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1. Introduction and stmaa

Graybill and Hultquist (1961) describe a variance components model

as follows: An (ft ,e) vector of obe*rvations Y 5s ..ssur/104 	 L. m linear sum
%

of k+2 quantities,

k
(1.1)	 Y	 f3 1- E	 B43.

4, 	 4,n 0	 k+1

Here 0fil.safixedunknownconstant.Oisa (pidq) vector of multinormallyNi 2
distributed random variables with mean 0 and covariance matrix a. I,Adei
(I denotes a k-dimensional identity matrix and 0 a null matrix).Nk
The vectors a a ... , kx1 	 ka 	 are stochastically independent. J is a (kxl)

vectorwithallelementsequaltol.k. (i = 1,2,...,k) a (nNpi ) matrix

of known constants.

Some general theorems concerning this model have been derived by

Graybill and Hultquist (1961) under one or both of the Following assumptions

Mil.andik.commute, where A. r. B. B! 	 (i 	 1,2,...,k)4,1N1

(ii) The matrix B. is such that 	 B. rJ 1 	and B. . J	 J
%x 	 n4„.1. 	 ilf r. 	 .PI

where ri is a positive integer.

The assumptions (i) are not satisfied in unbalanced models.

In this paper we will consider a special case of model (1.1) without

assumption (i), viz. the common variance components model for a complete

two-way layout. Spjotvoll (1968) has treated the same model in a different

manner.

In sections 2 and 3 we shall transform our model to a "semi-canonical"

form and find a method for obtaining confidence intervals and testing hypo-

thesescmcerningthea. In section 4 these tests are compared with the

corresponding tests in a fixed effects model. In section 5 the test statistics

are expressed in terms of the original observations.

. Modification of the model of Gra bilLEILL11quial .

We consider the following model:

(2.1) 	 yi ik = 1.2•+ a1 + 	 yii 

i r. 1,2,...,r; j 	 1,2,...,s, and k ..: 1,2,...,nii . Here 1.1 is a constant,

while ct., $., Y , and e ijk are independent normally distributed random1 - 	3 - 	2. 
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variables with means 0 and variances
2

' a
2 

' aAB'
2 and a2

A B 
-

Define Yij (lin..) 	 z y.. ; i 7,-^ 1,2,...,r; 	 1,2,...,s. 	 Then
13 k1 13k

(2.2) 	 i*ij = P 	
a. 	 0. 	 .v 	 1- Z.;'j 	 ji 	 i

With 	 (1/n..) 	 E e..lj 	 k=1 ijk

For any set of variables a 3... (i = 1,2,...,r; j 	 1,2,..., ․ ), let a
3

be the vector (a11 ' a12 ..., als ' 2a,1
 ...,a Y. Then e is multivariate' 	 ' 	 rs

normally distributed with mean 0 and covariance matrix E (e) K a
2
, where

eJ 	 AJ

, -1 	 -1 	 -1)(2.3) K Diag 
"111' n12 ,-, nrsi*

Formula (2.2) may be written in matrix form as
a1 	 fi1

(2.4) 	 Y =J 	 pi- B i. B 4Ø2 i- B y + e,
a2 	

_
(1,rs 	 elf 	 . 	 ,1,2 	 3N 	 A,. 	 Ai 	 fl,

OE
s,BS 

rus

A,s

Ais

with B 	 0 , J ,...

0 , 0 ,4110., J
%s  

and B =which is of the same form as (1.1). The covariance matrix forNrs'
x, turns out as

E (y) 	 B B? a 2 	 B Bt a
2 	

1 	 a
2 

i.. K a
2

.
e‘,1 	 A 	 ek,2 r,2 B 	 r„rs AB

Lemma I: B, 	 and Bn W., commute.
r1J4 (A/ 4'

Proof: 	 Multiplying (k3 	 with 	 N, we get a symmetric matrix.

When the product of two symmetric matrices is symmetric, the matrices commute. Ej
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From lemma 1 it follows that there exists an orthogonal matrix P with

the property that P A P and P A P' are diagonal matrices with the eigenvalues

on the diagonal (Herba01 -1,1959)0 P may be chosen so that the first row, in P is

1,1,...,1). (f, , 	 a 	 k2 	 B2 U).
If Z P y, the covariancc matrix for Z is

'‘J '1, 	 rt,

(Z) 	 P A P' a2 i- P A P' . 
2

a - i- I 	 a
2 

i- P K Pt a
2

tj

	(J p 	 (1,2 rk, 	 B 	 ,‘,rs 	 AB

Lemma 2: (i) Rank ( P ) 	 r;-
(ii)Rank ( ) 	 s;

(iii)Rank (B 'B ) 	 r 	 s -1;A,24A,2
(iv) Rank (A -i- A ) 	 rank (B !B ).

