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. Introduction and summary

Many phenomena studied in the social sciences and elsewhere are complexes

of more or less independent characteristics which develop simultaneously. Such

phenomena may often be realistically described by time-continuous denumerable

Markov processes. In order to define such a model which will take care of

all the relevant a priori information, there ought to be a way of defining

a Markov process as a vector of components representing the various charac-

teristics constituting the phenomenon such that the dependences between the

characteristics are represented by explicit requirements on the Markov process,

preferably on its infinitesimal generator.

In this paper a stochastic process is defined to be composable if, from

a probabilistic point of view, it may he regarded as a vector of distinct sub-

processes.

In a composable Markov process the concept of force indenpendence between

its components is defined as restrictions on the infinitesimal generator.

The paper gives a set of theorems on 	 relations between the concepts of

force independence and stochastic independence.

2. Comnosable processes 

2A. Let Y = Y(t) be a stc,chastic process with real time T and an

at most denumerable state space E. Assume that there are p" .- 2 spaces

Ei ; i=1,...,p; such that the number of ei(;mcnts of each space at least equals
P

2, and that there exists a one-to-one nipping f of E on to X E..
1=1

Definition: The process Y is a conposabie process with components

Y...,Y given by f(Y(t)) = (Y.(t)
'

 ..c.Y (t)) if and only if for each

Acf1,2,...,0 with at least 2 elamonc3

P. 	 1 '
—h P{ . Yi (t+h) 	 • 1'' 	 • y.1 	 0

• . 	 2h+.0	 IAA

whenever yie 	 ,p; and 17 T

In other words: Y is a comporP.bi process with components Yi ;

if the probability that more than one component changes value during a period of

length h, is of magnitude 0(h). If this is the case, we write

Y 	 (Y...,Yp ).



)

213. The compositioning of Y 	 (v1' p
) is not necessarily unique.- <

If p > 2 let A
1
,...,A

r
; 2 - r < p, bc E partitioning of {1,...,p}, i.e.

if .i. :f :j then 	. 0, A. 	 0 .=or i 	 1,...,r, and U A. r. {1,... 1p},•
3

We can then define E' 	 X E. and j" as the one-to-one mapping of E on

X El induced by f. In this case w(:: consequently have
j=1

Y 	 (Y 	 ...,Y ) 	 ,..Y‘)
p 	 r

where (YY(x),...,r(x)) 7: f Cir (,r

§ 2C. If Y q, (Y.Y ) ic a composabie Markov. process such that all7. ) 
,

forces of transition Px (y;y') 	 then Px (y;y') equals zero if y and y'

differ on more than one component y t y'e 3( E.. This is an immediate± =1

consequence of the following defiriIon of the forces of transition

1.1 .(Y;30 ) = lim---J){Y(*f-h) = ytlY(x) 	 yl.
10-0 h`

3. Force independence

3A. Let Y be a composablc: rkov process with finite state space.

We shall call Y a CFMP (Comosobit, Finite Markov Process) if for all y,y 6 E

such that y f y' the force of vransition 11,(y;y') exists and is a continuous
and bounded function of x on any elosod interval in T.

A CFMP Y has a normal v.rarion-probability P xt (y,y') PfY(xtt)

y'IY(x) 	 y}, i.e. lim P (y,y;) eT,izais 0 or i according as y and y are
t+0 xt

different or equal. In this case the total force of transition x(y) =

x 	
ryE	 p x(y,y' )	 • -41t 	P t .

t+0v 7 fY
.1s a continuous and bounded function of t.

313. Let Y 	 (Y1 ,..„T„ ) be a CFMP. According to 	 2C only those

14y,y 7 ) differ from 0 for which y an  y' are equal in ali but one component,

say the r-th. In order to suppress cuperfluous arguments, we let

ux(Y;Y') = Y(Y;Y)

where y is the r-th component of ys.
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..._,Definition: The component Y i.F. force independent of the component Y
r...._.

qif and only if y_(y 'Gy i ) is a constan -:: function of thc 1,-th component y
r 

of yx 	 q
for all x Ei T, y' E._.' E and y, E. .17 ; i 'Ë .

q 	 ri-i. 	 ..t. 	 -

The relation 'force indepcmäent of is neither symmetric, reflexive, nor

transitive.

