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ABSTRACT

The values of a variable x are assumed known for all elements in

a finite population. Between this variable and another variable Y, whose

values are registered in a sample survey, there is the usual linear regression

relationship, viz.,

EM	 ax- bi

with var(Y.lx.) = a2 and cov(Y., Y.Ix) = 0
1. 1 	 1 	 j

(i,j = 1,2,-,N).

This paper considers problems of design and of estimation of a and b.

The following Godambe type theorem is proved: There exists no minimum vari-

ance unbiased linear estimator of a and b. We also prove that the usual

estimators of a and b have minimum variance if attention is restricted to

the class of linear estimators unbiased in any given sample.
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1. INTRODUCTION

Assume that we have a finite population of N distinguishable

elements labelled by the integers 1,2,...,N, with the associated values

(xl' Y1') ...(xN' YN ). Furthermore, we shall assume that

(i) xl,...,xN are given numbers,

(ii) U1,...,UN are uncorrelated random variables with

E(U 1 ) = 0, var(U.) = a2 ,

	

(iii)	 Yi = ax. + :b + U., where a and b are unknown constants.

2
Our aims are to make a sample design and to estimate a, b, and a .

Conditioned on a given set of values of xi 	= 1,2,...,N) we shall look

for linear, unbiased estimates of a, b which over repeated samples

from the finite population give the least variance for all possible values

of a, b, and a > O.

Under certain assumptions about the design we shall prove that

there exist no minimum variance unbiased, linear estimate of the regression

coefficient. In Section 3 we shall restrict the class of estimates and

show that within this restricted class the usual estimate of the regression

coefficient has minimum variance.

Recently the problems involved in estimating the finite population

regression coefficient from a sample have been discussed in Kish (1970) and

Frankel (1971). In the present paper we are concerned with estimating

411 	 parameters in an assumed structure rather than estimating parameters in a

specific population.

Our model we think is useful when estimating a behavioral econometric

model in which the endogeneous variable, Y, is considered to result from a

generating process comparable to a chance mechanism. Haavelmo (1944).

In textbooks in econometrics the discussion are concentrated on finding

'Westimatesofa,b,anda 2 foragivensetavaluesax.in the

sample. Klein (1963), Malinvaud (1968), Theil (1971). In these textbooks

it is proven that conditioned on a given set of values of xi in the sample

the usual estimates are Markov-estimates. In this paper, however, we want

to take into account, the variation due to sampling. We have several reasons

for doing this, among others:

•
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1. In addition to "good" estimates of a, b, and a
2 

we want to find

"good" sampling designs for estimating a and b.

2. In Section 2 below is given an estimate of a, which may have a

smaller variance than the usual regression estimate, when the

sampling variation is taken into account.

3. On the given assumptions the sample is an ancillary statistic

and this brings us up against the question of whether the

inference should be made conditional given the sample, or

unconditionally ,i.e., over repeated samples from the finite population.

Although many impli c itly seem to prefer conditional inference on grounds of

common sense, there exists to our knowledge no theory justifying

this position.

2. NON-EXISTENCE OF A MINIMUM VARIANCE UNBIASED, LINEAR ESTIMATOR OF a

A sample of size n is defined quite generally to be an ordered

sequence of n of the population labels 	 (repetitions allowed)

together with the sequence of their associated observed characteristic

values

(x,y) = (x	 $Y. ),(x. $Y ),...,(x. ,y. ).
1'1 11	 12 i2 	 ln

Let

Yi denote the realization of Y. in the population, and

let	 x = (x	 xN ),rx, 	 '

( Yi , . .. , YN ),

( Yv Y2' - "YN ) .

./2
A sample design is then defined by some finite set	 of ordered sequences,

s, together with a probability measure assigned by choosing a function

p(s) > 0, Ep(s) = 1, where p(s) is the probability of choosing the sample s.

The probability that label i is included in the sample at least once we

shalldenoteff—Define a stochastic variable, S, with p(S=s) = p(s),

s ( .7or
 such that S and Y are independent.

ft,



5

As estimates of a and b we shall consider the general class of

linear estimates defined in Horvitz and Thompson (1952) and Godambe (1955)

A

a (y) 	 E 	 f3	 ys	 As As

where Xs can be assigned to each label, X, and each sequence s C

before selection and observation of the sample; thus a may well depend
Xs

upon x. ( E is the sum over all different labels in s.)
XEs

For a given design and a given x we want
s
(Y) to be unbiased, i.e.