%I 	 A,2 	 A,10,2

Proof: (i), (ii), and (iii) are seen from (2.4). (iv) follows from

the proof of Graybill and Hultquist's (1961) theorem 1. El

From the fact that rank (A ) :7 rank (B ) r and because A has the
r\ l fv1 	 rbl

eigenvalues s of multiplicity r and 0 of multiplicity (r s r) = r(s -1), it

follows that P A, P' has r diagonal elements all equal to s and the rest equal

to 0. In the same way it is seen that P A
2 
P' has s diagonal elements all

equal to r and the other elements equal to C.

From (iii) and (iv) it is seen that the matrix (P A, Pt 	 P A,P') has

(r s 1) diagonal elements different from zero. Thus when the diagonal

element in P A, P 1 is different from zero, the corresponding element in P A P' %2
is equal to zero except in one place (in the first raw).

We now partition Z in the following way:
(1,

(i) Z
1 	

(rs) 2 y ..., which is the first element in Z.

(ii)Z, consists of the (r - 1) elements in Z whose covariance matrix is
fIJA 2independent of G B .

(iii)Z consists of the (s - I) elements in Z whose covariance matrix
rtÆ

	2
is independent of aA .

(iv) Z consists of the (r -1)(s - 1) elements in Z whose covariancen,AB 	 fk,2
matrix is independent of G A and GB.
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Lemma 3: EZ = EZ 	 EZ = 0.(\,,A 	B	 JAB

Proof: 	 This follous from the fact that P is orthogonal with a firstrt,
row which is (rs) 2 (1,...,1). —I

We have

E (Z) =sI 	0
2 
+1 	G

2 
+

n
K a

fk, 	
A 	 fly-1 AB

2 2 	 9
E (Z ) = r I 	c +1	 a +K• ibB 	Si B 	 A,s-1 AB

2and 	 (Z ) = I
r‘, r‘,AB 	 qi(r 	

2
6-1)(s-1) GAB 	 ' a

Here K K
2 
and K are the corresponding submatrices of P K Pl.

In what follows Z Z and Z will be used for testing hypotheses
	22	 22

	rk,B	 fkiAB
2concerning a

A/a , B/a , and aAB/a

	2 	 22.a Test for a, /a

E (Z ) may be written as (I 	 A + K )a
2 

where A = a
2 

/a
2

.
• rIJAB 	 q)(r-1)(s-1) AB 	 0 	 5 	AB	 AB

Then

(2.4) 	 = Z 2 (T 	 A 	 + K )
-1 

Z /a
2

	AB	 ,AB 	 ( r-1)(s-1) AB 	 „j3

has a X 2-distribution with (r-1)(s-1) degrees of freedom. There exists an

orthogonal matrix A such that A K A' 7: D is a diagonal matrix. Introduce
fk,S 	 (\.,1

Z
m 

= A Z . The covariance matrix for 7,
x is (Irk,AB 	(1, i\ AB 	 q,AB 	 ((r-1)( 	 L 	

+ kl ) and
s-1) AB

Z' (I 	 -1
A + D )

-1 
Z
m

	

+ K 	 Z 	 = Zm (I 	 ,(x,AB(r-1)(s- 	 ruo
,) 	

AB 	 ,k,AB „(r-1)(s-1) AB 	 q,1 	 qtAB

(r-1)(s-1) 	 2
E 	 Zn.AB 	 A) RA 	 + d.).( j B 	 jj=1

Here d1 . 	d(r1)(s1) are the diagonal elements of D . We see that 0" -- -AB
is a decreasing function of A ,

AB
2

Define Q = 	 E 	 (y.. - v.. )
2
. Then Q/G - has a X -distribution with

ijk 	 -ij.
1J k

(n-rs) degrees of freedom. Q is stochastically independent of QAB . Thus

F( AB ) = (n-rs) QAB
gr-1)(s-1) Q has an F-distribution. Since Q decreases

AB
with AAB F(L AB) 	AB( 	 decreases with A . Hence a confidence interval can be obtained' 
in the usual way.