Y. will be said to be force dopc_-ndent on Y when it is not force
] 	 _	 q

independent of IC . When Y. is force ipenðcnt on ex:lc -L.1y Y. ....,Y.
q 	 i.. 	 liJ

is convenient to write

X
,...,y. 	 ,)

2 1,

3C. We shall elucidate the relation betwcen force independence

and stochastic independence by Droving Some theorems

Theorem 1. Let Y 	 (y. , v2 - 	
,) "r)y a CFMP. If v is force independenti' -1

of Y
2' 

then { (x)} is a Earkov rocc 	with forces of 1:.:ansition Ä (y. ;y').Yi 	 x i 1

r C 	 _Proof. Assume that Lx 	 N be the number of transitions

in Ex° ,K], let Y° = Y(x° ), let xk be 	 time of th k-th transition after x°
and let Yk be the value of Y immediatcly after the k-th transition. Let
(Pipt,P) be the probability space in whicì -. thc process Y is d ,,:fincxl. On the

basis of (2,(1,P) we can construct a probability space MS,Q) for the random
0 	 i 2 f) 	 JT _N,variable W = (Y ,N,X ,Y 	 t: 1 ), with a naural a-finite measure

a over Otcb constructed by mclens of the counting measure and lehesque measure.

(See Albert ) 1962, p. 731. Since our process does not have stationary

transition probabilities ,W' 	(in(:ssentially) from the space Albert

constructs.)

The points w of/t/have 1±e form w = (y ,n,x,y,x,V
2 n

)

	

-. v 	0

-where yE. E; yi y1+1 ; i=1 ,-,n; 	 , Lxi < 	 <x < x n 	 O.n
Then a stochastic process Y î. a Markov process with forces of

transition P
t
(37,37') fulfilling th:. -1.-cularity conditions previously mentioned

if and only if Q is absolutely cor ,tinuous with resT)ect to 5 and the Radon
dONikodym derivative f = 	 is given by the formula
uG

n 	 xi •

	

f (w) = p 0 IT expf- I 	 14(v 	 i(Yi-1,yi) ox -1-;1- f 	 (yn )dt1
Y i1 x 	

x - xn t-=
n

where p 0 = Pr(Y° = y0 ) 7. p{(;°) 7 
0, (The product fl is interpreted as

i=1
1 if n equals O.)



If this is the case s IT -_72irj_tE: with probability i (Hoem, 196G)

and f is a density.

Assumenowthati7 q ("i:,Y,.)L7taalWsuchtla -LY,is force independent

of Y2 . By the definition of composability, a transition of the process is with

probability one either a transi -cion c.). Y 1 or of Y2 . Consequently, it is
=	 u 	 vi ,z2 v2 	 E

possible to define random variabic ,:,; W 	
f 

1v
 m
1 11 	 • • •

XN1 F.
1

Y
1-1-

 ) and
, 0 Nn m-

1,1
2 

- kY2 ,N2' 
Xi
2" . " X2'Y L) 	 W-variablos connected with the

Y1 and the Y2 process, respectiviy, Doth 11 1 
andW, arc! measurable functions

4

of W, in particular N + N -7- N, 'I» -7 (
1 	 4	 -1' 2 •

4
11 is defined over the çi -77.nitc, measure space (1,8 1 .a. ) induced by

-..L 	 ' i
('1r,,a), and has a probability mcasur(2 Q, which is obviously absolutely continuous

.,
is given by

Xi	 , 	 •

71where A
t
(y
1
) is the total force of transition for Y 1

Let AE
	 r) {N 	 n

1

Q1 (A) 	 Q({wlw1 ,:.}) f(w) a(dw).
tw w 	

'1 )-

i

By the force independence ,,Te have for y = 	 -v2 ) the relation

(Y) 	 5:(y1)
1 	 -

Y(311Y
2 	 2)* Fuhini's theorem then gives

= 	 t'

