	Ok c k =y, x 1 ..>0, x 2 	(6.1)
k

where B is the choice set of feasible (discrete) alternatives, p i , p 2 are prices, y is the agent's income

(exogenous), ci is the cost (or annual user cost) of the discrete alternative j and 8 k =1 if alternative

k E B is chosen and zero otherwise. Consider now the continuous choice given the discrete alternative

j. Let

V.J y — c
J =	 max	 U j (X 1 X 2 )

xiPi +x2P2 =y-ci
n, x 2

(6.2)

which means that V j (p, y — c j ) is the conditional indirect utility, given that the discrete alternative j is

chosen. Since Vj (p, y — c j ) expresses the highest possible utility conditional on alternative j, it must

be the case that alternative j is chosen if
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Vj (p, y — c j = max Vk 6), y — c k
keB

Second, it follows from Roy's identity that under standard regularity conditions we obtain the

corresponding continuous demands by

riI]
ay.(p, y — c i Vap,

= 	
Vi Vs, y — c i 	y

for r =1,2, given that j is the preferred discrete alternative, i.e., given that (6.3) holds. Thus the

discrete as well as the continuous choices are here derived from a common representation of the

preferences.

It is known from duality theory that under standard regularity conditions the specification of

the indirect utility is equivalent to the specification of the corresponding direct utility. Therefore, in

econometric model building, it is convenient to start with a parametric functional form of the indirect

utility function, including alternative-specific random terms.

6.2. The Gorman Polar functional form

When the conditional indirect utility function belongs to the class of functional forms called "Gorman

Polar forms", (Gorman, 1953), then the structure of the demand equations and choice probabilities

become particularly convenient. The Gorman Polar functional form is given by

y—c j +a(p)(E j +m j )

b(p)
(6.5)

where a•) and b(•) are functions that are homogeneous of degree one, concave and non-decreasing in p

and 1m i }are alternative-specific terms which are independent of prices and income. It then follows

that Vi is non-increasing and convex in prices. Here {E j }are random terms that are supposed to

account for unobservables that affect preferences and m i is (possibly) a function of observable

attributes associated with alternative j.

From (6.5) it follows that the choice probabilities are given by

■

	

Pj (B) =--- P E•	 — j = max (E k	— Ck

	

J	 /akp) kEB 	a(p)))

In case 1E j }are i.i. extreme value distributed we obtain

(6.3)

(6.4)

(6.6)
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Pi (B) =
exp (m i — c j ia(p)) 

(6.7)
/keB eXP (rrik Ck /a(P)) .

By Roy's identity we obtain the demands as

_
x, = 

(a(P)b,(13)
 a, (p)jrni	 ci) b r (P) + (a(P)br(P

'	 b(p)	 ' b(p)	 b(p)
(6.8)

where ar(p) and by(p) denote the respective partial derivatives with respect to component r.

Recall, however, that due to the selectivity problem we cannot automatically apply standard

methods to estimate (6.8), as we shall discuss in further detail below.

Example 6.1 

Assume that the conditional indirect utility function has the form

— c i )=logRZ i a+13 ii p i +(3 J 2P2 4-0(Y — c i )+E i )ciem —13 3 log p 2 	(6.9)

where Ic i } are i.i. standard extreme value distributed random terms which have mean 0.5772 and a,

P3, r =1,2, 8 and g are unknown parameters. 5 The specification (6.9) has been applied by Dubin

and McFadden (1984). However, (6.9) is not a Gorman Polar functional form. First, we obtain

and

Consequently, by (6.4)

aVi (p,y—c ; )
	 =Pp e -gP1 — 1-1V4P' —al)]

Vi (p, 31— C i) = e e ttP1
y

Xis = (Z i a + 13 iiPi +13 ;2P2 +8(y — c i ))1-1— e ±

(6.10)

(6.11)

(6.12)

Second, note that maximization of V.J y — c J ) in (6.9) with respect to j is equivalent to maximizing

5 Note that (6.9) is not homogeneous of degree zero in prices and income. We may, however, interpret (6.9) as
an indirect utility function in normalized prices and income. This is possible because a function v(p,y) of
normalized prices and income is the indirect utility function of some locally nonsatiated utility function if and
only if it is lower semicontinuous, quasi-convex, increasing in y, nonincreasing in p, and has v(4,4)
nondecreasing in X.
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Zia +13 i113 1 +13 i2P2 + 06'

since exp(-1.1.9p i ) does not depend on j. Therefore, the probability of choosing alternative j equals