When testing the hypothesis

<
AAB - 8 0 against AAB >

we reject when F(, 0 ) is larger than the upper a-quantile, f 
-a

, of the corre-

sponding F-distribution. The power function is

11 	 2
P.{(n-rs) 	 E 	 Z. RA + di)1/ [(r-1)(s-1)>2,AB 	 0 	 ,,#)

Pf(
In

-i's)E (L ,\B + d i) R.1/(L0 + d /[(r-1)(s-1)1 	 f
1-a

where 	 -1)(s-I) are independent X 2-distributed random variables with

1 degree of freedom. gABA 	 decreases with Z AB .

2"
2.b. Test for a

A
/a assuming a

AB 
0

When a
AB 

0 the covariance matrix for
Z

qZ) 	I'NAB Is equal to

where E{Z Z 7 	K
%A %AB 	 %4

0 	 [-K 	 K

a 	 .i.. 	 a
22

0 	 A 	 111:: K,
vi- 	(‘'')

01 	 1K K
-I) % is positive semi-definite, and %1 %4 is

0 	 K K%4 %3

z r = 0

positive definite, so we can find a non-singular matrix H such that

H -la AA:1 H? 	 , and H
K K

K K(04 %3 

, 0E(r-i ) A, H 7 - 	 diagfX1,...,Xr_i,
0 	 0

(1,  

Define U =14Z
	 2 2

)

-1 
U /a

2
_

A, 	 U 	
--: H irk,A

Z 	 A 	 A
If A r. a -la 	 Q ..7 U 7 (XA + 1

' A 	 ,.,A. ,,,, A 	 %(r-1) 	 %A
A,AB 	 AiAB

2 	 .. 	 ..., 	 2
has a X-distribution with (r-1) degrees of freedom, and Q N l....Uv

B IAB A 	 (r-1)(s-1) uAB a/
x 	

A,A, 	 A,
has a X

2
-distribution with (r-1)(s-1) degrees of freedom. QA' ABQ and Q are

stochastically independent.
<

To test the hypothesis A
A 

- A
O 

against .A
A 
> A we reject when

(2.5) 	 G(LìA) 	 QA((n-rs) + (r-I)(s- )//(Q 	 QAB )(r-1)

is larger than the upper a-quantile, f
1
 , of the corresponding F-distribution.
-a
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In the game way as above it may be proved that the test is unbiased.

A similar test exists concerning u
2
la

2
.

2 2
3. On the possibility or testing hypotheses concerning a,/a without assuming

In balanced experimental design models we know that

(r-1)(s-1)Z?fsI 	 2 I 	 a
2 

+I( a2 ) -1
%A \ %(r-if Al- (r-1) (5A1Ala

2 v 2)-1 7
A/(r-1) ,U -1)(s-1) AB %3 	 %AB

(3.1)

-1)(S-1)7, 1 (ST 	 I- I 	 K ) 	 /(r-1) Z? (I 	 A 	 )
-1 Z2 	 -1

%(r-1) A %(s-1) AB 	 1 	 %A 	 %AB %(r-1) AB %3 	 %AB

is F-distribute,. This is not always the case in unbalanced models because

A and k7AB may not be stochastically independe nt. Let us now assume that

andZAB are stochastically independent (this may happen even in an%
unbalanced model). Define two orthogonal matrices M and M, such that

%1 	 qJ4

M K M? 	 L and M K M z L are diagonal. Let V r. M 7, and V 	 1\%1 %1 %1 	 %1 	 r\;2 k;3 %2 	 .%2 	 %A	 %I 	 %AB = 11, , ,A13 .
Then (3.1) may be written as 

1.--

E 	 VI (sA 	 A 	 -1-k )1/1(r-1 	 EIA
/
 A 	 AB li 	

nA
r-1 	 (r-1)(s-1) 2

4

	J 	 JAB AB
	 2

(3.2) 	 fr-1)(s-1) 

where 2, . and 	 are the diagonal elements of L, and L,. The quantity in (3.2)

	

- 	
y,-,, 	

%-
has an F-distribution, but the assumption that Z. and Z are stochastically

r\j ii	 rk,AB
independent is not sufficient to give a test for the hypothesis 	 10 against