Q (A) r. 	 wf() cy(dIr)
A XIV

2

ni 	 xi

=f13yl
0 1
	

exp{- 	 i-1)
• 1. xi-1 't' 371. 	 id'

A 	 =

n 	 xj

	

f p,0 H expf- f 	 (4 (y -" -- )
lhr

2
 J2 :il -	 xi -1 t

i-1 i, 	 -- n
Ti ,y.1 ) expf- f VL (y1 1 )dt ,

t 	 '

n22 	 j(i) i-i i,
Y i(Yi

i::L x 2

x -,
expf- f -1,'(y- )dtl a (dw

2
 ) c (*, )

2 	 1
xn

x 
-	ni	

• 
1 	

, 1 	 i- , 	 i-1 i 	
:.\: -

r. fP0 H expf- f	 ? (y_ - )dv; -L4(y, 	 ,y ) exp{- f , It- (yn )dt} ai
(dw

I )
	A Y1 i:-.1	 i-1x	 x111

.I. 	
.1

0I ((»: ).fn. (w- iA 	 • -i -

with respect to a . Our aim is
1 	 -co c,hui' that fQ, = 17.1

ni
.-- 	 i 	 -

f
0
 (w.) =p0 n exp{- f 	 . kv L kit}) i(y. 	 _37 ) exp{- f
1 	 Y1 i1 	 x:i-1
	 i 	

7,1(y11)dt},
i 	 1 	 1 	 xn- t

	

.- 	 a: -.:. 	 x
' 	

-
= 1.

1
I

 i 1 i

d Q1



We have written y 	for the value o Y i (x) and po = P(Y2 (X
0 	

'Y) 	 e"1Y.(X°) =1 	 -i- 	 2 Y2 

Let TN, (Y
1,

...,Y
p
) be a CFIT2 and let A be a

i 	 force independent of Yk3
If Y is the vector containing {Y. 	 and Y is th

2
of the components,then y ,14yyp is a compositioning

force independent of Y. In this case Yj is a Markov

nonempty subset of

for each j e_A and k A.

e vector containing the rest

of Y such that Yç is1
process which develops

independently of Y.

Theorem 2. Let Y 41, (Y
l' Y2

 ) to a CFMP. Then Y
1 

is force independent

of Y2 if and only if, for ail t > 0 and x, x + tCa T Y(x) and Y2 (x  are

stochastically independent, given Y, (x).

Proof. Let 3r 	 E '57 	and x,	 E---c T. Assume that1Y. 1 1 2' 	 Y1

force independent of Y,. Y
i
	Plis then a arkov process by theorem 1, and for4 

h e<0,t> we have

R(y2 ) = Pr( 111 (x+t) = y:IY1 (x) 	 Yi ;Y 2 (x) =

pr(y x+t) 	 y y, (x1-1) 	 Pr(Y, (x+h) = ylyx)=y, ,Y,(x)=37 2 )
4., 	 4

yEE
1

= E Pr(Y 1 (x+t) z Y:IY
.1,:x+11) = y) 	 ky ,v)hx 1 -

34371

-)
+ Pr(Yi

7(x+t) 	 y'lY_(;+:1) = y
1
 )(1 	 ''(y.)h) 	 o(h)

I. 	 X 1

Consequently

R(y
2 ) = lim Pr(Y1 (xi-0 -7- y'lY (x+h)2-- y1 )2 i11+0

which is independent of y 2 and this is , ciuivalent to the stochastic independence

of Y (x+t) and Y2 (x), given Y,(y.).

Assume conversely that

Pr(Y1 (x+t) = yllyx) 	 y 1 Y(:) 	y 2 ) = Pr(Yi (x+t) = yllYi(x) = y1 ).