Pi = P(Zia+PilPi +13 i2 P 2 -1-0(y—c i )+E i =max(Z k a+ Pk1P1 + 13 k2P2 +( (Y - Ck)+E

exp(Z i a+B D Bj1.- 1 +. j2LD 2 -eC j)
	 \.

eXp(Z k a+B D 1 + .B k2LD 2 ---eC k)
k

(6.13)

Recall that while the unconditional mean of Ej is 0.5772 the conditional mean of Ei given that j is the

chosen alternative is not equal to 0.5772. By Lemma 1 in Appendix A we have that when {E }are

extreme value distributed then

A-Ej)jalvi +E j =max k (v k -1-E k ))=1.1.Emax k (v k -f-£ k ).	 (6.14)

Since by Lemma 1 in Appendix A

(v g +e k )=IllogM k e vk)+ER,

where has the same distribution as Ek, it follows that

gE(E i lv i +E i =max k (v k +E k ))=1.1E(v i +E i lv j +E i =max k (v k +E k ))—v i ti

=1.1E(max k (v k +E k ))—v i 	evk )— v j g+Ecii
	 (6.15)

= p, log Mk evk )— v i + 0.5772

From this result it follows that

E(Tc li lVi (p,y—c j )=max k Vjp,y—c k ))

-1-13 i2 p 2 +13(y — c i ))11— '3: +0.5772p,	
(6.16)

—(Z j a+Pp p i -Fi3 j2 p 2 	exp(Zka+PkiPi +13 k2P2 — eck))

=0.57721.1—LP -1-9m,y+istloak exp(Zka+PkiPi +13 2kP2 -eCk#

The interpretation of (6.16) is as the mean demand of good one given that j is the preferred

discrete alternative.
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The result in (6.16) implies that if one runs regression analysis based directly on (6.12) this

will produce biased estimates. Instead one should apply the specification

I li .13; +oily + g log (1 exp (Z k a+13 ki P i +P2k P2 —9ck))+ gli
	 (6.17)

where 0,*, .0.5771 1t-13 ii /8 and ri j is a random error term with the property that the mean of given

that j is the chosen alternative equals zero. The estimation can be carried out in two steps: First

estimate OC, Pkb Pk2 and 8 by the maximum likelihood procedure. Second apply these estimates to

compute

(log I exp (Z k a +81 P1 B D. kl	 +, 2k .2 —eC k)
k

which, analogous to Heckman's two stage procedure, is used as a known regressor in (6.17), and the

remaining parameters 0, p; and can be estimated by OLS in a second stage.

Example 6.2

Assume that the conditional indirect utility has the Gorman Polar form with

a(p) a o 	pc:k

b(p)= b o

ak = k ak = 1 .

where a0, b0, aka

k

From (6.8), (6.18) and (6.19) it follows that

5( ij Pr =419)03 , — ar)rni 61--- ci)Pr +a(P)(13r ar) e i •

and

 Pk are positive and

(6.18)

(6.19)

(6.20)

If } are standard extreme value distributed the discrete choice probabilities are as in (6.7) with

(6.18) inserted. If for example m i = Z i y + where Z; is an observable attribute vector and y and 8

are parameters, then if {Z i and fp j }vary sufficiently across a randomly selected sample of

agents then it is possible to estimate y, {a k and ao from observations on the agents' discrete choices.
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(

Pk

\ k

The remaining paramaters to be estimated are {13 r } and S. These paramters can be estimated in a

second stage by applying (6.20) and controlling for the selectivity bias as explained in Example 6.1.