E(asT) = 	 E p(s) E 	 As ' A 
+ b)

x s 

= a E •,p(s) E 13As xx + 	 E 	 E
	

As
s6 	 XEs 	 X.Es

A
For a (/) to be unbiased we must have that

(1) E 1)(s) E 5As xx = 1, and
sE 	 s

(2) E p(s) 	 E f3As 	= O.
SEI 	 X s

We also find that

E ( as(Z )) 2 = a 2 	s ID(s) E $ 2 + E p(Of E a(ax + b)} 2
XEs As scif	As

from which follows that

2
(3) 	 vara (Y)) 	 a	 +E ,P(s) E 132 	

2
E ,p(s) { E 	 (3 (ax +1))) 	 a .Sr A6s• As sCf 	 ( s As X

We shall.state an assumption and prove that under this assumption

there exists no { aXs which minimizes (3) under conditions (1) and (2).

cf
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Assumption 1

We assume that there exist two samples s and s2 with a common1 
label and such that

f‘,
E (x. -x)
sl 1

r1d

E (X 4 X) where
s 2

N 	 N
X 	E	 ni •

i=1 1

Theorem 1

Under assumption 1 there exists no {13xs } such that for any a > 0

(3) is minimized for all values of a and b under conditions (1) and (2).

Proof:
....10.1■11•11.11111.01M■

Assume that
,
 {8Xs } minimizes (3) under (I) and (2) for all values of

a and b. Then for all X and all s including X we have that

(4) 02 m f E (3. 
s i
(ax.+b” (ax x +b)-pxx - yXs	 i 

x

where p and y are lagrangian multipliers. Equations (4) must be satisfied for all

admissible values of a and b for any given value of a > O. We shall insert

411 	 two sets of values for a and b, and show that the two corresponding sets of
x

conditions on • {f3 Xs } cannot be fulfilled simultaneously.

(i) a = b = 0 1 and a = 1

Inserting these values into (4) we see that exts ar. $7 for all X and

all s including X, and it follows that

(5) a7 = pxx + y.

MP*
	 o
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	As am 	 am we can rewrite (1) and (2) in the following way:Xs 	 X

N
(1) E 1. .x.a. = 1, andJ_111 1

i=1

N
	(2M ) 	 E w.ß. 	 = O.

11
i=1

From (5), (1m ), and (2N ) we find that

N 	 2 	 N 	 - 	 2 	 N

	

= 1/ { E 7r.x. 	 ( E 7.x.) / E 71- . } = 1/ S
2

ira 1 i 	
i=1 1 1 	

1:1 1 	 x

and
N 	 N 	 2

	:p E 7r.x. / E 'IT 	 • - X S
	1 1 	 i	 x

i= 1i=1

From this, it follows that

	

(6)
	

(x.- x)/ S

• 	

2 .x

We now insert a second set of values for a and b.

(ii) a = 0 b = 1

▪ 

and a = 1.

Inserting these values into (4), and using Om IT $
x we have that

Xs 	 X

	m 	 •

	

( 7 ) 	 { 	 pxx 	 y = 0

ies

for all X and all s including A. Now by assumption i we can choose

two samples s
1 

and s
2 

such that they have at least one label in common.

Then from (7) it follows that

	(8)	 E. e .., E e .

	

iEs
1 	 ies

2
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Inserting (6) in (8) we find that

( 9 )
	

E (x.- x) = 	 E (x.- x)
ifs

1 	
iEs

2 
1

for any two samples in the design with a common label. Applying assumption 1

we see that (9) is not satisfied for at least two samples in the design, and

we have proved theorem 1. El
To illustrate the result we shall give an example:

Example 1 

For a given design the following estimate of a is unbiased.

M(Y) = (p(S) -31 I fI) E Y.(x. - x(S))/ E (x. - 7c(S))2

	

iES 	 iE S

where J ti denotes the number of samples in the design, and Tc(s) denotes the
sample mean of x. Furthermore, we have that

ARK 2 	 fjp 2 	 2 -1
var(a (Y)) = a E {p(s) 1;7 	 E 	 x(s)) 1 	 +S sEf 	 iEs 1

a2{ E tio(P(s)1549 1 2 )-1-11 .
sE

Let a (Y) denote the usual estimate of a. Then we find thatS

var(  (Y)) =S1
	2 	 — 	 2
	G 	E, i)p(s)/ E (x 4 - x(s)) .

sEYF 	ies

We shall find a population and a design such that var(em (Y)) isS
not uniformly larger than var(as(Z)).

The population consists of three elements with the associated x-

values x1 :-. 1, x 2 = 2, and x3 = 3. The design consists of two samples,

= . 11, 2} and 82 = {1, 31, with p(81) = 2/3 and 1)( 82 ) = 1/3. In this

case we find that var(a (Y))= 1.5 a 2 and var(axm (Y)) = (9 a 2 +a2 ) it 8.S f‘, 	 S
It follows that . var ca

S
 (y)) is not uniformly smaller than var(em(Y)).

S
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3. OPTIMAL STRATEGY IN A SUBCLASS OF UNBIASED LINEAR ESTIMATORS

A strategy involves two things, the sampling design and the estimation

procedure.

One "natural constraint" to put on an estimate of a is that it

should be unbiased over the hypothetical population for any given sample,

(Y) i S = s)	 a, orS

E (3. x. = 1 and Eß. 	.7. 0151ies 	 ies is

for all samples in the' design. Evidently this class of estimates is a sub-

class of all unbiased linear estimates. We now minimize (3) under conditions

(10).