For yi yi we have by definition

1,
Y k 1Y 372 ;37') = lim --Pr( i

Y 	 = y'AY2
 (x+t)= y

2
1Y
1
(x) = y

1 1'
2
(x) = y2 ) =x 	 1 	 t 	 1' 

t+0

1
= lim.—Pr(Y

1
 (x+t)=yllY1 	

'
(x)=y,,Y,(x)v

2 )
	

I 
(x+-0=y1,Y2 (x+t)iy,1Y

i
(x) 	= y

t+0 t 	 i 	 t+0 t

'Y9(x) = Y2).
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By the composability, the last 1:cri-, (-;.lals 0, and by the assumption above we

get

ylx 	, y2
)

= lim 4-7r(Y 1 ( - ) = yilYl (x) = y l )
t+0 	 •.

which is independent of y 9 . [I]

We shall now show that compt...) mutual force independence of all

components is equivalent to rhi]2 stochastic independence.

Theorem 3. Let Y '. (Y ... Y ) be a CFMP. Thon Y ... Y are stochasti
	I 	

--- 	 T-,,
	 Y.  ,	 5 p

cally independent Markov processes if and only if each component is force

independent of all the others.

Proof. 	 o.t YAssume first th_ ,...,Y are stochastically independent....._ 	 P
Markov processes. Let Pi(y.,y:)h 	

'
transition probabilities of Y.. and

xl: ] i 	 3
It
 i
ty.,y

i
7 e_Ei ;i7:1,...,pbesuclay

q
	and.Yj ..:y's jfq . Finally, let

q 	 i '
y .T. (y ,...,y ) and y'7: (y' ..,..y') 	 By the assumption,

z 	 P 	
i, 	 T._

P 	 .;
q (Yx 	; y') = lim	 1 P J (Y-,Y ; )P 	 q 	 1=1 xt 3' j

P (lim il 	 kY-,Y-)
t4O jq 	

3

which is independent of y l for all j 	 since Pi (v.,y.) tends to I as t tendsxt -]
to O.

Assume conversely compl(rte 7Autual force independence of the components

By theorem 1 ail Y an, !:arkov processes with forces of transition
P

)t ( (y ,y) and corresponding transition probabilities P t (yo ,y). Theseq
transition probabilities determine ;-1 new set of transition probabilities

(y,y 7 )xt
P 	 i
ri P - (y . v)d -j1=

which belong to a CFMP Y 1 with stochastically independent components. Since

however, the two CFMP's Y' and Y Iiavc common forces of transition, they must

have identical transition probahiliiles and hence the ilarkov processes Y. ....,YY1
	p

must be stochastically independent.

The following extention of thc theorem is obvious and needs no special

proof.



Corollary. Let Y 	 (Y...,Y ) be a CFMP and let Al ,...,A
r 
be a

partitimdngof{ 1 ,-,PconsistingoffYdi-EA..I;

j L7 1,...,r; are stochastically independent Markov processes if and only if

Y. and Y
k 

are mutually force independent whenever j and k belong to different As.

Complete mutual force independence is not necessary however, for some

components to be stochastically independent.

Theorem 4. If Y (Y. Y 2 Y ) is CFMP such that both Y
1 

and Y
2 

are
1 -	' 3

force independent of Y
3' 

then Y
1 

and Y, are stochastically independent Markov

processes if and only if they arc mutually force independent.

Proof. Let Y' 	 (YY2 ). Then Y n,(Yl,Y 3 ) and 17  is force independent

of Y3 . By theorem 1, Y 1 m." (Y,,Y 2 ) is a CFMP with forces of transition

11	 -	 ;
x kYI ,Y2 ;5/' 	 -1 	 x kj,y 	 wherc 	 (37y,,y,

,), and
i 

2 	 00
yx (y1 ,y2 ;y2 ) 	 px(y,y), whcr v

o 	
(Y,,Y,

2 ,Y,).
.1.. 	 o

The equivalence then follows from thc:orom 3. ri

By introducing the relation 	 defined below. we obtain an interesting

ordering of the components.

Definition: The binary relation K between components is defined as
follows:

(i) If Y. is force dependent on Y., then Y .

(ii) -.<is transitive and reflevc.

We shall say that Y is a DrecÌcssor of Y hcncver Y,
N
-<tY..