6.3. Perfect substitute models

We now consider choice problems in which there are m +1 goods of which m brands are perfect

substitutes, cf. Hanemann (1984). The utility function has the structure

f(x, , z)= U
(in

E ivkxoz
k=1

(6.21)

and the budget constraint is

p k X k +z=y.	 (6.22)
k=1

Here, flif k } are unknown parameters and U is a conventional utility function. Letting Iv k x k = z k , the

corresponding utility maximization problem can be written as

subject to

m
max U E Z k , Z)

k=1

m

Zk +z=y, x k >O.
k=1

(6.23)

(6.24)

Clearly, this maximization problem implies a "corner" solution where the consumer selects the brand

with the lowest "price", p: P k /v k . Thus, brand j is chosen if

Pi
- = min k

j

while x k = 0, for k j. The corresponding indirect utility equals

V---_-.- max U(z	 = V --
J z + z j pj /w j =y	

Pi
'

,	 , y
j

where V(q,y) is the indirect utility that corresponds to the direct utility U(z i , z), i.e.,

(6.25)

(6.26)

V(q,y) = max U(z , z)
z+qz i =y

(6.27)
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exp (Z i 13— log p j
F.; =

exp(Zki3—glogpk).
(6.30)

Now assume that

log xi, = Z i	+ c j ig	 (6.28)

where Zj is a vector of non-pecuniary attributes associated with brand j while and g > 0 are

unknown parameters and Ej are i.i. standard extreme value distributed. Now from (6.21) and (6.23) we

obtain that brand j is chosen if

Z j i3—jailogp i +E j =max k (z k p—glog p k +E k )	 (6.29)

and therefore the choice probabilities are given by

Note that in this case there are no fixed costs associated with the discrete choice. As above the

continuous demands follow by applying Roy's identity.

Example 6.3 (Hanemann, 1984, p. 550)

Let

V(q, y) =
e q l-p  

, 03>0, ri#0,
p —1  

which yields

alv(ci,y)
()CCP elY,a2v

(cbY
)

(6.31)

where a 1 and a2 denote the respective partial derivatives, and therefore it follows from (6.25) that the

continuous demand for brand j is given by

a,v Pi-,y
\ lifi 	= enip	 eriy

P ;
Iv ; a2v	 Y

(6.32)

From (6.32) and (6.28) we get
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log(xi 	= log + (I) — 1) log tv i +	 log p i + ray

= log 0 +	
1)

 Z 
j

.(3+ (1 p) log pi +	 +	 1)
 E 

j

•.

	 (6.33)

As in the example above it follows that

E(log(ii p j )1;(3—illogp i +E j =max k (Z k i3-1.t.logp k +E k ))

(p	 (p  1
=loge+	 Z.f3+	 p)log p i +	 )(Zi(3—glogpi)

+ L=1 0.5772 + —1) 	exp k f3 — 1.1 log p k
11.

= loge + 0.5772 (p —1) + + (2--=1) log (y, exp (Z k I3-11 log p k
k

which can be applied in a second stage when using Heckman's two stage estimation method.

kk

(6.34)
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exp /a)a p i

a qp i ,q i )

7. Examples of discrete/continuous choice models

7.1. Behavior of the firm when technology is a discrete choice variable

Suppose the firm faces the choice of choosing one out of m possible technologies. Let

n j =	 , q i )exp(c i icc),	 (7.1)

j = 1,2,..., m , be the firm's profit conditional on technology j, where pi is the output price, ci is a

vector of input prices, is a random term that accounts for unobservable variables that affect

production with technology j. We assume that Ic i are i.i. standard extreme value distributed and

> 0 is a constant. We realize that when a decreases then the effect of unobservable heterogeneity

will increase.

By Hotelling's Lemma we obtain that output, Y 3 , conditional on technology j, is given by

and similarly input of type r, conditional on technology j is equal to

= 	4:pcii) exp(ejia).
qr.;

Let

Vi =alogf(p j ,q i )+E j .	 (7.4)

It follows from (7.1) and (7.4) that the probability that the firm shall choose technology j equals

Pj P(it j =max k n k )= P(Vi =max k Vk )= 	2, k exp f(P k , Ch )) •

exp f	 , q j
	(7.5)

Recall that by Lemma 1 in Appendix A

P (max k Vk 5y1Vj = max k Vk ) = P (max k Vk y).	 (7.6)

Therefore we obtain that

(7.2)

(7.3)

E exp(-
1

V-
a

= max k Vk = E exp (-
1 

max k Vk I.
a

(7.7)
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E exp ( 1max k Vk = e Yla • exp (–e -Y A) A e -Ydy
00

(7.10)