> L
A 	 0'

In cases where

(3.3)
	li 	2j 	for all i and j, formula (3,2) is reduced to

r-1 	 (r-1)(s-1)2
0+-Mr--1 )(s .-1)EV(r1)(sA 	 A 	 k) 	 V

2
AB 	 A 	 AB 	 jAB.

i=1 	 j=1
r-1 2

If the null hypothesis isA
A r. 0, we have that 	 ) 	 (s-1)(r-1) E Vi,/A

(r-1)(s-1) 	 i=1 	 h
(r-1) 	 -27, 	 V. 2 is F-distributed under the null hypothesis. Hence we	J ., 	 DAB

reject if g(0) is larger than the upper a-quantile of the corresponding F-

distribution.

In the case r s = 2 assumption (3,2) is always fullfilled.



4 0 Comparison with corresponding tes S in fixed effects models    

A two-way layout in fixed effects models may be described as

yijk = 1.1 	 04 ; 	13.	 y,. Jr e..
	- 13 	 2.3k'

i 	 1,2,...,r; i 	1,2,.4.,s; k = 1,2,..0,n.., where P u., 	 and y.. are
	Jj 	 , 	 3

unknown constants such that

(4.1) 	 E a 	 E 	 E Y.. = E Y.' = (13 	 • 	 .

and the e .. have a joint normal distribution with mean 0 and covariance matrix
2 	 2.3k

In 	 r,(k)

The null hypothesis '.::: 0 (i ...= 1,2,...,r; i r- = 1,2,... 9 s) is tested
3. j1 2by 

minimizing the
 surn of squares Q ..,.. 	 E (y._;1__11_ 0.- 	 -. (1f3.., . )under

i,j,k IJ- 	
3. 	 3 	

i

the null hypothesis and under he a priori specifications. Let the two minima of

Q be Qw and Q ,Ç.2 , respectively. The null hypothesis is rejected when

(4.2) 	 (Qw	QQ )(n-rs)/Q, ( -1)(s-1)

is larger than the upper a-quantile f 	 the corresponding F-distribution.

We will prove that the quantity in (4.2) is equal to the test-statistic

F(0) in section 2a.

If as in section 2 we introduce y we have that

(4.3) -37.- J 	 4 	
.F

11+13: 	 + B
r‘irs 	 r\,1 	 %2

.
J r

+1 	'y + e.
	n u-12s 	 (),j t!, s

The only difference from the random effects model (2.4) is that a., 13., and
-1

Iii
 here are fixed constants with the side conditions (4,1). We write the

side conditions in the form
r-1 	 s-1

a
r 	

E a.; 	 E

i=1 	 s 	 i=j- 3

s-1 	 r-1
	E . 	 E 	 y..;

Is 	 j7i ij 	 rj 	 3J
i=1

r-1 	 -1
and 	 y = E

rs
i=1

The (4.3) takes the form

(4.5) 	 -3r
A,	 A,



where a
x 

= (a .." a r1)1; 
0x 

= 1, .-
Z is a quadratic, non-singular (rs x

wi-tl-ImeanOarudcovariamceraa-trdxKa2

• s -1 	 (Y1"*"Y(r-1)
rs)-matrix and e is normally

, with K given as above (2.3).

(s-1)
distribut.d

(It is

possible to write (4.1) in several other ways. This will lead to formally

different matrices, and formally different ax , e and yx in (4.5)). Define

V K-/ 	Then
1.1

11,

(4.6)	 V	 K-1 Z

ŒX

13x

Ix

+0 ,

where e is normally distributed with mean 0 and covariance matrix I a
2

.rs

The form (4.6) is very convenient because to minimize Q is equivalent

to minimize (V - EV)(V - EV • Thisis is seen as follows: With the side(1,
conditions (4.4) on the parameters, Q may be written

2 r-1 s-1
E 	 (yi . k yij. ) 	 E 	 E n..(y.. 	 P -•

i,j,k
- 6. - y..)

2
3

s-1, 	 r-1 	 r-1
E n . (y

i1 	 ±1
- p 	 E a. - 	 E Y. )

4

j-71

	

rj rj. 	 i 	 'ij==
(4.7)

r-1 	 s-1 	 s-1
E n. (y. 	 - p - a. 	 E (3. 4- E Y..)