3 
By this concept we get the following extension of theorem 4.

Corollary to theorem LI. iy.:t 	 (v1' ...,Y ) be CFMP. If the components
' 	 p

Yr and Ys have no common preck:cessors, the n Y
r 

and Y
s 

arc stochastically inde-

pendent random processes.

Proof. Define A k 	fi	 Since 	 is reflexive, k Ak . The

antecedent in the corollary is cci .uivaiont to A (1 A 	 O. Let now Y be the

vector consisting of the components {Y.Ii.E.A 
r
}, and let Y' be the vector

. 1 
consisting of {Y. liE A

s
}. If A 1.3 ,f, ..:-. {I...,0 then Y '(Y ,Y) where Y' and Y'.:,

are mutually force independent by construction. Consequently Y r and Y are
s



1
terminal time D, forces of transitioll 	 ,yv) = 	 (yI -,1;y!), and transitioni 	 x 	 I

space determines a Markov proces Y"' with state spaceEl , time space

stochastically independent because 	 ,11(1 Y are. If however, A

- (AU As ) 0 then define Y'' to be the vector consisting of the

components . {Yi liEA}. By our construction, we have Y°u(Y',Y",Y") where V' and

Y" are both force independent of 	 The corollary is now obtained by theorem

E:1

Note that Y
r 

and Y
s 
need not bo Markov processos, even if they have no

common predecessors. (See example 1 ,;:= Ç 5 below.)

4. Conditional Markov processes

A. Starting with a CFNP it is sometimes possible to construct new

Markov processes by conditioning. Assume for example that Y q4Y1 ,Y2 ) is a

CFMP with time space T = 	 and wi:J1 the property that there exists a state I

say in E2 such that Pr(Y2 (0) = 1) I. Let ( 3,P) be the canonical probability

space defining Y, (Dynkin, 1965, p. 95), i.e. every sample point w of ,Q represents

a unique sample path T(t,w) Y ,(t,w), y,(t,w)) with y n (0,w) L- 1. Connect to1

each (i) in f2 a 21 g(w) which is the sample point representing the terminating

sample path yl(t,w) y(t,wm ); tE[O,D(2")>, where D()

departure from state 1 for y 2 (t,w).

there correspond a probability space

largest a-algebra such that g is measurable, and Ph -= Pg. This probability

is the time of first

g
( ) is then a sample space to which

14 
,P ) where,z may be taken as the

probabilities

P (Y 537 -1 ) 	 PO( (x+t) = y .xt 1 i e,(0 	 1 for x< 5.xi-tlY1(x) = yv Y,) (x) z 1)

The truth of this is seen by elementary conditional probability.

n
§ 1443.considert ileprop ( yN )0	 y=1.0,?-(x.) 	

Y1
=.(-) D>T) for

• 1-1 
0<x1<... <x <x<T, and y,yE.E, 	 This probability satisfies the Markov conditionn 	 n
in the sense that for all 0 1-x.i.‹,..;,PW -1 Y(x.) 	 y. r) > T )

= P(Ym(x) = yl Yx (x )7y r)D>T). ThoE-,, conditional orobabiliIies therefore aren n
transition probabilities for a larkc-,v process with Lime space [o ,-ri and with
forces of transition y

x
(y.,yi). Wc shall denote this process the conditionalx i 1

Marhov process, given Y 2 :-- 1. As will be seen in the examples below, this con-

ditional process may have a structure which is muen simpler and more informative

than the structure of the process fro7J which it is determined.
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5. Examples

Example 1. Let us consider a queuing model dcscribed by Khintchine (1960,

p. 82). Calls arrive in a telephone central with R lines, L i ...,LR , according

to a Poisson process with paramc7cr ;„ The service pattern is as follows: If

at time x a call arrives and the linos LI ,L2 ,...,Lk_i are busy while Lk is free

(1<k<R), this call is transferred via L k . If all R lines are busy, the call is

lost.

Assume that the conversation periods are stochastically independent with

a common exponential distribution with parameter 1, and that they are stochastically

independent of the incoming stream of calls.