Moreover,

P (max k Vk y)=	 P(Vk 5_3/)= exp (–e -YA)	 (7.8)

where

A =	 exp log f(p k ,q k )).	 (7.9)

Hence

which by change of variable, A e -Y =x , reduces to

Eexpl 
1
 max k Vk )= A11« x -uad x =	 r(1-1) (7.11)

provided a > 1. When a 5. 1 this mean is infinite. From (7.2), (7.7) and (7.11) we get

E(y; I =max k
\ 	f(Pi, 

	E(exp(-1.	 =maxk Vk)
f(PP0 a Pi  

	

logqp i ,%)	 (1
Eexp — max k Vk )

a p i	

(7.12)

a logqp i ,q i , 1/a
	 [2ak exp (oc log f k , q k ))1 F (1 – —1

a p i

00

logqp i ,q i )	 ,\1/a
	Usk exp log f(p k , q k )))

a qr;

Similarly, it follows that

E (TcrlJ = max k n k )=

and

(7.13)

(7.14)
, 1/a	 (

E(n.17t•J =max k n k )= E (max k n k )=[l
ik 

exp	 k,logf(pq0)1 F 1--
1

J	 CC

E(logn j I =max k n k )= E (max k logic k )= 
a
—
1
loa

k 
exp(alogf(p k ,qk))

\
1+ 

0.5772.
 (7.15)

From the results above we can deduce an interesting aggregation property. We get from (7.14) that
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E (max k IC k )

a p i

, 1/a-1	 , a logf(p i ,q i
exp (oc log f k , q k ))1	 exp log f(p , q i )) 	 a pp=r (1 la)[Ek

,,l/a a log f(p j ,q j )
= F (1 — —1 )	

k 
exp (ct log f k , q k ))] 	 Pia p i

(7.16)

But by comparing (7.12) and (7.16) we realize that

a E (max k TC

p i

Similarly, it follows readily that

) =Pi E(yi ln i =max k rc k )=Eyi .	 (7.17)

aE (max k n k
	 =

J
 E (3Z rJ• I J = max k )=	 (7.18)

a Cid

Finally, it can easily be demonstrated that

a log E (max k nk
P. = a log rc

(7.19)

The results above demonstrate that assumptions (7.1) and (7.2) imply that it is possible to

define a representative agent with profit function E (max k n k ), from which one can derive fractional

technology choice rates, PP , and aggregate demands. These are equivalent to the choice probabilities

and aggregate demands and production derived from profitmaximizing micro agents.

7.2. Labor supply with taxes (I)

This example is an extension of Example 5.1 in section 5. Consider the choice of "working" versus

"not working", and annual hours of work when working. We assume that there is no rationing in the

market so that of the agent wishes to work he will be able to get work. Let the agent's utility function

in consumption and (normalized) leisure, L =1— h / M, be given by

V(C, L) =
(cai 

a2

—1)P2M
(7.20) 

a l a 2

where M = 8760, is total number of hours a year, h is hours of work and a l < 1, a 2 <1,

13 > 0,13 2 > 0. The budget constraint is given by

C = hW + I S(hW, I) 	 (7.21)
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where W is the wage rate, I is nonlabor income and S(•) is the tax function. There is no fixed cost of

working.

The marginal rate of substitution equals

Let

h	 -1 a
a 2 v(c,L)  	- 34-) 
a i v(c,L)	 p, cac-1 	•

(7.22)

g(x,y)= x + y S(x, y). 	 (7.23)

Then it follows that the agent wishes to work if

W g(0, I) >.
a2V(g(0, I),1) 13 2 g(0, I) 1

a i V(g(0, I), 1)	 Pi
(7.24)

and hours of work, h , is determined from

a 2 V(g(171W, 41— FIN) (	 j"2-1
W a g(T. g(iiW, I) I al A3 11- W, I) =	 = (3 2 1_3/7 (7.25)

provided (7.24) holds. The left hand side of (7.24) is called the marginal wage rate at zero hours of

work, and the right hand side of (7.24) is called the reservation wage. Assume that (3 2 /(3 i and W are

specified as in (5.7) and (5.8).