2 
+i=1 is is 	 3 	 j=3.

r-1 	 s-1 	 s-1 	 r-1
fl (y 	P	 E a. -I- 2	E 0. - E 	 E Y )2
rs rs. 	 . 	 1 	 . 	 1 	 .	 .	 • 	 tiji1=1 	 j=1 	 3=1 	 1=1 j=1

The part of Q which depends on the parameters, equals

(4.8) 	 Q ::: (V - EVP(V - EV).
p A., 	 r,„ 	 rk,

The minimum of Q is then equal to the minimum of Q o 	 E (y..,
P 
	- y —

i,j,k 
ijis. 	 -J.

Define Q_ç and Q as the minima of Q under the a priori specifications and
Pw 	P

under the null hypothesis, respectively. We then have

Lemma 4: Qw Qo Qpw Q.

The a priori specifications are (4.4), and the null hypothesis is

I.. 	 0 (i r.	 = 1,2,...,s-1)



1 0

From the general theory for linear models we know that

A-v 	 )-1 ^x
(E

4P" Pu

where y is the least squares estimate for "yH , and E is the covariance
q, q,A,	 ,	H . 	1

	

matrix for y . 	
p

A,

The least squares estimate for ot?q is
q,x 1

I
xi

(Zt K-1 K-1 Z)-1 Z K 	 V,
rtv

which reduces to

The covariance matrix for this estimator is E ::: (Z 2 K Z) -1 a
2

.
et,	 11, 'kJ

By introducing the transformation k, where is the orthogonal matrix
with which the cell mean values were transformed in the corresponding random

effect model, we will now prove that Q Q is independent of the choice
Pwm 	 x 	 -2,of Z, ax ,, and v and that e kQ -Q )

f‘, 	 Pw PQ
defined as in section 2.

The following lemma is usefull:

Lemma 5: Partition into submatrices corresponding to the
A Ax Ax Axpartitioning (II, a 5 	 , y ) Ý . Thus

LT
(rs x (r-l)) 	 (rs x (s-1)) 

72, 
(rs x (r-1)(s-1).7. 	 7

r'J

2P s	
fl!, 2 	 (1,3

1 

Partition P likewise into
r‘,

(lxrs)P„
A,1.(r-1)xrs)

P

• 

1k2((s-1)xrs)

Pqd 3((s-1)(r-1)xrs

Q
AE
 when AAB 0, where Q
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are

ök
0

and 	
z

P

of Z we then have:

of P,
rb4

or P
%3

of P
%4

For any choice

(i) The rows

(ii) The rows

(iii) The rows

Proof: By section 2
ri 01

	p ? 	 % By the
	%, %	 0 0 I

L% % j

	lemma 3, P B B.! P! 	 s, P 	 13? P	,	 , 	 . '
%1 %2 %2

orthogonal to the columns in Z2 .

are orthogonal to the columns in 4.

are orthogonal to the columns in Z and Z
%1 	 %2 rsiA,s

wo can find a matrix P such that P A, P? 7-1 4
N 	 N 	 N 	 0

partitioning of P introduced in the proof 6f

• r, P B B? P 	s I
%2 %1 %1 %2 	 “r-1)(t'-1),

P B 13? P' • 0
%2 %2 %2 %2 	 %(r-1)(r-l)' P B B? PI

%1 %1 %3
-7- 0 	 P B B? P? 	 ri

	

%(s-1)(s-1)) %3 %2 %2 %3 	 %(s-1)(s-l)

P h B, BY, P,?,
%-t rj

It

• 0 and 	
f', 	 =%(r-1)(s-1)x(r-1)(s-lY 	 2

is always possible to find matrices A, B, C

0(r1)(si)x(r1)(s1)*
such that

,

sx1 	 (sx(s-1)) x((s-1) x 1 )

	

B 	 k
Nrsx1) ('-' (rsx(r-1)(s- ) x(r-1)(s-1)x1)
Y s 	 :-.. C % 	 Y

Formula (2.4) may now be written

	

(rSX1)	 X	 -

	

= y	 1.1 ..i- B
1
Aa

m
+ B 1

x 
+Cy +e

2	rurs% 	 'A)	 (1) Ai	 0, 	 A, A, 	ru ru 	ru
(Ir

.4, (N)

B, A and B n B equal Z, and r,2 in lemma 5, respectively, and C equals Z3 . The
qi-1. Ai 	 (k)	% 	 %

columns in B, A are linear combinations of the columns in B so that
%i % 	 %I.'