Define the random variables

0 if L. is froc at time x,

1 if L. is busy ut - ime x. i 7: i
)

Obviously the stochastic pfc=css Y(x) z (Y (1-)— 	 YR (x)) is a composable-1 
finite Markov process with forcez of transition given by

k
(37 1...,Y ;;Y ? )x 1 	 R k

f 0 fo -2 y 1 	and yk 	0 and y l .7- 0, or y2 .7.: 0,...

or 	 7- 0,

), 	

i:
"FO' 	 and yk 	C) and.37 . z 1, j=1,...,k-1,3

foi- y.;z .7. 0 and yk 	L.

Consequently Yk is force depondent on 	 and force independent

of k+1' 	 'R» When R 
z 4 we can draw a picture of this structure as in figure— 

1 where an arrow from Y. to
k 

indicates that Y
k 

is force dependent of Y.

-7-

Fig. 1.

For K<R we may define Y 	 (Y1 ,...,YK ) and Y' = (YKI-1" — "YR ).
Thus Y (Y',Y") where Y' is force independent of Y. Consequently Y 7 is a

Markov process by theorem 1 - somethirm: which is also self-evident.

—Khintchine (1960, p. 83) has shown that Y2 is not a Markov process

despite the fact that both V (Y— ) and Y
1 

are.

If R z co we get a composabic ilarkov process Y = (Y1 ,Y2 ,... ) with an

infinity of components. (See § GB.)
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IXEIL1L.2. Suppose that or Ashes to investigate the simultaneous

influence on mortality of the five diseases

Yl: chili

Y2: pneumonia

Y3: bronchitis

Y: hyperloni

Y 5 : angina pc.ctoris

A person may have or be free from each of these diseases. A live

person of age x is charactcrizcd by th3 vector (Y1 (x),,..,Y 5 (x)), where Yi (x)

equals 1 or 0 according as he has or does not have the i-th disease. If the

person dies at age T, we shall say that at age x -> PC he is characterized by the

vector

(Y1 (x),...,Y
5
 (x)) r- (Y. (T),..,Y (T)),

which in fact gives his status at deal -II.

By introducing the component Y e (x) which equals 1 or 0 according
<

as he is alive at age x or he has died at an age îx, we may give a complete

characterization of him by the vector (Y(x),...,Y
6
(x))

A person cannot recover from any disease nor get a new one at death.

It is further natural to assume that E, person cannot simultaneously get two

diseases, nor can he recover from one disease in the same instant as he gets

another.

Y = ( Y ...,Y,u) 6 	ris then a coposable stochastic process with the (
finite state space E 7.. X

i=1
We shall assume, possibly with some lack of realism, that Y is a Markov

process.

From the moment when Y6 first equals 0, no more transfers are possible.

Consequently Y1 ,...,Y 5 are force dependent on Y6 , Conversely mortality depends

on the state of health, so Y6 is force dependent on Y 1 ,...,Y 5 . Although we

will not give any guarantee of medical reaslism, it is probably reasonable to

assume that Y1 is force independent (.): 1 2 ,...,Y 5 ; Y2 is force dependent on

and Y3 and independent of Yu , Y. Y 3 is force dependent on Y1 and Y2 and

independent of Y4 , Y5 ; Yu is force independent of Y1 , Y2 , Y3 , and Ys ; and

Y5 is force dependent on Y4 and force independent of Y1 , Y2 , Y3.
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12

Figure 2 gives a Dictur ,-_: of this structure.

N.Lr
Y
2

Y i/
,7`

-3

/

6

Fig. 2.

By a look at figure 2 we immediately see that for all i, j we have Y.	i 	 3
Thus all components are stochastically dependent.

If we proceed as in 4, however, and construct the conditional Markov

process 2 , given that Y6 .7. 1, 071. ., :i7 5 ) is a CFMP with force dependence
structure as shown i figure 3.

Fig. 3.