Estimation by Heckman's two stage method

From (7.25) we have that hours of work is determined by

(a 2 — flog P2= log W + log a ig(r1w,i)+ (a l —1)log g(iCW, I) — log (—)	 (7.26)
Pi

provided (7.24) holds. Therefore, we face the usual "Tobit problem" that the random term, E l — £2,

does not have zero expectation and consequently we cannot apply standard regression analysis. Both

and W are endogenous variables. h is endogenous because it is the hours of work function.

Although W is exogenous theoretically it may be endogenous statistically due to unobservables that

affect preferences through the hours of work function. If log 03 2 /13 1 ) are replaced by (5.7) and we

divide both sides of (7.26) by a 2 —1 we obtain
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— log(1-174
h 

— max (0, — X 2 b + E log W + ri log a ig(iiW, I) + r2 log OW, I) + (E l E 2 )) (7.27)
—

where r1 =1/(1 a 2 ) and r2 = (a l — 1)/(1 a 2 ), and where E log W is given by (5.8). Now the labor

supply eq. (7.27) is well defined for both working and non-working individuals. However, it is

nonlinear in parameters, and there still remains the endogenous variable hW on the right hand side.

On the subsample of those who work it is, however, linear, but we cannot apply standard regression

analysis because, in addition to the endogeneity problem, the conditional expectation of the error terms

given the subsample of workers is not equal to zero. To account for these problems we shall apply

Heckman's two stage method. Let

A,==- -
ti

1

E(C i --£ 2 111- >0)
(7.28)

where

,r2 = 1.12 var fr 2

By applying the result obtained in section 2.3.4, it follows that

( Xsri +r1 log a l g(0, I) + r2 log g(0, I))

P2
(7.29)

where P2 is the probability of working, and can be written as

P2
	Xsr, + r1 log a lg(0, I) + r2 log g(0, I))	

(7.30)

and where Xs = X i a — X 2 b. Hence, it follows that

	

E(-1og(1- 171 )1 h > 0) = Xsri + r, loga i g(WEI)+ r2 log g(wii,I)+	 (7.31)

which means that we can write

— log (1 —
h 

= Xsri + r1 log a i g (WE I) + r2 log g	 I) + + 1 2 	(7.32)

where Th is a random term with the property that

1
= —E (6 1 — cd—X 2 bri +r1 logW+ri loga i g(liW,I)+r2 logg(0,I)+ri 	— E 2 )>0)
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Similarly, it follows that

where

E(n2Iii> 0)= O.

E(logWiii>0)=X l a+ptk

p = corr (E l , - CO.

(7.33)

The relation (7.33) is useful because it enables us to estimate the wage equation from a sample of

working individuals, as we shall see in a moment. The term ink in (7.33) may be called the

"selectivity bias". It is different from zero when p # 0 due to the fact that in this case there is

correlation between the random term in the wage equation and the sample selection criteria (namely,

> 0). Due to (7.33) we can write

logW=Xia+ink+111	 (7.34)

where

If k were known it would be possible to estimate (7.32) and (7.34) as a simultaneous equation system.

Unfortunately, A, is unknown and this is therefore not possible. We can, however, apply the estimates

from the probability of working to obtain an estimate of A,.

Step 1 

Estimate the parameters of the probit model (7.30) on the basis of discrete observations on

whether the agents are working or not working.

Step 2

Estimate the wage equation (7.34) by using X as a regressor, where 2. is an estimate of X

obtained from step one.

Step 3 

Replace log a lg(Wii, I) and log g	 I) by instrument relations

loga i g(Wii,I)=Z0 1 +u 1 	(7.35)
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and

logg(WEI)= Z 9 2 +u 2	(7.36)

where Z is a set of instrument variables; Z= (X, I), and u 1 and u2 are zero mean random terms.

Estimate (7.35) and (7.36).

Step 4

Insert and the estimated wage equation (without the selectivity term) and the estimated

instrument relations (7.35) and (7.65) into (7.32) from which the structural parameters can be

estimated.

Estimation by maximum likelihood

Since E i and E2 are normally distributed we can write

	E2 -e l =0E 1 +6 3
	 (7.37)

where e3 is a zero mean normal variable that is independent of c i and 0 is some constant. Let S2 be the

subsample of individuals that work and S i the subsample of individuals that do not work. Let i index

individual i. From (7.26), (5.7), (5.8) and (7.37) we have that when	 > 0

E 3i = - 0E 1; +(1—a 2 )log	
M
	

(7.38)

+(a l —1)logg(ii i Wi ,I i )—X 2i b.