From (10) it follows that Ep(5) .(E6 5 (axx + b)}
2
 r- a

2 
and we can

2therefore minimize Ep(s)E 5 under conditions (6), which gives

xS 	 {xx - x SW/ { E x2 - n(S) 7c,2 (S)}
iES

where x (S) is the mean of all x values in the sample after the removal

of duplicates, and n(S) os the number of different labels in the sample.

Remark 1
....111.1111.10.M•1111.1.114.1•11.M.11.1M

It should be noted that ks is independent of the design (except
2 	 —that we must have {E 	 2 (s)} >0 for all samples in the design).

ies
One consequence of great practical interest is that the researcher does not

need to know much about the design to Calculate axs .

Define

E Ex ), - x (s)] [YÄ -7(s)]
xfs

E [x.-7i(S)J 2
iES 	 1

which is the usual estimate of the regression coefficient.

.1".. 	 E x 	 YaS

	

	 XS XXES



E p(s )
sf 5°:

E (x.- -sx s))
2

i=3. 1

01111)
41110

n
E p(s) - E (x.-x(s)) 2

sf ( 	i=1 1

(n-.1) 5
2
x  

10

.x2
Then 	 var (as ) ::p(s)/ Z (x . - -X s	 ,

isf r	 ifs

which is not independent of the design.

The design which minimizes var (g) consists of choosing the units

which minimize o2 E ..p(s)/ E (x. -3i( 5 )) 2 .
SE. ? 	ifs 1

Remark 2 

The optimal design is of little Practical interest for several reasons.

We shall give two:

1. One would almost never design a survey to estimate a single

regression coefficient.

2. In economics and social research the linear relationship is

an approximation, and the researcher would like to study the

residuals over the whole range of X.

Corollary 

If the sample is a simple random sample of size n, we have:

> 1 avar ( a )
S 	 n-1 2

x

where

2

• N
S 	 and
2

(x•- x) , 	 x1 	 -- 2 	 --

	

x 	 N-1 i=1

Proof:

Applying Jensen's inequality one finds that
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4. ESTIMATION OF b

The class of linear estimators is again

S 	
E y Y

XS X 'XES

where yxs can be assigned to each yx and sf P before selection and

observation of the sample.
A

For a given design we want b to be unbiased, i.e.,

E(ßs) .1: b,

which implies that we must have

E p(s)C E y xs
SE7 	 XEs

•
E p(or E Y xsal

se- Y	 Xfs

xX = 0, and

We also find that

(14) -yar ( ; ) L" a
2
{ E p(s) E y2 + 	 E p(s){ E y (ax +b)}

2
 -b

2

xes xs 	 Xes X s 	 X

Under the same assumptions on Y' and x as in section 2 we have that there

exists no minimum variance linear, unbiased estimate of b.

Again, if we restrict the class of estimates, as in section 3, to the

class that satisfies

(15) E y 	 x 	 ::: 0, and
XEs Xs X

(16) 	 E y 	 =
Xes Xs

for all samples in the design, we find that (14)ìs minimized by

-;i(S)]	r 	m

E 	
....51(0j2 x(s)] 	54s)*Yxs = L-n ( s )

•

ifs

It follows from (14) that

Am
var (b )

r2 E 1010{( 	 E 1-7T-15Ta 
sk9 ' 	xfs

[xx 	 (s)] 	 2
ii(s)1

E [x.- ii(s)]
2 

ifs /
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AK 	 Ax
E y xs yx - a x(S).

XES

Corollary 2 

For any design where 	 E Ex.- x

design, we have that
	 ies

,12,
s)j I > 0 for all samples in the

Am
cov(a , 0

2 E,Ap(s) x(s).-

s

5. ESTIMATION OF a 2 var(am) AND var(ß)

Denote

Am 	AM,2
OS
	=	 E (yi - a_x. -b )1 S

iES

Corollary 3 

2
For any design in which { E (x.- ii(s)) 	 > 0 for all samples in

iEs
the design, we have that

	

E(Q(s ) 	 ( 	 2) a 2 ,

where ì =E ,41 n(s) p(s).
sE5r

Proof: 

Applying E(Q0s ) = Ecop(s) E(Q05
seJ

=s) we find that

E(Q0S ) = a
2
{ 	 ii to p(s) n(s) 	 2 	 (n. - 2
s

Corollary

For any design in which 	 E (c.- R(s)) > 0 for all samples in
ifs 	 1the design, we have that

Am
E EQ6s /{(n(s)-2) E (x. - (s)) 2 }] = var(a ).

iEs

Proof: 

The proof is similar to the proof of corollary 3.

Moreover,the estimates ofvar(q) are found to be the usual estimates.

From corollary 3 and 4 it follows that the researcher does not need to know

much about the design to estimate variances of 0 and tm .
S	 S
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