.1,(B
1
 A) C21f(

1
B ) where(U) denotes the vector space spanned by the columns

% %	 % '

in any matrix U.
%

Thus -..(Z,) (:::4(B ) andl(Z )4716(B ).

	

%1 	rul	 %2 	 fi,2

and thus P Z 7: 0, so the rows in P are orthogonal to the columns in
%2 %2 % 	 %2

The rest of the lemma now follows by treating P, and ilZ4 in a similar way. ED
,o

“rx1 	 (rx(r-1)) y((r-1) 1)a 	x

Then since P B B'P' 	 0,
%2%2%2%2 %

P B ..:.. 0
%2%2

BecausePJ 	 7-- PJ
r,„2 %rs 	 (\,3 rurs 	 ru 1 rurs

PZ has the form
%%

- Og it follows by lemma 5 that

0
ru

P Z
%2 %3

P Z
%3 %3
T )
Ai4 r‘Tif3

PZ t P J 	 0 	 0
q)1 %rs % 	 %

0 	 P Z 	 0
% 	 %2 %1 %

0 	 0 	 P 7,
fl, 	 % 	 %3 %2
0 	 0 	 0

rb. 	 %
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We then see that (P Z) - also is a triangular matrix with zeroes to the left of

the diagonal. The (r-1)(s-1) xr-1)(s-1) submatrix in the lower, right hand
-1corner of (P Z) 	 equals (P4 Z3 )

Introduce P into the expression for the least squares estimate and

its covariance matrix, we obtain:

Z Y = (P z) -1 P Y-1

j

and E - Z K
1 7) l2 	1a = (P v) 	 k 1‹ T, f (k 7..)

-1
cr
2
. From what we found about- 	 - 	 „, -

q, 	 'v	 q,	 i, it	 A,.; 0	 %)
r \i *". 1.(t Z)-1 -, it follows that the (r-1)(s-1) lower elements of (k Z) 	 Z are

y - (P z )

-1 
P 7', and the corresponding part of the covariance matrix isAm _.

(P K P s ). (P Z )-1 ' where (P K P?) is the ((r-1)(s-1) -I- (r-1)(s-1)-
( k4 r?,1:3) 

.1

	A, i', qi 	 iA 	 q,4 ,3 	 iki q, qi 	 4
sUbmatrix in the lower right hand corner og P K Pl. (4.9) may then be written

in the form

(P, Z
fvf. 	 evt.

(p z
(,,,4

-1 	 -1 	 -
4 	

2
PKP') 	 (P z.)(PZ) 	 PY0
q, 	 A, 	 q,4 fk,4 	 A,4 	 ,b4

(1,

(4.10) = Y' Pt! (P K '0 ') -1 p
evt 	 4 ru4fk,

This quadratic form is independent of Z a , 	 and Y , 	 is the same as
x

%1 1, ' qi 	 A, ,
Q 	 in (2.4) when A 	 - 0, because Z 	 --: P 	 and K 7: (P K P?) 	 We have then
AB AB 	 ralB 	 (IA Pi4 	 q/3 	 qi (1., Ai 4 .

proved that (n-rs)(Qw - QQ)/Mr-1)(s-1) ::: F(0).

5. The test statistics expresseL_priginal observations

Lemma 6: With the choice of made in section 4, the least squares
H „ X x,.estimates ror (P, r?),	 ,y ). are p 	 y..

(i = 1,2:: 

,

	3 	 1 	 1

	

1 	 1
..

and{-
l
'..} in ( /4.7), Q reduces to 	 7.: 	 (y.., :i

	

i,j,k 	
131,

When testing the null hypothesis A
AB 

- 0 against L'
AB 

0, we reject when

(5a) 	 (nrs) y 	 (E )

-1 AXy / E ,(y..1„ 	
.

y .. 
) 2 (r-1)(s-1)

ijk /3-

is larger than the upper -quanta° of the corresponding F-distribution. This

test is the same as the one suggested by Spjotvoll (1968).

It should be noted that the test statistic reduces to the usual one

when the model is balanved.

A
and { 1 } 	{y ij.
	 gi.. 	 Y .j. 1- Y .

A 	 Am

l..{yi —y 	 1 9 {(3 	 .... {y ej 	— y .0 1,

2
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