Note that we can express E li as

	= log Wi — )( h a.	 (7.39)

Let 12 be the (conditional) loglikelihood for the subsample of individuals that work. From (7.38) we

have

a E 3i a2	 4. 	+_1 Wi 	(al —1)W i 	
(7.40)

The loglikelihood for the subsample of those who work becomes
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—1)logg(riiWoIi —OlogW i +X li a(0+1)—X 2i b+(1—oc 2 )log

log i 2

1

iES2 a3

hi

M
ei3

(7 3

(7.41)

Wi

I	 log 'AT; — X li a) 1

Gi

where clf•) is the standard normal density, a1 = Var e n and 0 32 = Var e 3i .

The likelihood for non-working individuals equals

ieSi	 a

where 6 2 = Var (e 2 — e l ). The total loglikelihood, t , is therefore equal to

= t1

(7.42)ex	
(loga1,00,0+(al — Ologg(0,I i )+X ie

pt	 (13, =1 I

Results from empirical analysis of a sample of married women in Norway, 1979/1980

Dagsvik et al. (1986) analyze female labor supply in Norway based on a sample of married women

from the level of living survey/tax return files, 1979/1980, by applying the model discussed above.

The variables that affect the women's preferences are specified to be "Age", "Age squared", "Number

of children below six years of age", "Number of children above six years", a disability dummy and an

index of job opportunities for women.

The variables that affect the wage quation are assumed to be "Age", "Age squared" and "Years

of education".

The estimates obtained by the four step procedure are displayed in Tables 7.1 and 7.2 below.

81



6
It 

2 0 2
=Vare i =Vare 2 (7.45)

Table 7.1. Estimates of the parameter in the utility function

Independent variables
	

Estimate	 Standard deviation

Intercept	 -5.35	 0.80

age	 0.158	 0.03

10-2 x age squared	 -0.205	 0.03

Number of children less than six years 	 -0.289	 0.07

Number of children above six years	 -0.079	 0.04

Disability index	 -0.398	 0.09

Index of job-opportunities 	 0.727	 0.59

a l (Consumption)	 1.0

a2 (Leisure)	 -4.28	 0.11

Marginal wage (1/0)	 0.965	 0.13

Table 7.2. Estimates of the wage equation

Independent variables
	

Estimate	 Standard deviation

Intercept	 2.161	 0.28

Years of education	 0.065	 0.01

Age	 0.030	 0.01

10-2. x age squared	 -0.032	 0.01

Selectivity, 5, 	 -0.105	 0.06

R2 	0.16

7.3 Labor supply with taxes (II)

We will now consider the case where E i and E2 are jointly extreme value distributed. Dagsvik et al.

(1988) have analyzed female labor supply in France based on the model formulation above, but where

(E l , E2) are bivariate extreme value distributed instead of bivariate normal. Thus,

P(61 Y1 ,E2 Y2) --= eXPHe-YdPa	 -Y2/Par
	

(7.43)

where p, 0 < p 1, is related to the correlation coefficient by

corr(e 0 e 2 )= 1 — p 2 	(7.44)

and
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Moreover, it follows that

2
' 6 	2 2	v ar fr 	 E 2 )	 .

Since E l and E2 are jointly extreme value distributed we get by Theorem 7 that

P fr1 < E2 +Y) =" 13 (L <a+ Y )
G 6 6

	exp (y/po)	 1 
= 

1+ exp (y/pa) 1+ exp (—y/op)

which means that E, — E 2 has a logistic distribution. From (7.47) and (7.27) we get

P(>0)= > 0).
1 

1+ exp (—(X sr, +r, log a, g(0, I) + r2 log g(0, I)) I pa)

From Lemma 2 in Appendix A we get

(7.46)

(7.47)

(7.48)

log (1— P (IX > 0))
E 2 > 0)=- 

P01>0)	
(X sr, + r, log a g(Wii, + r2 log g(Wii,	 (7.49)

7

From (7.32), (7.48) and (7.49) we thus obtain

—log (1—
h 

= Xsr, + log a, g(Wii, I) + r2 log g(Wii, I) + er5: + 2
	 (7.50)

where	 is a random term such that E 0 2 1 ii > 0)=0. Similarly, it can be proved that

logW=X l a—palogP(ii>0)+Fl i 	(7.51)

where aj l is a random term such that E (ij,11i > 0)= 0 .