_
We see that the components Y 	 ('Y Y2' Y„) and X' 	 (Y4'Y5) arel 	 .5

mutually force independent, and consequently stochastically independent Markov

processes.

This illustrates a feature common to many situations where CFMP models

are useful. The CFMP model describes the evolution for instance of a person,

an animal, a machine, or another individual or unit which may die or stop

functioning. One of the components of the CFMP indicates whether the

individual (unit) is alive (functioning) or dead (out of function). In this

way the rest of the components arc force dependent on this particular one, and

if the latter is force dependent on -tle others (which often is the case),
then all components are stochastically dependent. If, however, we construct

the conditional process described, a tore interesting force dependence structure

may be obtained. This structure seems to correspond 	 to our intuitive under-

standing of the relations between tho phenomena under consideration. In fact,

we probably take into account only what happens to the individual (or unit)

up to its death (or as long as it functions).

Returning to our example, let us recompose "1" by letting Y' 	 (Y1 Y
4'

Y5 ),

Y" 	 (Y2 , Y3 ), and 	 (17.1,Y"). Because Y' is force independent of Y', Y' is a

(conditional) CFMP and since -E is force independent of )74 and i5 , Yi is a

Markov process. Y' need not, hc,wever, be a Markov process. If, on the other
hand, we had recomposed into 	 (v° Y° ) where Y° 	 ' 5 ) and Y° 	a2 ,13 ,?4 ),- i 	 2 	 1 	 '1 	 20 	 0then neither / - nor Y

2 
need be larkov processes. The reason is that neitheri
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0 	 0Y
I nor Y2 consists of components from the top of the force dependence tree'

in figure 3.

This example throws some further light upon Harkov process models

in general. Let, in fact, a complicated phenomenon be described by a CFMP.

This CFMP may be difficult to handle ae, it has too many components. The

following question then arises: Is it- possible to take under investigation

only some part of the phenomenon which posses its main features ? Restating

this question in terms of the components of the CFMP

ask whether it is possible to recompose Y into (Y',Y'

(Y1,...,Yp), we may

), Where Y' :7: (Y.	 )
11

complicated for

investigation ? If investigation means estimation of the probability structure

of the random process Y/, this may be difficult unless Y/ is a Markov process.

A reasonable requirement for the decompositioning of Y is therefore that Y 7

be such a process. If we know the force dependence structure of the process

Y, we may draw a(mental or actual) picture of the 'force dependence tree as

we have done in figures 1 to 3. From theorem 1 we then know that a set of

components Y. ,...,Y. forming a 'top' of this tree, if any, constitute aiq
component Y 1	(Y. ,...,Y. ) which is a t4arkov process.11

We shall call such a component Markovian. A Markovian component of

a CFMP Y rt, (Y...,Yp ) is then by definition a component Y' 7: (Y. 	 Y ), •

such that for all k; q<k5p, Yi is not a predecessor of any of the components
k

Y. ,...,Y. . Alternatively, if Y 	 (Y 7*-,-) is a CFMP, then Y 1 is a Markovian
11

component if Y/ is force independent of Y'.

The question asked above may then be answered by looking through the

possible Markovian components of Y and judging them with respect to complexity

and adequacy.

6. Extension to a denumerable state space

6A. In the preceding account we have considered Markov processes

with a finite state space only. The theorems in 3 are still valid however

if we write CMP for CFMP everywhere, and let CMP stand for "Composable

Markov Process". We define the latter concept by letting a Markov process

wit a denumerable state space be a CT if it is a composable process, and if

all total forces of transition 10y) as well as all forces of transition

x(y,y 1 ) exist and are uniformly bounded continuous functions of x where

x(y) = E px (y,y/) holds.
ye.E

describes these main features and where Yg is not too
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§ 6B. Let us extend the concepv, of composability to the case of a de-

numerable set of components. Lei:. Y be a random process with infinite

denumerable state space. We shall call Y infinitely composable if for every

integer n, Y may be composed into Y 	 (Y1 ,...,Yn ).

By this definition, the process of example J. with R co may naturally

be regarded as an infinitely composablc Markov process.
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