It is now clear that the model specified above can be estimated in the same way as the model

specification in Section 7.2.
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Appendix A

Lemma 1

Suppose U j =v j +8 j , where (8 1 , £ 2 , , £ m ) is multivariate extreme value distributed. Then

P (in a x k Uk S y I U./ maxk Uk = P (max k Uk 5y).

Proof: According to the definition of the multivariate extreme value distribution

P(U 1 y 1 ,U 2 y 2 ,...,U m y m ):-----F(y o y 2 ,...)= ex+G(e v ' -Y',e v2-Y 2 ,...,e vm -Ym	 (A.1)

where GO is homogeneous of degree one. For notational simplicity let j =1, since the general case is

completely analogous. We have

P(max k U k E(z,z+dz),U 1 =max k U k )=P(U i qz,z+dz),U 2 	=a1F(z,z,...,z)dz.(A.2)

Since

G(ev1-311,ev2-Y2 ,...,e v m -Ym )= C Y G(ev1 -1 '+Y,ev2 -Y2+Y,...,evm -Ym+Y)	 (A.3)

we get

exp(—e-z	 (A.4)

Hence

P (max k U k y, U =max k  U k )= f a lF(z, z, z)dz

=e "1 a 1 o(ev1,ev2,...,evm)f expe-e'	 dz
	 (A.5)

ev. a 1 G(ev1,ev2,...,evm)

G(evi,ev2,...,evm)
	• expEe -Y	 )).
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But the last factor in (A.5) equals P (max k U k 5_ y), as is easily seen from (A.2) and (A.3). Moreover,

by Theorem 7 the first factor on the right hand side of (A.5) equals P(U i = max k U k ). Thus the

events {U 1 = max k U k }and {max k U k 5_ y} are stochastically independent.

Q.E.D.

Lemma 2

Assume that Y= +au, where

1 
P	 Y) = 1 exp(–y)•

Then

1+ exp(–
Nu>y1Y>0)=

,for y>– , and equal to one for y›.—. r urtnermore,
a

11	 11,
E(1.11Y>0)41+exp(--Dog(l+exp(1 — =

log“Y

a	 a	 a	 P(Y>0

<0)

) a •

Proof:

Fory > – — we have

q-1-1-u>y,u>–)
P(u>yIY>0)= 	

P >

1 + exp
a

1+ exp(y)

which proves (A.6).

Consider next (A.7). Let Y =Y/a. Then for y 0

1+exp(y)
(A.6)

(A.7)

(A.8)

P(–u<–y) P(u<–y)

P(
–u< 11) liu< 11-)

a
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P^Y >y,i" >	 P(1">y
P(i">0>0)= 	

P(Y>	 P(Y>
(A.9)

Hence

dy E(5P>0)=5 1)('-.. >y .i7 > 0)cly41+exp(- 11-)) .1.
a o i+exp(y a_ PIo

- exp (It-- y) dy (	 ii \ 00G = (1+ exp (-1) f	 = 1+ exp (-II) I- log (1+ exp ( 1--t - y))	 (A.10))
G 	

11--y)
a j 0 	 0

0 1+exp( 
a

= (1+ exp (- -1-1) log (1+ exp (111.
a	 a

This implies that

E(ulY>0)=E(ii

and (A.7) has thus been proved.

> 0) - 6 = (1+ exp (- -a)) log (1 + exp (11)
a 	 G

Q.E.D.
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Appendix B

The Tax function applied in Dagsvik et al. (1986)

Let

0.053x, x E [0,3000]

3.38-10 -4 (x —3000), x E [3000, 49826]

3.38 -10 -4 (0.81x + 6461'61 +0.053x, x e [49826, 23700]

—27472 + 0.651x , x E [237000, 00).

Then the tax function is given by

T (hw, I) = yr (hw + I),

when hw or I are less than NOK 22 000, and

T (hw, I) = xlf (hW) -I- (I)

otherwise.
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